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Abstract

We provide a formal treatment of both static and dynamic portfolio choice using the Dis-

appointment Aversion preferences of Gul (1991), which imply asymmetric aversion to gains

versus losses. Our dynamic formulation nests the standard CRRA asset allocation problem as

a special case. Using realistic data generating processes, we find reasonable equity portfolio

allocations for disappointment averse investors with utility functions exhibiting low curvature.

Moderate variation in parameters can robustly generate substantial cross-sectional variation in

portfolio holdings, including optimal non-participation in the stock market.



1. Introduction

The U.S. population displays a surprisingly large variation in equity holdings, including a ma-

jority of households that hold no stocks at all (see, among many others, Mankiw and Zeldes,

1991; Haliassos and Bertaut, 1995; Heaton and Lucas, 1997; Vissing-Jørgensen, 2002). Driven

in part by a large equity premium, standard portfolio choice models often predict large equity

positions for most investors and fail to generate the observed cross-sectional variation in portfo-

lio choice (see, for example, Campbell and Viceira, 1999). In an effort to explain these portfolio

puzzles, one approach is to combine transactions costs, such as a fixed cost to entering the stock

market, with various sources of background risk. Another approach considers heterogeneous

preferences. Standard constant relative risk aversion (CRRA) preferences cannot resolve these

puzzles, since they cannot generate non-participation at any level of risk aversion, except in

the presence of large transactions costs (see Liu and Loewenstein, 2002). However, a rapidly

growing literature builds on the framework of Kahneman and Tversky (1979) and investigates

asset allocation in the presence of loss aversion – that is, investors are assumed to maintain an

asymmetric attitude towards gains versus losses (see Benartzi and Thaler, 1995; Berkelaar and

Kouwenberg, 2000; Äıt-Sahalia and Brandt, 2001; Gomes, 2003).1 Portfolio choice problems

with loss aversion generate more realistic (that is, lower) equity holdings than standard models.

We provide a formal treatment of portfolio choice in the presence of loss aversion; however,

rather than relying on Kahneman and Tversky (1979)’s behavioral prospect theory, we use the

axiomatic Disappointment Aversion (DA) framework of Gul (1991). Gul’s preferences are

a one-parameter extension of the expected utility framework and have the characteristic that

good outcomes, i.e., outcomes above the certainty equivalent, are downweighted relative to bad

outcomes. The larger weight given to outcomes which are bad in a relative sense gives rise to

the name “disappointment-averse” preferences, but they also imply an aversion to losses.

In the literature, DA preferences have only appeared in equilibrium models with consump-

tion, not in portfolio choice problems. For instance, Epstein and Zin (1990, 2001) embed a num-

ber of alternative preferences, including DA preferences, into an infinite horizon consumption-

based asset pricing model with recursive preferences. Bekaert, Hodrick, and Marshall (1997)

consider asset return predictability in the context of an international consumption-based asset

pricing model with DA preferences. Both these models endogenously generate more realistic

equity premiums than models with standard preferences. When we investigate portfolio choice

1 Roy (1952), Maenhout (1999), Stutzer (2000) and Epstein and Schneider (2002) provide an alternative treat-

ment of an investor’s asymmetric response to gains and losses, by modelling agents who first minimize the possi-

bility of undesirable outcomes.
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under DA preferences, we show that investors with a sufficient degree of disappointment aver-

sion do not participate in the equity market.

Loss aversion is not only introspectively an attractive feature of preferences, but as we

demonstrate, it also circumvents the problem posed by Rabin (2000): within the expected utility

framework, anything but near risk neutrality over modest stakes implies manifestly unrealistic

risk aversion over large stakes. Whereas both behavioral Kahneman and Tversky (1979) loss

aversion (LA) preferences and DA preferences share this advantage, DA preferences are a useful

alternative to LA preferences for three main reasons.

First, DA utility is axiomatic and normative. Although DA utility is non-expected utility,

it is firmly grounded in formal decision theory. Gul (1991) replaces the independence axiom

underlying expected utility by a slightly weaker axiom that accommodates the violation of

the independence axiom commonly observed in experiments (the Allais paradox), but retains

all the other assumptions and axioms underlying expected utility. The similarity between the

DA utility and expected utility frameworks yields a number of benefits. For example, DA

preferences embed CRRA preferences as a special case. Thus, the portfolio implications of

loss aversion are directly comparable to a large body of empirical work in standard preference

settings; moreover, they allow us to retain as much of the insight offered by expected utility

theory as possible.

Second, we demonstrate that with LA utility, finite optimal solutions do not always exist,

particularly with empirically relevant data generating processes (DGP’s). Third, DA preferences

eliminate the arbitrary choices required by LA. In particular, Kahneman and Tversky (1979)’s

prospect theory offers no guidance with regard to choosing and updating the reference point

against which gains and losses are compared. With DA utility, on the other hand, the reference

point is the certainty equivalent and hence is endogenous. Moreover, we propose a tractable and

natural dynamic DA setting that nests a dynamic CRRA problem and endogenously updates the

reference point.

Our paper proceeds in four steps. Sections 2 and 3 develop a portfolio choice framework

under DA preferences. Specifically, in Section 2, we focus on a static setting and show that DA

preferences can generate stock non-participation. Section 3 generalizes the set-up to a dynamic

long-horizon framework that preserves CRRA preferences as a special case of DA preferences.

Given the popularity of LA preferences, we consider them as an alternative in Section 4. Section

5 explores the empirical implications of portfolio choice under DA preferences. We calibrate

two DGP’s (one with and one without predictability) to U.S. data on Treasury bills and stock

returns and we then examine static and dynamic asset allocation for a wide set of parameters.

Finally, Section 6 concludes.
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2. Static asset allocation under DA preferences

We use the case of standard CRRA utility to set up the basic asset allocation framework in

Section 2.1. Section 2.2 extends the framework to DA preferences and derives a stock market

non-participation result.

2.1. CRRA utility

The investment opportunity set of an investor with initial wealthW0 consists of a risky asset

and a riskless bond. The bond yields a certain return ofr and the risky asset yields an uncertain

return ofy, both continuously compounded. The investor chooses the proportion of her initial

wealth to invest in the risky assetα to maximize the expected utility of end-of-period wealth

W , which is uncertain. The terminal wealth problem avoids the computational complexities

of allowing for consumption decisions and makes our work comparable to both the standard

portfolio choice literature (e.g. Kim and Omberg, 1996; Brennan, Schwartz, and Lagnado,

1997; Liu, 1999; and Barberis, 2000), and the asset allocation with loss aversion literature (e.g.

Bernatzi and Thaler, 1995; Berkelaar and Kouwenberg, 2000; Aı̈t-Sahalia and Brandt, 2001;

Gomes, 2003).

Formally, the problem is

max
α

E[U(W )], (1)

whereW is given by

W = αW0(exp(y)− exp(r)) + W0 exp(r). (2)

Denoting risk aversion byγ, under CRRA preferences the utility functionU(W ) takes the form

U(W ) =
W 1−γ

1− γ
. (3)

Since CRRA utility is homogenous in wealth, we setW0 = 1.

The first-order condition (FOC) of equation (1) is solved by choosingα such that
∫ ∞

−∞
W−γ(exp(y)− exp(r))dF (y) = 0, (4)

whereF (·) is the cumulative density function of the risky asset’s return. This expectation can be

computed by numerical quadrature as described in Tauchen and Hussey (1991). This procedure

involves replacing the integral with a probability-weighted sum, i.e.,

N∑
s=1

psW
−γ
s (exp(ys)− exp(r)) = 0. (5)
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TheN values of the risky asset return,{ys}N
s=1, and the associated probabilities,{ps}N

s=1, are

chosen by a Gaussian quadrature rule, whereWs represents the investor’s terminal wealth when

the risky asset return isys. Quadrature approaches to solving asset allocation problems have

been taken by Balduzzi and Lynch (1999), Campbell and Viceira (1999), and Ang and Bekaert

(2002), among others. For future reference, we denote the excess returnexp(y)− exp(r) by xe.

2.2. Disappointment aversion

2.2.1. Definition

DA utility µW is implicitly defined by

U(µW ) =
1

K

(∫ µW

−∞
U(W )dF (W ) + A

∫ ∞

µW

U(W )dF (W )

)
, (6)

whereU(·) is the felicity function that we choose to be power utility (i.e., of the formU(W ) =

W (1−γ)/(1 − γ)), A ≤ 1 is the coefficient of disappointment aversion,F (·) is the cumulative

distribution function for wealth,µW is the certainty equivalent (the certain level of wealth that

generates the same utility as the portfolio allocation determiningW ), andK is a scalar given

by

K = Pr(W ≤ µW ) + APr(W > µW ). (7)

If 0 ≤ A < 1, the outcomes below the certainty equivalent are weighted more heavily than the

outcomes above the certainty equivalent. These preferences are outside the standard expected

utility framework because the level of utility at the optimum (or the certainty equivalent of

wealth) appears on the right-hand side. Routledge and Zin (2003) provide an extension of the

Gul (1991) framework where the reference point can be below the certainty equivalent, but

we restrict our analysis to the case where outcomes are compared to the certainty equivalent.

Although this is a non-expected utility function, CRRA preferences are a special case forA = 1.

WhenA < 1 individuals are averse to losses, or disappointment averse.

For DA preferences, the optimization problem becomes

max
α

U(µW ), (8)

where the certainty equivalent is defined in equation (6) and end-of-period wealthW is given by

equation (2). ForU(·) given by power utility, optimal utility remains homogenous in wealth and

we setW0 = 1. The implicit definition ofµW makes the optimization problem non-trivial (see

Epstein and Zin, 1989 and 2001), so we relegate a rigorous treatment to an appendix, available

upon request.
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The FOC for the DA investor is

1

A
E

[
∂U(W )

∂W
(exp(y)− exp(r))1{W≤µW }

]

+ E

[
∂U(W )

∂W
(exp(y)− exp(r))1{W>µW }

]
= 0, (9)

where1 is an indicator function. IfµW were known, we could solve equation (9) forα in the

same way as in the case of expected utility. The only difference is that for states belowµW , the

original utilities have to be scaled up by1/A. However,µW is itself a function of the outcome of

optimization (that is,µW is a function ofα). Hence, equation (9) must be solved simultaneously

with equation (6) which definesµW .

The similarity between expected utility and DA preferences allows us to derive a new al-

gorithm to solve the DA asset allocation problem (equations (6) and (9)). Specifically, the DA

problem can be viewed as a CRRA maximization problem with a changed probability distri-

bution such that the probabilities above the certainty equivalent are downweighted byA and

the new probabilities are then re-normalized. We present the details of this new approach in

Appendix A.

2.2.2. Non-participation

In an expected utility framework investors always hold a positive amount of equity if the risk

premium is positive. However, with DA preferences it may be optimal to not participate in

the stock market.2 This immediately implies that CRRA preferences cannot deliver the same

empirically relevant dispersion in stock holdings that we can obtain with DA preferences.

Proposition 2.1 Non-Participation under Disappointment Aversion.

Suppose the expected excess returnE(xe) is positive. Then under DA preferences, there ex-

ists a level ofA, A = A∗, such that forA < A∗, investors hold no equity. This non-participation

levelA∗ is independent of risk aversionγ.

Proof: See Appendix B.

Appendix B shows thatA∗ is given by

A∗ = −E[xe|xe ≤ 0]Pr(xe ≤ 0)

E[xe|xe > 0]Pr(xe > 0)
.

2 Dow and Werlang (1992), Epstein and Schneider (2001), and Liu (2002) show that a similar non-participation

result can be obtained with ambiguity-averse preferences.
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The intuition for the non-participation result is straightforward. AsA decreases, a DA investor

becomes more averse to losses. Consequently, her optimal allocation to equities decreases.

At a particularA, sayA∗, the optimal portfolio weight becomes zero. Ifxe were to have a

discrete distribution, then the more dramatic the negative excess return states and the higher

their probabilities, the less disappointment aversion it takes forα∗ to reach zero and the higher

A∗ will be. This critical point does not depend on the curvature of the utility function since as

α∗ approaches zero, the certainty equivalent approachesRf = exp(r) and the marginal utility

terms cancel out in the FOC’s. ForA < A∗, the optimal allocation remains zero. Shorting is

not optimal, since the certainty equivalent is increasing inα for α < 0. This occurs because for

α < 0, negative excess return states have higher wealth thanRf and hence are downweighted.

The fact thatA∗ only depends on the excess return distribution generalizes to the multiple

risky asset case when asset returns are jointly normally distributed. In that case, two fund

separation applies and the excess return distribution of the tangency portfolio determinesA∗.

However, under alternative distributions, non-participation in one asset need not imply non-

participation in another asset.

To illustrate non-participation, consider a binomial model to approximate the excess return

xe ≡ exp(y)− exp(r). In this simplest case, the excess return can beu with probabilityp andd

with probability1− p. Note that in standard notation with binomial trees,u andd refer to gross

returns of the risky asset, but here we use them to indicate the excess return states. Under this

setting, the critical level ofA which results in non-participation is:

A∗ = −(1− p)d

pu
.

To calibrate the binomial tree, we assume that U.S. equity returns are log-normally distributed.

For quarterly stock return data from 1926 to 1998, we find that the mean continuously com-

pounded equity return is 10.63% and the volatility is 21.93% (see Table 1). The mean con-

tinuously compounded short rate is 4.08%, so that the continuously compounded equity pre-

mium is 6.55%. Denote the implied average simple gross return and volatility bym ands,

respectively. We match these two moments by settingu = m + s − exp(r) = 0.3504 and

d = m − s − exp(r) = −0.1553, with p = 0.5. The implied simple excess return premium

from the binomial approximation is 9.76%. For this model, we find thatA∗ = 0.44. That is, if

an investor’s utility in the loss region, relative to the utility in the gain region, is scaled up by

1/0.44 = 2.27, she chooses to not participate in the market. To appreciate the importance of this

result, suppose we would like to generate low stock holdings using a CRRA utility function,

assuming the binomial stock model as the DGP. For comparison, to obtain an optimal equity

allocation of 5%,γ must be set equal to 33.7.
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However, the extreme states inherent in the two-date approximation exaggerate the non-

participation region. We can determine the correct answer for a log-normal distribution by

numerical integration, and determine thatA∗ = 0.36. A two-period/three-date binomial tree

is sufficient to approximate the log-normal solution much more closely. At time 0, there are

two possible states to be realized at time 1, and at time 1 (after six months), there are again

two possible states for time 2 from each of the two branches of time 1, giving a total of three

possible states at the end of the year with a recombining tree. At each branch, the probability of

an upward move isp. Calibrating the tree, the three states areuu = 0.4808, ud = du = 0.0699,

anddd = −0.2301. Note that only the lowest state is disappointing. In this case,

A∗ = − (1− p)2dd

p2uu + 2p(1− p)ud
= 0.37. (10)

Because the historical equity premium we use is high and its estimation is subject to sub-

stantial sampling error, Figure 1 shows the region of stock non-participation as a function of

different expected equity returns. To produce the plot, we vary the expected equity return in the

binomial gamble from 0% to 20% and plotA∗ on the vertical axis. The circle shows the em-

pirical expected total equity return of 10.63%, or the empirical risk premium of 6.55%, which

corresponds toA∗ = 0.37. For an expected excess return of 16%,A∗ drops to just over 0.20.

Values ofA above the line in Figure 1 induce investors to participate in the market. This is

the “participation” region. Values ofA belowA∗ define the “non-participation” region, where

investors hold no equity. While this is an illustration of non-participation with a simple bino-

mial model of equity returns, we compute optimal non-participation regions for more realistic

DGP’s in Section 5.

3. Dynamic asset allocation under DA preferences

We embed DA preferences in a dynamic asset allocation setting, which nests dynamic CRRA

asset allocation as a special case. The dynamic setting is important for several reasons. First, the

recent empirical portfolio choice literature has devoted much attention to the dynamic effects of

asset allocation (see Brennan, Schwartz, and Lagnado, 1997, among many others). Second, our

dynamic extension of DA utility has a number of desirable mathematical and rational properties

that are hard to replicate with LA preferences. Finally, our dynamic extension enables the

standard technical tools, in particular dynamic programming, to be used with portfolio choice

problems with DA utility. Section 3.1 discusses how we solve the dynamic asset allocation

problem under CRRA utility before we present our formulation of dynamic portfolio choice

under DA preferences in Section 3.2.
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3.1. Dynamic CRRA utility

Our problem for dynamic CRRA utility is to find a series of portfolio weightsα = {αt}T−1
t=0 to

maximize

max
α0,...,αT−1

E0[U(WT )], (11)

whereα0, . . . , αT−1 are the portfolio weights at time 0 (withT periods remaining),. . . , to time

T − 1 (with one period remaining), andU(W ) = W 1−γ/(1− γ). WealthWt at timet is given

by Wt = Rt(αt−1)Wt−1, with

Rt(αt−1) = αt−1(exp(yt)− exp(rt−1)) + exp(rt−1).

Since CRRA utility is homogenous in wealth, we setW0 = 1 as in the static case.

Using dynamic programming, we obtain the portfolio weights at each horizont by using the

investor’s (scaled) indirect utility,Qt+1,T :

α∗t = arg max
αt

Et[Qt+1,T W 1−γ
t+1 ], (12)

whereQt+1,T = Et+1

[
(RT (α∗T−1) . . . Rt+2(α

∗
t+1))

1−γ
]

andQT,T = 1. The FOC’s of the in-

vestor’s problem are, for allt,

Et[Qt+1,T R−γ
t+1(αt)xe,t+1] = 0, (13)

wherexe,t+1 = (exp(yt+1) − exp(rt)) is the excess return at timet + 1. This expectation can

be solved using quadrature in a manner similar to that for the static problem. ForN states,

we must trackN values ofQt+1,T at each horizon. There are alsoN portfolio weights, one

corresponding to each state, at each horizon. Henceα∗t represents one ofN portfolio weights

at horizont, depending on which state is prevailing at that time in the conditional expectation

of equation (12).

In equation (12), if(yt+1, rt+1) is independent of(yt, rt) for all t, thenQt+1,T is independent

of Wt+1 ≡ R1−γ
t+1 (αt), so the indirect utility in equation (12) becomes

Et[Qt+1,T W 1−γ
t+1 ] = Et[Qt+1,T ]Et[R

1−γ
t+1 (αt)]. (14)

SinceEt[Qt+1,T ] does not depend onαt, the objective function for the optimization problem at

time t is equivalentlyEt[R
1−γ
t+1 (αt)]. Thus, the problem reduces to a single-period problem and

there is no horizon effect.
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3.2. Dynamic DA utility

The generalization of DA utility to multiple periods is non-trivial. Therefore, we first explore

a two-period example in Section 3.2.1, which highlights various considerations we must ad-

dress to generalize DA to a dynamic, long horizon set-up. Section 3.2.2 presents our dynamic

programming algorithm for the full-fledged multi-period case.

3.2.1. Two period example

Suppose there are three datest = 0, 1, 2 and two statesu, d for the excess equity return at dates

t = 1, 2. Hence, this is the two-period binomial tree example of Section 2.2.2, but we allow

for rebalancing after each period. Without loss of generality we specify the risk-free rate to be

zero. The distribution of returns is independent across time. In this special setting,Rt(αt−1) is

given by1 + αt−1u in stateu and1 + αt−1d in stated. The agent chooses optimal portfolios at

datest = 0 andt = 1.

At t = 1 for each stateu andd, the investor choosesα1 to maximizeµ1 given by

K1µ
1−γ
1 = E[R1−γ

2 (α1)1{R2(α1)≤µ1}] + A E[R1−γ
2 (α1)1{R2(α1)>µ1}], (15)

whereK1 = Pr(R2(α1) ≤ µ1)+APr(R2(α1) > µ1). Since the distribution is IID, the optimal

utility µ∗1 is the same across states, that isµ∗1(u) = µ∗1(d).

Suppose att = 0 the investor defines the DA utility function as

K0µ
1−γ
0 = E0[(R1(α0)R2(α

∗
1))

1−γ1{R1(α0)R2(α∗1)≤µ0}]

+ A E0[(R1(α0)R2(α
∗
1))

1−γ1{R1(α0)R2(α∗1)>µ0}], (16)

whereK0 = Pr(R1(α0)R2(α
∗
1) ≤ µ0) + APr(R1(α0)R2(α

∗
1) > µ0). That is, she computes

the certainty equivalent of end-of-period wealth, given her current information. There are four

states{uu, ud, du, dd} with portfolio returns{(1 + α0u)(1 + α∗1u),(1 + α0u)(1 + α∗1d),(1 +

α0d)(1 + α∗1u), (1 + α0d)(1 + α∗1d)}. Since we cannot a priori assumeα∗0 = α∗1, returns are not

necessarily recombining (theud return can be different from thedu return) and we must track

all the return states both att = 1 andt = 0. Hence, the number of states increases exponentially

with the number of periods. Moreover, the optimization is time-dependent, so portfolio weights

may depend on the horizon even when returns are IID.

This example highlights two related difficulties in extending DA utility to a dynamic case,

in contrast to the computationally convenient, recursive, dynamic programming approach pre-

sented in Section 3.1 for CRRA utility. First, the number of states increases exponentially with
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the horizon while the computational advantage of dynamic programming relies on the dimen-

sion of the state-space being kept the same at each horizon. Second, while the reference point

is endogenously determined each period, it depends on all possible future return paths. Further-

more, an interesting feature of the set-up of equation (16) is that even with IID returns there are

horizon effects. These complexities make solving dynamic DA problems not only more chal-

lenging, but they also make extending DA portfolio choice problems to a context with DGP’s

that require extra state variables (to accommodate predictability, for example) next to impos-

sible. Therefore, we develop a dynamic extension of DA which does not suffer from these

problems. Most importantly, our approach is tractable enough to apply to realistic DGP’s.

We present a dynamically consistent way to compute the certainty equivalent which does not

increase the state-space with each horizon and which endogenously updates the reference point.

The key assumption is that future uncertainty, as far as the choice of the future endogenous

reference point is concerned, is captured in the certainty equivalent. This assumption is similar

to the way the recursive formulation of Kreps and Porteus (1979) and Epstein and Zin (1989)

captures future uncertainty. We illustrate this dynamic DA formulation with the simple two-

period example. Instead of using actual future returns to compute the certainty equivalent at

t = 0, we use the certainty equivalent att = 1

K0µ
1−γ
0 = E0[(R1(α0)µ

∗
1)

1−γ1{R1(α0)µ∗1≤µ0}] + A E0[(R1(α0)µ
∗
1)

1−γ1{R1(α0)µ∗1>µ0}], (17)

whereK0 is now defined asK0 = Pr(R1(α0) ≤ µ0)+APr(R1(α0) > µ0). In this formulation,

there are only two states{u, d} and we only need to track{(1 + α0u)µ∗1, (1 + α0d)µ∗1}. Hence,

the state-space remains at two states each period.

This investor uses the next period’s indirect utilityµ∗1 to form the DA utility this period,

so (17) is a dynamic programming problem. Notice that the endogenous reference point also

updates itself and depends on the future optimal return. Finally, this generalization of DA

utility to a dynamic setting also preserves the property that the CRRA dynamic program (using

the CRRA indirect utility) is a special case forA = 1. Like CRRA utility, the DA portfolio

weights in this generalization of DA utility to a dynamic setting do not exhibit horizon effects

if the return DGP is IID.

Although the non-recombining utility specification in (16) has many undesirable features,

it remains a valid theoretical preference specification. We illustrate the differences between

the optimal asset allocations resulting from solving the problem in (16) versus the specification

in (17) in the case of the two-period binomial tree. At date 1, both problems look the same.

Assuming a positive risk premium, we know thatα∗1 ≥ 1. Hence, the up state has a lower

weight. (If the risk premium is negative, the down state would have a lower weight.) Therefore,
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the DA utility can be written as

µ1−γ
1 =

(1− p)(1 + α1d)1−γ + Ap(1 + α1u)1−γ

(1− p) + Ap
. (18)

The corresponding FOC forα1 is

(1− p)(1 + α1d)−γd + Ap(1 + α1u)−γu = 0,

so the optimal portfolio weightα∗1 is given by

α∗1 =
κ− 1

u− κd
,

where

κ =

(
− Apu

(1− p)d

)1/γ

.

At datet = 0, the problem in equation (16) remains unchanged because returns are IID (see

equation (13)). For the non-recombining case, the actual utility specification depends on the

magnitude ofµ0 relative to the four states. The ordering of the states depends on whetherα0

is smaller or larger thanα1. In an appendix available upon request, we fully analyze this case

and show that the utility lies in one of four different regions. For each region, the FOC’s can

be derived, and we must check whether the resulting optimal utility is indeed in the assumed

region. Corner solutions are also possible, where the optimal solution lies at the border of a

region – this may happen for low levels ofA.

Table 2 summarizes our findings for two different calibrations of the binomial tree. On the

left, we reportα0 andα1 assuming one period is equal to six months and the total horizon is

one year. On the right, we assume one period is equal to one quarter and the total horizon is

six months. Theα1 weight is also the optimal solution for the specification in (15). It is clear

that there are indeed horizon effects with the specification using equation (16), which can be

quantified by looking at the difference betweenα0 andα1. Interestingly,α0 > α1, so longer

horizons mitigate the disappointment aversion. The differences are small for highA but become

larger for lowA. Nevertheless, we still obtain non-participation forA < 0.65.

3.2.2. Dynamic DA algorithm

Building on the DA utility defined in equation (17), we present an algorithm for solving the

dynamic asset allocation problem under DA preferences. Our problem is similar to the problem

described in equation (11), but the utility function is now DA utility. We start the dynamic

program at horizont = T − 1, and solve

max
αT−1

µT−1(αT−1), (19)
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whereµT−1 is defined by

KT−1µ
1−γ
T−1 ≡ ET−1[R

1−γ
T (αT−1)1{RT (αT−1)≤µT−1}]

+ A ET−1[R
1−γ
T (αT−1)1{RT (αT−1)>µT−1}], (20)

with KT−1 = Pr(RT (αT−1) ≤ µT−1) + APr(RT (αT−1) > µT−1). We solve for the optimal

portfolio weightα∗T−1, with the corresponding optimal utilityµ∗T−1, as in the one-period prob-

lem. At this horizon, the allocation problem is equivalent to the static problem, but we solve for

each quadrature state, which yieldsN optimal state-dependent portfolio weights and utilities.

At horizont = T − 2 we solve

max
αT−2

µT−2(αT−2), (21)

whereµT−2 is defined by

KT−2µ
1−γ
T−2 ≡ ET−2[R

1−γ
T−1(αT−2)(µ

∗
T−1)

1−γ1{{RT−1(αT−2)µ∗T−1≤µT−2}]

+ A ET−2[R
1−γ
T−1(αT−2)(µ

∗
T−1)

1−γ1{RT−1(αT−2)µ∗T−1>µT−2}], (22)

with KT−2 = Pr(RT−1(αT−2) ≤ µT−2) + APr(RT−1(αT−2) > µT−2). To solve forα∗T−2 and

µ∗T−2 at a particular state att = T − 2, we need only track theN states forµ∗T−1 atT − 1. We

continue this process fort = T − 3 until t = 0.

If A = 1, then at horizont = T − 2 the DA utility reduces to

µ1−γ
T−2 = ET−2[R

1−γ
T−1(αT−2)(µ

∗
T−1)

1−γ] = ET−2[R
1−γ
T−1(αT−2)QT−1,T ], (23)

which is the standard CRRA problem. Note that if returns are IID, then at each horizon, exactly

the same DA problem applies and the portfolio weights are independent of the horizon. More

generally, to solve the DA problem at each horizon, we simultaneously use the FOC and the

definition of the certainty equivalent, which also occurs in the static case (see equations (6) and

(9)).

4. Disappointment aversion versus loss aversion

A large literature documents how the risk attitudes of individuals differ from the predictions of

expected utility theory. The behavioral work of Kahneman and Tversky (1979) has been very

influential in this area. In Section 4.1, we define LA utility following Kahneman and Tversky

(1979). Both the LA and DA preferences capture similar features of human behavior, and we
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comment on how LA and DA preferences imply risk aversion with respect to both small and

large stakes, a feature not shared by CRRA utility.

LA preferences have been far more popular than DA preferences in applied finance work.

This is surprising for a number of reasons. First, the grounding of DA preferences in decision

theory makes them more attractive to economists using rational dynamic programming tools.

Second, whereas we are able to formulate a mathematically well-defined static and dynamic

asset allocation framework under DA preferences, this is considerably harder under LA prefer-

ences. Sections 4.2 to 4.4 briefly illustrate some of the problems encountered when applying

the original Kahenman-Tversky formulation to an asset allocation framework. These problems

include the real possibility of infinite optimal asset allocations and the sensitivity of the asset

allocation to the choice of the reference point. The shortcomings of LA have led researchers em-

ploying this behavioral utility function to modify the original Kahneman-Tversky specification

and we discuss various implementations in Section 4.5. The attraction of the DA framework is

precisely that it accommodates loss aversion without other behavioral implications.

4.1. Loss aversion and Rabin (2000) gambles

4.1.1. Kahneman-Tversky (1979) loss aversion

With χ representing a gain or loss relative to a reference pointB0, the LA utility of Kahneman

and Tversky (1979) is given by

U(χ) = −λE[(−χ)(1−γ1)1{χ≤0}] + E[χ(1−γ2)1{χ>0}], (24)

where1 is an indicator variable,χ = W − B0 = Rf + αxe − B0 is the gain or loss of

final wealthW relative to the benchmarkB0, Rf = exp(r) is the gross risk-free rate and

xe = exp(y) − exp(r) is the excess stock return wherey is the equity return. Kahneman and

Tversky (1979) argue that the expectation in equation (24) should be taken under a subjective

measure, but for now we assume that the objective (real) measure holds.

The parameterλ governs the additional weight on losses. According to Kahneman and

Tversky,λ = 2.25, so losses are weighted 2.25 times as much as gains, andγ1 = γ2 = 0.12,

which implies the same amount of curvature across gains and losses. Following the behavioral

literature, we consider only the case of0 ≤ γ1 < 1 and0 ≤ γ2 < 1 since the felicity function

(−λ(−χ)1−γ11{χ≤0} + χ(1−γ2)1{χ>0}) is monotone in wealth only if0 ≤ γ1 < 1 and0 ≤ γ2 <

1.3 Hence, both LA and DA preferences incorporate an asymmetric treatment of good and

3 Note that the utility function implies different preference orderings ifχ is expressed in different units unless
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bad outcomes that is not present in standard expected utility. LA utility is different from DA

utility because the LA felicity function is not globally concave in wealth. When expressed in

wealth levels, the LA utility function is S-shaped, which implies risk-seeking behavior in the

loss region and risk aversion in the gain region. The non-concavity has important consequences

for optimal portfolio choice under LA utility.

4.1.2. Rabin (2000) gambles

Rabin (2000) demonstrates a striking problem arising in the expected utility framework. His

“calibration theorem” is best illustrated with an example. Suppose that for some ranges of

wealth (or for all wealth levels), a person turns down gambles where she loses $100 or gains

$110, each with equal probability. Then she will turn down 50%-50% bets of losing $1,000 or

gaining ANY sum of money. We call such a gamble a “Rabin gamble.” Since DA preferences do

not fall into the expected utility category, they do not necessarily suffer from the Rabin-gamble

problem.

Figure 2 illustrates this. Imagine an investor with $10,000 wealth. If he has CRRA pref-

erences, a risk aversion level ofγ = 10 makes him reject the initial -100/+110 gamble. The

graphs in the left-most column show both his utility and willingness-to-pay relative to the Rabin

gamble of losing $1,000 and gaining the amount on thex-axis. The willingness-to-pay to avoid

the gamble is the difference between the certain wealth the investor has available by not par-

ticipating in the gamble minus the certainty equivalent of the gamble. If the willingness-to-pay

is negative, rational agents would accept the gamble. The last amount on the right-hand side

of thex-axis represents $25,000. It is apparent from the top graph that the marginal utility of

additional wealth becomes virtually zero very fast. The willingness-to-pay to avoid the gamble

asymptotes to about $280, even if the potential gain is over $1,000,000. The extreme curvature

in the utility function drives the continued rejection of the second gamble even as the possible

amount of money to be gained increases to infinity.

With DA preferences, an investor need not display an extremely concave utility function to

dislike the original -100/+110 gamble, because he hates to lose $100. The middle column of

Figure 2 shows utility levels and willingness-to-pay for DA utility. An investor withγ = 2

andA = 0.85 rejects the original gamble, but this investor loves the Rabin gambles. In fact,

the willingness-to-pay decreases rapidly and quickly becomes negative. As an example, our

DA investor would be willing to pay $3,664 to enter a bet where she can gain $25,000 but

γ1 = γ2 or the difference betweenγ1 andγ2 is very small. Expressingχ in returns (soχ has no dimension)

circumvents this problem. Note that LA utility is not defined atW = B0 for γ > 1.

14



may lose $1,000 with equal probability. For lowerγ, or higherA, this amount increases. For

example, ifγ = 0 andA = 0.85, the DA investor would be willing to pay $10,946 to take on

this -1,000/+25,000 gamble.

For LA preferences, we must first introduce a notion of willingness-to-pay because the LA

utility in equation (24) is defined over gains and losses. However, since gains and losses are

always evaluated relative to a benchmark, wealth is implicitly given as the gain or loss plus

the reference point. Denoting the LA utility in equation (24) asULA, we define the certainty

equivalent of LA,µLA
W , as

µLA
W =





U
1

1−γ2
LA + B0 if ULA > 0,

− (−ULA

λ

) 1
1−γ1 + B0 if ULA ≤ 0

(25)

whereB0 is the benchmark of the gamble, which is also our chosen initial wealth.

The last column of Figure 2 shows utility levels and willingness-to-pay for a LA investor

with benchmark parametersγ = 0.18 andλ = 2.25 from Kahneman and Tversky (1979). This

investor also rejects the initial -100/+110 gamble but likes the Rabin gambles. For example,

the LA investor would be willing to pay $8,671 to enter a bet to gain $25,000 with probability

one half, and lose $1,000 with probability one half. Hence, both the DA and LA preference

functions can resolve the Rabin puzzle. From introspection, over-weighting losses relative to

gains seems to yield much more reasonable attitudes towards risk.

4.2. Characterizing optimal LA portfolio weights

When the portfolio weight in equitiesα is very large in absolute magnitude (so thatχ → αxe

asα → ±∞), the utility function approaches

− λα1−γ1E[(−xe)
1−γ11{xe≤0}] + α1−γ2E[x1−γ2

e 1{xe>0}], for α → +∞

and

|α|1−γ1E[(−xe)
1−γ11{xe≤0}]− λ|α|1−γ2E[x1−γ2

e 1{xe>0}], for α → −∞, (26)

wherexe is the excess return on equity. Hence, the term with the higher exponent onα domi-

nates. In particular, forγ1 > γ2 the second term dominates so there is no finite optimal portfolio

weight. The behavioral literature has mostly considered only the case ofγ1 = γ2 = γ follow-

ing Kahneman and Tversky (1979) (see Benartzi and Thaler, 1995; Berkelaar and Kouwen-

berg, 2000; and Barberis, Huang, and Santos, 2001). Even in this restricted case, extreme LA

15



portfolio weights are likely. Sharpe (1998) analyzes a closely related bilinear utility function,

which can be represented asλxe1{xe≤0} + xe1{xe>0}. Sharpe shows that this bilinear utility

function implies extreme portfolio weights under empirically relevant circumstances (see also

Aı̈t-Sahalia and Brandt, 2001). Appendix C outlines general conditions under which finite port-

folio solutions with LA preferences are possible. Interestingly, we find that LA may produce

local maxima (see Benartzi and Thaler, 1995), even though the global maximum is either−∞
or +∞. Such local maxima exist for realistic parameter values.

4.3. Choice of the LA reference point

Kahneman and Tversky (1979)’s prospect theory gives no guidance with regard to the choice of

the reference pointB0, which must be set exogenously. As noted by Benartzi and Thaler (1995),

different horizons can turn the LA optimization into a totally different problem. For example,

for very long rebalancing periods, the effect of the benchmark is negligible if the benchmark

is current wealth or current wealth times the risk-free rate. This is because the benchmark in

accumulated wealthW = Rf + αxe−B0 is swamped by the equity returns over long horizons.

Moreover, in a dynamic setting there is no clear guidance about how the loss aversion reference

point should be updated. If the choice of reference point is current wealth times the risk-free

rate, as specified by Barberis, Huang, and Santos (2001), then the LA optimal portfolio weight,

if finite, is zero:

Proposition 4.1 If the benchmarkB0 is equal to current wealth times the risk-free rate then the

optimal portfolio weightα∗ = 0 or it is unbounded.

Proof: See Appendix C.

Hence, for this particular benchmark, the only possible portfolio weights are−∞, 0, or+∞.

In contrast, in DA utility, the reference point defining elating outcomes (“gains”), versus disap-

pointing outcomes (“losses”) is endogenous and we show that DA portfolio weights are finite.

4.4. Subjective probability transformations

When the risk premium is zero, CRRA or DA investors hold zero equity. This is not always

the case for LA investors. Kahneman and Tversky (1979) propose to use a subjective rather

than an objective probability distribution to take the expectations in equation (24). Kahneman

and Tversky call the transformed objective probabilities “decision weights.” The transformation

involves over-weighting small probability events and under-weighting large probability events.
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Whereas the literature that empirically applies loss aversion (Benartzi and Thaler, 1995; Berke-

laar and Kouwenberg, 2000; Barberis, Huang, and Santos, 2001; Gomes, 2003) has not used

these probability transformations, it is useful to point out one of their undesirable properties. In

particular,

Proposition 4.2 If the risk premium is zero, then the optimal portfolio weight in LA could be

less than zero (α∗ < 0).

Proof: See Appendix C.

Short positions may result with LA even with zero risk premiums since the LA probability

transformation downweights probabilities, rather than events. Similar to LA, DA also involves

an implied probability transformation. However, Appendix A shows that DA uses a CRRA max-

imization problem with transformed probabilities such that the probabilities for wealth above

the certainty equivalent are downweighted. The major difference between the probability trans-

formation of DA and LA is that DA’s probability transformation is endogenous, while LA’s is

arbitrary. The subjective probability transformation of LA also violates first-order stochastic

dominance and transitivity. In contrast, these properties are maintained under DA preferences

(see Machina, 1982; Gul, 1991).

4.5. Loss aversion in the literature

The possible non-finite optimal portfolio weight under LA preferences is due to the global non-

concavity of the LA utility function. Specifically, LA utility, as defined by Kahneman and Tver-

sky (1979) and used by Benartzi and Thaler (1995), is finite for negative wealth. Proposition 4.2

shows that LA investors may be more risk-seeking than CRRA investors. An important conse-

quence is that there is no guarantee that non-corner solutions can be found. Various approaches

have been taken in the literature to practically implement LA. Most of these approaches rely on

imposing additional restrictions on the original specification so that the utility function is suf-

ficiently negative, or negative infinity, at zero wealth. This allows the original LA utility to be

“pseudo-concavified” (Berkelaar and Kouwenberg, 2000), but changes the fundamental nature

of the original specification.4

4 Benartzi and Thaler (1995), although working with the original Kahneman and Tversky (1979) LA specifi-

cation, do not perform an optimization problem. They evaluate LA utility as a function of the equity portfolio

holding, but only between zero and one. Calibrating a binomial tree to the U.S. stock market, we find that this is

likely a local optimum, with utility being maximized atα = +∞.
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For example, to avoid corner solutions Gomes (2003) adds a term to the LA utility function,

which for sufficiently large losses makes the utility function again concave:

U(W ) = VBL − λE[((−χ))(1−γ1)1{W<W≤B0}] + E[(χ)(1−γ2)1{W>B0}],

whereVBL is defined by Gomes as

VBL = E[W 1−γ1{W≤W}]− c

andc is a constant set to make the utility function continuous atW = W . By using another

CRRA term, negative wealth can be assigned negative infinite utility, forcing wealth to be pos-

itive. Another approach is taken by Berkelaar and Kouwenberg (2000), who do not modify

Kahneman and Tversky (1979)’s original specification, but instead explicitly restrict wealth to

be positive.

Barberis, Huang, and Santos (2001)’s utility function has two components. The first compo-

nent is a log-utility function defined over consumption. The second component is defined over

wealth and embeds loss aversion. The loss aversion component is piece-wise linear (γ1 = 0 and

γ2 = 0), following Benartzi and Thaler (1995). In an asset allocation framework, their utility

function can be written as

U(W ) = E[log(W )]− λE[(−χ)1{W≤B0}] + E[χ1{W>B0}]. (27)

The log utility function endogenously enforces a positive wealth constraint, since wealth at zero

yields negative infinite utility. Barberis, Huang, and Santos choose the reference point as cur-

rent wealth times the risk-free rate. In the original Kahneman and Tversky (1979) formulation

without the Barberis-Huang-Santos log-utility term, we know from Proposition 4.1 that the only

finite optimal equity portfolio weight for this choice of reference point is zero. These practi-

cal implementation problems inherent in LA preferences make DA preferences a very viable

alternative to model loss aversion.

5. Disappointment aversion and stock holdings

5.1. Data and data generating processes

To examine portfolio choice under realistic DGP’s, we use quarterly U.S. data from 1926 to

1998 on nominal stock returns and Treasury bill interest rates. We use two main DGP’s in this

paper that largely conform to the DGP’s prevalent in the extensive literature on dynamic asset al-

location (e.g. Kandel and Stambaugh, 1996; Balduzzi and Lynch, 1999; Campbell and Viceira,
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1999; Barberis, 2000). In our first model, stock returns are IID over time and the interest rate

follows a first-order autoregressive system. In our second model, we accommodate predictabil-

ity. Following most of the dynamic asset allocation literature, we consider only one possible

predictor of stock returns and consider a system in which an instrument linearly predicts stock

returns in the conditional mean of equity returns. Whereas many authors have focused on yield

variables, we use the interest rate itself. This has the advantage of reducing the state space and

introduces an interesting dynamic since the predictor itself is the return on an investable asset.

We are also unlikely to lose much predictive power, since Ang and Bekaert (2003) find that the

short rate is the most robust predictor of international stock returns. Ang and Bekaert (2003)

and Goyal and Welch (2003) demonstrate that the dividend yield, which has been previously

used by many authors to forecast returns, has no forecasting power when data of the late 1990’s

are added to the sample.

Our two DGP’s for nominal data are special cases of a bivariate Vector Autoregression

(VAR) on stock returns and interest rates

Xt = c + ΦXt−1 + Σ
1
2 εt, (28)

whereXt = (ỹt rt)
′, ỹt = yt− rt−1 is the continuously compounded excess equity return andrt

is the risk-free rate, measured by the quarterly T-bill interest rate, andεt ∼ N(0, I).

The “No Predictability” model imposes the condition that all elements ofΦ equal zero

exceptΦ22, and the “Predictability” model constrains all elements ofΦ exceptΦ12 andΦ22 to

be zero. Estimates for these DGP’s are reported in Table 3. In both systems, there is negative

contemporaneous correlation between shocks to short rates and stock returns. The predictability

system reveals that the short rate is not a significant predictor of stock returns over the full

sample period. In fact, predictability is much stronger in the post-1940 period. Although we

do not report results for this alternative sample explicitly, we investigate a DGP estimated on

post-1940 data. With this DGP, equity is relatively more attractive, but our main results are

unchanged.

We now derive optimal asset allocations for various parameter configurations under the

two DGP’s. Since the DGP’s are first-order Markov processes, they lend themselves easily to

discretization, which we detail in Appendix D.

5.2. No predictability case

In this system, the excess premium is constant and IID, while short rates are autoregressive and

negatively correlated with equity returns. For a given risk aversion, portfolio allocations in this
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system depend on the horizon, but they do not depend on the level of the short rate (as we show

later). This is not surprising given that our set-up is similar to that of Liu (1999). Liu proves this

result analytically in a continuous-time problem with the short rate following a Vasicek (1977)

model. Under the Vasicek term structure model, excess returns of bonds have a constant risk

premium, have constant volatilities, and are perfectly correlated with the short rate. Similarly, in

our no predictability system, excess stock returns have a constant risk premium and a constant

volatility. Although in our setting the correlation between equities and the short rate is not unity,

Liu’s result obtains. Given there is no short rate dependence, we only discuss general patterns

in optimal equity portfolio weights.

Because there is little guidance on the choice of parameter values, we characterize portfolio

choice for DA preferences (which include CRRA as a special case) across a wide set of param-

eter values. Figure 3 establishes benchmark asset allocations for CRRA preferences restricting

the curvature parameterγ to the interval[2, 10], a range suggested by decades of empirical

research, withγ = 2 as the most popular choice (see Friend and Blume, 1975). Moderately

risk-averse CRRA agents (γ = 2) should put close to 100% of their portfolio in equities. Eq-

uity allocations of 50% to 60% start to appear atγ’s between 3 and 4, but CRRA utility never

produces a non-participation result. Figure 3 also shows that the equity proportion is slightly

larger for longer horizons and hence agents gradually decrease their equity proportions as they

age.

Table 4 reports the asset allocation results forγ = 2 andγ = 5 (the middle of the[2, 10]

range) and two horizons (three months and ten years), and also reports standard errors for the

weights, computed using the delta method (see Ang and Bekaert, 2002). We check the accu-

racy of these standard errors using a small-scale Monte Carlo (with 400 parameter draws); this

is extremely time-consuming because of the long computation time required to solve the DA

problem for every parameter draw. The Monte Carlo standard errors are very similar to the

standard errors computed using the delta-method. For low levels ofA, the delta-method tends

to overstate the standard errors because it fails to fully account for the non-linearity induced by

non-participation.

Because the equity return mean is measured with large sampling error, these standard errors

are quite large. Nevertheless, the weights atγ = 2 (0.927) andγ = 5 (0.370) are both signif-

icantly different from zero at the 1% level and, using a Wald test, significantly different from

each other (p-value = 0.0006). However, for bothγ = 2 andγ = 5, the equity weight is no

longer statistically significant from zero onceA reaches 0.80. The Wald test for the hypothesis

that the one-quarter horizon portfolio weights corresponding toA = 1.00 andA = 0.65 for

γ = 2 are the same rejects the null with p-value less than 0.0001; similarly, a test that the one-
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quarter horizon portfolio weights forA = 1.00 andA = 0.65 are equal forγ = 5 also rejects

with p-value less than 0.0001.

Table 4 shows one of our main results. For the no predictability system, the criticalA∗

required to induce investors to participate in the market isA∗ = 0.6030. That is, scaling up the

utility of disappointing outcomes by 1.66 (1/0.6030) produces non-participation. Note that all

investors hold zero equity atA∗ irrespective ofγ (see Proposition 2.1). Hence, variation inA

(from 1 to 0.6030) for a CRRA investor with the “normal” curvature in the utility function of

γ = 2 leads to variation in equity holdings from close to 100% to 0%. Forγ = 2, droppingA

to 0.85 is sufficient to bring the equity allocation close to 60%. The effect on asset allocation of

lower A is less dramatic for higherγ, which is apparent from the column withγ = 5.

Turning now to horizon effects, Table 4 shows that the portfolio weights for one-quarter and

ten-year horizons are very similar. The columns labeledχ2 p-value in Table 4 report the p-value

of a Wald test that the portfolio weights for the one-quarter and ten-year horizons are the same.

This tests overwhelmingly fails to reject for allγ andA. Looking at the point estimates of

the portfolio weights across horizons, the horizon effect becomes larger whenA is decreased,

reaching a 4.67% difference forA = 0.65 andγ = 2.

While the statistical significance and economic magnitude of the horizon effects are small,

their existence in a system without predictability warrants some further elaboration. In our

estimated system, portfolio weights do not depend on the short rate but there is a weak positive

horizon effect: agents with longer horizons hold more equity. From Samuelson (1991) and

others, processes with positive persistence induce negative horizon effects (they are “riskier”

over longer periods), whereas negatively correlated processes induce positive horizon effects. In

our empirical estimates, shocks to stock returns and short rates are slightly negatively correlated

(−0.0474) (see Table 3), which induces weak positive hedging demands.

The size of hedging demands is primarily determined by the rebalancing horizon, the pre-

dictor variable used to forecast equity returns and the correlation between predictor innovations

and returns. Brandt (1999) and Ang and Bekaert (2002) find that frequent rebalancing reduces

the size of hedging demands and Aı̈t-Sahalia and Brandt (2001) and Lynch (2001) also find that

the magnitude of hedging demands depends very much on the choice of predictor variable.

We also consider a system with heteroskedasticity, changing the interest rate process in

equation (28) to a simple square root modelrt+1 = cr + ρrt + σr
√

rtεt,r with the equity return

given byyt+1 = cy +σy,r
√

rtεt+1,r +σyεt+1,y to match the same unconditional moments implied

by the VAR (28). Becauseσr and the conditional correlation between interest rates and excess

equity returns are small, the results are rather uninteresting. The portfolio weights are invariably

slightly smaller than what we obtain for the homoskedastic case, with the differences becoming
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slightly larger with the horizon. However, the differences are very small, never exceeding 0.008,

and we do not report the results to conserve space. We also incorporate heteroskedasticity into

the predictability system in Section 5.4 with a square root process for interest rates, and find it

totally dominated by the conditional mean effects.

5.3. The impact of the rebalancing frequency

With LA preferences, the rebalancing frequency is very important. For example, if the bench-

mark is current wealth, the longer the rebalancing frequency, the more irrelevant the benchmark

becomes. This observation is critical to the argument of Benartzi and Thaler (1995), who claim

that it is myopic loss aversion which accounts for the puzzling lack of equity holdings among

investors. Of course, in our framework, the rebalancing frequency is likely to be less impor-

tant, since the reference point is endogenous and changes with the rebalancing frequency in an

internally consistent fashion.

Table 5 confirms this conjecture. The first line of the table simply expands on the results

of Table 4, showing that longer horizons induce slightly higher equity allocations. The table

then also displays results for three other rebalancing frequencies: two-quarters, one-year, and

two-years. These portfolio weights are computed by temporally aggregating the one-quarter

VAR (see Appendix D) and then discretizing the resulting dynamic system as a first-order VAR

over the myopic frequency. Formally, temporal aggregation leads to a VARMA(1,1) system in

the new frequency, but taking the MA component into account in the optimal asset allocation is

infeasible. For a myopic horizon, the VAR approximation should be very accurate.

Table 5 shows that the effect of changing the rebalancing frequency is very small. Because

there is no predictability, the main effect comes from changes in the annualized volatility of

interest rates with different rebalancing frequencies, which first decreases from0.0173×√4 =

0.0346 at the one-quarter horizon to0.0286 at the one-year horizon (making equities relatively

more attractive) and then increases back to0.0560 ÷ 2 = 0.0396 for the two-year frequency.

The mechanism here is very different from the drastic change in the benchmark level that drives

the results in Benartzi and Thaler (1995). Our results are driven by changes in the DGP at the

different frequencies.

5.4. Predictability case

Table 6 reports myopic portfolio weights corresponding to three annualized interest rates levels

0.0392, 0.0816, and 0.1208 forγ = 2, 5 and various disappointment levelsA, for the system
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with predictability of excess returns. The special case of CRRA utility is given byA = 1.

The interest rates represent a state close to the unconditional mean (r = 0.0392), an extremely

high interest rate (r = 0.1208), and one in the middle of the range. As interest rates increase,

the equity holding decreases. The effect is quite pronounced. For example, aγ = 2 investor

holds 64% in the market portfolio forA = 0.85 at r = 0.0392. Whenr increases to 0.0816

this investor’s portfolio weight decreases to 37%. This is not surprising. In the system with

predictability, higher interest rates lower the conditional equity premium (Table 3 shows that a

1% increase in the short rate decreases the equity premium by 60 basis points). Of course, the

standard errors on the weights remain large.

The criticalA∗ required for investors to participate in the equity market now depends on the

interest rate and rises from 0.60, over 0.69 to 0.79 for the three interest rates reported in Table

6. The critical levelA∗ increases with the interest rate because higher short rates lower the

equity premium, giving stocks more room to disappoint. Stock non-participation now occurs

for smaller degrees of disappointment aversion (higherA). At high interest rate levels, sinceA∗

is high, modest cross-sectional variation inA produces substantial variation in equity partici-

pation. The näıve reaction of some retail investors to pull out of the stock market when money

market rates are high is thus optimal in this framework.

In Figure 4, we graph optimal equity weights under DA preferences withγ = 2 and

A = 0.85 for various horizons as a function of the interest rate. As is also the case for CRRA

utility, the portfolio weight curve is downward sloping and hedging demands are small. At

first, hedging demands are positive and increase with higher interest rates. For very high in-

terest rates, they become negative. At interest rates above approximately 12%, as the horizon

increases, the interest rate at which the investor switches entirely to risk-free bonds decreases.

To help gain intuition on this result, the bottom panel graphsA∗ as a function of the interest

rate for various horizons. At very high interest rates,A∗ increases with horizon which causes

equity holdings to decrease and produces the negative hedging demands. This is because for

longer horizons,A∗ is determined not only by the one-period-ahead distribution of excess re-

turns, but also depends on future certainty equivalents of wealth. For very high interest rates

(above 14.7%), the equity premium is negative. At high interest rate levels, for long horizons

the probability of landing in the negative equity premium region is larger than for short hori-

zons. This effect increasesA∗ for longer horizons at high interest rates. For low interest rates,

around 2-4%, the probability of ending in the negative equity premium region is almost zero,

so at low interest rates we find small positive hedging demands, as in the no predictability case.

In Table 6, the drop in equity holdings going fromA = 1.0 to A = 0.85 is about 30%,

and more generally, the portfolio weights decline almost linearly with the interest rate. This
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prompts the question whether the state dependence of DA utility is different from CRRA utility.

If this is the case, we may find DA outcomes using CRRA utility with a higher risk aversion

coefficient. Figure 5 vividly illustrates that CRRA utility cannot replicate DA asset allocations.

For each short rate, we start from the optimal equity weight at a horizon of one quarter for a DA

investor withγ = 5 or γ = 2 and withA = 0.85. We then find a CRRA investor characterized

by γ that chooses the same portfolio. If the above claim were true, we should find a horizontal

line. In contrast, the line starts out relatively flat but then rapidly ratchets upward non-linearly

for higher short rates, so the aversion of the DA investor to stocks increases non-linearly with

higher interest rates. The implied CRRA risk aversion increases as a function of the short rate

because the higher the short rate, the lower the equity premium, and thus the more stocks can

disappoint. At very high interest rates, a DA investor withA = 0.85 holds zero equity, which

can only be captured by infinite CRRA risk aversion.

6. Conclusions

In this article, we use the disappointment aversion (DA) preference framework developed by

Gul (1991) to study the dynamic asset allocation problem. DA preferences incorporate loss

aversion in that they treat gains and losses asymmetrically, but are fully axiomatically moti-

vated and admit easy comparison with standard expected utility. From the perspective of the

smooth concave nature of constant relative risk averse (CRRA) preferences, the behavior of

many investors often appears puzzling: investors often do not invest in the stock market, and a

portfolio choice model with predictable equity returns often leads to substantially levered eq-

uity positions. Investors who are averse to disappointing outcomes should hold significantly

less equity even with moderate curvature in the utility function. Moreover, we show that for

high enough disappointment aversion, an investor’s optimal equity position is zero.

By calibrating a number of data generating processes to U.S. data on stock and bond returns,

we find very reasonable portfolios for disappointment-averse investors with utility functions

exhibiting quite low curvature. DA preferences affect horizon effects and the state dependence

of asset allocation in such a way as to not be replicable by a CRRA utility function with higher

curvature. Despite the large equity premium, stocks may disappoint! Whereas the primary focus

of the recent literature has been on the effects of predictability or background risk on portfolio

choice, our results suggest the importance of understanding the investor’s attitude towards risk.

The proper specification of an investor’s utility function matters as much as, if not more than,

the proper specification of the stochastic environment. Consequently, it is encouraging to see
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related work such as Barberis, Huang, and Santos (2001) who embed prospect theory in a

dynamic portfolio choice model with consumption.

Whether heterogeneity in preferences or heterogeneity in circumstances is the more fruit-

ful direction to pursue to explain the portfolio choice evidence remains to be seen. There is

a scarcity of experimental work on risk preferences, and almost none on the kind of prefer-

ences we examine in this paper. Loomes and Segal (1994) focus on the implications of different

utilities for the order of risk aversion. Standard CRRA preferences exhibit second-order risk

aversion (the insurance premium the investor is willing to pay to avoid a gamble is proportional

to the variance of the gamble), while DA preferences exhibit first-order risk aversion (the in-

surance premium is proportional to volatility). They observe both first- and second-order risk

aversion in their subjects. Although they note that the first-order risk aversion embedded in DA

preferences may not be strong enough relative to their experimental evidence, their results cou-

pled with ours definitely suggest to take heterogeneity in preferences as a potentially important

determinant of portfolio choice.

There are a number of interesting avenues for future work. Disappointment-averse agents

dislike negative skewness much more than standard CRRA agents. Hence, the regular occur-

rence of equity market crashes inducing such skewness may further scare investors away from

equity investments or it may induce them to buy (costly) insurance against such crashes. This

may account for the recent popularity of put-protected products which seem to have lured many

investors into the stock market. In an international context, the occurrence of correlated bear

markets (see, e.g., Ang and Bekaert, 2002; Das and Uppal, 2003) may induce home bias in asset

preferences for disappointment-averse investors. Although DA preferences yield portfolio allo-

cations promisingly close to actual holdings in partial equilibrium settings, we must ultimately

investigate whether DA preferences can be accommodated in an equilibrium model of risk.
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Appendix A. Solving the DA portfolio allocation problem

To solve equations (6) and (9) numerically, we use quadrature to approximate the definition of

µW in equation (6) by

µ1−γ
W =

1

K

( ∑
s:Ws≤µW

psW
1−γ
s +

∑
s:Ws>µW

ApsW
1−γ
s

)
, (A-1)

and the FOC in equation (9) by

∑
s:Ws≤µW

psW
−γ
s (exp(ys)− exp(r)) +

∑
s:Ws>µW

ApsW
−γ
s (exp(ys)− exp(r)) = 0. (A-2)

We solve equations (A-1) and (A-2) simultaneously to yield the portfolio weightα that maxi-

mizes the utility of this disappointment-averse investor. Appendix D discusses the discretization

procedure.

Let xe = (exp(y)− exp(r)) denote the excess stock return. WithN quadrature points there

areN outcomes forxe, {xes}N
s=1, with probability weights{ps}N

s=1. Without loss of generality,

we can orderxe from low to high across statess. The utility equivalentµ∗W corresponding to

the optimal portfolio weightα∗ can be in any ofN intervals:

[ exp(r) + α∗xe1, exp(r) + α∗xe2 ),

[ exp(r) + α∗xe2, exp(r) + α∗xe3 ),

...

[ exp(r) + α∗xe,N−1, exp(r) + α∗xeN ).

Supposeµ∗W lies in [ exp(r) + α∗xei, exp(r) + α∗xe,i+1 ) for some statei. Thenα∗ solves

∑

s:Ws≤exp(r)+α∗xe,i

ps(W
∗
s )−γxes +

∑

s:Ws>exp(r)+α∗xe,i+1

Aps(W
∗
s )−γxes = 0, (A-3)

whereW ∗
s = exp(r) + α∗xes. Equation (A-3) is a CRRA maximization problem with a

changed probability distributionπi = {πis}N
s=1, where the probabilities for wealth above the

certainty equivalent are downweighted; i.e., the probabilitiesπis are transformed from the orig-

inal quadrature probabilitiesps by the relation

πi ≡ (p1, ..., pi, Api+1, ..., ApN)′

(p1 + ... + pi) + A(pi+1 + ... + pN)
. (A-4)
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Our algorithm is as follows. We start with a statei and solve the CRRA problem with

probability distributionπi. Then we compute the certainty equivalent,µ∗Wi, given by

µ∗Wi =

(
N∑

s=1

(W ∗
s )1−γπis

) 1
1−γ

. (A-5)

Then, we check if in this state the following is true:

µWi ∈ [ exp(r) + α∗i xei, exp(r) + α∗i xe,i+1). (A-6)

If this is true fori = i∗, thenα∗ = α∗i andµ∗W = µ∗Wi. As the states are ordered in increasing

wealth across states for a given portfolio weight, it is easy to do a bisection search algorithm

(with intermediate CRRA optimizations) to obtain the DA portfolios. If we start our search for

i∗ at the midpoint of theN states and find thatµWi > (<) exp(r) + α∗i xe,i+1, then we begin a

search in the upper (lower) half of the state space.

Gul (1991)’s appendix describes a similar algorithm. Both our algorithm and Gul’s require

the solution of an optimization problem in each discrete state. The difference is that in our

algorithm we solve a simple smooth CRRA problem, whereas Gul requires a non-linear maxi-

mization involving an indicator function. For his optimization problem, gradient-based search

algorithms cannot be used, and thus our algorithm is numerically more tractable.

We can extend this solution to the dynamic DA problem in Section 3.2. Specifically, if

wealthWs is increasing across statess for a given portfolio weight, and the certainty equivalent

for horizont, µts, is also increasing across states for a given portfolio weight, thenW̃s = Rsµs,t

is also increasing across statess.

Appendix B. Proof of Proposition 2.1

Define

A∗ = −E[xe|xe ≤ 0]Pr(xe ≤ 0)

E[xe|xe > 0]Pr(xe > 0)
. (B-1)

As we formally show,A∗ is the level of disappointment such that forA ≤ A∗, α∗ = 0 and for

A > A∗, α∗ > 0. Note that this definition ofA is independent of risk aversionγ.

Considering optimality atα = 0 is a special case since the certainty equivalent equals the

gross risk-free rateRf = exp(r) and since the definition of disappointing or elating states

switches whenα changes from negative to positive (ifxe > 0, Rf +αxe > Rf only for positive

α). Therefore, we must consider left- and right-hand side derivatives to determine optimality.

Consider firstA < A∗. We show that the optimal asset allocation atA is α∗ = 0. We start

by denoting the certainty equivalentν(A,α) as a function of the disappointment levelA and the
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portfolio weightα

ν(A, α)1−γ =
1

K

{
E[U(W )1{W≤ν(A,α)}] + AE[U(W )1{W>ν(A,α)}]

}
, (B-2)

with K = Pr(W ≤ ν(A,α))+APr(W > ν(A,α)). Recall thatW = Rf +αxe in our setting.

The derivative ofν(A,α) with respect toα is given by

ν(A,α)−γ · ∂ν(A,α)

∂α
=

1

K

{
E[W−γxe1{W≤ν(A,α)}] + AE[W−γxe1{W<ν(A,α)}]

}
. (B-3)

This is the well-known first order condition, derived for instance in Epstein and Zin (2001)

and Bekaert, Hodrick, and Marshall (1997). This expression is the same as the derivative of

the terms in the integrands in (B-2). However, taking the derivative ofν(·) with respect toα

also involves taking the derivatives ofK with respect toα and the derivatives of the certainty

equivalent in the integration limits, both with respect toα. In the NBER working version of this

paper, we explicitly show that the latter two derivatives of the indicator functions sum to zero.

Whenα approaches zero, we haveW = Rf andν(A, 0) = Rf . Hence, we can equivalently

express1{W≤ν(A,α)} as1{αxe≤0} and, analogously,1{W>ν(A,α)} as1{αxe>0}. Clearly, the value

of these indicator functions depends on whether we approach zero from the left or the right. Let

us first take the LHS derivative ofν(·) atα = 0. First, note that becauseα < 0,

1{αxe≤0} = 1{xe≥0} and 1{αxe>0} = 1{xe<0}. (B-4)

Second, the termsν(A, 0)−γ andW−γ cancel on each side of the equation. Consequently, we

obtain
∂ν

∂α

∣∣∣
α=0−

=
1

K

{
E[xe1{xe≥0}] + AE[xe1{xe<0}]

}
, (B-5)

whereK = Pr(xe ≥ 0) + APr(xe < 0). Sinceα < 0, states in whichxe < 0 have higher

wealth than the certainty equivalent and these are now downweighted byA, sinceA ≤ 1. But

then
∂ν

∂α

∣∣∣
α=0−

≥ E[xe]

K
> 0 (B-6)

by the assumption of a positive risk premiumE[xe] > 0 and becauseK > 0. Hence, we

conclude that∂ν
∂α

> 0 and it must be thatα∗ ≥ 0 because the utility function is globally concave

in α.

Now let us consider the case of the RHS derivative andα∗ > 0. In this case, we have

1{αxe≤0} = 1{xe≤0} and 1{αxe>0} = 1{xe>0}. (B-7)

Consequently, we obtain

∂ν

∂α

∣∣∣
α=0+

=
1

K

{
E[xe1{xe≤0}] + AE[xe1{xe>0}]

}
. (B-8)
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Here, as is usual, the good states are positive excess return states, sinceα > 0 and they are

downweighted byA. By assumption,A ≤ A∗, so

∂ν

∂α

∣∣∣
α=0+

<
1

K

{
E[xe1{xe≤0}] + A∗E[xe1{xe>0}]

}
= 0, (B-9)

where the equality follows by definition ofA∗. Hence, it must be the case thatα∗ ≤ 0.

Combining the two cases above, we haveα∗ = 0. Note that in the above argument for the

utility function increasing inα for α < 0, we only used the fact thatE[xe] > 0 andA ≤ 1.

We use the extra assumptionA < A∗ to show the utility function is decreasing inα for α > 0.

WhenA > A∗, the utility function is increasing atα = 0+ as well as atα = 0−, therefore

α∗ > 0. Note that the RHS of equation (B-9) also constitutes the FOC atA∗.

Appendix C. Optimal portfolio solutions under LA utility

The following proposition gives conditions under which a finite portfolio choice solution with

LA preferences is possible.

Proposition C.1 Existence of Optimal LA Portfolio Weights
Consider the LA utility function in equation (24), withγ1 = γ2 = γ and0 ≤ γ < 1. Then

there exists a finite solution for the optimal portfolio weightα∗ only when bothB1 < 0 and
B2 < 0, whereB1 andB2 are given by

B1 = −λE[(−xe)
1−γ1{xe≤0}] + E[x1−γ

e 1{xe>0}]

and

B2 = E[(−xe)
1−γ1{xe≤0}]− λE[x1−γ

e 1{xe>0}]. (C-1)

Under these conditions, the optimal weightα∗ depends on the benchmarkB0 but is independent
of λ.

Proof: When the portfolio weightα → +∞ then

U → (α)1−γB1,

soU → +∞ if B1 > 0 and there is no optimal weight. Similarly,

U → (|α|)1−γB2,

whenα → −∞, soU → +∞ if B2 > 0 and there is no optimal weight. Therefore, the optimal

portfolio weight can only exist ifB1 < 0 andB2 < 0.

If both B1 < 0 andB2 < 0, then asα →∞, U → −∞ and asα → −∞, U → −∞. Since

U is monotonic in wealth for0 ≤ γ < 1 there must exist an optimal solutionα∗. ¥
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Proof of Proposition 4.1

If B0 = W exp(r), then LA utility becomes

U = (|α|)1−γB21α≤0 + α1−γB11α>0, (C-2)

whereB1 and B2 are defined in equation (C-1). IfB1 < 0 and B2 < 0, the utility U is

maximized atα = 0. If B2 > 0, thenα → −∞ andU → +∞, soα∗ = −∞. Similarly, if

B1 > 0, thenU → +∞ asα → +∞, soα∗ = +∞. ¥

Proof of Proposition 4.2

Suppose the risk premium is zero, and the probability of a negative equity return occuring is

smaller than the probability of a positive equity return. Then the probability transformation of

prospect theory assigns a higher probability weight to the negative return, which makes the risk

premium negative under the subjective measure. Hence an agent with these preferences shorts

the stock.¥

Appendix D. Data generating processes

We estimate the following VAR:

Xt = c + ΦXt−1 + ut, (D-1)

whereut ∼ IID N(0, Σ). For our systemXt = (ỹt rt)
′, whereỹt = yt−rt−1 is the excess equity

return andrt is the short rate. The optimal lag choice by the Bayesian Information Criteria (BIC)

is one lag.

The system without predictability hasΦ =

(
0 0

0 ρ

)
and in the system with predictability,

Φ =

(
0 b

0 ρ

)
.

Equation (D-1) can be written in compact form as

X = B ∗ Z + U, (D-2)

whereX = (X1 . . . XT ) (2×T ), B = [c Φ] (2×3), U = (u1 . . . uT ) (2×T ), Z = (z0 . . . zT−1)

(3×T ) with zt = [1 X ′
t]
′ (3× 1). The restrictions are written asRβ = r with β = vec(B). The

unrestricted maximum likelihood estimator, whereΦ is unconstrained is given by

β̂ = ((ZZ ′)−1Z ⊗ I)Y,
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whereY = vec(X). The restricted maximum likelihood estimator is given by

β̂c = β̂ +
(
(ZZ ′)−1 ⊗ I

)
R′ (R((ZZ ′)−1 ⊗ I)R′)−1

(r −Rβ̂) (D-3)

andB̂ = devec(β̂c).

The estimate ofΣ is given byΣ̂ = 1/T (Û ′Û), whereÛ = X − B̂Z. The estimated

covariance of̂βc is given by

ĉov(β̂c) = Γ⊗ Σ̂− (Γ⊗ Σ̂)R′
(
R(Γ⊗ Σ̂)R′

)−1

R(Γ⊗ Σ̂), (D-4)

whereΓ = (ZZ ′)−1. The estimated covariance of vech(Σ̂) is given by

ĉov(vech(Σ̂)) =
2

T
D−1

(
Σ̂⊗ Σ̂

)
(D−1)′, (D-5)

whereD−1 is the Moore-Penrose inverse ofD, the duplication matrix which makes vec(C) =

D vech(C) for a symmetric matrixC.

Time Aggregation of VAR’s

Define the time-aggregated processX̄t+k,k = Xt+1 + · · ·+ Xt+k overk horizons. IfXt follows

the VAR given byXt+1 = µ + ΦXt + εt+1, with εt+1 ∼ IID N(0, Σ), then we can define a

time-aggregated VAR as

X̄t+k,k = µ̄ + Φ̄X̄t,k + ut+k,k. (D-6)

The companion form of the time-aggregated VARΦ̄ is simplyΦ̄ = Φk andµ̄ is given by

µ̄ = (I + Φ + · · ·+ Φk)µ. (D-7)

The conditional covarianceEt(ut+k,ku
′
t+k,k) = Σ̄ is given by

Σ̄ = Σ + (I + Φ)Σ(I + Φ)′ + · · ·+ (I + Φ + · · ·+ Φk)Σ(I + Φ + · · ·+ Φk)′

+ (Φ + Φ2 + · · ·+ Φk)Σ(Φ + Φ2 · · ·+ Φk)′

+ (Φ2 + · · ·+ Φk)Σ(Φ2 + · · ·+ Φk)′ + · · ·+ ΦkΣ(Φk)′. (D-8)

Discretization of VAR’s

We construct an approximate discrete Markov chain to the VAR in equation (D-1) using the

quadrature-based methods of Tauchen and Hussey (1991). For the system forXt = (ỹt rt), with

ỹt = yt − rt−1 the excess equity return andrt the short rate,̃yt may be dependent on lagged
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rt but not vice-versa, sort is the driving variable in the system. We chooseN = 50 points for

the short rate over a uniform grid and denote these as{ri}. The short rate is very persistent, so

many points are necessary for an accurate approximation (see Tauchen and Hussey, 1991). We

use a uniform grid because points chosen by Gaussian-Hermite quadrature perform poorly in

optimization as they are too widely spaced. We construct the transition probabilitiesΠr (N×N)

for going from stateri to rj, 1 ≤ i, j ≤ N by evaluating the conditional density ofrj (which is

conditionally Normal) and then normalizing the densities so that they sum to unity. This is the

driving process of the discretized system.

We chooseM = 30 discrete states for̃yt. These states are chosen using Gaussian-Hermite

points approximating the unconditional distribution ofỹt implied by equation (D-1). To include

ỹt in the discretization we note that for each stateri, anN × M vectorπi can be constructed

giving the transition probabilities going from stateri (1 ≤ j ≤ N) to (rj, ỹj) (1 ≤ j ≤
N × M). The distribution ofỹt conditional onri is normal, and is discretized by evaluating

the distribution ofỹt conditional onri for going from stateri to state(rj, ỹj). A Choleski

decomposition is used to take account of the contemporaneously correlated error termsut in

equation (D-1). The vectorsπi can be stacked to give aN ×NM probability transition matrix

Πry giving the probabilities from{ri}, 1 ≤ i ≤ N to {rj, ỹj}, 1 ≤ j ≤ NM . The Markov

chain constructed in this way matches first and second moments of the VAR in equation (D-1)

to three-to-four significant figures. It is possible to also construct a squareΠ matrix, but this

matrix will have repeated rows.
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Table 1: Summary statistics of the data

stock T-bill excess

mean 0.1063 0.0408 0.0655
std 0.2193 0.0173 0.2197
auto -0.0575 0.9273 -0.0532

All data are quarterly. Stock data represent S&P 500 returns, with dividends. The T-bill
data are three-month T-bill returns from CRSP. Excess returns refer to stock returns in ex-
cess of T-bill returns. All returns are continuously compounded. The mean and standard
deviation are annualized by multiplying by four and two, respectively. The first autocorre-
lation is denoted by “auto.” The data sample is 1926-1998.

Table 2: Optimal portfolio weights for the two-period binomial tree

Rebalancing Frequency Rebalancing Frequency
is One Half-Year is One Quarter

A α0 α1 α0 α1

1.00 0.8901 0.8901 0.9136 0.9136
0.95 0.8943 0.8144 0.8496 0.7974
0.90 0.8009 0.7286 0.7763 0.6752
0.85 0.7483 0.6383 0.6386 0.5456
0.80 0.6825 0.5431 0.4881 0.4106
0.75 0.5667 0.4423 0.3228 0.2666
0.70 0.4384 0.3354 0.1402 0.1135
0.65 0.2957 0.2214 0.0000 0.0000
0.60 0.1359 0.0995 0.0000 0.0000

The table lists optimal Disappointment Aversion portfolio weights in equity for the two-
period (three dates) recombining binomial tree as described in Section 3.2.1. The curvature
coefficient isγ = 2.00 for all cases. The binomial tree is calibrated to U.S. stock return
data. In the left-hand columns labelled “Rebalancing Frequency is One-Half Year,”u =
0.2132 andd = −0.1198, with the base period being six months, and the horizon being
one year. In the right-hand columns labelled “Rebalancing Frequency is One Quarter,”
u = 0.1365 andd = −0.0908, with the base period being one quarter, and the horizon
being six months.
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Table 3: Parameter estimates for the data generating processes

No Predictability Predictability
System System

c1 0.0161 0.0223
(0.0064) (0.0099)

c2 0.0008 0.0008
(0.0003) (0.0003)

Φ12 – -0.6049
(0.7416)

Φ22 0.9273 0.9273
(0.0219) (0.0219)

σ1 0.1095 0.1094
(0.0015) (0.0015)

σ2 0.0032 0.0032
(0.0000) (0.0000)

ρ -0.0474 -0.0475
(0.0585) (0.0585)

The model is
Xt = µ + ΦXt−1 + Σ

1
2 εt,

with Xt = (ỹt rt)′, ỹt the excess one-period stock return, andrt the short rate. Stock
returns are S&P500 returns and the short rate is the three-month T-bill interest rate. All
returns are continuously compounded. All elements ofΦ are constrained to be zero except
for Φ22 in the No Predictability System. In the Predictability System,Φ11 andΦ21 are
constrained to be zero. The correlation between the errors ofỹt andrt is denotedρ. The
data sample is quarterly from 1926-1998.
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Table 4: Portfolio weights for the No Predictability System

Curvature Parameterγ = 2 Curvature Parameterγ = 5
A 1 qtr 10 yrs χ2 test p-value 1 qtr 10 yrs χ2 test p-value

1.00 0.9270 0.9359 0.9870 0.3703 0.3835 0.9524
(0.2728) (0.2730) (0.1098) (0.1110)

0.95 0.8331 0.8455 0.9815 0.3324 0.3473 0.9459
(0.2729) (0.2638) (0.1094) (0.1106)

0.90 0.7337 0.7499 0.9764 0.2925 0.3091 0.9395
(0.2728) (0.2748) (0.1090) (0.1113)

0.85 0.6283 0.6485 0.9716 0.2503 0.2688 0.9319
(0.2743) (0.2921) (0.1085) (0.1089)

0.80 0.5165 0.5408 0.9645 0.2057 0.2262 0.9229
(0.2717) (0.2741) (0.1080) (0.1044)

0.75 0.3976 0.4324 0.9537 0.1584 0.1809 0.9126
(0.2698) (0.3281) (0.1075) (0.0985)

0.70 0.2710 0.3116 0.9399 0.1080 0.1327 0.9142
(0.2689) (0.2701) (0.1069) (0.1224)

0.65 0.1357 0.1824 0.9240 0.0542 0.0844 0.8906
(0.2667) (0.2233) (0.1062) (0.1138)

Critical A∗ to Induce Participation
1 qtr 10 yrs

A∗ 0.6030 0.6001

Optimal portfolio weights for Disappointment Aversion utility for various horizons for cur-
vature parameterγ = 2 andγ = 5 for the system without predictability. Portfolios are
rebalanced quarterly. The critical level ofA required to participate in the equity market is
given byA∗. Standard errors are given in parentheses. Theχ2 test reports a p-value that the
one-quarter horizon portfolio weight is the same as the ten-year horizon portfolio weight.
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Table 5: Portfolio weights with different rebalancing frequencies for the No Predictability Sys-
tem

Portfolio Weights for Different Rebalancing Frequencies

Rebalancing Horizon
Frequency 1 qtr 2 qtrs 1 year 2 years

1 qtr 0.6283 0.6290 0.6332 0.6403
(0.2743) (0.2724) (0.2743) (0.2991)

2 qtrs 0.6348
(0.2717)

1 year 0.6683
(0.2714)

2 years 0.6462
(0.2741)

Critical A∗ for Different Rebalancing Frequencies

Rebalancing Horizon
Frequency 1 qtr 2 qtrs 1 year 2 years

1 qtr 0.6030 0.6028 0.6024 0.6017
2 qtrs 0.5965
1 year 0.5656
2 years 0.5927

The table lists optimal portfolio weights for various horizons for Disappointment Aversion
utility with curvature parameterγ = 2 and disappointment levelA = 0.85 for the system
without predictability. For the portfolio weights in the row labelled “1-qtr,” we report opti-
mal portfolio weights for the quarterly VAR rebalanced each quarter, for different horizons
from one-quarter to two-years. For the rows labelled “2-qtrs” to “2-years,” the DGP is a
time-aggregated VAR. For example, for the two-qtr rebalancing frequency, we use a VAR
time-aggregated over two-quarters. These portfolio weights are myopic. The critical level
of A required to participate in the equity market is given byA∗. Standard errors are given
in parentheses.
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Table 6: Myopic portfolio weights for the Predictability System

r = 0.0392 r = 0.0816 r = 0.1208
A γ = 2 γ = 5 γ = 2 γ = 5 γ = 2 γ = 5

1.00 0.9379 0.3747 0.6704 0.2675 0.4224 0.1685
(0.2735) (0.1101) (0.4172) (0.1668) (0.6769) (0.2701)

0.95 0.8438 0.3367 0.5758 0.2296 0.3278 0.1308
(0.2736) (0.1097) (0.4171) (0.1664) (0.6768) (0.2695)

0.90 0.7443 0.2967 0.4760 0.1897 0.2283 0.0911
(0.2735) (0.1093) (0.4170) (0.1660) (0.6768) (0.2690)

0.85 0.6389 0.2545 0.3705 0.1477 0.1235 0.0493
(0.2737) (0.1088) (0.4187) (0.1656) (0.6665) (0.2682)

0.80 0.5269 0.2098 0.2590 0.1033 0.0130 0.0052
(0.2724) (0.1083) (0.4118) (0.1652) (0.6687) (0.2677)

0.75 0.4079 0.1625 0.1408 0.0562 0.0000 0.0000
(0.2715) (0.1078) (0.4127) (0.1645)

0.70 0.2810 0.1120 0.0153 0.0061 0.0000 0.0000
(0.2697) (0.1072) (0.4097) (0.1634)

0.65 0.1455 0.0581 0.0000 0.0000 0.0000 0.0000
(0.2675) (0.1065)

A∗ = 0.5998 A∗ = 0.6941 A∗ = 0.7943

The table lists myopic (three-month horizon) portfolio weights for the system with short
rate predictability. We list weights corresponding to three (annualized) interest rate states
0.0392, 0.0816, and 0.1208 forγ = 2 andγ = 5 and various disappointment levelsA. The
critical disappointment level required to participate in the equity market is given asA∗.
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The plot shows the critical levelA∗ required for an investor to hold equity as a function of the total excess
expected return (on thex-axis). For anyA higher than the solid line denotingA∗, investors hold a positive
amount of equity (“participation region”). For anyA lower than the line investors hold zero equity (“non-
participation region”). To produce the plot, we use a binomial tree with three states (two periods) for excess
returns and graphA∗ given by equation (10). To calibrate the binomial tree, letµ̄ denote the mean and̄σ
denote the standard deviation of continuously compounded returns (10.63% and 21.93%, respectively) and
let the continuously compounded risk-free rate ber = 4.08%. Define the log-normal mean for one period as
m = exp( 1

2 µ̄ + 1
2 σ̄2) and standard deviations = exp( 1

2 µ̄ + 1
2 σ̄2)

√
(exp(σ̄2)− 1) for a half-year node. The

three statesuu, ud, anddd at the end of the year are given byuu = ũ2 − exp(r), ud = ũ× d̃− exp(r), and
dd = d̃2 − exp(r), whereũ = m + s andd̃ = m − s. The circle showsA∗ = 0.37, corresponding to the
empirical total expected return 10.63%, or an expected excess return of 6.55%.

Figure 1: Stock market participation under Disappointment Aversion
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Optimal equity portfolio weights for CRRA utility for the No Predictability System. The
curvature parameterγ is on the horizontal axis. We show the portfolio weight for a horizon
of three months, one year, five years and ten years (dynamically rebalancing each quarter)
on the vertical axis. Portfolio weights are the same for all short rate states.

Figure 3: Equity portfolio weights for CRRA utility in the No Predictability System
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The top plot shows equity portfolio weights under Disappointment Aversion utility for the
system with short rate predictability for curvature parameterγ = 2 and disappointment
level A = 0.85. The short rate is on the horizontal axis, and the portfolio weights are on
the vertical axis. We show portfolio weights corresponding to four different horizons (three
months, one year, five years, ten years); rebalancing is always quarterly. The bottom plot
shows the corresponding minimumA∗ required to induce equity participation correspond-
ing to the same horizons as the top plot.

Figure 4: Equity portfolio weights andA∗ under DA utility in the Predictability System
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We plot the implied risk aversionγ under CRRA utility which produces the same portfolio
weight as under Disappointment Aversion utility for curvature parameterγ = 2 and dis-
appointment levelA = 0.85 (top plot) andγ = 5 andA = 0.85 (bottom plot). We show
(annualized) short rates on the horizontal axis and the implied CRRA coefficient on the
vertical axis.

Figure 5: Implied CRRA risk aversion for DA utility in the Predictability System
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