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Revenue Management Games

Abgtract: A wdl-studied problem in the literature on arline revenue (or yield)
management is the optimal alocation of seat inventory among fare classes given
ademand digtribution for each class. In the literature thus far, passenger demand
IS an exogenous parameter. However, the seat dlocation decisons of one arline
affect the passenger demands for seats on other airlines. In this paper we
examine the seat inventory control problem with two fare classes and two
arlines under competition. Each airline chooses an optima booking limit for the
lower-fare class while taking into account the overflow of passengers from its
competitor. We show that under certain conditions this 'revenue management
game has a pure-strategy Nash equilibrium, and for specid cases we show that
the equilibrium isunique. We aso compare the total number of seets available
in each fare class with, and without, competition. Andyticd results for one
gpoecid case aswell as numericad examples demondrate that, dl ese equa, under
competition more segts are protected for higher-fare passengers than when a
sngle arline acts as a monopoly or when arlines form an dliance to maximize

overdl profits.



1. Introduction

Congder the arrline flight schedules displayed in Table 1. We seethat TWA and Delta
schedul e flights between the same origin and degtination, at exactly the same times, using the
same equipment, and charging nearly the same price for advance-purchase tickets. This paper
examines how such direct competition for customers affects a fundamenta revenue management

decision, the dlocation of seat inventory among fare classes.

Airline Flight Aircraft Departure Price (advance purchase)
TWA 3832 Jetstream 41 8:35am $21350
Delta 6122 Jetstream 41 8:35am $208.50
TWA 3834 Jetstream 41 2:24pm $213.50
Delta 6204 Jetstream 41 2:24pm $208.50
TWA 3836 Jetstream 41 5:50pm $213.00
Delta 6206 Jetstream 41 5:50pm $208.00

Table 1. Flight schedulefor TWA and Delta ROC-JFK, April 23, 2000.

Thereis asubgantid literature analyzing arline economics under competition aswell as
arecent stream of operations research literature on the problem of optima seat alocation.
However, there are no published papers that place the seat alocation problem in a competitive
framework. Asthe example above illustrates, airlines face intense competition, and the impact
of competition on seet inventory decisons and arline revenuesiis of interest to airline planning
and marketing managers, as well as government regulators.

In this paper we model competition between two arlines offering two flights that serve as
subgtitutes for customers. Each airlineis faced with an initial demand from passengers who wish
to purchase tickets, but each airline may aso sl tickets to passengers that were denied a
reservation on the competing airline. Hence, the optima capacity limits for each class (the
booking limits) on each airline are interdependent. \We compare the optimal revenue
management policies of two competing arlines with the policy of amonopolist who operates
both flights or, equivaently, the policies of two airlines who form an dliance to maximize totd
profits. We show that under certain conditions a pure-strategy Nash equilibrium exigs for the
competitive case, and we identify specia cases under which the equilibrium is unique and sable.

Given the assumption that low and high-fare ticket prices remain congtant, we find that under



competition more seats are dlocated for higher-fare customers, and fewer sedts are dlocated for

the lower-fare customers, than under centralized control.

Readers familiar with the airline industry may find this juxtaposition of competitive
andyss and yidd management unusud. In generd, competitive decisons and seet dlocation
decisons are made by different functiond units within airlines, a different timesin the planning
process, and over extremely different time horizons. The decision to enter markets, the
assgnment of aircraft to particular markets, and the creation of a schedule takes place over a
time horizon of years and months. The alocation of seet inventory among customer classesisan
operationa decision with atime horizon of weeks, days, or even minutes (see Jacobs, Ratliff and
Smith [2000] for agenerd description of this planning process).

However, our smple modd will show that competition on aparticular route at a
particular time can have a profound effect on yiddd management decisons. In generd, arline
planners have recently shown an increased interest in the integration of airline functions. For
example, numerica experimentsin Jacobs, Ratliff and Smith [2000] demonstrate the value of
smultaneous optimization of yield management and scheduling decisons. Y uen and Irrgang
[1998] emphasize the benefits of integrating sales, yield management, pricing and scheduling
decisons.

Publications that consider the interactions among economic forces, srategic airline
market entry decisions, and airline schedules include the network design models of Lederer and
Nambimamdom [1999], Dobson and Lederer [1994], and the empirica work by Borenstein and
Rose[1994]. Another body of research focuses on the airlines scheduling decisions under
competition using variants of the spatial model developed by Hotelling [1929]. See, for
example, the recent empirica papers by Borenstein and Netz [1999] and Richard [1999]. These
papers focus on broad competitive problems and ignore the specifics of seet inventory alocation.
In this paper we will not be concerned with the reasons airlines schedule their flights at the same
time or with the pricing decison for each flight. Rether, we will concentrate on the implications
of competitive scheduling on seet inventory control.

There are numerous papersin the area of revenue management that focus on airline seat
inventory control, although to our knowledge only one addresses the issues described here. For
fundamenta results on the generd subject of seat inventory control see Belobaba[1989],



Brumdle et.d. [1990], and auseful literature review by McGill and van Ryzin [1999]. Our

paper isrelated to the work by Li and Oum [1998], which firgt introduced the seet dlocation
problem for two airlines in competition. The modd developed by Li and Oum has ardatively
restrictive assumption about how demand is alocated among arlines: total demand is plit
according to the proportion of seats available on each aircraft in each fare class, and the overflow
processis not explicitly modeled. In addition, the paper by Li and Oum identifies one,
symmetric equilibrium but does not determine whether the equilibrium is unique. Our approach
ismore generd and the results more advanced; we will place no restrictions on how initia
demand is distributed and will show that for specia cases of the problem the equilibrium is

unique.

The literature on inventory management has seen a stream of closely related papers
devoted to competition among firmsin which the firms determine inventory levels and
customers may switch among firms until a suitable product is found (this has been described as a
'newsboy game). Parlar [1988] examines the competition between two retailers facing
independent demands. He establishes that a unique Nash equilibrium exists. Karjalainen [1992]
formulates the problem for an arbitrary number of products with independent demands.
Lippman and McCardle [1997] examine both the two-firm game and agame with an arbitrary
number of players. Intheir modds, initia industry demand is alocated among the players
according to a pre-specified 'splitting rule’ Thisinitid dlocation may be ether deterministic
(e.g., 40% of demand to player 1) or stochastic (the rule itself depends on the outcome of a
random experiment). For the two-firm game they etablish the existence of a pure-strategy Nash
equilibrium and show that the equilibrium is unique when the initid alocation is determinidtic
and drictly increasing in the total industry demand for each player. Recent extensons of these
models include Mahgjan and van Ryzin [1999] who modd demand as a stochastic sequence of
utility-maximizing cusomers. For an arbitrary number of firms, they demondtrate that an
equilibrium exigts and show that it is unique for a symmetric game. Rudi and Netessine [2000]
andyze a problem similar to Parlar [1988] but for an arbitrary number of products. Given mild
parametric assumptions they establish the existence of, and characterize, a unique, globaly
stable Nash equilibrium.

Many of these papers compare totd inventory levels under firm competition with
inventory levels when firms cooperate. Lippman and McCardle [1997] show that competition



can lead to higher inventories, and Mahgan and van Ryzin [1999] derive amilar results given

their dynamic model of customer purchasing. On the other hand, with the subgtitution structure
of the modd of Rudi and Netessine [2000], under competition some firms may stock less than
under centrdization. In this paper we find that competition leads to an increase in high-fare seat
inventory,’ aresult smilar to earlier findings. However, our modd differsin many repects
from the newsboy competition described by Lippman and McCardle. Asin Mahgan and van
Ryzin, the method of dlocating arriving cusomersto firmsis more naturd than the stylized
gplitting rules proposed by Lippman and McCardle. 1n our model, demand for each fare class
on each airline can follow an arbitrary digtribution, and we dlow an arbitrary correlation
Sructure among demands. Numerica experiments will demondtrate that the degree of
corrdation can have asgnificant impact on seat dlocation decisons, and can even determine

whether a pure-strategy equilibrium exigs.

Thereisaso afundamenta difference between the problem considered here and the
problem considered in the inventory literature. Here we consider the alocation of afixed
inventory pool between two products, while the inventory literature assumes that the inventory of
each product isadecison varidble. In our problem, the effect of a changein one airline's
booking limit is quite complex. Asthe booking limit rises, demand by low-fare passengersto a
competitor declines while high-fare demand to the competitor rises. In addition, we will see that

the booking limit of an arline can &fect the volume of its own high-fare demand.

In the next Section we describe the revenue management game and provide examples of
scenarios in which Nash equilibria do, and do not, exis. We examine one variation of the game
for which we establish the existence of a pure-strategy Nash equilibrium. Section 3 focuses on
competition with partid overflow, modesin which only low-fare or only high-fare passengers
spill to acompeting airline. In Section 4 we compare andyticaly the behavior of amonopolist
(or dliance between airlines) with the behavior of two airlines under competition. Section 5
describes numerical examples and compares the service levels (percentage of customers who are
able to purchase tickets) under the competitive and cooperative cases. In Section 6 we discuss
the implications of our results on the practice of yield management and describe areas for future

research.



2. The Full Revenue Management Game

Suppose two airlines offer direct flights between the same origin and destination, with
departures and arrivas at amilar times. We assume that other flights on this route are scheduled
sufficiently far away in time o that they can beignored. For smplicity, we assume thet both
flights have the same seat capacity and that there are only two fare classes available for
passengers. a'low-fare and a'high-fare” A ticket purchased at either fare gives accessto the
same product: a coach-class seat on oneflight leg. Asistraditiond in the literature on airline
Seet inventory control, we assume that demand for low-fare tickets occurs before demand for
high-fare tickets, asis the case when advance-purchase requirements are used to distinguish
between customers with different vauations on price and purchase convenience. Customers who
prefer alow fare and are willing to accept the purchase redtrictions will be caled 'low-fare
customers. Customers who prefer to purchase later, at the higher price, are caled 'high-fare

customers. We aso assume that there are no customer cancdllations.

To maximize expected profits, both airlines establish booking limits for low-fare seats.
Once this booking limit is reeched, the low fareis closed. Sdes of high-fare tickets are accepted
until either the airplaneisfull or the flight departs. If ether type of customer is denied aticket at
one airline, the customer will attempt to purchase aticket from the other (we cdl these “overflow
passengers’). Therefore, both airlines are faced with arandom initid demand for each fare class
aswell as demand from customers who are denied tickets by the other airline. Passengers denied

aresarvation by both arlines are logt.
Figure 1 shows both overflow processes as well as the following notation:
L, H = passenger classes, L for low-fare passengers and H for high-fare passengers.
C = capacity of the aircraft.
B = booking limit for low fare established by airlinei=1,2.
Dy = arandom variable, demand for classk ticketsat airlinei, k =L,H and i =1,2.

pk = revenue from class k=L ,H passengers less variable cost.
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Figure 1. The Basic Competitive Model

We assume that both airline's prices arethe same and that p, < p,,. We adso assume that the

random variables Dy; have nonnegative support. However, to derive the following results
edtablishing the existence of a pure-strategy equilibrium we do not assume that the cumulative
digtributions are continuous (we may have discrete or continuous probability digtributions), and
there may be an arbitrary correlation structure among demands. In Section 3, however, to
establish the existence of a unique equilibrium we will assume that finite probability dengties
exigt and that low and high-fare demands are independent.

In this paper we study competing airlines engaging in a noncooperative game with
complete information. Each arrline attempts to maximize its profits by adjusting its booking
levels. In other words, the booking level Bi T [0,C] isthe strategy space of airlinei (for
amplicity, we assume that the booking level may be any red number inthisrange). Each arrline
knows the strategy spaces and demand distributions of its own flight aswell as those of the
competing arline.

An important assumption of the modd isthet the initid demands Dy; are exogenous, they
are not affected by the booking limits chasen by each arline. This assumption is congstent with
the newsboy game models of Parlar, Karjdainen, and Lippman and McCardle. However, one
might argue that the booking limits determine seet availability, and that in the long run this
aspect of service qudity affectsinitia demand. A more complete mode would incorporate this
relationship between booking limits and demand, and the solution would supply equilibrium
demands as well as equilibrium booking limits.  For our gpplication, however, the relationship
between booking limits and demand is weakened by marketing efforts such as advertising and

frequent-flyer programs. In addition, the use of travel agents and on+line reservation tools



reduces the margind search cost associated with making each booking. Given low search costs,
the decision asto which airline to query first may depend on factors that dominate the
likelihood that the query will result in a booking.

Our modd smplifies other aspects of the actud environment. For example, the model
assumes that passengers denied aticket in one class do not attempt to upgrade or downgrade to
another class. The modd aso assumes that a passenger, when first denied aticket, will not shift
to alater or earlier flight operated by the same airline.  However, dl results presented in this
paper dso gpply to amodd in which some fraction (Iess than one) of passengers denied a ticket
on one airline atempt to purchase aticket from the other airline, while some fraction (greater
than zero) are logt to both arlines. To amplify the modd and minimize the number of
parameters, we assume that al passengers denied aticket from their first choice overflow to their

second-choice arline.

The model contains only two fare classes, when in redlity there may be many more (see
Belobaba [1998] for an introduction to the complexities of real-world yidld management
gystems). We dso assume that the airlines booking limits are getic. That is, the booking limit is
st before demand is redlized and no adjustments are made as low-fare demand is observed. As
we will see, even this rdatively smple decison can be difficult to analyze in a compstitive
game, and this smple modd dlows usto focus on afew important questions. How will an
optima booking limit under competition differ from abooking limit under a centraized solution,
with asingle airline or when two airlines cooperate to maximize tota profits? How doesthe
exigence of 'spill' demand affect the dlocation of seat inventory? What isthe effect of

competition on profits, even when prices are held constant?

2.1 Low-fare then High-fare Spill

Thus far we have not described the order of eventsin the game. We begin with what may
be the most natura order:

1. Airlines establish booking limits B, and B.

2. Low-fare passengers arrive to ther first-choice airlines and are accommodated up to the
booking limits.



3. Low-fare passengers not accommodated on their firg-choice airlines 'spill’ to the dternate

arlines and are accommodated up to the booking limits.

4. High-fare passengers arrive to their firgt-choice airlines and are accommodated with any
remaining seats, up to capacity C in each arcraft.

5. High-fare passengers not accommodated on their first-choice airlines 'spill’ to the dternate
arlines and are accommodated in any remaining seets, up to capacity C in each aircraft.

To describe the problem in terms of customer demand and booking limits, define:
Dg =D, +(D - Bj)+,totd demand for low-fareticketson arlinei, i=1, j=2 and i=2, j=1.
R =C- mn(D/,B),the number of seats available for high-fare passengerson airlinei = 1,2.
D, =Dy, +(Dy; - R))", total demand for high-faretickets, i=1, j=2 and i=2, j=1.
Thetotd revenuefor arlinei is

p, =Elp, min( D}, B) + p,, min( D},,R)]. )
Each arline will maximize this expression, given the booking limit of its competitor. 1t will be
indructive to examine the firgt derivative of this objective function. It istediousto find the
derivative by the traditiona methods (e.g., applying Lebnitzsrule). Instead, by applying the
techniques described in the Appendix of Rudi and Netessine [2000], we find for i=1, j=2 and
i=2,j=1,

Wi = b (DI >B)- p, PY(D, >C- B,D] >B)
1B @)

- ps Pr(D; >B;,Dj <B;,Dy; >R;,D}; <C- B).

Although thisis acomplex expression, there is a sraightforward interpretation for each term.
An incrementa increase in the booking limit B; by arlinei has three effects on that airlinés total

revenue. Firg, revenue from low-fare customersincreases with probability Pr(D; >B).
Second, revenue from the high-fare customers decreases with probability

Pr(D) >C- B,,D/ >B). Whilethese two effects are direct consequences of the changein B;,
thereisathird, indirect effect. Revenue from high-fare customers may decrease because (i) an



increase is B; may reduce the overflow of low-fare cusomersfromi to j, (ii) areduction in the

number of low-fare customers at j may increase the number of seets available for high-fare
customersat j, (iii) this may reduce the overflow of high-fare cussomersfromj toi and (iv) a
declinein the overflow from j may reduce the number of high-fare customers accommodated at .
The probability of this sequence of eventsisthe third term on the right-hand side of equation (2),
which implies thet an increase in the booking limit of arlinei can result in adecrease in high-

fare demand to airlinei.

Because the Strategy spaces of the airlines are compact and the payoff functions are
continuous (see Propaosition 1, below), a Nash equilibrium in mixed strategies must exi<.
However, a pure-grategy Nash equilibrium may, or may not, exist for arlines playing this game.
Figure 2 shows the best reply functions, or reaction functions r, (B, ) , of two airlines, each with C

=200 and multivariate norma demands (the parameters for this example will be described in
detall in Section 5). Figure 3, showing a game with multiple equilibria, was aso generated with
the multivariate normal didtribution (again, details are given in Section 5). Figure 4 displays two
reaction functions, each with two discontinuities, producing a game without any pure-strategy
equilibrium. An extremely unlikely demand pattern was used to produce this outcome. Figure 4

was generated from:

Bimoda demand digtributions for each fare classand arline. The distributions were
crested by mixing two normd distributions, one representing low-volume demand (mean
= 20 seats) and the other representing high-volume demand (mean = 150 seets).

Strong negative correlations between low-fare and high-fare demands. When low-fare
demand was chosen from the low-volume didtribution, high-fare demand was chosen
from the high-volume distribution, and vice-versa. Asareault, r (D,;,D,;) =- 0.9 for
i=1,2.3

A large difference between high and low fares (p,, / p, = 4).

3 |tisinterest ng to note that in practice the strong negative correlation would present an excellent opportunity for
each airline to practice dynamic yield management, with an adjustable booking limit dependent on observed low-
fare demand. Given such dynamic decision-making, there may well be a competitive equilibrium.
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While we cannot specify andyticaly the genera characteritics that would guarantee the
existence of an equilibrium, expresson (2) offers someingght. For most reasonable probability
digtributions and for most vaues of B, and B, the firgt two terms dominate the third term, so that

%)) pLPr(D|5>B|)‘ Pu Pr(D,Ii>C- BI’DIi>Bi)' (3)

Thisexpression is Smilar to the firg-order conditions for the standard two-fare seet dlocation

problem of a stand-aone airline, dthough here exogenous demands D,; have been replaced by
total demandsD,, . Brumelle et.d [1990] show that when the demands are monotonically
associated, sothat Pr(D,}, >C - B, | D], > B) isnondecreasingin B, , then the objective
function of arlinei is quasi-concavein B, . Given that the two players face objective functions

that are continuous and quasi-concave in each booking limit, there exists a pure-strategy Nash
equilibrium (Moulin, 1986).

10



This reasoning does not provide us with precise conditions for the existence of an
equilibrium, but we have found this analysis to be hepful when examining the results of our
numerical examples. When D, and D,,, are strongly negatively correlated then the total

demandsD,, and D/, are not monotonicaly associated. In this case, the objective functions for
eech arline are not unimodad, producing the discontinuities in the reaction functions shown in
Figure4. When D, and D,;; are weskly negatively correlated, independent, or positively
correlated, D, and D/, maintain the positive association property and a pure-strategy equilibrium
exigs. Wewill seein Section 5 that the latter case applies for most reasonable problem
parameters.

Now we do identify two sufficient conditions for the existence of a pure-strategy
equilibrium. Firg, if low-fare demand is extremely high sothat Pr(D,, > C) =1 for i=1,2, then

a pure-grategy equilibrium must exist and, under certain conditions, the equilibrium must be
unique and stable. In this case, low-fare overflow isignored by each airline because there is
dready asurplus of low-fare customers, and airlines only compete for high-fare customers.
Because thisis a specid case of the model presented in Section 3.1, further discusson and a
proof will be presented later (see Proposition 3 and Corollary 1). The second condition involves
arevison of thetiming of the game. Thisis presented in the next section.

2.2 High-fare then Low-fare Spill

We will now change the order of events and assume that low-fare customers that overflow are
accepted only after all other passengers have been accommodated. The order of eventsisas

follows

1. Airlines establish booking limits B; and B;.

2. Low-fare passengers arrive to tharr first-choice airlines and are accommodated up to the
booking limits.

3. High-fare passengers arrive to their first-choice airlines and are accommodated with any
remaining seats, up to capacity C in each arcraft.

4. High-fare passengers not accommodated on their first-choice airlines 'spill' to the dternate
arlines and are accommodated in any remaining seets, up to capacity C in each aircraft.

11



5. Low-fare passengers not accommodated on their firgt-choice airlines 'spill’ to the dternate
airlines and are accommodated up to the booking limits.

To maintain the flavor of the timing described in Section 2.1, in Step 5 we only book low-fare
passengers up to the booking limit, even if additiona seats are available. Note that this game
requires each airline to distinguish between low-fare passengers who choose that airline first
from those that come to the airline as a second choice. While this may not dways be possible,
under thisre-ordering, it is possible to establish the existence of a pure-strategy Nash equilibrium
because an adjustment in B, does not affect the high-fare demand faced by airlinei.

Firg define

min( D,;,B;), number of low-fare tickets sold in the first round
D/; = Dy +(Dy; - (C- min( B;,D))", total demand for high-fare tickets a airlinei
(D, - B)", overflow of low-fare passengers

(m'n( B.,C- D/)- D, )+, number of sests available to the overflow low-fare passengers.

Thetotd revenuefor arlinei is

_ g mn(Dy,B) g
Pi = g+ me'n((DLj - Bj)+,(m'n( B,.C- D}Ii)_ Du)+)+ Py m'n(C- min( B.,DU),DL)H

Proposition 1. Given the game ordering defined by steps 1-5 above, a pure-strategy Nash
equilibrium in booking limits (Bz, B,) exists.

Proof: Wewill show that the objective function for each player is continuous and submodular in
(B1, Bp). Therefore, the objective function is continuous and supermodular in (B, -By), which
are sufficient conditions for the existence of a pure-strategy Nash equilibrium (Topkis, 1998).

To see that the objective function is continuous, note that the strategy space isfinite 0
that for any given demand redization the objective function is bounded. In addition, the
objective function is continuousin (By, By) for any given demand redization. Therefore, by the
bounded convergence theorem, the expectation (4) is continuous (Billingdey, 1995).

12
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To prove submodularity, note that the expectation of a submodular function is
submodular, the sum of submodular functionsis a submodular function, and a submodular
function multiplied by a positive congtant is a submodular function (Topkis, 1998, Lemma 2.6.1
and Corollary 2.6.2). Therefore, we will prove that for any given demand redlization, each of the

three termsin the sum (4) issubmodular in (B, B)). Thefirstteem, min( D ;, B;) , dependsonly
on B;, soit issubmodular. For the last two terms we will employ the following two lemmes (for
the sake of readability, in these lemmas and for the remainder of the proof the term ‘increasing’
implies nondecreasing and the term 'decreasing’ implies nonincreasing):
Lemma 1 (Adopted from Topkis, 1998, Example 2.6.2 (f).) If g, (B;) isincreasng and
g, (B,) isdecreasing then min( g, (B;), g, (B;)) isasubmodular functionin (B;, B).
Lemma 2 (Topkis, 1978, Table 1) Suppose g(B, B;) isincreasing in both B and B; and
isasubmodular (supermodular) functionin (B;, B)). Also supposethat f (z) isanincreasng
concave (convex) function. Then f (g(B,, B,)) isasubmodular (supermodular) functioniin
(Bi, B).

We re-write the second term of the objective function as

m'n((DLj - Bj)+,(mr( B.C- Dy)- DLi)+)

e . , ) (5)
=(D, - B, +mn(o,(mr(a,c- D;)- D) - (D, - B)) )
Theteem (D, - Bj)+ depends only on B; and hence is submodular. To prove that the second
term in (5) is submodular, we will employ Lemmas 1 and 2. Since f (z2) = min( 0, z) isaconcave
increasing function of z, it remainsto show that

Q(B.,Bj)=(m'n( B.,C- D:n)' DLi)+' (DLj : Bj)+ (6)

isan increasing submodular function. Wefirst show that it isan increasing function. Itis
obviousthat this function isincreasing in B;. Further, from the definition of D, above,

(min( B,C- D})- D, )+ isether linearly decressing in B; (for some demand redizations) or

does not change as Bj changes. In addition, - (D - Bj)+ isaso either linearly increasing or

13



invaiantin B. By examining the two termsin (6), we see that when the second termis linearly
increesing in B; then the first term is either linearly decreasing or does not change. When the
first termislinearly decreasing in B; then the second term must beincreasing. Therefore, the

second term dominates, and g(B, B;) isincreasing in both B and B.

We now show that g(B , B;) isaso submodular. First, min( B;,C - D/.) isincreasing
in B, decreasing in Bj, and by Lemma 1 asubmodular functionin (B;, Bj). Therefore,
min( B;,C - D/;)- D, isincreasing and supermodular in (B;, -Bj). In addition, the function
f€z) =(2)" = max(0, z)isconvex and incressing in z, 0 that by Lemma 2
(min(B,,C- DI,)- D) isasupermodular function in
(Bi, -Bj) and therefore asubmodular functionin (B;, B)). Hence, g(B , B;) isaso asubmodular

function. This completes the proof for the second term of (4).
The third term of the objective function is min (C -mn(B,D), DLi). Note that
C- min( B;,D,;) isdecressingin B;, and D/, isincreesingin B. By Lemmal,

min (C - mn(B,D,), DLi) issubmodular. This completes the proof. B

While we can be sure of a pure-strategy equilibrium in this case, we cannot be sure that the

equilibrium is unique. Conditions for uniqueness will be described in the next section.

3. Competition with Partial Overflow

In this section we consder competing arlines with only high-fare passengers overflowing from
one arline to another (Section 3.1) and with only low-fare passengers overflowing (Section 3.2).
For each case we will find conditions under which a pure-strategy equilibrium exigsand is

unique.

It is, of course, reasonable to ask why we should be concerned with these specia cases
gnce both high and low-fare customers are likely to look for a seat on another airlineif one
cannot be found on the preferred airline. In fact, these specia cases are good approximations of
the generd game described in Section 2.1, aslong as the number of overflow customers from
one of thetwo fare classesissmall. In addition, the model to be presented in Section 3.1

14



includes the case when high-fare passengers switch arlines while demand for low-fare ticketsis
aufficiently large to sl al available low-fare tickets.

Moreover, andysis of these specid cases sheds some light on the reasons why the full
game presented in Section 2 may fail to have a pure-drategy equilibrium. We will see here that
agame with only high-fare overflow aways has a pure-srategy equilibrium, while a game with
only low-fare overflow may not. If only high-fare customers spill to a competitor, then the
arlinesareinvolved in a supermodular game similar to the inventory game described by Parlar
and by Lippman and McCardle. Interms of yidd management, an increase in the booking limit
by one arline increases demand by high-fare passengers to the competitor, thus lowering the
competitor's booking limit. Each player's reaction function is monotonic in the other player's
drategy, and an equilibrium must exist. However, when both types of overflow occur the
response functions need not be monotonic, asin Figure 4. Additiona conditions are needed to

establish the existence of a pure-drategy equilibrium.

3.1 High-Fare Overflow Only

We now assume that there is no overflow of the low-fare passengers and only high-fare
passengers gpproach the other arline when their firgt-choice arline is not available. Figure5
illugtrates the flow of passengers. Note that the following definitions differ dightly from the
full-overflow' case presented in Section 2.1.

R=C-mn(D,,B),thenumber of seets avalable for high-fare passengerson airlinei.

D =Dy, +(Dy; - R;)", total demand for high-faretickets on airlinei, i=1, j=2 and i=2, j=1.
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Airline 1 Airline 2

(DHl - (C - min(Du’ Bl))y
>

High-fare
— | High-fare dess  |4——

class

B1

min(B2,Dw2)
min(B1,DL1)
Low-fare
Low-fare class
—Du I das « D2
Figure5: High-fare passengers overflow
Thetota revenue for arlinei is
p, = E[p, min( D,;, B) + p,, min( D};..R)|.. W

Thefirg derivative of the objective function will be useful in the following theorems. We find

11%= p_ (D, >B)- p, Pr(D}, >C- B,D, >B). ®)

The existence of a pure-strategy Nash equilibrium, established in the following
proposition, follows from the supermodul arity of the game. This result holds for any demand
digtribution, including distributions with correation among airlines and among fare classes. As

was the case with Proposition 1, the demand distribution may be continuous or discrete.

Proposition 2. Given overflow by high-fare customers only, a pure-strategy Nash equilibriumin
booking limits (B, By) exists.

Proof: By the reasoning presented in the proof of Proposition 1, the objective function (7) is
continuous. We will now show that both min( D, ,B,) and min( D/, R) are submodular, so that

the objective function is submodular for any given demand redlization and therefore the
expectation (7) issubmodular. Thisis sufficient to establish the existence of a pure-strategy
Nash equilibrium (Topkis, 1999).
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Observethat mn( D, ,B,) dependsonly on B and hence is submodular. By the
definitions above, R isdecreasingin B and D/, isincreasingin B. By Lemma in the proof of

Proposition 1, min( D}, R) issubmodular. m

To show there isa single, unique equilibrium, we make the following assumptions:

Assumption 1. There exigts, for each random varigble, afinite probability density function
fo, & )=dPr(D, <t)/dt . Inaddition, the density functions f, (t)>0 for 0£t £C and

i=1,2.

Assumption 2: Demands for low-fare and high-fare tickets are independent. More formdly, let
D, =(D,,D,)adD, =(D,,,D,,) . Weassumethat D, and D, are mutualy independent.

Assumption 3: Pr(Dyj > C) >0for i=1,2.

Proposition 3. Given overflow by high-fare customers only and Assumptions 1-3, thereisa
unique, globally stable Nash equilibriumin (B1, By).

Proof: Wewill characterize the best reply functions (reaction functions) of the playersin the
game and then will show that the functions are a contraction on (B,, B,) . Therefore, asngle,
unique equilibrium exigs and is Sable.

Wewill first show that each function p, , with B; held constant, reachesits maximum a a

unique point B T [0,C) . Given Assumption 2, the first derivatives of the objective functions

may be written as

1111_F;i=|:)r(DLi >B)(p. - P4 Pr(DI:i >C-B)) i=12. ©)

From Assumption 3, the first derivative is dways |ess than zero at the upper boundary C:

TP

Bl Pr(D, >C)(p. - py Pr(D; > 0)) =Pr(Dy; >C)(p_- py)<0. (10)

B,=C

Now consider two cases. If Pr(D;, >C)< p,/ p,, then(9) is positive when evaluated at the

lower boundary:
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Tp:
1B

I 1B,=0

= Pr(DLi > 0)( P.- Py PI’(D; > C)) =P Py PI’(DI” > C) >0. (11)

By assumption 1, Pr(D/;, >C - B )isrictly incressingin B, , and the objective function is
grictly quas-concave in theintervd [0, C]. If thereisan interior solution it is determined by the
following firs-order conditions (note that we have expanded thetermD),.):

Pr(D,, +(D,, - C+min(D,,B,))* >C- B) =P i=1j=2adi=2]=1. (12)

P

If Pr(D;, >C)3 p_/p, ,thenthe objective function is not increasing a 0 and the s ope does
not changesgn intheintervd [0, C]. Therefore, the objectiveis maximized a B; = 0.

Equation (12) and the boundary condition specify reaction functions r,(B,) and r, (B,) for

the two players. When the value of the reaction function isin the interior (0, C) then implicit
differentiation of (12) finds the magnitudes of the Sopes of the reaction functions

18| | foimeocs (- BIPD, >C-B))

B, | - 8) | -

If the value of the reaction function is aboundary solution, B =0, then |‘|1ri(BJ. )/'ﬂBj| =0<1.
Therefore, the reaction functions (r,(B,), r,(B,)) areacontractionon (B, B,) .

From Proposition 2, we know that at least one equilibrium point exists. From the proof
of Theorem 2.5 of Friedman [1986], if thereisat least one equilibrium point and the reaction
function is a contraction then the game has exactly one equilibrium point.

In addition, the expression for the derivative in (13) implies that

|T.(B,)[1r,(B))|
| 1B, | 1B, |

<1 (14)

S0 that the equilibrium is stable (Moulin, 1986). &

4in (13), the expression f_, IA(t ) represents the density function of p[, given event A,
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This result dlows us to say something stronger about the full-overflow case of Section
2.1 when low-fare demand is sufficient to fill both aircraft.

Corollary 1. Assume overflow by both low-fare and high-fare customers. Given Assumptions 1
and 2, and given that low-fare demand is extremely large (Pr(D,, > C) =1 for i=1,2), thereisa
unique, globally stable Nash equilibriumin (By, By).

Proof: In this case, airlines only compete for high-fare customers and the overflow of low-fare

customers can be ignored because there are no extra seats to accommodate them. 1n the full
T

model objective function (1), wereplace mn( D;;, B,) with B, . Thisisaspecid case of the
mode examined in Section 3.1. Therefore, the uniqueness and stability results hold here. B

3.2 Low-Fare Overflow Only

We will now assume that high-fare passengers do not overflow and that only low-fare
passengers switch arlinesif their first choice is fully booked (see Figure 6).

Airlinel Airline 2
D1 Full fare Full fare Dr2
class class
B2
B )
Min(Bz,D.2)
Min(Bi:,D1)
] (Du1 - By) Discount
Discount [~~~ ~="""-- fare class
Di1 . Di2
— oy O (Denmy | Emm—

Figure 6. Low-far e passenger sover flow

Firdt define:
D} =D, + (D, - B;)", total demand for low-fareticketson arlinei, i=1, j=2 and i=2, j=1.

R =C- mn(D/,B),thenumber of seats available for high-fare passengers on arlinei.
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The number of low-fare tickets sold is equa tomin( D/, B) and the totd revenue for airlinei is

p, = E|p_min(D],B)+ p, mn( D,,,R)]. (15)

Surprisingly, a pure-gtrategy equilibrium need not exist for this smple game. The objective
function is not necessarily submodular or quas-concave. However, under Assumptions 1-3 the
equilibrium is unique and Sable.

Proposition 4. Given overflow by low-fare customers only and Assumptions 1-3, thereisa
unique, globally stable Nash equilibriumin (Bs, By).

Proof: Given independence between high and low-fare demands, the first derivative of the
objective function (15) is

== =Pr(Df > B)(p_ - p, Pr(D, >C- B)). (16)

The objective function is quas-concave on [0,C] and it can be shown that the optima solution is
dwaysintheinterior, (0,C). Thefirg-order condition

Pr(D,, >C- IE’;I):% (17)

H

depends only on B and not on the competitor's action B;. Therefore, (17) defines the unique
optimal solution for each airline and each reaction function has adope of zero. The reaction

functions are a contraction on (B, B,) and, following the reasoning of the proof of Proposition

3, this contraction leads to a unique, globally stable equilibrium. &

Thissolution isidenticd to the solution for a sand-done arline. When high-fare
customers do not switch airlines and high-fare and low-fare demands are independent, the
optima booking limits for both stand-aone arlines and arlines in competition are not
influenced by the demand digtributions of low-fare customers.

4. Comparing the Competitors and a Monopolist

We will now compare the behavior of two arlines in competition with the behavior of a

monopolist. Note that the term 'monopolist’ does not necessarily imply that asngle firm isthe
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only carrier on aparticular route. The 'monopolist’ may be two arlinesin an dliance to

coordinate yield management decisons. In addition, two airlines may compete on a particular
route at certain times of day, while each airline may hold avirtua monopoly a other times of
day because its competitor has not scheduled a competing flight at apoint closeintime. For
example, United Airlines has the only direct flight from Rochester, NY to the Washington DC
areain the evening, while mogt of its flights during the morning and afternoon compete directly
with flights by US Airways.

In generd, we will find that the total booking limit for the monopolist is never lessthan
the sum of the booking limits of two competing arlines.  In this section we provide a proof of
this result, given amodd with high-fare overflow only (the modd presented in Section 3.1). In
the following section we will present numerica experiments utilizing the full modd of Section
2.1. To smplify the comparison, we assume that the price ration p./py and the distributions of
consumer demands D, are equa under the competitive and monopoly environments. In Section

6 we will discuss the implications of these assumptions.

Our results are consgtent with the findings of Lippman and McCardle [1997], who
andyze competing newsvendors. They find that competition never leadsto a decreasein tota
inventory. The 'inventory' of each newsvendor is analogous to the stock of protected high-fare

segts, C - B, , and the demand for newspapers is analogous to demand by high-fare customers.
However, our problem incorporates a significant complication, the stochastic demand by low-

fare, aswdl ashigh-fare, customers.

First we review the case with no competition and only one aircraft with capacity C inthe
market (for further details, see Belobaba, 1989, and Brumdle et.d., 1990). Sincethereisjust
one aircraft, we will suppress the subscript i=1,2 which denotes the aircraft in the competitive

cae. After establishing abooking limit B, thearlinewill sdl min( D, , B) low-faretickets
and min(D,,,C - min( D, ,B)) high-faretickets. Therefore the total revenueis

p =E[p, mn(D,,B) + p. min(D,,,C - min( D, B))]. (18)
Thefird derivativeis

1111_22pl_F>r(D|_>B)'pHF)r(DH>C'B’DL>B)' (19)
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As mentioned in Section 2, the first-order conditions are sufficient for a solution when

Pr(D, >C- B|D, >B) isnondecreasingin B [Brumelle et d. 1990]. Note that this condition
issatisfied if Dy and Dy are independent. Given this property, asolution B™ within theinterval
(0,C) satisfies®

Pr(D, >C- B' |D, >B) =P (20)
P
Now congder an arline with amonopoly (or an aliance between two airlines) operating
two flights. Passenger arrivals and overflows follow the order of events described by Steps 1-5
a the beginning of Section 2.1. While this case may seem to be more complex than the Sngle-
flight problem, it reduces to the smpler problem described above, since the passenger overflow
from one arcraft is captured by the same firm in the other aircraft. We can write the objective

function in thistwo-aircraft case as

p= El_pL m'n( DLl + DL2’ B1 + Bz) + Py mr( DHl + DHl’ 2C - mr( DLl + DLZ’ Bl + Bz)] (21)
and thefirst derivetive issmilar to (19) above, with B= B, + B, :

11-[-[2 = pL I:q’-(DLl-'-DLZ >B ) pH I:)r(DHl-'-DH2>ZC: B DL1+DL2 >B ) (22)

Now we congder the Stuation introduced in Section 3.1. Assume that low-fare
customers do not overflow to a second-choice flight while high-fare passengers do overflow.
The objective function for the monopoly arlineis

epL(mn( D, B,) +mn( D,,B,)) 0

(23)
é + Py min (DHl + DH2’2C mn( DLl’ B) mn( DLZ' B ))U

Aninterior solution (B;,B;) satisfies the following firs-order conditionsfor i=1, j=2 and i=2,
j=1°

® Thereisalso aboundary condition. If P(D, >C)3 p, /p, then B =0.

6 Again, there are boundary conditions. We present conditions for ‘extreme’ solutions here. |If
P(D,, +D,, >2C)? p,_/p, then (B;,B;)=(0,0). If P(D,, +D,,>C- min(D,C)£ p, /p, fori=1.2, then
(BI 1B;) = (C!C) )
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£l =p.P(D, >B)- p, (D, +D,,>2C- B - mn(D, B0, >E) =0. (24
I8/ ,B))
There may be multiplevauesof (B;, B, ) that satisfy (24).

Thisfirg-order condition and the first-order conditions (12) that uniquely determine the
comptitive equilibrium alow us to compare, andyticaly, the centrdized and competitive
solutions.

Proposition 5. Assume overflow by high-fare customers only and Assumptions 1-3. Also assume

that the optimal solution for the monopolist as well as the equilibrium under competition arein
theinterior, e.g., B 1 (0,C). Then the total number of protected seats, By+ B, is lower under

competition than under the centralized solution.

Proof: Define B?, i=1,2, asthe optimal decisions for the monopolist (‘a for dliance) and define
B, i=1,2, asthe equilibrium decisions under competition. The dliance solution is determined

by thefirg-order conditions, equations (24). Given Assumptions 1 and 2, these first-order

conditions may be re-written as

Pr(D,; + Dy, > 2C- B - min( D, BY)) =L fori=1,j=2and =2, j=1. (25)
p

H
The competitive optimdity conditions (12) may be re-written as.
Pr(D,,, +D,, >2C- Bf - mn(D,,, BY))
(26)

+Pr(DHl+DH2 <2C- Bic - min( DLj!BjC)!DHl >C- Bic)=%
H

fori=1,j=2 andi=2, j=1. Note that (25) and (26) differ by a single probability term in the | &ft-
hand side of (26). Since this extra term in nonnegative and the right-hand sides are equal, the
fallowing inequdities hold Imultaneoudy:

Pr(DHl +DH2 >2C- Blc - mr‘( DL2’ Bg))ﬁ Pr(DH1+ DHZ >2C- Bla - mn( DinBza))i (27)
Pr(DHl + DH2 >2C- B; - mr( DLl’BlC))E Pr(DHl + DH2 >2C- B; - mr( DLl’Bf))' (28)

Since thismugt be true for any value of C, these inequdities define stochastic orders on two pairs
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of angle-vaued functions of random varigbles D,;, and D, . To makethis clear, after some
agebraic manipulation, (27) and (28) may be re-written as

Dy, + Dy, + min( B + D, Bf +B,) £4 Dy, + Dy, + min( B +D,, B +B;),
Dy, + Dy, + mn(B; + D, B +B;) £4 Dy, + Dy, + min( B; + D, B +B;),

where X £ Y indicates that X issmdler then Yin the usud stochastic order. Because of the

independence between low-fare and high-fare demands (Assumption 1) and the preservation of
stochastic order under convolution (Shaked and Shanthikumar, 1994),

min( BS + D, BY + BY) £, min( BY + D, BY + BS),
min( BS + D,,, B +BS) £, min( BZ +D,,, B +BY).

Findly, by contradiction, assumethat B + B, > B + B;'. Then for both inequdities (31) and
(32) to hold we would need smultaneoudy B < B and B; < B;', which isinconsistent with the

assumption. Hence, Bf +B;, <B’ +B;. 1

Proposition 5 implies that, under competition, at least as many seets are held for high-fare
cusomers asis optima under joint profit maximization. For the monopoali, every high-fare
passenger who does not find aseet at airlinei and turnsto airlinej is not 'logt' to the firm. Under
competition, however, when airline i establishes alower booking limit, airlinej lowersits
booking limit aswell as the two arlines compete for high-fare passengers.

5. Numerical Experiments

To determine whether the previous section's results gpply to the full-fledged game described in
Section 2.1, we cdculate numerically both the competitive equilibrium and the optima

monopoly solution under awide variety of parameter values. Our god is to see whether the
booking limit set by the monopoly, B + B3, iscondstently greater than or equd to the total

booking limit under competition, B + B; .

For each scenario, demand is distributed according to a multivariate norma distribution and

truncated at zero; any negative demand is added to a mass point a zero. Solutions are found by a
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sample gradient dgorithm and the gradients themselves, expressons (2) and (22), were
evauated by Monte Carlo integration (a Ssmple search procedure was aso used if the objective
function was not quasi-concave). The scenarios are created by combining the following

parameters.

- Rdioof highfareto low fare: To cover arange that includes many actud price ratios, we

usethefollowingvaues p, / p, =[15, 2, 3, 4].

- Proportion of demand due to low-fare passengers. Let m), (m),;) be the average low-fare

(high-fare) demand for airlinei, i=1,2. Becausein practice low-fare demand is often greater

then high-fare demand, we assumethat m;, 2 m,; , and we use proportions m, /(m; + m,,)
=[0.5,0.75, 0.9]. Below we will also discuss experimentsinwhich m; /(m; + m,;) <0.5.

- Proportion of demand dueto arlinei: Let m, (m,,) bethe average demand for arline 1 (2),

for demand classk=L,H. Dueto symmetry, we need only test scenarioswhere m, < m, .

Weuseraios m, /(m, +m,,) =[0.1, 0.25, 0.5].

- Vaiadility: To limit the number of parameters, we assume that al four cusomer demand
distributions have the same coefficient of variation, CV. We use values
CVv=[0.25,05,1,15,2]. Notethat CV'shigher than 1 rarely occur in practice (Jacobs,
Ratliff and Smith [2000] describe 0.2 to 0.6 as a reasonable range for the CV). However, we
fdt thet there is some vaue in examining environments with highly varidble demands. When
we present the results below, we present both the aggregate results and the results for low
CVs(CV=0.250r0.5).

- Corrdation: Again, to limit the number of parameters, we assume that the correlaions
among al demands are equa. When four random variables are distributed according to the
multivariate norma digtribution, the lowest possible common corrdation is

- 1/(4- 1) = - 0.33; when the common correlation is lower than this bound the covariance
matrix is not postive definite (Tong, 1980). For correation, we usevaues r =[-0.3, 0.0,
0.5, 0.9].

When combined, these parameters define 4 * 3* 3* 5* 4 = 720 scenarios.
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Before we examine aggregate satistics from the 720 scenarios, let usfocuson asingle
'baseline’ scenario. Wechoose p, / p, =2, CV =0.5,and r =0, set the mean low-fare
demand to each airline a 150 passengers, and set the mean high-fare demand at 50 passengers so
that m, /(m, + m,)=0.75and m, /(m, +m,) =0.5. While certain parameter values included

in the ranges above are unlikey to occur in practice, this scenario is rdatively plausble.

Figure 2 displays the reaction functions of the airlines, given these parameter values.
Thereisaunique equilibrium, resulting inB; = B; = 144. Therefore, the tota booking limit is
288 and the airlines reserve atotal of 112 seats for high-fare customers. A monopoalis, on the
other hand, hasan optimd total booking limit of B? + BS =300 seats, with 100 sests set aside
for high-fare customers. If we define the "service level” as the probability that a customer is able
to purchase a seet on ether aircraft, the difference in booking limits produces sgnificantly
different service levels for each customer class. Under competition, 45% of low-fare customers
found a seet on ether flight, while under amonopoly the low-fare service leve risesto 50%. On

the other hand, high-fare passengers benefit from competition. Their service leve is 77% under
competition, 70% under the monopoly.

While this particular example produced a unique equilibrium, in Section 2 we saw that
the full-overflow game may have multiple equilibria or may not have any equilibriaat dl. Such
an outcome would complicate the comparison between competitive and monopoly booking
limits. However, by examining the airline response functions for each of the 720 scenarios, we
saw that in every case an equilibrium exists and was unique.  All response functions were
continuous, and most produced a stable equilibrium, asin Figure 2. As mentioned above, an
extremely low (negative) correlation between high and low-fare demands can generate the
outcome shown in Figure 4, in which no pure-strategy equilibrium exiss. We have aso found
instances of multiple equilibriawhen theratio m, /(m; + m,;) islow (e.g., 0.1) and correlation

isnegative or zero. We will discuss these cases at the end of this Section.

Firg we compare the tota booking limits in the competitive and monopoly environments
for the origind 720 scenarios. In every scenario, the booking limit for the monopoly is equd to,
or gregter than, the sum of the booking limits for the airlinesin competition. The mean

difference (B + BJ) - (B; + B;) acrossdll scenariosis 15 seats, and the difference varies from 0
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seatsto 131 seats. When we examine only those scenarios with CV=0.25 or CV=0.5, the
differencesare smdler. Under these scenarios, the average difference is 9 seats with arange
from O to 103 sests.

In generd, the largest differences occur when corrdationislow (r =-0.3) and expected
demands are equally balanced among arlines and classes (when m, /(m, + m,,) =0.5and
m, /(m, +m,,)=05). Table 2 displaysthe difference (B® + B;) - (B, + B;) for each vaue of

r . Each column of Table 2 represents an average over 180 scenarios.  Asthe correation

increases, the difference between the monopoly and competitive cases decreases.

r =-0.3 r =0.0 r =05 r=09

Avg. monopoly total booking limit B + B 299 266 235 220
Avg. competitive totd booking limit B; + B} 265 249 228 218
Average(B? + BY) - (B; + B;) 34 17 7 2
Low-fare service leve (monopoly-competitive) 10.0% 4.1% 1.3% 0.4%
High-fare service level (monopoly-competitive) -10.0% -4.7% -1.7% -0.4%

Table 2. Demand correlation and the effects of competition.

The differences in booking limits have a sgnificant effect on the service levels offered to
each customer class. Over dl cases, the service leve offered to low-fare customersrose an
average of 4% under the monopoaly (39% to 43%), while the service level offered to high-fare
customers declines an average of 4% under the monopoly (75% to 71%). For scenarios with low
CVsthe average differences were a bit smaller: 3.7% and 3.4%, respectively. In addition, the
range of results was extremey large. In five scenarios out of 720, monopoly low-fare service
levels were over 50% greater than the low-fare service levels under competition. The difference

in high-fare service levels was as high as 31%.

In generd, the differencein tota profits between the monopoly and competitive cases was
small. Averaged over dl 720 scenarios, profits to the monopoly are just 0.3% higher than the
total profits under competition, with arange from 0% to 5%. When restricted to scenarios with
CV=0.25 or CV=0.5, the average differencein profitsis 0.2% with arange from 0% to 3.5%.

The largest differences in profit were seen when corrdation islow, py / p. is high, and expected
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demands are equdly baanced among airlinesand classes. These smdl differencesin profit are

not unexpected since in most cases the objective function is rlatively flat' near the optimum.

It is more difficult to make these comparisons when the proportion of demand due to low-
fare passengersissmal (m; /(m, + m,,) <0.5) because scenarios with multiple competitive
equilibriabegin to appear. For example, with m, /(m; + m,;) =0.1, we identified one scenario,
shown in Figure 3, with three equilibria (B® = 6,B; =36), (B = 36,B; =6), and
(Bf =22,B; =22). However, under this scenario the monopoly solutionis B + B =93. As
was true for the origind 720 scenarios, a each competitive equilibrium the tota booking limit is
smdller than or equd to the booking limit chosen by amonopoly. Thiswastrue for all examined
scenarioswith m;, /(m; +m,) <0.5.

6. Observations and Future Research

In this paper we have examined how competition affects a fundamenta decisonin yied
management, the dlocation of seets among low and high-fare classes. Besides the technical
results concerning the existence and uniqueness of competitive equilibria and the andytica
expressions for the first-order conditions, our primary finding is that the sum of the airlines
booking limits under competition is no higher than the total booking limit produced when total
profits from both flights are maximized (asin amonopoly or when airlines cooperate in setting
booking limits). Under competition more high-fare tickets and fewer low-fare tickets may be
sold than under amonopoly. Thisis not an obvious result, for in many standard economic
models competition leads to afal in prices (e.g., asmple Bertrand mode of price competition).
Here, we have held prices congtant, but competition leads to a redllocation of inventory among
customer segments, producing arise in the average price paid for an airline sedt.

Under the monopoly solution, low-fare customers are more likely to find a segt, and are
more likely to find a seat on afirgt-choice airline, than under competition.  With prices held
congtant, a monopolist would improve service for the low-price ssgment while diminishing
sarvice for the high-price ssgment. This may be particularly interesting in regulaory
environments in which antitrust laws prohibit airlines from colluding on prices but dlow them to

coordinate yield management decisons.
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Aswe mentioned in Section 2, our mode ignores many red-world aspects of yidd

management, such as the spill-over of passengers between fare classes and the more generd
seat inventory control problem based on the origin and destination of each passenger rather than
the individud flight leg (Belobaba, 1998). We have dso ignored the use of seet inventory as
part of along-term strategy to gain market share on a particular route (see Y uen and Irrgang,
1998, for adescription of this practice). Additiona research is needed in these aress, and we are
particularly interested in how our comparison between total booking limits under competitive
and monopoly environments may be extended to a game with more than two fare classes.

Ancther sgnificant concern with the andysisis that when comparing competitive and
cooperative booking limits we assume that both prices and exogenous demand are constant. For
some comparisons this assumption may be reasonable. For example, two competing airlines
often charge the same prices throughout the day for travel on a particular route, and some hours
in the day are 'competitive’ while others are monopolized by a single airline (asin the example of
the Rochester to Washington DC route described in Section 4). Prices are uniform over al
flights, but competition throughout the day may sgnificantly affect the yidd management

decisons of both airlines.

On amore drategic leve, the existence of multiple arlines on aroute increases the
competition for passengers on mogt flights. Will our andys's change significantly if the entry
into a market by acompeting arline leads to lower fares, as economic theory predicts? First we
note that for both the monopolist and competitive airlines the booking limits depend primarily on
theratio of high to lon-fare prices, p, / p, , and not on the absolute prices. Thereis empirica
evidence that competition on a particular route reduces the spread of fares (Morrison and
Wington, 1995). Thisimplies that competition may incressetheratio p, / p,, andthusraisethe
average booking limit, an effect that may counteract the decline in booking limits under
competition described in Sections 4 and 5. Which effect dominates may be the subject of
empirica research that compares the actud yield management practices of airlinesin markets
with, and without, competition.
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