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Abstract

We describe the joint dynamics of bond yields and macroeconomic variables in a Vector Au-

toregression, where identifying restrictions are based on the absence of arbitrage. Using a term

structure model with inflation and economic growth factors, together with latent variables, we

investigate how macro variables affect bond prices and the dynamics of the yield curve. We find

that the forecasting performance of a VAR improves when no-arbitrage restrictions are imposed

and that models with macro factors forecast better than models with only unobservable factors.

Variance decompositions show that macro factors explain up to 85% of the variation in bond

yields. Macro factors primarily explain movements at the short end and middle of the yield

curve while unobservable factors still account for most of the movement at the long end of the

yield curve.



1 Introduction

Describing the joint behavior of the yield curve and macroeconomic variables is important

for bond pricing, investment decisions and public policy. Many term structure models have

used latent factor models to explain term structure movements, and although there are some

interpretations to what these factors mean, the factors are not given direct comparisons with

macroeconomic variables. For example, Pearson and Sun (1994)’s factors are labeled “short

rate” and “inflation”, but their estimation does not use inflation data. The terms “short rate” and

“inflation” are just convenient names for the unobserved factors. Another example is Litterman

and Scheinkman (1991), who call their factors “level,” “slope” and “curvature”. Similarly, Dai

and Singleton (2000) use the words “level,” “slope” and “butterfly” to describe their factors.

These labels stand for the effect the factors have on the yield curve rather than describing the

economic sources of the shocks.

In the absence of a workhorse general equilibrium model for asset pricing (see Hansen and

Jagannathan, 1991), factor models have the advantage that they only impose no-arbitrage con-

ditions and not all other conditions that characterize the equilibrium in the economy. Most

existing factor models of term structure are unsatisfactory, however, because they do not model

how yields directly respond to macroeconomic variables.1 In contrast, empirical studies try to

directly model the relationships between bond yields and macro variables by using Vector Au-

toregressive (VAR) models. Studies like Estrella and Mishkin (1997) and Evans and Marshall

(1998) use VAR’s with yields of various maturities together with macro variables. These studies

infer the relationships between yield movements and shocks in macro variables using impulse

responses (IR’s) and variance decomposition techniques implied from the VAR. For example,

Evans and Marshall (2001) associate shocks to economic activity and price levels with level

effects across the yield curve. Another type of shock, which can be identified with various

schemes, comes from monetary policy.2

Existing macro VAR studies are characterized by three features. First, only maturities whose

yields which have been included in the VAR may have their behavior directly inferred by the

dynamics of the VAR. As an unrestricted VAR is generally not a complete theory of the term

structure, it says little about how yields of maturities not included in the VAR may move. Sec-

ond, the implied movements of yields in relation to each other may not rule out arbitrage op-

1 The exception is Piazzesi (2001), who develops a term structure model with interest-rate targeting by the cen-

tral bank. In the model, the central bank reacts to macroeconomic variables such as nonfarm payroll employment.
2 See, for example, Gali (1992), Sims and Zha (1995), Bernanke and Mihov (1998), Christiano, Eichenbaum

and Evans (1996), and Uhlig (2001). For a survey, see Christiano, Eichenbaum and Evans (1999).

1



portunities when the cross-equation restrictions implied by this assumption are not imposed in

the estimation. Finally, unobservable variables cannot be included as all variables in the VAR

must be observable. The VAR approach, however, is very flexible, and the implied Impulse

Response Functions (IR’s) and variance decompositions give insights into the relationships be-

tween macro shocks and movements in the yield curve.

A related asset-pricing literature beginning with Sargent (1979) has tried to estimate VAR

systems of yields under the null of the Expectations Hypothesis (see Bekaert and Hodrick,

2001). These systems do not contain macro variables, which is the focus of our paper. More-

over, expected excess returns on US bonds vary over time (see, for example, Fama and French,

1987; and Campbell and Shiller, 1991). The term structure dynamics in this paper are therefore

given by a Gaussian term structure model with time-varying risk premia, consistent with devia-

tions from the Expectations Hypothesis (see Fisher, 1998; Duffee, 2002; and Dai and Singleton,

2002).

We incorporate macro variables as factors in a term structure model by using a factor rep-

resentation for the pricing kernel, which prices all bonds in the economy. This is a direct and

tractable way of modelling how macro factors affect bond prices. The pricing kernel is driven

by shocks to both observed macro factors and unobserved factors. Since macro factors are cor-

related with yields, incorporating these factors may lead to models whose forecasts are better

than models which omit these factors. We investigate whether the purely unobservable factors

of multi-factor term structure models can be explained by macro variables, and we examine

how the latent factors change when macro variables are incorporated into such models.

Our methodology gives us several advantages over existing empirical VAR approaches.

First, it allows us to characterize the behavior of the entire yield curve in response to macro

shocks rather than just the yields included in the VAR. Second, a direct comparison of macro

variables with latent yield factors can be made. Third, variance decompositions and other meth-

ods can estimate the proportion of term structure movements attributable to observable macro

shocks, and other latent variables. Finally, our approach retains the tractability of the VAR

approaches because we estimate a VAR subject to nonlinear no-arbitrage restrictions.

Our term structure model is Gaussian, so it is a VAR model, and IR’s and variance de-

compositions can be easily computed. Formally, our model is a special case of discrete-time

versions of the affine class introduced by Duffie and Kan (1996), where bond prices are expo-

nential affine functions of underlying state variables. In our model, however, some of the state

variables are observed macroeconomic aggregates. With Gaussian processes, the affine model

reduces to a VAR with cross-equation restrictions. Our set-up accommodates lags in the driving

factors and allows us to compute variance decompositions where we can attribute the proportion
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of movements in the yield curve to observable and unobservable factors. We can plot IR’s of

shocks to various factors on any yield, since the no-arbitrage model gives us bond prices for all

maturities.

We obtain our measures of inflation and real activity by extracting principal components of

two groups of variables that are selected to represent measures of price changes and economic

growth. These factors are then augmented by latent variables. As term structure studies have

suggested up to three latent factors as appropriate to capture most salient features of the yield

curve, we estimate models with three latent factors in addition to the macro variables. Our main

model has three correlated unobservable factors, together with the two macro factors (inflation

and real economic activity).

Imposing no-arbitrage restrictions improves out-of-sample forecasts from a VAR. Forecasts

can be further improved by incorporating macro factors into models with latent variables. We

show that a significant part of the latent factors implied by traditional models with only latent

yield variables can be attributed to macro variables. In particular, “slope” and “curvature”

factors can be related to macro factors, while the “level” factor survives largely intact when

macro variables are incorporated.

We find that macro factors explain a significant amount of the variation in bond yields.

Macro factors explain up to 85% of the forecast variance for long forecast horizons at short

and medium maturities of the yield curve. The proportion of the forecast variance of yields

attributable to macro factors decreases at longer yields. At the long end of the yield curve, 60%

of the forecast variance is attributable to macro factors at a 1-month forecast horizon, while at

very long forecast horizons, over 60% of the variance is attributable to unobservable factors.

The paper is organized as follows. Section 2 summarizes the data. Section 3 motivates an

affine equation for the short rate, which can be interpreted as a Taylor (1993) regression of the

short rate on macro factors and an ‘unexplained’ orthogonal component. Section 4 presents the

general model, describes the specific parameterization of the model and discusses the estimation

strategy. We present our estimation results in Section 5, and discuss the implied IR’s, variance

decompositions and forecasting results. Section 6 concludes.

2 Data

2.1 Yield Data

We use data on zero coupon bond yields of maturities 1, 3, 12, 36 and 60 months from January

1952 to December 2000. The bond yields (12, 36 and 60 months) are from the Fama CRSP
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zero coupon files, while the shorter maturity rates (1 and 3 months) are from the Fama CRSP

Treasury Bill files. All bond yields are continuously compounded. Figure 1 plots some of these

yields in the upper graph and Table 1 presents some sample statistics. The table shows that

our data are characterized by some standard stylized facts. The average postwar yield curve is

upward sloping; standard deviations of yields generally decrease with maturity; and yields are

highly autocorrelated, with increasing autocorrelation at longer maturities.

(FIGURE 1 ABOUT HERE)

(TABLE 1 ABOUT HERE)

The yield levels show mild excess kurtosis at short maturities which decreases with maturity,

and positive skewness at all maturities. Excess kurtosis is, however, more pronounced for first-

differenced yields (for example, 19.44 for the 1-month yield). Although the distribution of

yields in the 1990’s seems to exhibit Gaussian tails, the evidence for the long series of monthly

postwar yields rejects a normal distribution. For our purposes, the Gaussian assumption made

in later sections is a sufficient first approximation to the dynamics of the yield curve, as we

are mainly interested in the joint dynamics of yields and macroeconomic variables, rather than

modeling yield heteroskedasticity. The Gaussian model we present in Section 4 can be extended

to incorporate heteroskedastic dynamics parameterized by discretized square-root processes.

An important stylized fact is that yields of near maturity are extremely correlated - the

correlation between the 36-month and 60-month yield is 99%. In our estimations we use all

five yields to estimate our models, but we specify that some of the yields are measured with

error. We choose the 1, 12 and 60-month yields to be measured without error to represent the

short, medium and long ends of the yield curve in our models with 3 unknown factors. (The

3-month yield has a 99% correlation with the 12-month yield, and the 36-month yield has a

99% correlation with the 60-month yield.)

2.2 Macro Variables

We use macro variables that can be sorted in two groups. The first group consists of various

inflation measures which are based on the CPI, the PPI of finished goods, and spot market

commodity prices (PCOM). The second group contains variables that capture real activity: the

index of Help Wanted Advertising in Newspapers (HELP), unemployment (UE), the growth
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rate of employment (EMPLOY) and the growth rate of industrial production (IP). This list of

variables includes most variables that have been used in monthly VAR’s in the macro literature.

Among these variables, PCOM and HELP are traditionally thought of as leading indicators of

inflation and real activity, respectively. All growth rates (including inflation) are measured as

the difference in logs of the index at timet andt− 12, t in months.

To reduce the dimensionality of the system, we extract the first principal component of each

group of variables separately. That is, we extract the first principal component from the inflation

measures group, and we extract the first principal component from the real activity measures

group. This leaves us with two variables which we call “inflation” and “real activity”. More

precisely, we first normalize each series separately to have zero mean and unit variance. We

then stack the three (four) variables related to inflation (real activity) into a vectorZ1
t (Z2

t ). For

each groupi, the vectorZi
t can be represented as

Zi
t = Cf o,i

t + εi
t, (1)

whereZ1
t = (CPIt PPIt PCOMt) for the inflation group orZ2

t = (HELPt UEt EMPLOYt IPt)

for the real activity group. The error termεi
t satisfiesE(εi

t) = 0 and var(εi
t) = Γ, whereΓ

is diagonal. The matricesC andΓ are either3 × 1 or 4 × 1 for the inflation group and the

real activity group respectively. The extracted macro factorf o,i
t inherits the zero mean fromZi

t

(E(f o,i
t ) = 0) and has unit variance as any principal component (var(f o,i

t ) = 1).

Table 2 shows the loadings of the first three (four) principal components, and the factor

loadings for using only one principal component to explain the variation in each group. Over

70% (50%) of the variance of nominal variables (real variables) is explained by just the first

principal component of the group. The first principal component of the inflation measures loads

negatively on CPI, PPI, and PCOM. Since negative shocks to this variable represent positive

shocks to inflation, we multiply it by−1 so that we can interpret it as an “inflation” factor. The

first principal component of real activity measures loads negatively on HELP, EMPLOY, and IP

and positively on UE. Again, we multiply this variable by−1 to interpret positive shocks to this

factor as positive shocks to economic growth. We call this factor “real activity”. We plot these

macro factors in the bottom plot in Figure 1.

(TABLE 2 ABOUT HERE)

To obtain some intuition about these constructed measures of inflation and real activity,

Table 3 lists the correlation between the principal components and the original macro series in
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each group. These correlations show that the inflation factor is most closely correlated with PPI

and CPI (97% and 93% respectively) and less correlated with commodity prices (59%). The

real activity factor is most closely correlated with employment growth (91%) and industrial

production (87%).

(TABLE 3 ABOUT HERE)

The unconditional correlation between the two macro factors is tiny, one tenth of 1%, as

reported in Table 3. Although the unconditional correlation is weak, the lower plot in Figure

1 of the macro factors indicates that some conditional correlations might be important. In

fact, when we estimate a VAR for the macro factors, the conditional correlation is significant.

Specifically, we estimate a bivariate process with 12 lags for the macro factorsf o
t = (f o,1

t f o,2
t )′:

f o
t = ρ1f

o
t−1 + . . . + ρ12f

o
t−12 + Ωuo

t (2)

whereρ1 to ρ12 andΩ are2 × 2 matrices withuo
t ∼ IID N(0,I). The estimation results (not

reported) show that the coefficient on the seventh lag of real activity in the inflation equation is

significant and the coefficient on the first two lags of inflation in the equation for real activity

are significant. This can also be seen from the IR’s from a VAR(12) fitted to the macro factors,

plotted in Figure 2.3 The response of inflation to shocks in real activity is positive and hump-

shaped, while the response of real activity to inflation shocks is initially weakly positive, and

then turns slightly negative before dying out.

(FIGURE 2 ABOUT HERE)

Some preliminary information about the relationship between the macro factors and the

yield curve can be gained from the correlation matrix in Table 3. The inflation factor is highly

correlated with yields. This correlation is highest for short yields (67% correlation between

inflation and 1-month yield), and somewhat smaller for long yields (56% correlation between

inflation and 60-month yield). Real activity is only weakly correlated with yields. This corre-

lation does not exceed 6% for any maturity. This weak relationship is not representative for all

measures of real activity. For example, the correlation of HELP and 1-month yield is 63%, but

3 The IR’s are computed using a Cholesky orthogonalization. It makes little difference reversing the ordering

of the variables.
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our real activity factor loads mostly on EMPLOY and IP. Hence, at least for measures of eco-

nomic activity, it may matter whether the particular variable in question is a leading indicator

of business cycles. This implies that in our analysis we may potentially understate the impact

of real activity on the yield curve by the construction of our real activity factor.

3 A First Look at Short Rate Dynamics

3.1 Policy Rules and Short Rate Dynamics in Affine Models

According to the policy rule recommended by Taylor (1993), movements in the short rate are

traced to movements in contemporaneous macro variablesf o
t and a component which is not

explained by macro variables, an orthogonal shockvt:

rt = a0 + a′1f
o
t + vt (3)

The shockvt may be interpreted as a monetary policy shock following identifying assumptions

made in Christiano, Eichenbaum and Evans (1996). Taylor’s original specification uses two

macro variables as factors inf o
t . The first variable is an annual inflation rate, similar to our

inflation factor, and the second variable is the output gap. GDP data are only available at a

quarterly frequency, while our real activity factor is constructed using various monthly series

such as EMPLOY and IP.

Another type of policy rule that has been proposed by Clarida, Gali, and Gertler (2000) is

a forward-looking version of the Taylor rule. According to this rule, the central bank reacts

to expectedinflation and theexpectedoutput gap. This implies that any variable that forecasts

inflation or output will enter the right-hand side of (3). In the hope of capturing the information

underlying macro forecasts, we add lagged macro variables as arguments in equation (3).4 This

is done by writingXo
t = (f o′

t f o′
t−1 . . . , f o′

t−p−1)
′ for some lag lengthp and including the lags as

arguments in the policy rule:

rt = b0 + b′1X
o
t + vt. (4)

Affine term structure models (Duffie and Kan, 1996) are based on a short rate equation

just like equation (3) together with an assumption on risk premia. The difference between the

4 Clarida, Gali, and Gertler (2000) implement their forward-looking rule by redefining the shock termvt to

include forecast errorsfo
t+1−Et(fo

t+1). This allows them to use future values of macro variablesfo
t+1 as arguments

on the right-hand side of (3). We could in principle adopt the same approach by including these forecast errors

into some latent variables, but this would mean that we would have to drop the assumption that latent and macro

variables are orthogonal. Our focus is assigning as much explanatory power to macro factors as possible, so we

specify the latent variables as orthogonal.
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short rate dynamics in affine term structure models and the Taylor rule is that in affine term

structure models the short rate is specified to be an affine (constant plus linear term) function of

underlying latent factorsXu
t :

rt = c0 + c′1X
u
t . (5)

The unobserved factors themselves follow affine processes, of which a VAR is a special Gaus-

sian case. The prices of bonds of longer maturities are explicit exponential affine functions

(dependent upon parameters) offu
t if pricing is risk neutral. In the more general case that

we consider, the risk adjustment needs to be specified carefully to obtain similar closed-form

solutions for bond yields (this is explained in the next section).

Equations (3) through (5) are very similar: they all specify the short rate as affine functions

of factors. We can combine them by writing:

rt = δ0 + δ′11X
o
t + δ′12X

u
t , (6)

The approach we take in this paper is to specify the latent factorsXu
t as orthogonal to the macro

factorsXo
t . In this case, the short rate dynamics of the term structure model can be interpreted

as a version of the Taylor rule with the errorsvt = δ′12X
u
t being unobserved factors. We use the

restrictions from no-arbitrage to separately identify the individual latent factors.

3.2 Estimating the Short Rate Dynamics

The coefficients on inflation and real activity in the short rate equation (6) can be estimated by

ordinary least squares because of the independence assumption onXo
t andXu

t . Table 4 reports

the estimation results from two regressions: the original Taylor rule (3) and the forward-looking

version of the Taylor rule (4), which incorporates lags of the macro variables. These regression

results give a preliminary view as to how much of the yield movements macro factors may

explain with respect to the unobservable variables. TheR2 of the estimated Taylor rule is 45%,

while the estimated forward-looking version of the Taylor raises theR2 to 53%. These numbers

suggest that macro factors should have explanatory power for yield curve movements.

(TABLE 4 ABOUT HERE)

The behavior of the residuals, however, provides some intuition about what to expect from

a model with unobservable factors. First, the residuals from both versions of the Taylor rule

are highly autocorrelated. The autocorrelation of residuals from the short rate equation with
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only contemporaneous macro factors is 0.945, while the autocorrelation from the equation that

includes lagged macro factors is slightly lower, 0.937. The short rate itself has an autocorre-

lation of 0.972, indicating that macro variables do explain some of the persistent shocks to the

short rate. Second, unless a variable which mimics the short rate itself is placed on the RHS of

equation (3), the residuals will follow the same broad pattern as the short rate. This can be seen

from Figure 3, which plots the residuals together with the de-meaned short rate. This suggests

that the “level” factor found by earliest term structure studies (see Vasicek, 1977), may still

reappear when macro variables are added in a linear form to the short rate in a term structure

model.

(FIGURE 3 ABOUT HERE)

The coefficients on inflation and real activity in the simple Taylor rule are both significant

and positive. This is consistent with previous estimates of the Taylor rule in the literature, and

also the parameter values proposed by Taylor (1993)’s original specification. However, these

coefficients are highly sensitive to the sample period selected, as structural changes (or regime

shifts) cause the coefficients in (6) to be time-varying (see Ang and Bekaert, 2002).

The sign of the Taylor-rule coefficient on real activity crucially depends on the inclusion

of the two NBER recessions in 1954 and 1958. This is evident from the plots of real activity

and the 1-month yield in Figure 1. Both these recessions go hand in hand with decreases in the

1-month rate and make the Taylor rule coefficient on output positive. If we start the estimation

of the Taylor rule later, say in 1960 or 1970, the coefficient on real activity is negative. Only

if we start the estimation after the monetary experiment of 1982 is the coefficient positive.

Interestingly enough, the coefficient on output is not significant for the whole post-1982 period,

but it is significant for the Greenspan years (post-1987). The large and significantly positive

coefficient on inflation is much more robust across different sample periods. However, we

assume that during our sample period, the Taylor rule relationships are stable, just as in Gali

(1992), Christiano, Eichenbaum and Evans (1996), and Cochrane (1998).

In contrast to the simple Taylor rule estimation, Table 4 reports that most parameter esti-

mates for the forward-looking version of the Taylor rule are not significant, except for the 11th

lag on inflation. This suggests that using many lags in the Taylor rule may lead to an over-

parameterized and potentially poorly behaved system. However, a likelihood ratio tests rejects

the null of the simple Taylor rule (with only contemporaneous inflation and real activity) in

favor of the alternative of the Taylor rule with lags with a p-value less than 1%. On the other
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hand, the optimal Schwartz (BIC) choice is the simple Taylor rule. We present models with

both specifications.

4 A Term Structure Model with Macro Factors

Based on the macro dynamics (2) and the short rate equation (6), we now develop a discrete-

time term structure model. The model combines observable macroeconomic variables with un-

observable or latent factors. Risk premia in our set-up are time-varying, because they are taken

to be affine in potentially all of the underlying factors. Section 4.1 presents the general model

and Section 4.2 parameterizes the latent variables and risk premia. We outline our estimation

procedure in Section 4.3. Section 4.4 summarizes our parameterization.

4.1 General Setup

4.1.1 State Dynamics

Suppose there areK1 observable macro variablesf o
t andK2 latent variablesfu

t . The vector

Ft = (f o′
t , fu′

t )′ follows a Gaussian VAR(p) process:

Ft = Φ0 + Φ1Ft−1 + . . . + ΦpFt−p + θut (7)

with ut ∼ IID N(0, I). The latent factorsfu
t are AR(1) processes, so that we set the coefficients

Φ2 . . . Φp in equation (7) corresponding toXu
t = fu

t equal to zero. The state of the economy is

then described by aK-dimensional vector of state variablesXt, whereK = K1 · p + K2. We

partition the state vectorXt into K1 · p observable variablesXo
t andK2 unobservable variables

Xu
t . The observable vector contains current and past levels of macroeconomic variablesXo

t =

(f o′
t , f o′

t−1, . . . , f
o′
t−p−1)

′, while Xu
t = fu

t only contains contemporanous latent yield factors. We

take the bivariate VAR(12) in equation (2) as the process for inflation and real activity so set

p = 12.

We write the dynamics ofXt = ( Xo′
t Xu′

t )′ in compact form as a first order Gaussian VAR:

Xt = µ + ΦXt−1 + Σεt (8)

with εt = (uo′
t , 0, . . . , 0, uu′

t )′, whereuo
t (uu

t ) are the shocks to the observable (unobservable)

factors. In the first order companion form, there are blocks of zeros in theK ×K matrix Σ to

accommodate higher order lags inFt.
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4.1.2 Short Rate Equation

The one-period short ratert is assumed to be an affine function of all state variables:

rt = δ0 + δ′1Xt. (9)

We work with monthly data, so we use the one-month yieldy1
t as an observable short ratert.

By constraining the coefficientδ1 to depend only on contemporaneous factor values, we obtain

the Taylor rule (3). We call this the “Macro Model.” We also consider the case whereδ1 is

unconstrained, which correspond to the forward-looking Taylor rule incorporating lags. We

refer to this formulation as the “Macro Lag Model,” because it uses lags of macro variables in

the short rate equation.

4.1.3 Pricing Kernel

To develop the term structure model, we use the assumption of no-arbitrage (Harrison and

Kreps, 1979) to guarantee the existence of an equivalent martingale measure (or risk-neutral

measure)Q such that the price of any assetVt that does not pay any dividends at timet + 1

satisfiesVt = EQ
t (exp(−rt)Vt+1), where the expectation is taken under the measureQ. The

Radon-Nikodym derivative (which converts the risk-neutral measure to the data-generating

measure) is denoted byξt+1. Thus, for anyt+1 random variableZt+1 we have thatEQ
t (Zt+1) =

Et(ξt+1Zt+1)/ξt. The assumption of no-arbitrage, or equivalently the assumption of the exis-

tence ofξt+1, allows us to price any asset in the economy, in particular all nominal bond prices.

Assume thatξt+1 follows the log-normal process:

ξt+1 = ξt exp

(
−1

2
λ′tλt − λ′tεt+1

)
, (10)

whereλt are the time-varying the market prices of risk associated with the sources of uncertainty

εt. We parameterizeλt as an affine process:5

λt = λ0 + λ1Xt (11)

for a K-dimensional vectorλ0 and aK ×K matrix λ1. Equations (10) and (11) relate shocks

in the underlying state variables (macro and latent factors) toξt+1 and therefore determine

how factor shocks affect all yields. Parameters inλ0 andλ1 that correspond to lagged macro

variables are set to zero. We do this for parsimony while ensuring that both the macro and

5 The specification (11) has been used in continuous time by Constantinides (1992), El Karoui, Myneni, and

Viswanathan (1992), Fisher (1998), Liu (1999), Duffee (2002), and Dai and Singleton (2002), among many others.
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unobservable factors are priced. This means that theK-vectorλ0 contains a total ofK1 + K2

free parameters: the upperK1 × 1 row and the bottomK2 × 1 row. The matrixλ1 contains

(K1+K2)
2 free parameters: the upper-leftK1×K1 corner together with the upper-rightK1×K2

corner, and the lower-leftK2 ×K1 corner together with the lower-rightK2 ×K2 corner.

We define the pricing kernelmt+1 as:

mt+1 = exp(−rt) ξt+1/ξt. (12)

Substitutingrt = δ0 + δ′1Xt we have:

mt+1 = exp(−1

2
λ′tλt − δ0 − δ′1Xt − λ′tεt+1) (13)

4.1.4 Bond Prices

We take equation (13) to be a nominal pricing kernel which prices all nominal assets in the

economy. This means that the total gross return processRt+1 of any nominal asset satisfies:

Et(mt+1Rt+1) = 1. (14)

If pn
t represents the price of ann-period zero coupon bond, then equation (14) allows bond

prices to be computed recursively by:

pn+1
t = Et(mt+1p

n
t+1). (15)

The state dynamics ofXt (equation (8)) together with the dynamics of the short ratert

(equation (9)) and the Radon-Nikodym derivative (equation (10)) form a discrete-time Gaussian

K-factor model withK1 · p observable factors andK2 unobservable factors, wherep is the

number of lags in the autoregressive representation of the observable factors. It falls within the

affine class of term structure models because bond prices are exponential affine functions of the

state variables. More precisely, bond prices are given by:

pn
t = exp(Ān + B̄′

nXt), (16)

where the coefficients̄An andB̄n follow the difference equations:

Ān+1 = Ān + B̄′
n(µ− Σ′λ0) +

1

2
B̄′

nΣΣ′B̄n − δ0

B̄′
n+1 = B̄′

n(φ− Σλ1)− δ′1 (17)

with Ā1 = −δ0 andB̄1 = −δ1. These difference equations can be derived by induction using

equation (15), and details are provided in the Appendix.6

6 See the techniques in Campbell, Lo, and MacKinlay (1997).
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The continuously compounded yieldyn
t on ann-period zero coupon bond is given by:

yn
t = − log pn

t

n
= An + B′

nXt (18)

whereAn = −Ān/n andBn = −B̄n/n. Note that yields are affine functions of the stateXt, so

that equation (18) can be interpreted as being the observation equation of a state space system.

Additional observation equations come from the observable variablesXo
t . Most examples of

discrete-time affine models have not incorporated lagged state variables. However, by treating

the lagged variables as state variables inXt, the affine form is still maintained. Despite time-

varying risk premia, our system is still Gaussian, and IR’s, variance decompositions and other

techniques can be handled as easily as an unrestricted VAR.

4.2 Choice of Parameterization

4.2.1 Latent Variables

Empirical studies have concluded that three unobserved factors explain much of yield dynamics

(see Knez, Litterman, and Scheinkman, 1994). To compare models with only latent variables

with models incorporating both latent and macro factors we use three unobservable factors.

Hence our most comprehensive model consists of two macro (K1 = 2) and three latent factors

(K2 = 3).

Since there are unobservable variables present, normalizations can be made that give obser-

vationally equivalent systems. The idea behind these normalizations in a VAR setting is that

affine transformations and rotations of the unobservable factors lead to observationally equiva-

lent yields. These normalizations are discussed in Dai and Singleton (2000). We estimate the

most general parameterization for the unobserved variables in this paper.

We estimate the following system for the unobservable factors:

fu
t = ρfu

t−1 + uu
t , (19)

with 3-dimensional shock vectoruu
t ∼ IID N(0,I) and a lower-triangular3× 3 companion ma-

trix ρ. This is the most general identified representation for a Gaussian specification. The unit

variance ofuu
t implies that the lower-right corner3 × 3 matrix in θ of equation (7) and inΣ of

equation (8) is just equal to var[uu
t ] = I. A multi-factor Vasicek (1977) model with correlated

unobservable factors consists of (19), an affine short rate equation (5), and the assumption that

λ1 = 0. In a Vasicek model, specifying the companion form and holding fixed the covariances
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is equivalent to holding the companion form fixed and specifying the covariances. Numerous

papers in the term structure literature have used independent factors as a first-cut modeling ap-

proach, including Longstaff and Schwartz (1992) and Chen and Scott (1993). At the estimated

parameters, however, the latent factors usually turn out to violate the independence assumption.

We therefore estimate a correlated latent factor model to give the latent variables a fair chance

to explain the yield curve by themselves, without the inclusion of macro variables.

We impose independence between latent and macro factors, so that the upper-right24 × 3

corner and the lower-left3×24 corner ofΦ andΣ in the compact form in (8) contain only zeros.

This approach to including observed macro factors in a pricing kernel specifies all uncertainties

arising in the latent factors as orthogonal to the macro variables. This independence assumption

has two main drawbacks. First, it contradicts empirical evidence that the term structure predicts

movements in macro economic activity (see Harvey, 1988; and Estrella and Hardouvelis, 1991).

Second, monetary policy has no impact on future inflation or real activity. In other words, the

Fed is conducting monetary policy using the Taylor rule in an environment where policy has no

effects on the variables to which the Fed is responding. Extensions of this model can be done by

freeing up the companion matrix to allow feedback (soΦ does not contain zero corner blocks),

and looking at contemporaneous correlations of macro and latent factors (θ0 does not contain

zero corner blocks). We leave these extensions to future research.

4.2.2 Risk Premia

The data-generating and the risk neutral measures coincide ifλt = 0 for all t. This case is usu-

ally called the “Local Expectations Hypothesis,” which differs from the traditional Expectations

Hypothesis by Jensen inequality terms (see Cochrane, 2001, Chapter 19). Macro models, such

as Fuhrer and Moore (1995), usually impose the Expectations Hypothesis to infer long term

yield dynamics from short rates. The dynamics of the term structure under the data-generating

measure depend on the risk premia parametersλ0 andλ1 in equation (11). A non-zero vectorλ0

affects the long-run mean of yields because this parameter affects the constant term in the yield

equation (18). A non-zero matrixλ1 affects the time-variation of risk-premia, since it affects

the slope coefficients in the yield equation (18). In a Vasicek (1977) modelλ0 is non-zero and

λ1 is zero, which allows the average yield curve to be upward sloping, but does not allow risk

premia to be time-varying.

The number of parameters inλ to estimate is very large:λ0 hasK1 + K2 = 5 andλ1

has(K1 + K2)
2 = 25 parameters in the case of the models with macro variables. To avoid

over-fitting, we fix some of these parameters. In particular, we specify theλ1 matrix to be
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block-diagonal, with zero restrictions on the upper-right2 × 3 and lower-left3 × 2 corner

blocks. Time variation in the compensation for shocks to latent variables is thus only driven by

the latent variables themselves. The analogous argument holds for the compensation for macro

shocks. This parameterization assumption is in the spirit of the orthogonalization of macro and

latent variables.

To summarize, we estimate 5 parameters inλ0 and4 + 9 parameters inλ1. The parameters

in λ0 correspond to the current macro variables and latent variables. Similarly, the parameters

in λ1 are contained in two non-zero matrices on the diagonal: an upper-left2 × 2 matrix for

current macro variables and a lower-right3× 3 matrix for the latent variables.

4.3 Estimation Method

To estimate the model, we transform a system of yields and observables(Y ′
t , X

o′
t ) into a system

of observables and unobservablesXt = (Xo′
t , Xu′

t ). The yields themselves are analytical func-

tions of the state variablesXt, which allow us to infer the unobservable factors from the yields.

We estimate using maximum likelihood, and derive the likelihood function in the Appendix.

In traditional VAR approaches, yields and macro variables are used directly as inputs into a

VAR after specifying the autoregressive lag length. The likelihood for the VAR is a function of

(Y ′
t , X

o′
t ), and inferences about yield curve movements and macro shocks can be drawn from

the parameters in the companion form coefficients and covariance terms. Our approach amounts

to estimating a VAR of(Y ′
t , X

o′
t ), with assumptions that identify an unobservable component

orthogonal to macro shocks and guarantee no arbitrage.

We use a two-step consistent estimation procedure. In the first step, we estimate the macro

dynamics (2) and the coefficientsδ0 andδ11 of the macro factors in the short rate dynamics equa-

tion (6). In a second step, we estimate the remaining parameters of the term structure model

holding all pre-estimated parameters fixed. This two-step procedure avoids the difficulties as-

sociated with estimating a model with many factors using maximum likelihood when yields are

highly persistent.7 The procedure also avoids estimating a very large number of lag coefficients

(ρ1, . . . ρ12) in the bivariate VAR for the macro variables in the term structure model.

Both the macro dynamics (2) and the short rate coefficients of the macro variables in equa-

tion (6) are estimated by ordinary least squares, as reported in Sections 2 and 3. Since our

7 We tried to estimate various versions of the model in a single step with maximum likelihood. These estimations

typically produced explosive yield dynamics. Fixing the parameters that characterize the dependence of the short

rate on the observable factors in a (consistent) first-step estimation is a tractable way to avoid the problem of

nonstationary dynamics.

15



constructed macro factors have zero mean, the constantδ0 in the short rate equation represents

the unconditional mean of the 1 month yield, which equals 5.10% on an annualized basis. This

number has to be divided by 12 to obtain an estimate forδ0 at a monthly frequency. The re-

gression coefficientsδ11 of the short rate equation give the maximal proportion of short rate

movements explained by the macro factors, with all remaining orthogonal factors being unob-

servable. No-arbitrage assumptions identify the unexplained proportion.

In the second estimation procedure, we holdδ0, δ11, and the parameters entering the macro

subsystem (2) fixed, and estimate all other parameters of the term structure model including

the remaining coefficients inδ12 corresponding to the latent factors. We need to find good

starting values to achieve convergence in this highly non-linear system. In particular, since

unconditional means of persistent series are difficult to estimate, the likelihood surface is very

flat in λ0 which determines the mean of long yields. We therefore estimate the model in several

iterative rounds.

We begin by obtaining starting values forρ in equation (19) from estimating the model

under the Expectations Hypothesis (withλ0 andλ1 equal to zero.) We then compute starting

values forλ1 holdingλ0 fixed at zero. Next, we estimateλ0 setting any insignificant parameters

in λ1 at the 5% level equal to zero. Then we set insignificantλ0 parameters to zero and re-

estimate. This iterative procedure produces the zeros in theΦ andλ1 matrices in Tables 5 to

7, which report the results. Most of the non-zero parameters inΦ andλ1 are significant, and

we expect these important effects to remain in other iterative estimation schemes. While our

particular procedure may be path dependent, we could not find a feasible alternative which

implies unconditional means for long yields close to those in the data.

Finally, our likelihood construction solves for the unobservable factors from the joint dy-

namics of the zero coupon bond yields and the macro factors. To do this, we follow Chen and

Scott (1993) and assume that as many yields as unobservable factors are measured without er-

ror, and the remaining yields are measured with error. In particular, for our models we assume

the 3 and 36-month yields are measured with error.

4.4 Summary of Parameterization

To summarize, we estimate the following special case of the general model. The bivariate

system of macro factorsf o
t follows the process:

f o
t = ρ1f

o
t−1 + . . . + ρ12f

o
t−12 + Ωuo

t , (20)

with uo
t ∼ IID N(0,I). T he 2 × 2 matricesρ1, . . . , ρ12, are unconstrained andΩ is lower-

triangular.
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The trivariate system of latent factorsfu
t follows the process:

fu
t = ρfu

t−1 + uu
t (21)

with uu
t ∼ IID N(0,I). The3× 3 matrixρ is lower triangular to ensure identification. The shock

processesuo
t anduu

t are independent.

The short rate equation is:

rt = δ0 + δ′11X
o
t + δ′12X

u
t , (22)

where the parametersδ0 and δ11 are consistently estimated by least squares in a first-step

procedure prior to maximizing the likelihood (sinceXo
t andXu

t are orthogonal andXu
t has

zero mean). The observable factors areXo
t = (f o′

t f o′
t−1 . . . , f o′

t−p−1) and the latent factors are

Xu
t = fu

t . The full set of state variables isXt = (Xo′
t , Xu′

t )′.

Market prices of risk are affine in the state vector:

λt = λ0 + λ1Xt. (23)

The matrixλ1 has an upper-left 2× 2 matrix and a lower-right 3× 3 matrix corresponding to

f o
t andfu

t , while the remaining parameters are set to zero. The parameters inλ0 corresponding

to f o
t andfu

t are free, and all remaining parameters inλ0 are restricted to be zero.

We estimate two versions of our most comprehensive model with two macro factors and

three unobservable factors. The estimation ofδ11 that restricts the parameters on lagged pa-

rameters to be zero as in equation (22) is denoted the “Macro Model.” The version with the

full lagged Taylor rule is denoted the “Macro Lag Model.” The estimation without any macro

variables we call the “Yields-Only Model.”

5 Estimation Results

Section 5.1 interprets the parameter estimates of the Macro and Yields-Only Models. To de-

termine the effect of the addition of macro factors into term structure models, we look at the

IR’s of each factor in Section 5.2. The variance decompositions in Section 5.3 allow us to at-

tribute the forecast variance at a particular horizon to shocks in macro and latent factors. In

Section 5.4, we find that imposing the cross-equation restrictions from no-arbitrage forecasts

better than the unrestricted VAR’s common in the macro literature. Moreover, incorporating

macro variables into a term structure model helps us obtain even better forecasts. We compare

the latent factors from the different models in Section 5.5 and find that macro factors do account

for some of the latent factors from the Yields-Only Model. Derivations for the IR’s and variance

decompositions are presented in the Appendix.
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5.1 Parameter Estimates

5.1.1 Yields-Only Model

Table 5 presents the estimation results for the Yields-Only Model. The order of the latent factors

in Table 5 is unspecified, but we present the estimation results by ordering the latent factors by

decreasing autocorrelation. The model has one very persistent factor, one less persistent but still

strongly persistent factor, and the last factor is strongly mean-reverting. This is consistent with

previous multi-factor estimates in the literature.

(TABLE 5 ABOUT HERE)

Litterman and Scheinkman (1991) label these unobservable factors “level,” “slope,” and

“curvature” respectively because of the effects of these factors on the yield curve. To show

these effects, the first latent variable, Unobs 1, closely corresponds to a “level” transformation

of the yield curve, which we define as(y1
t + y12

t + y60
t )/3. The correlation between Unobs 1

and the level transformation is 92%. The second latent variable, Unobs 2, has a 58% correlation

with a “spread” transformation, defined asy60
t − y1

t . The third latent variable, Unobs 3, has a

77% correlation with a “curvature” transformation (y1
t − 2y12

t + y60
t ).

In Table 5, the estimated vectorλ0 has one significant parameter corresponding to the most

highly autocorrelated factor. The parameter is negative, so that the unconditional mean of the

short rate under the risk-neutral measure is higher than under the data-generating measure.

Since bond prices are computed under the risk-neutral measure, negative parameters inλ0 in-

duce long yields to be on average higher than short yields. Time-variation in risk premia is

mainly driven by the first and third unobservable factor. In other words, risk premia in bond

yields mainly depend on the level and the curvature of the yield curve, and are not driven by the

slope of the yield curve.

5.1.2 Models with Yields and Macro Variables

Tables 6 and 7 contain estimation results of the Macro Model and the Macro Lag Model. The

autocorrelation of the first latent factor is the same to three decimal places across the Yields-

Only, Macro and Macro Lag Models (0.992). Hence, we would expect that this first factor has

roughly similar very persistent effects in each model. There is more variation in the autocorre-

lations of Unobs 2 and Unobs 3 across the models. The risk premia estimates in Tables 6 and

7 corresponding to the latent factors have the same signs as in the Yields-Only Model in Table
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5. Even though their magnitude differs somewhat across the three models, we expect that the

latent factors behave in a similar fashion across the models.

(TABLES 6 and 7 ABOUT HERE)

The market price of risk coefficients corresponding to inflation and real activity are highly

significant. This implies that observable macro factors drive time-variation in risk premia in

both models! However, the estimates forλ1 differ enormously across the Macro and Macro

Lag Model. First, theλ1 element corresponding to inflation (λ1,11) is negative in the Macro

Model (-0.4263) but positive in the Macro Lag Model (0.8442). Similarly, the real activity-

term (λ1,22) is also negative in the Macro Model (-0.1015) and positive in the Macro Model

(0.2102). Finally, the inflation-real activity cross-terms (λ1,12 andλ1,21), where the additional

two subscripts denote matrix elements, are much larger in absolute magnitude in the Macro

Model than in the Macro Lag Model. Hence, we can expect inflation and real activity to play

different roles in these two models. This also implies that estimates of the market price of risk

are sensitive to the details of the model specification, particularly the parameterization chosen

for the observable macro variables. Below, we show this sensitivity is important for economic

inference.

5.2 Impulse Responses

5.2.1 Factor Weights Across the Yield Curve

From equation (18), the effect of each factor on the yield curve is determined by the weights

Bn that the term structure model assigns on each yield of maturityn. These weightsBn also

represent the initial response of yields to shocks from the various factors. Figure 4 plots these

weights as a function of yield maturity for the Macro Model in the upper graph, and the Macro

Lag Model in the lower graph. For the Macro Lag Model, we only plot theBn coefficients

corresponding to the contemporanous macro variables. TheBn coefficients have been scaled to

correspond to movements of one standard deviation of the factors, and have been annualized by

multiplying by 1200.

Figure 4 shows that the latent factors act in almost the same way in both the Macro and

Macro Lag Models. The weight on the most persistent factor (Unobs 1) is almost horizontal.

This means that it affects yields of all maturities the same way, hence the name “level” factor.

The coefficient of the second factor (Unobs 2) is upward sloping. It mainly moves the short
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end of the yield curve relative to the long end, so Unobs 2 is therefore a “slope” factor. The

coefficient on the least persistent factor (Unobs 3) is hump-shaped. Movements in this factor

affect yields at the short-end of the yield curve and middle and long-end of the yield curve with

different signs. Hence, theBn weights corresponding to Unobs 3 have a twisting effect, so

Unobs 3 is thus a “curvature” factor. The inverse hump in the coefficient of this factor cannot

be accommodated in a model with independent factors and constant risk premia, where yield

coefficients are monotonic functions of maturity.

(FIGURE 4 ABOUT HERE)

We now turn to theBn coefficients corresponding to inflation and real activity. These coef-

ficients differ across the Macro and Macro Lag Models. In the top plot of Figure 4, the effect of

inflation is hump-shaped but mostly affects short yields and less so long yields. The magnitude

of the inflation weights are higher than the level factor weights at short maturities, and about

half the magnitude of the slope factor weights. Initial shocks to real activity have a much weaker

effect across the yield curve. In contrast, the bottom plot of Figure 4 shows that the effects of

shocks to inflation and real activity in the Macro Lag Model are weaker than the Macro Model,

and shocks to real activity impact the yield more than shocks to inflation.

There are several reasons for the differences in theBn coefficients for macro factors across

the Macro and Macro Lag Models. First, in the estimates of the Taylor rules in Table 4, the

Macro Model gives inflation a very strong effect on the short rate (coefficient = 0.1535). In the

Macro Lag Model, initial shocks to inflation have little impact (coefficient = 0.0037), and it is

only after 11 lags of inflation where inflation begins to have a large impact (coefficient on the

11th lag of inflation = 0.1427). Given that both models estimate the same standard deviation of

inflation shocks (both rely on the same VAR(12) for inflation and real activity), we get a much

stronger initial effect of inflation on yields in the Macro Model. Second, in the Macro Model,

real activity has little initial impact (coefficient = 0.0143) while the effect in the Macro Lag

Model is larger (coefficient = 0.0398). Given that the standard deviation of real activity shocks

is also the same across models, the initial effect of real activity is stronger in the Macro Lag

Model than in the Macro Model.

The time-varying prices of risk for inflation and real activity vary across the Macro and the

Macro Lag Models in Tables 6 and 7. The prices of risk control how the variation of longer

yields respond relative to the short rate. In the Macro Model, theλ1 time-varying prices of risk

for inflation and real activity are both negative (λ1,11 = −0.4263 andλ1,22 = −0.1015) , while
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in the Macro Lag Model these are both positive (λ1,11 = 0.8442 andλ1,22 = 0.2102). The more

negative the terms on theλ1 diagonal, the more positively longer yields react to positive factor

shocks. Since the time-varying prices of risk for inflation and real activity are more negative for

the Macro Model, the initial shocks are larger across the yield curve in this model.

While Figure 4 shows only the initial effect of shocks as a function of yield maturity, we

are also interested in how the initial shocks propagate through time. To trace out the long-term

responses of the yield curve from shocks to the macro variables after the yield curve’s initial

response, we now compute IR’s.

5.2.2 Impulse Responses from Macro Shocks

We look at IR’s to yields of maturities 1, 12 and 60 months. Our term structure model allows

us to obtain the movements of the yield curve in response to driving shocks at all horizons,

including maturities omitted in estimation. The IR’s forall maturities are known analytical

functions of the parameters. This is in contrast to estimations with VAR’s where IR’s can only

be calculated for yields included in the VAR. Our estimation also guarantees that the movements

of yields are arbitrage-free.

Figure 5 shows IR’s of 1, 12 and 60 month yields from the Macro Model and the Macro Lag

Model. The initial IR (corresponding to 1 month on thex-axis) for each factor correspond to

the 1, 12 and 60 month maturity in Figure 4. In addition, we compute the IR’s from a simple

unrestricted VAR(12), with macro factors and 5 yields similar to Campbell and Ammer (1993).

We order the variables with macro factors first, and then yields with increasing maturities, but

the effect is robust to the ordering of variables in the VAR. Thex-axis on each plot is in months

and the IR’s are given in terms of annualized percentages for a shock of one standard deviation.

(FIGURE 5 ABOUT HERE)

Figure 5 shows that the IR’s for the Macro and the Macro Lag Models are much larger

than the IR’s from the unrestricted VAR(12) (except for the 60 month yield for the Macro Lag

Model). The maximum magnitude of the responses for the 1 month and 60 month yields is up

to five times larger than the VAR(12). Turning first to the IR’s of the unrestricted VAR in the

first column of Figure 5, a one-standard deviation shock to inflation initially raises the 1-month

yield about 10 basis points. The response peaks after about two years at 30 basis points and

then slowly levels off. The response of longer yields has the same overall shape. The initial

response of the 1-year yield (5-year yield) is only 8 basis points (5 basis points). The response
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increases to around 25 basis points (22 basis points) after two years, and then dies off slowly.

The response of yields to real activity shocks in the unrestricted VAR is slightly smaller than

the response to inflation shocks. The real activity response is also hump-shaped with the hump

occurring after one year.

The second column of Figure 5 plots IR’s for the Macro Model. The hump-shape of the

IR’s are similar to the shape of the IR’s from the unrestricted VAR, but the IR’s are much larger.

For example, the initial response of the 1-month yield to a 1 standard deviation inflation shock

is around 60 basis points, peaking after 12 months to slightly under 1 percent. This is over

six times the effect as the unrestricted VAR(12). For the 5 year yield, the initial response to

inflation is around 50 basis points, compared to a less than 5 basis point move for the VAR(12).

However, the effect of real activity is about the same order of magnitude as the VAR(12) and

is much smaller than the IR’s from inflation shocks. This is due primarily to the small loading

on real activity (0.0143) in the Taylor rule, compared to the much larger loading on inflation

(0.1535).

We plot IR’s for the Macro Lag Model in the final column of Figure 5. For inflation, there

are much longer lagged effects, after 12 months, than in the Macro Model. This is because the

Taylor rule with lags has a significant weight on the 11th lag of inflation, which has its highest

impact after 12 months (see Table 4). In contrast, the weights in the Taylor rule for real activity

are largely flat, so there is little hump-shape and also less impact from shocks to real activity.

The Macro Lag Model IR’s for inflation reach almost the same magnitude as the IR’s for the

Macro Model for the 1 and 12-month yields, but are much smaller for the 60-month yield. This

is in contrast to the Macro Model, where inflation shocks have much bigger impacts across the

yield curve.

The reason for the different effects across the Macro and Macro Lag Model at longer matu-

rities is due to the estimates of the time-varying price of riskλ1 for each model in Tables 6 and

7. The diagonal elements ofλ1 in the Macro Lag Model are negative, while they are positive

in the Macro Model. Lower (more negative) prices of risk have higher positive impacts from

the macro factors to long yields. Figure 6 focuses on IR’s for the 60-month yield in the Macro

Lag Model. The top (bottom) plot traces IR’s for three different values ofλ1,11 (λ1,22), starting

from the parameter estimates 0.84 (0.21). The negative parameter choice forλ1,11 (λ1,22) is the

corresponding parameter estimate for the Macro Model, -0.42 (-0.10). In each case, decreasing

the diagonal prices of risk increases the magnitude of the IR’s. Note that for IR’s from real

activity shocks, asλ1,22 decreases, there is higher exposure to the oscillatory effects from the

lagged Taylor rule combined with the VAR(12) fitted to inflation and real activity.

22



(FIGURE 6 ABOUT HERE)

5.3 Variance Decompositions

To gauge the relative contributions of the macro and latent factors to forecast variances we con-

struct variance decompositions. These show the proportion of the forecast variance attributable

to each factor, and are closely related to the IR’s of the previous section. Table 8 summarizes

our results for the Macro and Macro Lag Models.

(TABLE 8 ABOUT HERE)

The proportion of unconditional variance accounted for by macro factors is decreasing with

the maturity of yields: highest at the short and middle-ends of the yield curve, and smallest for

the long-end. The largest effect is for the 1-month yield where macro factors account for 83%

(85%) of the unconditional variance (where the forecasting horizon is infinite) for the Macro

(Macro Lag) Model. The proportion of the unconditional variance for the 60-month yield is

much smaller for the Macro Lag Model (only 7%) versus the Macro Model (38%). This is

because of the more negative prices of risk for the Macro Model compared to the Macro Lag

Model, allowing the response of the longer yields to be more larger to real activity shocks in the

Macro Model.

That the macro factors explain so much of the variance decomposition for the 1-month yield

at a 1-month forecasting horizon is no surprise, since this result is by construction. The latent

factors in the Macro and Macro Lag Models now explain the residuals after taking out the effects

of inflation and real activity in the Taylor rule (see Table 4). In contrast, the latent factors in

the Yields-Only Model account for interest rates themselves, and are merely transformations of

yields. What is more interesting is the behavior of the longer yields compared to the short rate,

since these are driven by the no-arbitrage restrictions on the VAR.

The proportion of forecast variance explained by macro factors has an interesting hump-

shaped pattern for short and intermediate maturities. For example for the Macro Model, macro

factors account for 50% of the 1-step ahead forecast variance of the 1-month yield. This per-

centage rises to 85% at a 60 month horizon, but then converges to 83% for extremely long

forecast horizons. Generally, as the yield maturity increases, the proportion of the forecast

variance attributable to the latent factors increases. For the 60-month yield, the latent factors
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account for 62% and 93% of the unconditional variance in the Macro and Macro Lag Models,

respectively. The low variance decomposition of long yields is due to the dominance of per-

sistent unobserved factors (the near unit-root factor). As the level latent factor has the highest

autocorrelation, the weights on this factor are highest for long maturities (see the recursion in

equation (17)).

More detailed variance decompositions are listed in Table 9 for 1, 12 and 60 month matu-

rities. To interpret the top row of Table 9, for the Yields-Only model, 14% of the 1-step ahead

forecast variance of the 1-month yield is explained by the first unobserved factor, 33% by the

second unobserved factor and 53% by the third unobserved factor. In the row labeledh = 1 of

the Macro Model in the first panel corresponding to the 1-month yield, 49% of the 1-step ahead

forecast variance is attributable to inflation, 1% to real activity and the remainder to the latent

factors.8

(TABLE 9 ABOUT HERE)

Focusing on the Macro Model, inflation has more explanatory power for forecast variances

than real activity at all points of the yield curve and for all forecast horizons. The explanatory

power of real activity generally rises with the forecast intervalh. At the long end of the yield

curve, the explanatory power of inflation decreases withh. At short horizons, very little of

the forecast variance can be attributed to real activity across the yield curve, but as the horizon

increases, the proportion due to real activity shocks increases to 13% of the 1-month and 11% of

the 12-month yield. The effect at the long end of the yield curve is much smaller (less than 6%

of the unconditional variance for the 60-month yield). This pattern is due to the large weight on

inflation in the simple Taylor rule and the much smaller weight on real activity. At long yields,

the higher persistence of the latent factors dominates, which decreases the explanatory power

for the macro factors.

In the Macro Lag Model, inflation and real activity explain roughly the same proportion of

the unconditional and long-horizon variances for the short and medium segments of the yield

curve as the Macro Model. However, the initial variance decompositions at short forecasting

horizons are much smaller than the Macro Model. For example, for the 1-month yield, the

initial Macro (Macro Lag) inflation variance decomposition is 49% (0%). This is because the

8 A Cholesky orthogonalization was used for inflation and real activity, which are correlated. Changing the

ordering of inflation and real activity has very little effect on the results. Note that the macro factors and latent

factors are orthogonal.
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full effect of the macro variables, particularly inflation, does not kick in until the 11th lag of

inflation in the Taylor rule with lags. At the long end of the yield curve, the Macro Lag Model

has very little role for macro factors. Here, the Macro Lag Model’s positive (diagonal) prices of

risk for the macro factors do not allow the long end of the yield curve to share the same positive

short end exposure to macro shocks as the Macro Model’s negative (diagonal) prices of risk.

Turning now to the latent factors in Table 9, Unobs 1, is the most persistent latent factor

corresponding to a level effect. For the Yields-Only model, this factor dominates the variance

decompositions at long horizons across the yield curve. The variance decomposition of Unobs

1 is markedly reduced for the 1-month and 12-month yields for the Macro and Macro Lag

Models. Here, the persistence of inflation plays a major role in absorbing most of the mean

forecast error due to the large effect inflation has in the Taylor rule. For the 60-month yield,

Unobs 1 has a much larger impact, explaining 60% (91%) of the unconditional variance for the

Macro (Macro Lag) Model. As we move across maturities, the initial macro shocks to the short

rate become more muted, since the weights to the macro factors become smaller as maturity

increases, as Figure 4 shows. Making the time-varying prices of risk more negative increases

the positive responses at the long-end of the yield curve to shocks in inflation and real activity.

5.4 Forecasts

The variance decompositions hint that term structure models with observable macro variables

may help in forecasting future movements in yields. However, these are statements based on

assuming a particular model as the true model after estimation, and may not hold in a practical

setting where more parsimonious data representations often out-perform sophisticated models.

To determine if this is actually the case we conduct an out-of-sample forecasting experiment.

Our procedure for examining out-of-sample forecasts over the last 5 years of our sample is

as follows. We examine forecasts for all the five yields used in estimation. At each datet, we

estimate the models using data up to and including timet, and then forecast the next month’s

yields at timet + 1. The macro factor data is formed using the principal components of the

macro data up to timet, and we estimate the short rate equation and the bivariate VAR of the

macro dynamics only using data up to timet for the Macro and Macro Lag Models. Hence, we

only use data available in the information set at timet in making the forecast at timet + 1.

We perform a comparison of out-of-sample forecasts for six models. First, we use a simple

random walk. Second, we investigate out-of-sample forecasts for the corresponding VAR(12)’s

which do not impose cross-equation restrictions. Our first VAR uses only yields, and we use

a second VAR which incorporates yields and macro variables. Our last three models are the
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Yields-Only, Macro and the Macro Lag Models. We use two criteria to compare our forecasts

across the models. The first is the Root Mean Squared Error, RMSE, of actual and forecasted

yields, and the second is the Mean Absolute Deviation, MAD.

Table 10 lists the results of the out-of-sample comparisons. Lower RMSE and MAD values

denote better forecasts. The best model RMSE or MAD is listed in bold. We forecast over

the last 60 months of the sample, where interest rate volatility is much lower than over the full

sample, which includes the very volatile late 70’s and early 80’s. We note the following points

regarding the forecasting performance of the models. First, a random walk easily beats an

unconstrained VAR. The result holds independently of whether the VAR’s only contain yields,

or are augmented with macro variables. In fact, the forecasts are worse adding macro factors

into the unconstrained VAR’s. The bad performance is due to the high persistence of yields

and small sample biases in the estimation of autoregressive coefficients in over-parameterized

VAR’s.

(TABLE 10 ABOUT HERE)

Second, imposing the cross-equation restrictions from no-arbitrage helps in forecasting. The

improvement in forecasting performance is substantial, generally about 25% of the RMSE and

30% of the MAD for all yields. These constrained VAR’s perform in line with, and slightly

better, than a random walk (except for the 3-month yield). Duffee (2002) remarks that beating

a random walk with a traditional affine term structure model is difficult. From forecasting

exercises without risk premia (not reported here), we know that this result crucially depends on

the type of risk adjustment. Linear risk premia, not considered by Duffee (2002), seem to do

well in this regard.

Third, the forecasts of the Macro Model are far better than those of the Macro Lag Model.

While the forecasts of the Macro Lag Model are comparable to those of unconstrained VAR’s,

the Macro model slightly outperforms a random walk (except for the 3-month yield). Both

the Macro Model and the Macro Lag Model impose cross-equation restrictions on a VAR with

yields and macro variables. The Macro Lag Model, however, has a large number of insignificant

coefficients entering the short rate equation. This over-parameterization may cause its poor out-

of-sample performance.

Finally, incorporating macro variables helps in forecasting. More precisely, the forecasts

of the Macro Model are uniformly better than the Yields-Only Model (except for the 3 month

yield). Hence, we can conclude that(i) adding term structure restrictions improves forecasts
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relative to unconstrained VAR’s, even beating a random walk, and(ii) forecasts can be further

improved by including macro variables. Note, however, that we have shown this improvement

is only in incrementally adding macro factors to a given number of latent factors.

5.5 Comparison of Factors

We now finally address the issue of how adding macro factors changes the original latent factors

of the Yields-Only model in Table 11. In this table we regress the latent factors from the Yields-

Only model onto the macro and latent factors from the Macro and Macro Lag Models. We run

three series of regressions, first only on the macro variables (Panel A), and then onto the macro

and latent variables of the Macro Model (Panel B), and then onto the macro and latent variables

of the Macro Lag Model (Panel C). All the variables in the regressions are normalized.

(TABLE 11 ABOUT HERE)

Turning first to Panel A of Table 11, the traditional level factor loads significantly onto

inflation and real activity, with an adjustedR2 of 22%. In particular, the loading on inflation is

positive and large (0.46). This suggests that the traditional level factor captures a strong inflation

effect. When the second latent factor, labeled “slope,” is regressed onto the macro factors, we

obtain a highR2 of 49%, with significant negative loadings particularly on inflation (-0.67).

Hence, much of the traditional slope factor is also related to the dynamics of inflation. Finally,

the third latent factor (“curvature”) is poorly accounted by macro factorsR2 = 3%. However,

the traditional curvature factor does load significantly on real activity.

Panel B of Table 11 reports the regression from the traditional Yields-Only factors onto the

macro and latent factors implied by the Macro Model. The level factor from the Yields-Only

model translates almost one for one with the level factor of the Macro Model. The magnitude

of the coefficient on Unobs 1 of the Macro model is close to 1 (0.95), showing that there is

some qualitative similarity. However, we reject that the coefficient is equal to 1 at the 1% level,

showing that the two latent factors are statistically different. The loadings on the macro factors

remain significant suggesting that macro variables do account for some of the level factor.

The reason why the level factor survives largely intact when macro factors are introduced

is because the level factor proxies for the first principal component of the yield curve. Figure

3 shows that the residuals from the Taylor rules largely mimic the level of the short rate. Since

the unobservable factors are linear combinations of the yields, the best linear combination of

yields which explains term structure movements is the first principal component, or the level of
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the short rate. When macro factors are added, these factors still do not resemble the level of

the yield curve, and so this factor is still necessary to explain the movements across the term

structure.

When we regress the Yields-Only slope factor (Unobs 2) onto the Macro Model factors,

the loading of the Unobs 2 factor from the Macro Model is much smaller than 1 (0.76), while

the coefficient on inflation is very large and negative, and the coefficient on real activity is also

significant. The loading on the Unobs 2 factor from the Macro Lag Model is even smaller (0.57).

This means that a large part of the traditional slope factor can be attributed to macro factors, in

particular, inflation movements. When inflation is high, the slope narrows because the short rate

increases relative to the long rate. Turning finally to the regression of the Yields-Only curvature

factor (Unobs 3), this regression still has a significant negative coefficient on real activity, but

most of the correspondence is with the Unobs 3 factor from the Macro Model (the coefficient is

0.91). Nevertheless, this coefficient is also statistically different from 1 at the 1% level.

Panel C of Table 11 reports the regression coefficients of the latent factors from the Yields-

Only Model onto the macro and latent factors of the Macro Lag Model. We see that here the

level effect survives almost one for one and there is still a large loading on the inflation factor by

the Yields-Only model’s Unobs 2. However, theR2’s of the Unobs 2 and Unobs 3 regressions

are much smaller than the Macro Model regressions in Panel B.

In summary, Table 11 shows that the traditional level and slope factors are markedly associ-

ated with and accounted by observable macro factors. In particular, inflation accounts for large

amounts of the dynamics of the traditional slope factor. However, the level effect qualitatively

survives largely intact when macro factors are added to a term structure model.

6 Conclusion

This paper presents a Gaussian model of the yield curve with observable macroeconomic vari-

ables and traditional latent yield variables. The model takes a first step towards understanding

the joint dynamics of macro variables and bond prices in a factor model of the term structure.

Risk premia are time-varying; they depend on both observable macro variables and unobserv-

able factors. The approach extends existing VAR studies of yields and macro variables by

imposing no-arbitrage assumptions.

We find that macro factors explain a significant portion (up to 85%) of movements in the

short and middle parts of the yield curve, but explain only around 40% of movements at the

long end of the yield curve. The effects of inflation shocks are strongest at the short end of
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the yield curve. Comparing the latent factors from traditional three latent factor models of

term structure, the “level” factor survives almost intact when macro factors are incorporated,

but a significant proportion of the “level” and “slope” factors are attributed to macro factors,

particularly to inflation. Moreover, we find that imposing the cross-equation restrictions from

no arbitrage helps in out-of-sample forecasts. Incorporating macro factors in a term structure

model further improves forecasts.

In future research, we plan to extend our empirical specification to allow for non-diagonal

terms in the companion form for the factors which introduces feedback from latent factors

to macro variables. Yields can then forecast macro variables along the lines of Estrella and

Hardouvelis (1991) but with the dynamics of the yield curve modeled in a no-arbitrage pricing

approach.
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Appendix

A Recursive Bond Prices
To derive the recursions in equation (17), we first note that for a one-period bond,n = 1, we have:

p1
t = Et [mt+1] = exp {−rt}

= exp {−δ0 − δ′1Xt} . (A-1)

Matching coefficients leads tōA1 = −δ0 andB̄1 = −δ1. Suppose that the price of ann-period bond is given by
pn

t = exp(Ān + B̄′
nXt). Now we show that the exponential form also applies to the price of then+1 period bond:

pn+1
t = Et

[
mt+1p

n
t+1

]

= Et

[
exp

{
−rt − 1

2
λ′tλt − λ′tεt+1 + Ān + B̄′

nXt+1

}]

= exp
{
−rt − 1

2
λ′tλt + Ān

}
Et

[
exp

{−λ′tεt+1 + B̄′
nXt+1

}]

= exp
{
−rt − 1

2
λ′tλt + Ān

}
Et

[
exp

{−λ′tεt+1 + B̄′
n(µ + φXt + Σεt+1)

}]

= exp
{
−δ0 + Ān + B̄′

nµ + (B̄′
nφ− δ′1)Xt − 1

2
λ′tλt

}
Et

[
exp

{−(λ′t + B̄′
nΣ)εt+1

}]

= exp
{
−δ0 + Ān + B̄′

n(µ− Σλ0) +
1
2
B̄′

nΣΣ′B̄n − δ′1Xt + B̄′
nφXt − B̄′

nΣλ1Xt

}
(A-2)

The last equality relies onεt being IID normal withE[εt] = 0 and a degenerate variance-covariance matrix var[εt]
which contains many zeros (see equation (8)). Also,λt contains zero submatrices (see equation (11)). Taken
together, these assumptions imply thatλ′tλt = λ′tvar(εt)λt. Matching coefficients results in the recursive relations
in equations (17).

B Likelihood Function
We have data on anN vector of zero coupon yieldsYt. Our approach to estimation is to solve for the unobserved
factorsfu

t from the yieldsYt and the observed variablesXo
t , which includes observed macro variablesfo

t and
latent variablesfu

t and lagged terms of the driving factors.
Suppose first that we haveN = K2 yields of different maturityn1, . . . , nK2 , as many yields as we have

unobserved factors,fu
t . Stacking the equations for theK2 yields, withYt = (yn1

t . . . y
nK2
t )′, we can write:

Yt = A + BXt, (B-3)

whereA is K2x1 andB is K2xK. Partition the matrixB into B = [Bo Bu] whereBo is a K2 × (K − K2)
matrix which picks up the observable factors andBu is aK2xK2 invertible matrix that picks up the unobservable
factors. Then we can infer the unobservable factors inXu

t ≡ fu
t from Yt and the pricing matricesA andB using

an inversion from the equation:
Yt = A + BoXo

t + BuXu
t . (B-4)

The term structure model only prices exactly the yields used to invert the latent factors. To increase the number
of yields toN > K2 in the estimation, we follow Chen and Scott (1993), and others, in assuming that some of
the yields are observed with measurement error. There will beK2 yields from which we invert to obtain the latent
variables, and the otherN − K2 yields are measured with error. We assume this measurement error is IID, and
the measurement error is uncorrelated across the yields measured with error. LetBm denote aN × (N -K2)
measurement matrix andum

t be an (N -K2)-dimensional Gaussian white noise with a diagonal covariance matrix
independent ofXt. With N yields, the matrix[BoBu] of yield coefficients now has dimensionN × K. (Bo is
N × (K −K2), while Bu is N ×K2.) We can then write:

Yt = A + BoXo
t + BuXu

t + Bmum
t . (B-5)
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In equation (B-5) the yields measured without error will be used to solve forXu
t , and the yields measured with

error have non-zeroum
t . For a given parameter vectorθ = (µ,Φ,Σ, δ0, δ1, λ0, λ1), we can invert equation (B-5)

to obtainXu
t andum

t .
Denoting the normal density functions of the state variablesXt and the errorsum

t asfX andfum respectively,
the joint likelihoodL(θ) of the observed data on zero coupon yieldsYt and the observable factorsXo

t is given by:

L(θ)) =
T∏

t=2

f(Yt, X
o
t |Yt−1, X

o
t−1)

log(L(θ)) =
T∑

t=2

− log | det(J)|+ log fx(Xo
t , Xu

t |Xo
t−1, X

u
t−1) + log fum(um

t )

= −(T − 1) log | det(J)| − (T − 1)
1
2

log(det(ΣΣ′))

−1
2

T∑
t=2

(Xt − µ− ΦXt−1)′(ΣΣ′)−1(Xt − µ− ΦXt−1)

−T − 1
2

log
N−K2∑

i=1

σ2
i −

1
2

T∑
t=2

N−K2∑

i=1

(um
t,i)

2

σ2
i

(B-6)

whereσ2
i is the variance of thei-th measurement error and the Jacobian term is given by

J =
(

I 0 0
Bo Bu Bm

)
.

Note that the Jacobian terms of the likelihood in equation (B-6) do not involveAn, and hence the constant prices
of risk λ0 but do involve the linear prices of riskλ1.

C Impulse Responses
To derive the IR’s of the yields from shocks to the macro variables and latent yield factorsFt = (fo′

t , fu′
t )′ consider

the VAR(12) form ofFt in equation (7), repeated here:

Ft = Φ0 + Φ1Ft−1 + . . . + Φ12Ft−12 + θ0ut. (C-7)

TheΦi coefficients take the following form in our parameterization:

Φ0 = 0 Φ1 =
(

ρ1 0
0 ρ

)
Φi =

(
ρi 0
0 0

)
for i = 2, . . . , 12.

We write this as an implied Wold MA(∞) representation:

Ft =
∞∑

i=0

Piut−i, (C-8)

whereut = (uo′
t uu′

t )′ are the shocks toFt. Note that a Choleski adjustment is needed to take into account the
contemporaneous correlation of the shocks.

The yield on ann-period zero coupon bondyn
t is a linear combination of current and lagged values ofut from

equation (18), which we can write as:

yn
t = An +

∞∑

i=0

ψn
i ut−i, (C-9)

where the row vectorsψn
i are functions ofBn. Note that this is just a linear transformation of the original MA(∞)

form, and theBn are closed-form from equation (17).
For example, for the Macro Model, the state-spaceXt is given by:

Xt = (fo′
t fo′

t−1 . . . fo′
t−11 fu′

t )′,
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wherefo
t are the two macro factors, andfu

t are the three unobservable factors. The yields for maturityn, yn
t , can

be written as:

yn
t = An + B′

nXt

= An + Bo′
n0f

o
t + · · ·+ Bo′

n11f
o
t−11 + Bu′

n fu
t

= An + B̄′
n0Ft + · · ·+ B̄′

n11Ft−11, (C-10)

where we partition asBn = [Bo
n0 . . . Bo

n11 Bu
n], whereBo

ni corresponds tofo
t−i for i = 0, . . . , 11 andBu

n corre-
sponds tofu

t , andB̄n0 = [Bo
n0 Bu

n], andB̄ni = [Bo
ni 0] for i = 1, . . . 11.

Then substituting the MA(∞) representation forFt we have:

ψn
0 = B̄′

n0P0

ψn
1 = B̄′

n0P1 + B̄′
n1P0

...
ψn

i = B̄′
n0Pi + · · ·+ B̄′

n11Pi−11, for i ≥ 11. (C-11)

and so on.
The vectorψn

i is the IR for then-period yield at horizoni for shocks to the driving variablesFt at time 0. For
k yields of maturitiesn1, . . . nk, we can stack the coefficients of each yield to write:

Yt = A +
∞∑

i=0

Ψiut−i, (C-12)

whereYt = (yn1
t . . . ynk

t )′ and thej-th row ofΨi is ψn
i .

D Variance Decompositions
Working with the MA(∞) representation of the yields in equation (C-12), the error of the optimalh-step ahead
forecast at timet, Ŷt+h|t is:

Ŷt+h|t − Yt+h =
h−1∑

i=0

Ψiut+h−i (D-13)

Let thej-th component of a vector be denoted by a superscriptj andΨjk,i denote the element in rowj, columnk
of Ψi. Then:

Ŷ j
t+h|t − Y j

t+h =
K∑

k=1

(Ψjk,0u
k
t+h + . . . Ψjk,h−1u

k
t+1) (D-14)

Denote the mean squared error ofŶ j
t+h|t as MSE(Ŷt+h|t). Then

MSE(Ŷt+h|t) =
K∑

k=1

(Ψ2
jk,0 + · · ·+ Ψ2

jk,h−1). (D-15)

The contributionΩjk,h of thek-th factor to the MSE of theh-step ahead forecast of thej-th yield is:

Ωjk,h =

∑h−1
i=0 Ψ2

jk,i

MSE(Ŷt+h|t)
, (D-16)

which decomposes the forecast variance at horizonh of thej-th yield to the various factors.
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Estrella, A., Hardouvelis, G. A., 1991. The Term Structure as a Predictor of Real Economic Activity, Journal of
Finance, 46, 555-76.

Estrella, A., Mishkin, F. S., 1997. The Predictive Power of the Term Structure of Interest Rates in Europe and the
United States: Implications for the European Central Bank, European Economic Review, 41, 1375-401.

Evans, C. L., Marshall, D. A., 1998. Monetary Policy and the Term Structure of Nominal Interest Rates: Evidence
and Theory, Carnegie-Rochester Conference Series on Public Policy, 49, 53-111.

Evans, C. L, Marshall, D. A., 2001. Economic Determinants of the Term Structure of Nominal Interest Rates,
Working paper (Federal Reserve Bank of Chicago, Chicago, IL).

Fisher, M., 1998. A Simple Model of the Failure of the Expectations Hypthesis, Working paper (Federal Reserve
Bank of Atlanta, Atlanta, GE).

Fuhrer, J. C., Moore, G. R., 1995. Monetary Policy Trade-Offs and the Correlation between Nominal Interest
Rates and Real Output, American Economic Review, 85, 219-39.

Gali, J., 1992. How Well does the ISLM Model Fit Post War Data? Quarterly Journal of Economics, 107, 709-38.

33



Hansen, L. P., Jagannathan, R., 1991. Implications of Security Market Data for Models of Dynamic Economies,
Journal of Political Economy, 99, 225-62.

Harrison, J. M., Kreps, D. M., 1979. Martingales and Arbitrage in Multiperiod Securities Markets, Journal of
Economic Theory, 2, 381-408.

Harvey, C. R., 1988. The Real Term Structure and Consumption Growth, Journal of Financial Economics, 22,
305-33.

Knez, P. K., Litterman, R., Scheinkman, J. A., 1994. Explorations into Factors Explaining Money Market
Returns, Journal of Finance, 49, 1861-82.

Litterman, R., Scheinkman, J., 1991. Common factors affecting bond returns, Journal of Fixed Income, 1, 51-61.

Liu, J., 1999. Portfolio Selection in Stochastic Environments, Working paper (UCLA, Los Angeles, CA).

Longstaff, F. A., Schwartz, E. S., 1992. Interest Rate Volatiltiy and the Term Structure: A Two Factor General
Equilibrium Model, Journal of Finance, 47, 1252-82.

Newey, W. K., West, K., 1987. A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation
Consistent Covariance Matrix, Econometrica, 55, 703-8.

Pearson, N., Sun, T. S., 1994. Exploiting the Conditional Density in Estimating the Term Structure: An
Application to the Cox, Ingersoll and Ross Model, Journal of Finance, 54, 1279-304.

Piazzesi, M., 2001. Macroeconomic jump effects and the yield curve, Working paper (UCLA, Los Angeles, CA).

Sargent, T. J., 1979. A Note on Maximum Likelihood Estimation of the Rational Expectations Model of the Term
Structure, Journal of Monetary Economics, 35, 245-74.

Sims, C., Zha, T., 1995. Does Monetary Policy Cause Recessions? Working paper (Princeton University,
Princeton, NJ).

Taylor, J. B., 1993. Discretion versus Policy Rules in Practice, Carnegie-Rochester Conference Series on Public
Policy, 39, 195-214.

Uhlig, H., 2001. What are the Effects of Monetary Policy? Results from an Agnostic Identification Procedure,
Working paper (Humboldt University, Berlin).

Vasicek, O., 1977. An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, 5,
177-88.

34



Table 1: Summary Statistics of Data

Central Moments Autocorrelations
mean stdev skew kurt lag 1 lag 2 lag 3

1 mth 5.1316 2.7399 1.0756 4.64250.9716 0.9453 0.9323
3 mth 5.4815 2.8550 1.0704 4.55430.9815 0.9606 0.9419
12 mth 5.8849 2.8445 0.8523 3.88560.9824 0.9626 0.9457
36 mth 6.2241 2.7643 0.7424 3.50900.9875 0.9739 0.9620
60 mth 6.4015 2.7264 0.6838 3.27190.9892 0.9782 0.9687
CPI 3.8612 2.8733 1.2709 4.36550.9931 0.9847 0.9738
PCOM 0.9425 11.2974 1.0352 6.02730.9684 0.9162 0.8600
PPI 3.0590 3.6325 1.4436 4.92180.9863 0.9705 0.9521
HELP 66.7517 22.0257 -0.1490 1.86650.9944 0.9900 0.9830
EMPLOY 1.6594 1.5282 -0.4690 3.25340.9378 0.8954 0.8410
IP 3.4717 5.3697 -0.5578 3.65920.9599 0.8889 0.7972
UE 5.7344 1.5650 0.4924 3.24130.9906 0.9777 0.9595

The 1, 3, 12, 36 and 60 month yields are annual zero coupon bond yields from the Fama-Bliss CRSP bond
files. The inflation measures CPI, PCOM and PPI refer to CPI inflation, spot market commodity price in-
flation, and PPI (Finished Goods) inflation respectively. We calculate the inflation measure at timet using
log(Pt/Pt−12) wherePt is the inflation index. The real activity measures HELP, EMPLOY, IP and UE refer
to the Index of Help Wanted Advertising in Newspapers, the growth rate of employment, the growth rate in
industrial production and the unemployment rate respectively. The growth rate in employment and industrial
production are calculated usinglog(It/It−12) whereIt is the employment or industrial production index.
For the macro variables, the sample period is 1952:01 to 2000:12. For the bond yields, the sample period is
1952:06 to 2000:12.
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Table 2: Principal Component Analysis

Principal Components: Inflation
1st 2nd 3rd

CPI -0.6343 -0.3674 0.6802
PCOM -0.4031 0.9080 0.1145
PPI -0.6597 -0.2015 -0.7240
% variance
explained 0.7143 0.9775 1.0000

Principal Components: Real Activity
1st 2nd 3rd 4th

HELP -0.3204 -0.7365 -0.5300 0.2719
UE 0.3597 -0.6283 0.6871 0.0612
EMPLOY -0.6330 -0.1648 0.2444 -0.7158
IP -0.6060 0.1886 0.4327 0.6403
% variance
explained 0.5202 0.7946 0.9518 1.0000

We take the three (four) macro variables representing inflation (real activity) and normalize them to zero
mean and unit variance. For each groupi, the normalized dataZi

t follows the 1 factor model:

Zi
t = Cfo,i

t + εi
t

whereC is the factor loading vector,E(fo,i
t ) = 0, cov(fo,i

t ) = I, E(εi
t) = 0, and cov(εi

t) = Γ, whereΓ
is a diagonal matrix. The columns titled “principal components” list the principal components correspond-
ing to the first to smallest eigenvalue. The % variance explained for then-th principal component gives
the cumulative proportion of the variance explained by the first up to then-th eigenvalue. IP refers to the
growth in industrial production, CPI to CPI inflation, PCOM to commodity price inflation and PPI to PPI
inflation, HELP refers to the Index of Help Wanted Advertising in Newspapers, UE to the unemployment
rate, EMPLOY to the growth in employment. The sample period is 1952:01 to 2000:12
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Table 3: Selected Correlations

CPI PCOM PPI
Inflation 0.9286 0.5901 0.9657

HELP UE EMPLOY IP
Real Activity 0.4622 -0.5188 0.9131 0.8742

Real
Inflation Activity 1 mth 12 mth

Real Activity 0.0017
1 mth 0.6666 0.0627
12 mth 0.6484 0.0510 0.9771
60 mth 0.5614 -0.0270 0.9191 0.9639

The table reports selected correlations for the inflation factor extracted from the first principal component
of PCI, PCOM and PPI, the real activity factor extracted from the first principal component of HELP, UE,
EMPLOY and IP, and the 1, 12 and 60 month bond yields, which are used in the estimation. IP refers to
the growth in industrial production, CPI to CPI inflation, PCOM to commodity price inflation, PPI to PPI
inflation, HELP refers to the Index of Help Wanted Advertising in Newspapers, UE to the unemployment
rate, EMPLOY to the growth in employment. The sample period is 1952:06 to 2000:12.
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Table 4: The Dependence of the Short Rate on Macro Variables

Panel A:y1
t on Constant, Inflation and Real activity

Coeff Constant Inflation Real Activity AdjR2

t 0.4250 0.1535 0.0143 0.4523
(0.0070)† (0.0070)† (0.0070)∗

Panel B:y1
t on Constant, 12 lags of Inflation and Real activity

Coeff Constant Inflation Real activity AdjR2

t 0.4296 0.0037 0.0398 0.5337
(0.0065)† (0.0534) (0.0306)

t− 1 0.0659 0.0150
(0.0828) (0.0452)

t− 2 -0.0435 0.0105
(0.0830) (0.0450)

t− 3 0.0062 -0.0054
(0.0833) (0.0444)

t− 4 0.0233 -0.0172
(0.0828) (0.0441)

t− 5 -0.0088 0.0145
(0.0825) (0.0442)

t− 6 -0.0245 -0.0213
(0.0825) (0.0438)

t− 7 0.0175 0.0062
(0.0821) (0.0435)

t− 8 0.0080 0.0196
(0.0825) (0.0438)

t− 9 -0.0049 0.0121
(0.0821) (0.0441)

t− 10 -0.0079 0.0005
(0.0820) (0.0439)

t− 11 0.1427 -0.0069
(0.0522)† (0.0299)

In Panel A we regress the 1 month yieldy1
t on a constant, the inflation factor and the real activity factor.

In Panel B we regressy1
t on a constant, inflation, real activity and 11 lags of inflation and real activity. We

report OLS standard errors in parenthesis. Standard errors significant at the 5% (1%) level are denoted∗ (†).
Sample period is 1952:01 to 2000:12.
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Table 5: Yields-Only Model Estimates

Companion FormΦ
0.9924 0.0000 0.0000

(0.0039)
0.0000 0.9548 0.0000

(0.0062)
0.0000 -0.0021 0.7646

(0.0001) (0.0210)

Short Rate Parametersδ1 (× 100)
Unobs 1 Unobs 2 Unobs 3
0.0136 -0.0451 0.0237

(0.0020) (0.0005) (0.0015)

Prices of Riskλ0 andλ1

λ1 matrix
λ0 Unobs 1 Unobs 2 Unobs 3

Unobs 1 -0.0033 -0.0069 0.0000 0.0000
(0.0004) (0.0040)

Unobs 2 0.0000 0.0445 0.0000 -0.2585
(0.0050) (0.0197)

Unobs 3 0.0000 -0.0490 0.0000 0.2412
(0.0090) (0.0256)

Measurement Error (× 100)
3 month 36 month
0.0203 0.0090

(0.0003) (0.0002)

The table reports parameter estimates and standard errors in parenthesis for the 3-factor Yields-Only Model
Xt = ΦXt−1+εt, with εt ∼ N(0, I), Φ lower triangular and the short rate equation given byrt = δ0+δ′1Xt.
All factorsXt ≡ fu

t are unobservable. The coefficientδ0 is set to the sample unconditional mean of the short
rate, 0.0513/12. Market prices of riskλt = λ0 +λ1Xt are restricted to be block diagonal. The sample period
is 1952:06 to 2000:12.
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Table 6: Macro Model Estimates

Companion FormΦ for Latent Factors
0.9915 0.0000 0.0000

(0.0042)
0.0000 0.9392 0.0000

(0.0122)
0.0000 0.0125 0.7728

(0.0146) (0.0217)

Short Rate Parametersδ1 for Latent Factors (× 100)
Unobs 1 Unobs 2 Unobs 3
0.0138 -0.0487 0.0190

(0.0021) (0.0007) (0.0022)

Prices of Riskλ0 andλ1

λ0 λ1 matrix
Real

Inflation Activity Unobs 1 Unobs 2 Unobs 3
Inflation 0.0000 -0.4263 0.1616 0.0000 0.0000 0.0000

(0.1331) (0.0146)
Real Activity 0.0000 1.9322 -0.1015 0.0000 0.0000 0.0000

(0.3893) (0.0329)
Unobs 1 -0.0039 0.0000 0.0000 -0.0047 0.0000 0.0000

(0.0003) (0.0043)
Unobs 2 0.0000 0.0000 0.0000 0.0459 0.0000 -0.2921

(0.0055) (0.0205)
Unobs 3 0.0000 0.0000 0.0000 -0.0351 0.0000 0.1995

(0.0087) (0.0283)

Measurement Error (× 100)
3 month 36 month
0.0207 0.0091

(0.0003) (0.0002)

The table reports parameter estimates and standard errors in parenthesis for the Macro Model with the short
rate equation specified with only current inflation and current real activity, as reported in Panel A of Table
4. The short rate equation is given byrt = δ0 + δ′1Xt, whereδ1 only picks up current inflation, current real
activity and the latent factors. The dynamics of inflation and real activity are given by a 12 lag VAR (not
reported). The model isXt = ΦXt−1 + εt, with εt ∼ N(0, I). Xt contains 12 lags of inflation and real
activity and three latent variables, which are independent at all lags to the macro variables. In a pre-estimation
we find the inflation and real activity VAR(12), and the coefficients on inflation and real activity in the short
rate equation. The coefficientδ0 is set to the sample unconditional mean of the short rate, 0.0513/12. Market
prices of riskλt = λ0 + λ1Xt are restricted to be block diagonal. The sample period is 1952:06 to 2000:12.
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Table 7: Macro Lag Model Estimates

Companion FormΦ for Latent Factors
0.9922 0.0000 0.0000

(0.0039)
0.0000 0.9431 0.0000

(0.0118)
0.0000 -0.0189 0.8210

(0.0135) (0.0216)

Short Rate Parametersδ1 for Latent Factors (× 100)
Unobs 1 Unobs 2 Unobs 3
0.0130 -0.0438 0.0256

(0.0020) (0.0010) (0.0025)

Prices of Riskλ0 andλ1

λ0 λ1 matrix
Real

Inflation Activity Unobs 1 Unobs 2 Unobs 3
Inflation 0.0000 0.8442 -0.0017 0.0000 0.0000 0.0000

(0.2397) (0.0582)
Real Activity 0.0000 1.1209 0.2102 0.0000 0.0000 0.0000

(0.1375) (0.0275)
Unobs 1 -0.0050 0.0000 0.0000 -0.0048 0.0000 0.0000

(0.0003) (0.0040)
Unobs 2 0.0000 0.0000 0.0000 0.0483 0.0000 -0.2713

(0.0068) (0.0195)
Unobs 3 0.0000 0.0000 0.0000 -0.0248 0.0000 0.1624

(0.0078) (0.0292)

Measurement Error (× 100)
3 month 36 month
0.0251 0.0107

(0.0005) (0.0003)

The table reports parameter estimates and standard errors in parenthesis for the Macro Lag Model with the
short rate equation specified with 12 lags of inflation and current real activity, as reported in Panel B of Table
4. The short rate equation is given byrt = δ0 + δ′1Xt, whereδ1 only picks up 12 lags of inflation and real
activity and the latent factors. The dynamics of inflation and real activity are given by a 12 lag VAR (not
reported). The model isXt = ΦXt−1 + εt, with εt ∼ N(0, I). Xt contains 12 lags of inflation and real
activity and three latent variables, which are independent at all lags to the macro variables. In a pre-estimation
we find the inflation and real activity VAR(12), and the coefficients on inflation and real activity in the short
rate equation. The coefficientδ0 is set to the sample unconditional mean of the short rate, 0.0513/12. Market
prices of riskλt = λ0 + λ1Xt are restricted to be block diagonal. The sample period is 1952:06 to 2000:12.
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Table 8: Proportion of Variance Explained by Macro Factors

Forecast Horizonh
1 mth 12 mth 60 mth ∞

Macro Model
short end 50% 78% 85% 83%
middle 67% 79% 78% 73%
long end 61% 63% 48% 38%

Macro Lag Model
short end 11% 57% 87% 85%
middle 23% 52% 71% 64%
long end 2% 8% 11% 7%

We list the contribution of the macro factors to theh-step ahead forecast variance of the 1 month yield (short
end), 12 month yield (middle) and 60 month yield (long end) for the Macro and Macro Lag Models. These
are the sum of the variance decompositions from the macro factors in Table 9.
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Table 9: Variance Decompositions

Macro Factors Latent Factors
Real

h Inflation Activity Unobs 1 Unobs 2 Unobs 3

1 month yield
1 0.14 0.33 0.53

Yields-Only 12 0.31 0.43 0.26
60 0.56 0.31 0.13
∞ 0.68 0.23 0.09
1 0.49 0.01 0.03 0.41 0.06

Macro 12 0.69 0.09 0.03 0.18 0.01
60 0.71 0.14 0.04 0.11 0.00
∞ 0.70 0.13 0.06 0.10 0.00
1 0.00 0.11 0.05 0.62 0.21

Macro 12 0.22 0.35 0.04 0.34 0.05
Lag 60 0.69 0.18 0.03 0.09 0.01

∞ 0.67 0.18 0.05 0.09 0.01

12 month yield
1 0.60 0.35 0.05

Yields-Only 12 0.71 0.28 0.01
60 0.86 0.14 0.00
∞ 0.91 0.09 0.00
1 0.63 0.03 0.07 0.21 0.05

Macro 12 0.71 0.08 0.07 0.13 0.01
60 0.66 0.12 0.13 0.09 0.00
∞ 0.62 0.11 0.19 0.08 0.00
1 0.02 0.22 0.21 0.47 0.10

Macro 12 0.33 0.19 0.20 0.26 0.02
Lag 60 0.59 0.12 0.19 0.09 0.01

∞ 0.52 0.11 0.28 0.08 0.01

60 month yield
1 0.75 0.20 0.05

Yields-Only 12 0.84 0.14 0.01
60 0.93 0.06 0.00
∞ 0.96 0.04 0.00
1 0.60 0.02 0.28 0.08 0.03

Macro 12 0.57 0.06 0.31 0.06 0.01
60 0.40 0.08 0.49 0.03 0.00
∞ 0.32 0.06 0.60 0.02 0.00
1 0.00 0.02 0.81 0.12 0.05

Macro 12 0.06 0.02 0.84 0.07 0.02
Lag 60 0.09 0.02 0.86 0.03 0.00

∞ 0.06 0.01 0.91 0.02 0.00

The table lists the contribution of factori to theh-step ahead forecast of the 1 month yield. To interpret
the top row, for the Yields-Only model, 14% of the 1-step ahead forecast variance is explained by the first
unobserved factor, 33% by the second unobserved factor and 53% by the third unobserved factor. The Yields-
Only Model only has three latent factors. The macro models have inflation, real activity and three latent
factors. The Macro Model has no lags of inflation and real activity in the short rate equation, while the Macro
Lag Model does.
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Table 10: Forecast Comparisons

RMSE Criteria

VAR’s with Cross-Equation
Unconstrained VAR’s Restrictions

Yield VAR VAR with Yields Macro Macro Lag
(mths) RW Yields Only Macro Only Model Model

1 0.3160 0.3905 0.3990 0.30120.2889 0.3906
3 0.1523 0.2495 0.2540 0.1860 0.2167 0.2876
12 0.1991 0.2776 0.2722 0.19140.1851 0.2274
36 0.2493 0.3730 0.3644 0.24890.2092 0.2665
60 0.2546 0.3793 0.3725 0.24970.2333 0.2530

MAD Criteria

VAR’s with Cross-Equation
Unconstrained VAR’s Restrictions

Yield VAR VAR with Yields Macro Macro Lag
(mths) RW Yields Only Macro Only Model Model

1 0.2252 0.3076 0.3242 0.21550.2039 0.2981
3 0.1159 0.1987 0.2056 0.1442 0.1693 0.2344
12 0.1639 0.2176 0.2204 0.16160.1559 0.1870
36 0.1997 0.2991 0.2924 0.19740.1604 0.2111
60 0.2054 0.2957 0.2930 0.20170.1883 0.2064

We forecast over the last 60 months (the out-sample) of our sample and record the root mean square error
(RMSE) and the mean absolute deviation (MAD) of the forecast versus the actual values. Lower RMSE
and MAD values denote better forecasts, with the best statistics highlighted in bold. Forecasts are 1-step
ahead. We first estimate models on the in-sample, and update the estimations at each observation in the out-
sample. RW denotes a random walk forecast, VAR Yields Only denotes a VAR(12) only with 5 yields, VAR
with Macro denotes a VAR(12) fitted to the macro factors and all 5 yields, Yields-Only denotes the 3 factor
latent variable model without macro variables, the Macro model has only contemporaneous inflation and real
activity in the short rate equation, and the Macro Lag model has contemporaneous and 12 lags of inflation
and real activity in the short rate equation. The first three of these models are thus unconstrained estimations,
while the last three impose the cross-equation restrictions derived from the absence of arbitrage.
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Table 11: Comparison of Yields-Only and Macro Factors

Independent Variables
Dependent Real
Variable Inflation Activity Unobs 1 Unobs 2 Unobs 3 AdjR2

Panel A: Regressions on Macro Factors

Unobs 1 0.4625 -0.0726 0.2180
“level” (0.0735) (0.0860)

Unobs 2 -0.6707 -0.1890 0.4902
“spread” (0.0716) (0.0611)
Unobs 3 0.0498 -0.1794 0.0343

“curvature” (0.0629) (0.0714)

Panel B:Regressions on Factors from Macro Model

Unobs 1 0.1118 0.0307 0.9507 -0.0174 0.0038 0.9971
(0.0054) (0.0056) (0.0055) (0.0056) (0.0047)

Unobs 2 -0.9364 -0.1026 0.0199 0.7624 0.0279 0.9981
(0.0037) (0.0037) (0.0042) (0.0032) (0.0029)

Unobs 3 0.0427 -0.1238 0.1656 -0.1455 0.9071 0.9256
(0.0262) (0.0260) (0.0289) (0.0241) (0.0233)

Panel C:Regressions on Factors from Macro Lag Model

Unobs 1 -0.0580 -0.0207 1.0248 0.0035 0.0058 0.9979
(0.0049) (0.0040) (0.0044) (0.0047) (0.0036)

Unobs 2 -0.7069 -0.1132 -0.2955 0.5700 0.1306 0.8715
(0.0393) (0.0313) (0.0356) (0.0376) (0.0315)

Unobs 3 0.1112 -0.0081 0.2059 0.0228 0.8119 0.7470
(0.0458) (0.0386) (0.0507) (0.0365) (0.0424)

Regressions of the latent factors from the Yields-Only model with only latent factors (dependent variables)
onto the macro factors and latent factors from the Macro and Macro Lag model (independent variables). All
factors are normalized, and standard errors, produced using 3 Newey-West (1987) lags, are in parentheses.
Panel A lists coefficients from a regression of the Yields-Only latent factors onto only macro factors. Panel
B lists coefficients from a regression of Yields-Only latent factors on the macro and latent factors from the
Macro model with only contemporaneous inflation and real activity in the short rate equation. Panel C lists
coefficients from a regression of Yields-Only latent factors on the macro and latent factors from the Macro
Lag model with contemporaneous inflation and real activity and 11 lags of inflation and real activity in the
short rate equation.
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The top panel shows a plot of (annualized) monthly ZCB yields of maturity 1 month, 12 months and 60
months. The bottom panel plots the two macro factors representing inflation and real activity. The sample
period is 1952:06 to 2000:12.

Figure 1: Bond Yields and Macro Principal Components
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We fit a VAR(12) to the inflation and real activity macro factors, where inflation is ordered first. The plot
shows the impulse responses to a Cholesky one standard deviation innovation to each variable. Time is
measured in months on thex-axis.

Figure 2: Impulse Responses from the VAR(12) on Macro Factors
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We show the residuals from the Taylor rule regressions, together with the de-meaned short rate (1 month
yield). We show the residuals from the Taylor rule with no lags, which have 0.9458 autocorrelation, and
the residuals from the Taylor rule with 11 lags, which have 0.9370 autocorrelation. For comparison, the
autocorrelation of the short rate is 0.9716.

Figure 3: Residuals from the Taylor Rule Regressions
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The figure displaysBn yield weights as a function of maturityn for the Macro (Macro Lag) model in the top
(bottom) plot. The plots show only theBn yield weights corresponding to contemporaneous state variables
in each system. The weights are scaled to correspond to one standard deviation movements in the factors and
are annualized by multiplying by 1200.

Figure 4:Bn Yield Weights for the Macro and Macro Lag Model
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Impulse Responses (IR’s) for 1 month (top row), 12 month (middle row) and 60 month (bottom row) yields.
The first column presents IR’s from an unrestricted VAR(12) fitted to macro variables and yields ; the middle
column presents IR’s from the Macro model; and the last column presents IR’s from the Macro Lag model.
The IR’s from the latent factors are drawn as lines, while the IR’s from inflation (real activity) are drawn as
stars (circles). All IR’s are from a one standard deviation shock.

Figure 5: Impulse Response Functions
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We show IR’s for the 60-month yield for various time-varying diagonal prices of riskλ1,11 andλ1,22. All
other parameters are held fixed at their estimated values in Table 7. The top (bottom) plot displays the IR’s
for inflation (real activity) for the Macro Lag Model.

Figure 6: Impulse Reponses for the 60-month yield for the Macro Lag Model
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