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Revenue Management Games 

 

Abstract: A well-studied problem in the literature on airline revenue (or yield) 

management is the optimal allocation of seat inventory among fare classes given 

a demand distribution for each class.  In the literature thus far, passenger demand 

is an exogenous parameter.  However, the seat allocation decisions of one airline 

affect the passenger demands for seats on other airlines.  In this paper we 

examine the seat inventory control problem with two fare classes and two 

airlines under competition.  Each airline chooses an optimal booking limit for the 

lower-fare class while taking into account the overflow of passengers from its 

competitor.  We show that under certain conditions this 'revenue management 

game' has a pure-strategy Nash equilibrium, and for special cases we show that 

the equilibrium is unique.  We also compare the total number of seats available 

in each fare class with, and without, competition.  Analytical results for one 

special case as well as numerical examples demonstrate that, all else equal, under 

competition more seats are protected for higher-fare passengers than when a 

single airline acts as a monopoly or when airlines form an alliance to maximize 

overall profits.
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 1. Introduction 

Consider the airline flight schedules displayed in Table 1.  We see that TWA and Delta 

schedule flights between the same origin and destination, at exactly the same times, using the 

same equipment, and charging nearly the same price for advance-purchase tickets.  This paper 

examines how such direct competition for customers affects a fundamental revenue management 

decision, the allocation of seat inventory among fare classes. 

Airline Flight Aircraft Departure Price (advance purchase) 

TWA 3832 Jetstream 41 8:35am $213.50 

Delta 6122 Jetstream 41 8:35am $208.50 

TWA 3834 Jetstream 41 2:24pm $213.50 

Delta 6204 Jetstream 41 2:24pm $208.50 

TWA 3836 Jetstream 41 5:50pm $213.00 

Delta 6206 Jetstream 41 5:50pm $208.00 

Table 1. Flight schedule for TWA and Delta ROC-JFK, April 23, 2000. 

There is a substantial literature analyzing airline economics under competition as well as 

a recent stream of operations research literature on the problem of optimal seat allocation.  

However, there are no published papers that place the seat allocation problem in a competitive 

framework.  As the example above illustrates, airlines face intense competition, and the impact 

of competition on seat inventory decisions and airline revenues is of interest to airline planning 

and marketing managers, as well as government regulators. 

In this paper we model competition between two airlines offering two flights that serve as 

substitutes for customers.  Each airline is faced with an initial demand from passengers who wish 

to purchase tickets, but each airline may also sell tickets to passengers that were denied a 

reservation on the competing airline.  Hence, the optimal capacity limits for each class (the 

booking limits) on each airline are interdependent.  We compare the optimal revenue 

management policies of two competing airlines with the policy of a monopolist who operates 

both flights or, equivalently, the policies of two airlines who form an alliance to maximize total 

profits.   We show that under certain conditions a pure-strategy Nash equilibrium exists for the 

competitive case, and we identify special cases under which the equilibrium is unique and stable.  

Given the assumption that low and high-fare ticket prices remain constant, we find that under 
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 competition more seats are allocated for higher-fare customers, and fewer seats are allocated for 

the lower-fare customers, than under centralized control. 

Readers familiar with the airline industry may find this juxtaposition of competitive 

analysis and yield management unusual.  In general, competitive decisions and seat allocation 

decisions are made by different functional units within airlines, at different times in the planning 

process, and over extremely different time horizons.  The decision to enter markets, the 

assignment of aircraft to particular markets, and the creation of a schedule takes place over a 

time horizon of years and months.  The allocation of seat inventory among customer classes is an 

operational decision with a time horizon of weeks, days, or even minutes (see Jacobs, Ratliff and 

Smith [2000] for a general description of this planning process). 

However, our simple model will show that competition on a particular route at a 

particular time can have a profound effect on yield management decisions.  In general, airline 

planners have recently shown an increased interest in the integration of airline functions.  For 

example, numerical experiments in Jacobs, Ratliff and Smith [2000] demonstrate the value of 

simultaneous optimization of yield management and scheduling decisions.  Yuen and Irrgang 

[1998] emphasize the benefits of integrating sales, yield management, pricing and scheduling 

decisions. 

Publications that consider the interactions among economic forces, strategic airline 

market entry decisions, and airline schedules include the network design models of Lederer and 

Nambimamdom [1999], Dobson and Lederer [1994], and the empirical work by Borenstein and 

Rose [1994].  Another body of research focuses on the airlines' scheduling decisions under 

competition using variants of the spatial model developed by Hotelling [1929].  See, for 

example, the recent empirical papers by Borenstein and Netz [1999] and Richard [1999].  These 

papers focus on broad competitive problems and ignore the specifics of seat inventory allocation.  

In this paper we will not be concerned with the reasons airlines schedule their flights at the same 

time or with the pricing decision for each flight.  Rather, we will concentrate on the implications 

of competitive scheduling on seat inventory control. 

There are numerous papers in the area of revenue management that focus on airline seat 

inventory control, although to our knowledge only one addresses the issues described here.  For 

fundamental results on the general subject of seat inventory control see Belobaba [1989], 
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 Brumelle et.al. [1990], and a useful literature review by McGill and van Ryzin [1999].  Our 

paper is related to the work by Li and Oum [1998], which first introduced the seat allocation 

problem for two airlines in competition.  The model developed by Li and Oum has a relatively 

restrictive assumption about how demand is allocated among airlines: total demand is split 

according to the proportion of seats available on each aircraft in each fare class, and the overflow 

process is not explicitly modeled.  In addition, the paper by Li and Oum identifies one, 

symmetric equilibrium but does not determine whether the equilibrium is unique.  Our approach 

is more general and the results more advanced; we will place no restrictions on how initial 

demand is distributed and will show that for special cases of the problem the equilibrium is 

unique. 

The literature on inventory management has seen a stream of closely related papers 

devoted to competition among firms in which the firms determine inventory levels and 

customers may switch among firms until a suitable product is found (this has been described as a 

'newsboy game').  Parlar [1988] examines the competition between two retailers facing 

independent demands.  He establishes that a unique Nash equilibrium exists.  Karjalainen [1992] 

formulates the problem for an arbitrary number of products with independent demands.  

Lippman and McCardle [1997] examine both the two-firm game and a game with an arbitrary 

number of players.  In their models, initial industry demand is allocated among the players 

according to a pre-specified 'splitting rule.'  This initial allocation may be either deterministic 

(e.g., 40% of demand to player 1) or stochastic (the rule itself depends on the outcome of a 

random experiment).  For the two-firm game they establish the existence of a pure-strategy Nash 

equilibrium and show that the equilibrium is unique when the initial allocation is deterministic 

and strictly increasing in the total industry demand for each player.  Recent extensions of these 

models include Mahajan and van Ryzin [1999] who model demand as a stochastic sequence of 

utility-maximizing customers.  For an arbitrary number of firms, they demonstrate that an 

equilibrium exists and show that it is unique for a symmetric game.  Rudi and Netessine [2000] 

analyze a problem similar to Parlar [1988] but for an arbitrary number of products.  Given mild 

parametric assumptions they establish the existence of, and characterize, a unique, globally 

stable Nash equilibrium.   

Many of these papers compare total inventory levels under firm competition with 

inventory levels when firms cooperate.  Lippman and McCardle [1997] show that competition 
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 can lead to higher inventories, and Mahajan and van Ryzin [1999] derive similar results given 

their dynamic model of customer purchasing.  On the other hand, with the substitution structure 

of the model of Rudi and Netessine [2000], under competition some firms may stock less than 

under centralization.  In this paper we find that competition leads to an increase in high-fare seat 

'inventory,' a result similar to earlier findings.  However, our model differs in many respects 

from the newsboy competition described by Lippman and McCardle.  As in Mahajan and van 

Ryzin, the method of allocating arriving customers to firms is more natural than the stylized 

splitting rules proposed by Lippman and McCardle.   In our model, demand for each fare class 

on each airline can follow an arbitrary distribution, and we allow an arbitrary correlation 

structure among demands.  Numerical experiments will demonstrate that the degree of 

correlation can have a significant impact on seat allocation decisions, and can even determine 

whether a pure-strategy equilibrium exists.  

There is also a fundamental difference between the problem considered here and the 

problem considered in the inventory literature.  Here we consider the allocation of a fixed 

inventory pool between two products, while the inventory literature assumes that the inventory of 

each product is a decision variable.  In our problem, the effect of a change in one airline's 

booking limit is quite complex.  As the booking limit rises, demand by low-fare passengers to a 

competitor declines while high-fare demand to the competitor rises.  In addition, we will see that 

the booking limit of an airline can affect the volume of its own high-fare demand. 

In the next Section we describe the revenue management game and provide examples of 

scenarios in which Nash equilibria do, and do not, exist.  We examine one variation of the game 

for which we establish the existence of a pure-strategy Nash equilibrium.  Section 3 focuses on 

competition with partial overflow, models in which only low-fare or only high-fare passengers 

spill to a competing airline.  In Section 4 we compare analytically the behavior of a monopolist 

(or alliance between airlines) with the behavior of two airlines under competition.  Section 5 

describes numerical examples and compares the service levels (percentage of customers who are 

able to purchase tickets) under the competitive and cooperative cases.  In Section 6 we discuss 

the implications of our results on the practice of yield management and describe areas for future 

research.  
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 2. The Full Revenue Management Game 

Suppose two airlines offer direct flights between the same origin and destination, with 

departures and arrivals at similar times.  We assume that other flights on this route are scheduled 

sufficiently far away in time so that they can be ignored.  For simplicity, we assume that both 

flights have the same seat capacity and that there are only two fare classes available for 

passengers: a 'low-fare' and a 'high-fare.'  A ticket purchased at either fare gives access to the 

same product: a coach-class seat on one flight leg.  As is traditional in the literature on airline 

seat inventory control, we assume that demand for low-fare tickets occurs before demand for 

high-fare tickets, as is the case when advance-purchase requirements are used to distinguish 

between customers with different valuations on price and purchase convenience.  Customers who 

prefer a low fare and are willing to accept the purchase restrictions will be called 'low-fare 

customers'.  Customers who prefer to purchase later, at the higher price, are called 'high-fare 

customers'.  We also assume that there are no customer cancellations. 

To maximize expected profits, both airlines establish booking limits for low-fare seats.  

Once this booking limit is reached, the low fare is closed.  Sales of high-fare tickets are accepted 

until either the airplane is full or the flight departs.  If either type of customer is denied a ticket at 

one airline, the customer will attempt to purchase a ticket from the other (we call these “overflow 

passengers”).  Therefore, both airlines are faced with a random initial demand for each fare class 

as well as demand from customers who are denied tickets by the other airline.  Passengers denied 

a reservation by both airlines are lost.   

Figure 1 shows both overflow processes as well as the following notation:   

L, H = passenger classes, L for low-fare passengers and H for high-fare passengers. 

C = capacity of the aircraft. 

Bi = booking limit for low fare established by airline i=1,2. 

Dki = a random variable, demand for class k tickets at airline i, HLk ,= and 2,1=i .   

pk = revenue from class k=L,H passengers less variable cost.   



6

 

high-fare overflow from 2 to 1  

high-fare overflow from 1 to 2
 

Low fare 
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B2 

Figure 1. The Basic Competitive Model  

 

low-fare overflow from 2 to 1 

low-fare overflow from 1 to 2
 

C C 

 
We assume that both airline's prices are the same and that HL pp < .  We also assume that the 

random variables Dki have nonnegative support.  However, to derive the following results 

establishing the existence of a pure-strategy equilibrium we do not assume that the cumulative 

distributions are continuous (we may have discrete or continuous probability distributions), and 

there may be an arbitrary correlation structure among demands.  In Section 3, however, to 

establish the existence of a unique equilibrium we will assume that finite probability densities 

exist and that low and high-fare demands are independent.  

In this paper we study competing airlines engaging in a noncooperative game with 

complete information.  Each airline attempts to maximize its profits by adjusting its booking 

levels.  In other words, the booking level Bi ∈ [0,C] is the strategy space of airline i (for 

simplicity, we assume that the booking level may be any real number in this range).  Each airline 

knows the strategy spaces and demand distributions of its own flight as well as those of the 

competing airline. 

An important assumption of the model is that the initial demands Dki are exogenous; they 

are not affected by the booking limits chosen by each airline.  This assumption is consistent with 

the newsboy game models of Parlar, Karjalainen, and Lippman and McCardle.  However, one 

might argue that the booking limits determine seat availability, and that in the long run this 

aspect of service quality affects initial demand.  A more complete model would incorporate this 

relationship between booking limits and demand, and the solution would supply equilibrium 

demands as well as equilibrium booking limits.   For our application, however, the relationship 

between booking limits and demand is weakened by marketing efforts such as advertising and 

frequent-flyer programs.  In addition, the use of travel agents and on-line reservation tools 
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 reduces the marginal search cost associated with making each booking.  Given low search costs, 

the decision as to which airline to query first may depend on factors that dominate the 

likelihood that the query will result in a booking. 

Our model simplifies other aspects of the actual environment.  For example, the model 

assumes that passengers denied a ticket in one class do not attempt to upgrade or downgrade to 

another class.  The model also assumes that a passenger, when first denied a ticket, will not shift 

to a later or earlier flight operated by the same airline.   However, all results presented in this 

paper also apply to a model in which some fraction (less than one) of passengers denied a ticket 

on one airline attempt to purchase a ticket from the other airline, while some fraction (greater 

than zero) are lost to both airlines.  To simplify the model and minimize the number of 

parameters, we assume that all passengers denied a ticket from their first choice overflow to their 

second-choice airline.  

The model contains only two fare classes, when in reality there may be many more (see 

Belobaba [1998] for an introduction to the complexities of real-world yield management 

systems).  We also assume that the airlines' booking limits are static.  That is, the booking limit is 

set before demand is realized and no adjustments are made as low-fare demand is observed.  As 

we will see, even this relatively simple decision can be difficult to analyze in a competitive 

game, and this simple model allows us to focus on a few important questions.  How will an 

optimal booking limit under competition differ from a booking limit under a centralized solution, 

with a single airline or when two airlines cooperate to maximize total profits?  How does the 

existence of 'spill' demand affect the allocation of seat inventory?  What is the effect of 

competition on profits, even when prices are held constant?   

2.1 Low-fare then High-fare Spill 

Thus far we have not described the order of events in the game.  We begin with what may 

be the most natural order: 

1. Airlines establish booking limits B1 and B2. 

2. Low-fare passengers arrive to their first-choice airlines and are accommodated up to the 

booking limits. 
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 3. Low-fare passengers not accommodated on their first-choice airlines 'spill' to the alternate 

airlines and are accommodated up to the booking limits. 

4. High-fare passengers arrive to their first-choice airlines and are accommodated with any 

remaining seats, up to capacity C in each aircraft. 

5. High-fare passengers not accommodated on their first-choice airlines 'spill' to the alternate 

airlines and are accommodated in any remaining seats, up to capacity C in each aircraft. 

To describe the problem in terms of customer demand and booking limits, define: 

+−+= )( jLjLi
T
Li BDDD , total demand for low-fare tickets on airline i, i=1, j=2 and  i=2, j=1. 

),min( i
T
Lii BDCR −= , the number of seats available for high-fare passengers on airline i = 1,2. 

+−+= )( jHjHi
T
Hi RDDD , total demand for high-fare tickets, i=1, j=2 and  i=2, j=1. 

The total revenue for airline i is 

 [ ]),min(),min( i
T
HiHi

T
LiLi RDpBDpE +=π . (1) 

Each airline will maximize this expression, given the booking limit of its competitor.  It will be 

instructive to examine the first derivative of this objective function.  It is tedious to find the 

derivative by the traditional methods (e.g., applying Leibnitz's rule).  Instead, by applying the 

techniques described in the Appendix of Rudi and Netessine [2000], we find for i=1, j=2 and  

i=2, j=1, 

 
).,,,Pr(       

),Pr()Pr(

i
T
HijHjj

T
LjiLiH

i
T
Lii

T
HiHi

T
LiL

i

i

BCDRDBDBDp

BDBCDpBDp
B

−<><>−

>−>−>=
∂
∂π

 (2) 

Although this is a complex expression, there is a straightforward interpretation for each term.  

An incremental increase in the booking limit Bi by airline i has three effects on that airline's total 

revenue.  First, revenue from low-fare customers increases with probability )Pr( i
T
Li BD > .  

Second, revenue from the high-fare customers decreases with probability 

),Pr( i
T
Lii

T
Hi BDBCD >−> .  While these two effects are direct consequences of the change in Bi, 

there is a third, indirect effect.   Revenue from high-fare customers may decrease because (i) an 
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 increase is Bi may reduce the overflow of low-fare customers from i to j, (ii) a reduction in the 

number of low-fare customers at j may increase the number of seats available for high-fare 

customers at j, (iii) this may reduce the overflow of high-fare customers from j  to i and (iv) a 

decline in the overflow from j may reduce the number of high-fare customers accommodated at i.  

The probability of this sequence of events is the third term on the right-hand side of equation (2), 

which implies that an increase in the booking limit of airline i can result in a decrease in high-

fare demand to airline i. 

Because the strategy spaces of the airlines are compact and the payoff functions are 

continuous (see Proposition 1, below), a Nash equilibrium in mixed strategies must exist.  

However, a pure-strategy Nash equilibrium may, or may not, exist for airlines playing this game.   

Figure 2 shows the best reply functions, or reaction functions )( ji Br , of two airlines, each with C 

=200 and multivariate normal demands (the parameters for this example will be described in 

detail in Section 5).  Figure 3, showing a game with multiple equilibria, was also generated with 

the multivariate normal distribution (again, details are given in Section 5).  Figure 4 displays two 

reaction functions, each with two discontinuities, producing a game without any pure-strategy 

equilibrium.  An extremely unlikely demand pattern was used to produce this outcome.  Figure 4 

was generated from: 

• Bimodal demand distributions for each fare class and airline.  The distributions were 

created by mixing two normal distributions, one representing low-volume demand (mean 

= 20 seats) and the other representing high-volume demand (mean = 150 seats). 

• Strong negative correlations between low-fare and high-fare demands.  When low-fare 

demand was chosen from the low-volume distribution, high-fare demand was chosen 

from the high-volume distribution, and vice-versa.  As a result, 9.0),( −=HiLi DDρ  for 

i=1,2.3 

• A large difference between high and low fares ( 4/ =LH pp ). 

                                                 

3 It is interesting to note that in practice the strong negative correlation would present an excellent opportunity for 
each airline to practice dynamic yield management, with an adjustable booking limit dependent on observed low-
fare demand.  Given such dynamic decision-making, there may well be a competitive equilibrium. 
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Figure 4: No Pure-Strategy Equilibrium 

 

While we cannot specify analytically the general characteristics that would guarantee the 

existence of an equilibrium, expression (2) offers some insight.  For most reasonable probability 

distributions and for most values of B1 and B2, the first two terms dominate the third term, so that 

 ),Pr()Pr( i
T
Lii

T
HiHi

T
LiL

i

i BDBCDpBDp
B

>−>−>≈
∂
∂π

. (3) 

This expression is similar to the first-order conditions for the standard two-fare seat allocation 

problem of a stand-alone airline, although here exogenous demands kiD  have been replaced by 

total demands T
kiD .  Brumelle et.al [1990] show that when the demands are monotonically 

associated, so that )|Pr( i
T
Lii

T
Hi BDBCD >−>  is nondecreasing in iB , then the objective 

function of airline i is quasi-concave in iB .  Given that the two players face objective functions 

that are continuous and quasi-concave in each booking limit, there exists a pure-strategy Nash 

equilibrium (Moulin, 1986). 
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 This reasoning does not provide us with precise conditions for the existence of an 

equilibrium, but we have found this analysis to be helpful when examining the results of our 

numerical examples.  When LiD and HiD  are strongly negatively correlated then the total 

demands T
LiD  and T

HiD  are not monotonically associated.  In this case, the objective functions for 

each airline are not unimodal, producing the discontinuities in the reaction functions shown in 

Figure 4.  When LiD and HiD  are weakly negatively correlated, independent, or positively 

correlated, T
LiD and T

HiD  maintain the positive association property and a pure-strategy equilibrium 

exists.  We will see in Section 5 that the latter case applies for most reasonable problem 

parameters.   

Now we do identify two sufficient conditions for the existence of a pure-strategy 

equilibrium.  First, if low-fare demand is extremely high so that 1)Pr( => CDLi  for i=1,2, then 

a pure-strategy equilibrium must exist and, under certain conditions, the equilibrium must be 

unique and stable.  In this case, low-fare overflow is ignored by each airline because there is 

already a surplus of low-fare customers, and airlines only compete for high-fare customers.  

Because this is a special case of the model presented in Section 3.1, further discussion and a 

proof will be presented later (see Proposition 3 and Corollary 1).  The second condition involves 

a revision of the timing of the game.  This is presented in the next section. 

2.2 High-fare then Low-fare Spill 

We will now change the order of events and assume that low-fare customers that overflow are 

accepted only after all other passengers have been accommodated.  The order of events is as 

follows: 

1. Airlines establish booking limits B1 and B2. 

2. Low-fare passengers arrive to their first-choice airlines and are accommodated up to the 

booking limits. 

3. High-fare passengers arrive to their first-choice airlines and are accommodated with any 

remaining seats, up to capacity C in each aircraft. 

4. High-fare passengers not accommodated on their first-choice airlines 'spill' to the alternate 

airlines and are accommodated in any remaining seats, up to capacity C in each aircraft. 
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 5. Low-fare passengers not accommodated on their first-choice airlines 'spill' to the alternate 

airlines and are accommodated up to the booking limits. 

To maintain the flavor of the timing described in Section 2.1, in Step 5 we only book low-fare 

passengers up to the booking limit, even if additional seats are available.  Note that this game 

requires each airline to distinguish between low-fare passengers who choose that airline first 

from those that come to the airline as a second choice.  While this may not always be possible, 

under this re-ordering, it is possible to establish the existence of a pure-strategy Nash equilibrium 

because an adjustment in iB  does not affect the high-fare demand faced by airline i.    

First define: 

),min( iLi BD , number of low-fare tickets sold in the first round 

+−−+= )),min((( LjjHjHi
T
Hi DBCDDD , total demand for high-fare tickets at airline i 

+− )( iLi BD , overflow of low-fare passengers 

( )+
−− Li

T
Hii DDCB ),min( , number of seats available to the overflow low-fare passengers. 

The total revenue for airline i is: 

( )( ) ( )











−+−−−+
= ++ T

HiLiiHLi
T
HiijLjL

iLiL

i
DDBCpDDCBBDp

BDp
E

),,min(min),min(,)(min

),min(
π  (4) 

Proposition 1. Given the game ordering defined by steps 1-5 above, a pure-strategy Nash 

equilibrium in booking limits (B1, B2) exists. 

Proof: We will show that the objective function for each player is continuous and submodular in 

(B1, B2).  Therefore, the objective function is continuous and supermodular in (B1, -B2), which 

are sufficient conditions for the existence of a pure-strategy Nash equilibrium (Topkis, 1998).  

 To see that the objective function is continuous, note that the strategy space is finite so 

that for any given demand realization the objective function is bounded.  In addition, the 

objective function is continuous in (B1, B2) for any given demand realization.  Therefore, by the 

bounded convergence theorem, the expectation (4) is continuous (Billingsley, 1995).  
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 To prove submodularity, note that the expectation of a submodular function is 

submodular, the sum of submodular functions is a submodular function, and a submodular 

function multiplied by a positive constant is a submodular function (Topkis, 1998, Lemma 2.6.1 

and Corollary 2.6.2).  Therefore, we will prove that for any given demand realization, each of the 

three terms in the sum (4) is submodular in (Bi, Bj).  The first term, ),min( iLi BD , depends only 

on Bi, so it is submodular.  For the last two terms we will employ the following two lemmas (for 

the sake of readability, in these lemmas and for the remainder of the proof the term 'increasing' 

implies nondecreasing and the term 'decreasing' implies nonincreasing): 

Lemma 1 (Adopted from Topkis, 1998, Example 2.6.2 (f).)  If )( ii Bg  is increasing and 

)( jj Bg  is decreasing then ))(),(min( jjii BgBg is a submodular function in (Bi, Bj). 

Lemma 2 (Topkis, 1978, Table 1)  Suppose ),( ji BBg  is increasing in both Bi and Bj and 

is a submodular (supermodular) function in (Bi, Bj).  Also suppose that )(zf  is an increasing 

concave (convex) function.  Then )),(( ji BBgf is a submodular (supermodular) function in  

(Bi, Bj). 

We re-write the second term of the objective function as 

 
( )( )

( )( ).)(),min(,0min)(

),min(,)(min
+++

++

−−−−+−=

−−−

jLjLi
T
HiijLj

Li
T
HiijLj

BDDDCBBD

DDCBBD
 (5) 

The term +− )( jLj BD  depends only on Bj and hence is submodular.  To prove that the second 

term in (5) is submodular, we will employ Lemmas 1 and 2.  Since ),0min()( zzf =  is a concave 

increasing function of z, it remains to show that  

 ( ) ++
−−−−= )(),min(),( jLjLi

T
Hiiji BDDDCBBBg  (6) 

is an increasing submodular function.  We first show that it is an increasing function.  It is 

obvious that this function is increasing in Bi.  Further, from the definition of T
HiD  above, 

( )+
−− Li

T
Hii DDCB ),min(  is either linearly decreasing in Bj (for some demand realizations) or 

does not change as Bj changes.  In addition, +−− )( jLj BD  is also either linearly increasing or 
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 invariant in Bj.  By examining the two terms in (6), we see that when the second term is linearly 

increasing in Bj then the first term is either linearly decreasing or does not change.  When the 

first term is linearly decreasing in Bj then the second term must be increasing.  Therefore, the 

second term dominates, and ),( ji BBg  is increasing in both Bj and Bi.   

We now show that ),( ji BBg  is also submodular.  First, ),min( T
Hii DCB −  is increasing 

in Bi, decreasing in Bj, and by Lemma 1 a submodular function in (Bi, Bj).  Therefore, 

Li
T
Hii DDCB −− ),min(  is increasing and supermodular in (Bi, -Bj).   In addition, the function 

),0max()()( zzzf ==′ + is convex and increasing in z, so that by Lemma 2 

( )+
−− Li

T
Hii DDCB ),min(  is a supermodular function in  

(Bi, -Bj) and therefore a submodular function in (Bi, Bj).  Hence, ),( ji BBg  is also a submodular 

function.  This completes the proof for the second term of (4).  

 The third term of the objective function is ( )T
HiLii DDBC ),,min(min − .  Note that 

),min( Lii DBC −  is decreasing in Bi, and T
HiD  is increasing in Bj.  By Lemma 1, 

( )T
HiLii DDBC ),,min(min −  is submodular.  This completes the proof. n 

While we can be sure of a pure-strategy equilibrium in this case, we cannot be sure that the 

equilibrium is unique.  Conditions for uniqueness will be described in the next section. 

3.  Competition with Partial Overflow 

In this section we consider competing airlines with only high-fare passengers overflowing from 

one airline to another (Section 3.1) and with only low-fare passengers overflowing (Section 3.2).  

For each case we will find conditions under which a pure-strategy equilibrium exists and is 

unique. 

It is, of course, reasonable to ask why we should be concerned with these special cases 

since both high and low-fare customers are likely to look for a seat on another airline if one 

cannot be found on the preferred airline.  In fact, these special cases are good approximations of 

the general game described in Section 2.1, as long as the number of overflow customers from 

one of the two fare classes is small.  In addition, the model to be presented in Section 3.1 
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 includes the case when high-fare passengers switch airlines while demand for low-fare tickets is 

sufficiently large to sell all available low-fare tickets. 

Moreover, analysis of these special cases sheds some light on the reasons why the full 

game presented in Section 2 may fail to have a pure-strategy equilibrium.  We will see here that 

a game with only high-fare overflow always has a pure-strategy equilibrium, while a game with 

only low-fare overflow may not.  If only high-fare customers spill to a competitor, then the 

airlines are involved in a supermodular game similar to the inventory game described by Parlar 

and by Lippman and McCardle.  In terms of yield management, an increase in the booking limit 

by one airline increases demand by high-fare passengers to the competitor, thus lowering the 

competitor's booking limit.  Each player's reaction function is monotonic in the other player's 

strategy, and an equilibrium must exist.  However, when both types of overflow occur the 

response functions need not be monotonic, as in Figure 4.  Additional conditions are needed to 

establish the existence of a pure-strategy equilibrium. 

3.1 High-Fare Overflow Only 

We now assume that there is no overflow of the low-fare passengers and only high-fare 

passengers approach the other airline when their first-choice airline is not available.  Figure 5 

illustrates the flow of passengers.  Note that the following definitions differ slightly from the 

'full-overflow' case presented in Section 2.1. 

),min( iLii BDCR −= , the number of seats available for high-fare passengers on airline i. 

+−+= )( jHjHi
T
Hi RDDD , total demand for high-fare tickets on airline i, i=1, j=2 and  i=2, j=1. 
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Low-fare 
class 

High-fare 
class 

DH1 

DL1 

Low-fare 
class 

High-fare 
class DH2 

DL2 

Airline 1 Airline 2 

B1 
B2 

min(B1,DL1) 

min(B2,DL2) 

Figure 5: High-fare passengers overflow 

( )( )+−− ),min( 111 BDCD LH

( )( )+−− ),min( 222 BDCD LH

 
The total revenue for airline i is 

 [ ].),min(),min( i
T
HiHiLiLi RDpBDpE +=π . (7) 

The first derivative of the objective function will be useful in the following theorems.  We find 

 ),Pr()Pr( iLii
T
HiHiLiL

i

i BDBCDpBDp
B

>−>−>=
∂
∂π

. (8) 

The existence of a pure-strategy Nash equilibrium, established in the following 

proposition, follows from the supermodularity of the game.  This result holds for any demand 

distribution, including distributions with correlation among airlines and among fare classes.  As 

was the case with Proposition 1, the demand distribution may be continuous or discrete. 

Proposition 2. Given overflow by high-fare customers only, a pure-strategy Nash equilibrium in 

booking limits (B1, B2) exists. 

Proof:  By the reasoning presented in the proof of Proposition 1, the objective function (7) is 

continuous.  We will now show that both ),min(and),min( i
T
HiiLi RDBD  are submodular, so that 

the objective function is submodular for any given demand realization and therefore the 

expectation (7) is submodular.  This is sufficient to establish the existence of a pure-strategy 

Nash equilibrium (Topkis, 1999).   
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 Observe that ),min( iLi BD  depends only on Bi and hence is submodular.  By the 

definitions above, iR  is decreasing in Bi and T
HiD  is increasing in Bj.  By Lemma 1 in the proof of 

Proposition 1, ),min( i
T
Hi RD  is submodular. n 

To show there is a single, unique equilibrium, we make the following assumptions: 

Assumption 1:  There exists, for each random variable, a finite probability density function 

( ) τττ dDdf kiDki
/)Pr( <= .   In addition, the density functions ( ) 0>τ

HiDf  for C≤≤ τ0  and 

i=1,2. 

Assumption 2: Demands for low-fare and high-fare tickets are independent.  More formally, let 

),( 21 LLL DDD = and ),( 21 HHH DDD = .  We assume that LD and HD are mutually independent.  

Assumption 3:  Pr(DLi > C) > 0 for i=1,2.   

Proposition 3. Given overflow by high-fare customers only and Assumptions 1-3, there is a 

unique, globally stable Nash equilibrium in (B1, B2).    

Proof:  We will characterize the best reply functions (reaction functions) of the players in the 

game and then will show that the functions are a contraction on ),( 21 BB .  Therefore, a single, 

unique equilibrium exists and is stable.  

We will first show that each function iπ , with jB held constant, reaches its maximum at a 

unique point ),0[ CBi ∈ .  Given Assumption 2, the first derivatives of the objective functions 

may be written as 

 2,1     ))Pr()(Pr( =−>−>=
∂
∂

iBCDppBD
B i

T
HiHLiLi

i

iπ
. (9) 

From Assumption 3, the first derivative is always less than zero at the upper boundary C: 

 0))(Pr())0Pr()(Pr( <−>=>−>=
∂
∂

=

HLLi
T
HiHLLi

CBi

i ppCDDppCD
B

i

π
. (10) 

Now consider two cases.  If HL
T
Hi ppCD /)Pr( <>  then (9) is positive when evaluated at the 

lower boundary: 
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 0)Pr())Pr()(0Pr(

0

>>−=>−>=
∂
∂

=

CDppCDppD
B

T
HiHL

T
HiHLLi

Bi

i

i

π
. (11) 

By assumption 1, )Pr( i
T
Hi BCD −> is strictly increasing in iB , and the objective function is 

strictly quasi-concave in the interval [0, C].  If there is an interior solution it is determined by the 

following first-order conditions (note that we have expanded the term T
HiD ): 

 1,2 and 2,1,))),min((Pr( =====−>+−+ + jiji
p
p

BCBDCDD
H

L
ijLjHjHi . (12) 

 If HL
T
Hi ppCD /)Pr( ≥> , then the objective function is not increasing at 0 and the slope does 

not change sign in the interval [0, C].  Therefore, the objective is maximized at Bi = 0.   

Equation (12) and the boundary condition specify reaction functions )( 21 Br and )( 12 Br for 

the two players.  When the value of the reaction function is in the interior (0, C) then implicit 

differentiation of (12) finds the magnitudes of the slopes of the reaction functions:4 

 1
)(

)Pr()()( |
<

−

−>−
−=

∂
∂ −>

iD

jHjiBCDD

j

ji

BCf

BCDBCf

B
Br

T
Hi

jHj
T
Hi . (13) 

If the value of the reaction function is a boundary solution, 0=iB , then 10/)( <=∂∂ jji BBr . 

Therefore, the reaction functions ( ))(),( 1221 BrBr  are a contraction on ),( 21 BB .   

From Proposition 2, we know that at least one equilibrium point exists.  From the proof 

of Theorem 2.5 of Friedman [1986], if there is at least one equilibrium point and the reaction 

function is a contraction then the game has exactly one equilibrium point.   

In addition, the expression for the derivative in (13) implies that 

 1
)()(

1

12

2

21 <
∂

∂
∂

∂
B
Br

B
Br

 (14) 

so that the equilibrium is stable (Moulin, 1986).  n 

                                                 

4 In (13), the expression ( )τ
AD T

Hi
f  represents the density function of T

HiD given event A. 
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  This result allows us to say something stronger about the full-overflow case of Section 

2.1 when low-fare demand is sufficient to fill both aircraft. 

Corollary 1.  Assume overflow by both low-fare and high-fare customers.  Given Assumptions 1 

and 2, and given that low-fare demand is extremely large ( 1)Pr( => CDLi  for i=1,2), there is a 

unique, globally stable Nash equilibrium in (B1, B2).    

Proof: In this case, airlines only compete for high-fare customers and the overflow of low-fare 

customers can be ignored because there are no extra seats to accommodate them.  In the full 

model objective function (1), we replace ),min( i
T
Li BD  with iB .  This is a special case of the 

model examined in Section 3.1. Therefore, the uniqueness and stability results hold here. n 

3.2 Low-Fare Overflow Only 

We will now assume that high-fare passengers do not overflow and that only low-fare 

passengers switch airlines if their first choice is fully booked (see Figure 6). 

Discount 
fare class 

Full fare 
class 

DH1 

DL1 

Discount 
fare class 

Full fare 
class 

DH2 

DL2 

Airline 1 Airline 2 

(DL1 - B1)+ 

(DL2 - B2)+ 

B1  
B2 

Min(B1,DL1) 

Min(B2,DL2) 

Figure 6. Low-fare passengers overflow  

  
 

First define: 

+−+= )( jLjLi
T
Li BDDD , total demand for low-fare tickets on airline i, i=1, j=2 and  i=2, j=1. 

),min( i
T
Lii BDCR −= , the number of seats available for high-fare passengers on airline i. 
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 The number of low-fare tickets sold is equal to ),min( i
T
Li BD and the total revenue for airline i is 

 [ ]),min(),min( iHiHi
T
LiLi RDpBDpE +=π . (15) 

Surprisingly, a pure-strategy equilibrium need not exist for this simple game.  The objective 

function is not necessarily submodular or quasi-concave.   However, under Assumptions 1-3 the 

equilibrium is unique and stable.   

Proposition 4. Given overflow by low-fare customers only and Assumptions 1-3, there is a 

unique, globally stable Nash equilibrium in (B1, B2).    

Proof:  Given independence between high and low-fare demands, the first derivative of the 

objective function (15) is 

 ))Pr()(Pr( iHiHLi
T
Li

i

i BCDppBD
B

−>−>=
∂
∂π

. (16) 

The objective function is quasi-concave on [0,C] and it can be shown that the optimal solution is 

always in the interior, (0,C).  The first-order condition  

 
H

L
iHi p

p
BCD =−> )Pr(  (17) 

depends only on Bi and not on the competitor's action Bj.  Therefore, (17) defines the unique 

optimal solution for each airline and each reaction function has a slope of zero.  The reaction 

functions are a contraction on ),( 21 BB  and,  following the reasoning of the proof of Proposition 

3, this contraction leads to a unique, globally stable equilibrium.  n 

This solution is identical to the solution for a stand-alone airline.  When high-fare 

customers do not switch airlines and high-fare and low-fare demands are independent, the 

optimal booking limits for both stand-alone airlines and airlines in competition are not 

influenced by the demand distributions of low-fare customers. 

4. Comparing the Competitors and a Monopolist 

We will now compare the behavior of two airlines in competition with the behavior of a 

monopolist.  Note that the term 'monopolist' does not necessarily imply that a single firm is the 
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 only carrier on a particular route.  The 'monopolist' may be two airlines in an alliance to 

coordinate yield management decisions.  In addition, two airlines may compete on a particular 

route at certain times of day, while each airline may hold a virtual monopoly at other times of 

day because its competitor has not scheduled a competing flight at a point close in time.  For 

example, United Airlines has the only direct flight from Rochester, NY to the Washington DC 

area in the evening, while most of its flights during the morning and afternoon compete directly 

with flights by US Airways. 

In general, we will find that the total booking limit for the monopolist is never less than 

the sum of the booking limits of two competing airlines.   In this section we provide a proof of 

this result, given a model with high-fare overflow only (the model presented in Section 3.1).  In 

the following section we will present numerical experiments utilizing the full model of Section 

2.1.  To simplify the comparison, we assume that the price ration pL/pH and the distributions of 

consumer demands kiD  are equal under the competitive and monopoly environments.  In Section 

6 we will discuss the implications of these assumptions. 

Our results are consistent with the findings of Lippman and McCardle [1997], who 

analyze competing newsvendors.  They find that competition never leads to a decrease in total 

inventory.  The 'inventory' of each newsvendor is analogous to the stock of protected high-fare 

seats, iBC − , and the demand for newspapers is analogous to demand by high-fare customers.  

However, our problem incorporates a significant complication, the stochastic demand by low-

fare, as well as high-fare, customers.   

First we review the case with no competition and only one aircraft with capacity C in the 

market (for further details, see Belobaba, 1989, and Brumelle et.al., 1990).  Since there is just 

one aircraft, we will suppress the subscript i=1,2 which denotes the aircraft in the competitive 

case.  After establishing a booking limit B, the airline will sell ),min( BDL  low-fare tickets 

and ( )),min(,min BDCD LH −  high-fare tickets.  Therefore the total revenue is 

 ( )[ ]),min(,min),min( BDCDpBDpE LHFLD −+=π . (18) 

The first derivative is 

 ),Pr()Pr( BDBCDpBDp
B LHHLL >−>−>=

∂
∂π

. (19) 
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 As mentioned in Section 2, the first-order conditions are sufficient for a solution when 

)|Pr( BDBCD LH >−>  is nondecreasing in B [Brumelle et al. 1990].  Note that this condition 

is satisfied if DH and DL are independent.  Given this property, a solution B* within the interval 

(0,C) satisfies5  

 
H

L
LH p

p
BDBCD =>−> )|Pr( ** . (20) 

Now consider an airline with a monopoly (or an alliance between two airlines) operating 

two flights.  Passenger arrivals and overflows follow the order of events described by Steps 1-5 

at the beginning of Section 2.1.  While this case may seem to be more complex than the single-

flight problem, it reduces to the simpler problem described above, since the passenger overflow 

from one aircraft is captured by the same firm in the other aircraft.  We can write the objective 

function in this two-aircraft case as 

 [ ]),min(2 ,min(),min( 2121112121 BBDDCDDpBBDDpE LLHHHLLL ++−++++=π  (21) 

and the first derivative is similar to (19) above, with 21 BBB += : 

 ),2Pr()Pr( 212121 BDDBCDDpBDDp
B LLHHHLLL >+−>+−>+=

∂
∂π

. (22) 

Now we consider the situation introduced in Section 3.1.  Assume that low-fare 

customers do not overflow to a second-choice flight while high-fare passengers do overflow.  

The objective function for the monopoly airline is 

 
( )

( )







−−++

+
=

),min(),min(2,min

),min(),min(

221121

2211

BDBDCDDp

BDBDp
E

LLHHH

LLLπ . (23) 

An interior solution ),( *
2

*
1 BB  satisfies the following first-order conditions for i=1, j=2 and i=2, 

j=1:6  

                                                 

5 There is also a boundary condition.  If 
HLH ppCD /)Pr( ≥>  then 0* =B . 

6 Again, there are boundary conditions.  We present conditions for 'extreme' solutions here.  If  

HLHH ppCDD /)2Pr( 21 ≥>+  then )0,0(),( *
2

*
1 =BB . If  

HLLiHH ppCDCDD /),min(Pr( 21 ≤−>+  for i=1,2, then 

),(),( *
2

*
1 CCBB = . 
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0)),,min(2Pr()Pr( ***

21
*

),( **

=>−−>+−>=
∂
∂

iLijLjiHHHiLiL
BBi

BDBDBCDDpBDp
B

ji

π
. (24) 

There may be multiple values of ),( *
2

*
1 BB that satisfy (24).   

This first-order condition and the first-order conditions (12) that uniquely determine the 

competitive equilibrium allow us to compare, analytically, the centralized and competitive 

solutions.   

Proposition 5.  Assume overflow by high-fare customers only and Assumptions 1-3.  Also assume 

that the optimal solution for the monopolist as well as the equilibrium under competition are in 

the interior, e.g., ).,0( CBi ∈  Then the total number of protected seats, B1+B2, is lower under 

competition than under the centralized solution.   

Proof: Define a
iB , i=1,2, as the optimal decisions for the monopolist ('a' for alliance) and define 

c
iB , i=1,2, as the equilibrium decisions under competition.  The alliance solution is determined 

by the first-order conditions, equations (24).  Given Assumptions 1 and 2, these first-order 

conditions may be re-written as 

 ( )
H

La
jLj

a
iHH p

p
BDBCDD =−−>+ ),min(2Pr 21     for i=1, j=2 and i=2, j=1. (25)  

The competitive optimality conditions (12) may be re-written as: 

 
( )

( )
H

Lc
iH

c
jLj

c
iHH

c
jLj

c
iHH

p
p

BCDBDBCDD

BDBCDD

=−>−−<++

−−>+

121

21

),,min(2Pr

),min(2Pr
 (26) 

for i=1, j=2 and i=2, j=1.  Note that (25) and (26) differ by a single probability term in the left-

hand side of (26).  Since this extra term in nonnegative and the right-hand sides are equal, the 

following inequalities hold simultaneously:  

 ( ) ( )),min(2Pr),min(2Pr 2212122121
a

L
a

HH
c

L
c

HH BDBCDDBDBCDD −−>+≤−−>+ , (27) 

 ( ) ( )),min(2Pr),min(2Pr 1122111221
a

L
a

HH
c

L
c

HH BDBCDDBDBCDD −−>+≤−−>+ . (28) 

Since this must be true for any value of C, these inequalities define stochastic orders on two pairs 
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 of single-valued functions of random variables HiD  and LiD .  To make this clear, after some 

algebraic manipulation, (27) and (28) may be re-written as 

 ),min(),min( 212121212121
aa

L
a

HHst
cc

L
c

HH BBDBDDBBDBDD ++++≤++++ , (29) 

 ),min(),min( 211221211221
aa

L
a

HHst
cc

L
c

HH BBDBDDBBDBDD ++++≤++++ , (30) 

where YX st≤ indicates that X is smaller than Y in the usual stochastic order.  Because of the 

independence between low-fare and high-fare demands (Assumption 1) and the preservation of 

stochastic order under convolution (Shaked and Shanthikumar, 1994), 

 ),min(),min( 21212121
aa

L
a

st
cc

L
c BBDBBBDB ++≤++ , (31) 

 ),min(),min( 21122112
aa

L
a

st
cc

L
c BBDBBBDB ++≤++ . (32) 

Finally, by contradiction, assume that aacc BBBB 2121 +>+ . Then for both inequalities (31) and 

(32) to hold we would need simultaneously ac BB 11 <  and ac BB 22 < , which is inconsistent with the 

assumption. Hence, aacc BBBB 2121 +<+ . n 

Proposition 5 implies that, under competition, at least as many seats are held for high-fare 

customers as is optimal under joint profit maximization. For the monopolist, every high-fare 

passenger who does not find a seat at airline i and turns to airline j is not 'lost' to the firm.  Under 

competition, however, when airline i establishes a lower booking limit, airline j lowers its 

booking limit as well as the two airlines compete for high-fare passengers. 

5. Numerical Experiments 

To determine whether the previous section's results apply to the full-fledged game described in 

Section 2.1, we calculate numerically both the competitive equilibrium and the optimal 

monopoly solution under a wide variety of parameter values.  Our goal is to see whether the 

booking limit set by the monopoly, aa BB 21 + , is consistently greater than or equal to the total 

booking limit under competition, cc BB 21 + . 

For each scenario, demand is distributed according to a multivariate normal distribution and 

truncated at zero; any negative demand is added to a mass point at zero.  Solutions are found by a 
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 simple gradient algorithm and the gradients themselves, expressions (2) and (22), were 

evaluated by Monte Carlo integration (a simple search procedure was also used if the objective 

function was not quasi-concave).  The scenarios are created by combining the following 

parameters. 

- Ratio of high fare to low fare:  To cover a range that includes many actual price ratios, we 

use the following values: LH pp / = [1.5, 2, 3, 4]. 

- Proportion of demand due to low-fare passengers:  Let Liµ ( Hiµ ) be the average low-fare 

(high-fare) demand for airline i, i=1,2.  Because in practice low-fare demand is often greater 

than high-fare demand, we assume that HiLi µµ ≥  , and we use proportions )/( HiLiLi µµµ +  

= [0.5, 0.75, 0.9].  Below we will also discuss experiments in which )/( HiLiLi µµµ +  < 0.5. 

- Proportion of demand due to airline i:  Let 1kµ ( 2kµ ) be the average demand for airline 1 (2), 

for demand class k=L,H.  Due to symmetry, we need only test scenarios where 21 kk µµ < .  

We use ratios )/( 211 kkk µµµ +  = [0.1, 0.25, 0.5]. 

- Variability: To limit the number of parameters, we assume that all four customer demand 

distributions have the same coefficient of variation, CV.  We use values  

CV = [0.25, 0.5, 1, 1.5, 2].   Note that CV's higher than 1 rarely occur in practice (Jacobs, 

Ratliff and Smith [2000] describe 0.2 to 0.6 as a reasonable range for the CV).  However, we 

felt that there is some value in examining environments with highly variable demands.  When 

we present the results below, we present both the aggregate results and the results for low 

CVs (CV = 0.25 or 0.5). 

- Correlation:  Again, to limit the number of parameters, we assume that the correlations 

among all demands are equal.  When four random variables are distributed according to the 

multivariate normal distribution, the lowest possible common correlation is 

33.0)14/(1 −=−− ; when the common correlation is lower than this bound the covariance 

matrix is not positive definite (Tong, 1980).  For correlation, we use values =ρ [-0.3, 0.0, 

0.5, 0.9]. 

When combined, these parameters define 7204*5*3*3*4 = scenarios. 
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  Before we examine aggregate statistics from the 720 scenarios, let us focus on a single 

'baseline' scenario.   We choose LH pp / = 2, CV = 0.5, and =ρ 0, set the mean low-fare 

demand to each airline at 150 passengers, and set the mean high-fare demand at 50 passengers so 

that )/( HiLiLi µµµ + =0.75 and )/( 211 kkk µµµ +  = 0.5.  While certain parameter values included 

in the ranges above are unlikely to occur in practice, this scenario is relatively plausible. 

 Figure 2 displays the reaction functions of the airlines, given these parameter values.  

There is a unique equilibrium, resulting in 14421 == cc BB .  Therefore, the total booking limit is 

288 and the airlines reserve a total of 112 seats for high-fare customers.  A monopolist, on the 

other hand,  has an optimal total booking limit of 30021 =+ aa BB seats, with 100 seats set aside 

for high-fare customers.  If we define the "service level" as the probability that a customer is able 

to purchase a seat on either aircraft, the difference in booking limits produces significantly 

different service levels for each customer class.  Under competition, 45% of low-fare customers 

found a seat on either flight, while under a monopoly the low-fare service level rises to 50%.  On 

the other hand, high-fare passengers benefit from competition.  Their service level is 77% under 

competition, 70% under the monopoly.   

 While this particular example produced a unique equilibrium, in Section 2 we saw that 

the full-overflow game may have multiple equilibria or may not have any equilibria at all.  Such 

an outcome would complicate the comparison between competitive and monopoly booking 

limits.  However, by examining the airline response functions for each of the 720 scenarios, we 

saw that in every case an equilibrium exists and was unique.  All response functions were 

continuous, and most produced a stable equilibrium, as in Figure 2.  As mentioned above, an 

extremely low (negative) correlation between high and low-fare demands can generate the 

outcome shown in Figure 4, in which no pure-strategy equilibrium exists.  We have also found 

instances of multiple equilibria when the ratio )/( HiLiLi µµµ +  is low (e.g., 0.1) and correlation 

is negative or zero.   We will discuss these cases at the end of this Section. 

 First we compare the total booking limits in the competitive and monopoly environments 

for the original 720 scenarios.  In every scenario, the booking limit for the monopoly is equal to, 

or greater than, the sum of the booking limits for the airlines in competition.  The mean 

difference )()( 2121
ccaa BBBB +−+ across all scenarios is 15 seats, and the difference varies from 0 
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 seats to 131 seats.   When we examine only those scenarios with CV=0.25 or CV=0.5, the 

differences are smaller.   Under these scenarios, the average difference is 9 seats with a range 

from 0 to 103 seats. 

In general, the largest differences occur when correlation is low ( =ρ -0.3) and expected 

demands are equally balanced among airlines and classes  (when )/( HiLiLi µµµ + =0.5 and 

)/( 211 kkk µµµ + =0.5).  Table 2 displays the difference )()( 2121
ccaa BBBB +−+  for each value of 

ρ.  Each column of Table 2 represents an average over 180 scenarios.   As the correlation 

increases, the difference between the monopoly and competitive cases decreases.   

 ρ = −0.3 ρ = 0.0 ρ = 0.5 ρ = 0.9 

Avg. monopoly total booking limit aa BB 21 +  299 266 235 220 

Avg. competitive total booking limit cc BB 21 +  265 249 228 218 

Average )()( 2121
ccaa BBBB +−+  34 17 7 2 

Low-fare service level (monopoly-competitive) 10.0% 4.1% 1.3% 0.4% 

High-fare service level (monopoly-competitive) -10.0% -4.7% -1.7% -0.4% 
Table 2. Demand correlation and the effects of competition. 

 The differences in booking limits have a significant effect on the service levels offered to 

each customer class.   Over all cases, the service level offered to low-fare customers rose an 

average of 4% under the monopoly (39% to 43%), while the service level offered to high-fare 

customers declines an average of 4% under the monopoly (75% to 71%).  For scenarios with low 

CVs the average differences were a bit smaller: 3.7% and 3.4%, respectively.  In addition, the 

range of results was extremely large.  In five scenarios out of 720, monopoly low-fare service 

levels were over 50% greater than the low-fare service levels under competition.  The difference 

in high-fare service levels was as high as 31%. 

In general, the difference in total profits between the monopoly and competitive cases was 

small.   Averaged over all 720 scenarios, profits to the monopoly are just 0.3% higher than the 

total profits under competition, with a range from 0% to 5%.  When restricted to scenarios with 

CV=0.25 or CV=0.5, the average difference in profits is 0.2% with a range from 0% to 3.5%.   

The largest differences in profit were seen when correlation is low, pH / pL is high, and expected 
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 demands are equally balanced among airlines and classes.  These small differences in profit are 

not unexpected since in most cases the objective function is relatively 'flat' near the optimum.   

It is more difficult to make these comparisons when the proportion of demand due to low-

fare passengers is small ( )/( HiLiLi µµµ +  < 0.5) because scenarios with multiple competitive 

equilibria begin to appear.  For example,  with )/( HiLiLi µµµ + =0.1, we identified one scenario, 

shown in Figure 3, with three equilibria: )36,6( 21 == cc BB , )6,36( 21 == cc BB , and 

)22,22( 21 == cc BB .  However, under this scenario the monopoly solution is 9321 =+ aa BB .  As 

was true for the original 720 scenarios, at each competitive equilibrium the total booking limit is 

smaller than or equal to the booking limit chosen by a monopoly.  This was true for all examined 

scenarios with )/( HiLiLi µµµ +  < 0.5. 

6. Observations and Future Research 

In this paper we have examined how competition affects a fundamental decision in yield 

management, the allocation of seats among low and high-fare classes.  Besides the technical 

results concerning the existence and uniqueness of competitive equilibria and the analytical 

expressions for the first-order conditions, our primary finding is that the sum of the airlines' 

booking limits under competition is no higher than the total booking limit produced when total 

profits from both flights are maximized (as in a monopoly or when airlines cooperate in setting 

booking limits).  Under competition more high-fare tickets and fewer low-fare tickets may be 

sold than under a monopoly.  This is not an obvious result, for in many standard economic 

models competition leads to a fall in prices (e.g., a simple Bertrand model of price competition).  

Here, we have held prices constant, but competition leads to a reallocation of inventory among 

customer segments, producing a rise in the average price paid for an airline seat.   

Under the monopoly solution, low-fare customers are more likely to find a seat, and are 

more likely to find a seat on a first-choice airline, than under competition.   With prices held 

constant, a monopolist would improve service for the low-price segment while diminishing 

service for the high-price segment.  This may be particularly interesting in regulatory 

environments in which antitrust laws prohibit airlines from colluding on prices but allow them to 

coordinate yield management decisions. 
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 As we mentioned in Section 2, our model ignores many real-world aspects of yield 

management, such as the spill-over of passengers between fare classes and the more general 

seat inventory control problem based on the origin and destination of each passenger rather than 

the individual flight leg (Belobaba, 1998).   We have also ignored the use of seat inventory as 

part of a long-term strategy to gain market share on a particular route (see Yuen and Irrgang, 

1998, for a description of this practice).   Additional research is needed in these areas, and we are 

particularly interested in how our comparison between total booking limits under competitive 

and monopoly environments may be extended to a game with more than two fare classes.  

Another significant concern with the analysis is that when comparing competitive and 

cooperative booking limits we assume that both prices and exogenous demand are constant.  For 

some comparisons this assumption may be reasonable.  For example, two competing airlines 

often charge the same prices throughout the day for travel on a particular route, and some hours 

in the day are 'competitive' while others are monopolized by a single airline (as in the example of 

the Rochester to Washington DC route described in Section 4).  Prices are uniform over all 

flights, but competition throughout the day may significantly affect the yield management 

decisions of both airlines. 

On a more strategic level, the existence of multiple airlines on a route increases the 

competition for passengers on most flights.  Will our analysis change significantly if the entry 

into a market by a competing airline leads to lower fares, as economic theory predicts?  First we 

note that for both the monopolist and competitive airlines the booking limits depend primarily on 

the ratio of high to low-fare prices, HL pp / , and not on the absolute prices.  There is empirical 

evidence that competition on a particular route reduces the spread of fares (Morrison and 

Winston, 1995).  This implies that competition may increase the ratio HL pp /  and thus raise the 

average booking limit, an effect that may counteract the decline in booking limits under 

competition described in Sections 4 and 5.  Which effect dominates may be the subject of 

empirical research that compares the actual yield management practices of airlines in markets 

with, and without, competition. 
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