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Abstract

Customer choice behavior, such as \buy-up" and \buy-down", is an important phe-
nomenon in a wide range of industries. Yet there are few models or methodologies
available to exploit this phenomenon within yield management systems. We make some
progress on ¯lling this void. Speci¯cally, we develop a model of yield management in
which the buyers' behavior is modeled explicitly using a multi-nomial logit model of
demand. The control problem is to decide which subset of fare classes to o®er at each
point in time. The set of open fare classes then a®ects the purchase probabilities for
each class. We formulate a dynamic program to determine the optimal control policy
and show that it reduces to a dynamic nested allocation policy. Thus, the optimal
choice-based policy can easily be implemented in reservation systems that use nested
allocation controls. We also develop an estimation procedure for our model based on the
expectation-maximization (EM) method that jointly estimates arrival rates and choice
model parameters when no-purchase outcomes are unobservable. Numerical results
show that this combined optimization-estimation approach may signī cantly improve
revenue performance relative to traditional leg-based models that do not account for
choice behavior.
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Introduction and Overview

Yield (or revenue) management is a practice that dates back to the deregulation of the U.S.
airline industry in the late 1970's. It was developed as an outgrowth of the need to manage
capacity sold at discounted fares, which were targeted to leisure travelers, while simultane-
ously minimizing the dilution of revenue from business travelers that are willing and able
to pay full fares. Using statistical forecasting techniques and mathematical optimization
methods, airlines developed automated systems to dynamically control the availability of
the plethora of discounted fares that emerged in the post-deregulation era. The practice
has since spread beyond airlines to the hospitality, rental-car, cruise-lines, railways, energy
and broadcasting industries. Signi¯cant revenue bene¯ts have been documented from such
techniques - often an improvement of 2-8% in revenue over no revenue management or
ad-hoc, manual controls [34].

Concurrentwith the evolution of industry practice, a considerable amountofmanagement-
science literature on yield management has been published over the last twenty years. The
earliest work on capacity control was Littlewood's [26] analysis of a simple, two-fare-class
model of capacity allocations on a single °ight leg. The problem with more than two fare
classes (we de¯ne a fare class as a fare (rate, price) along with its associated set of re-
strictions to qualify for this fare) is considerably more complex, but Belobaba [4], [5], [6]

developed two simple and e®ective heuristics for the single-leg problem based on the concept
of expected marginal seat revenue (EMSR-a and EMSR-b) that are still in wide-spread use
today.

On a theoretical level, single-leg models in which demand for each fare class is assumed
to occur in non-overlapping periods have been developed and analyzed by Brumelle and
McGill [11], Curry [14], Robinson [32] and Wollmer [42]. A key result of this work is that

the optimal policy can be implemented using a set of so-called nested allocations. (See
Brumelle and McGill [11] for a precise de¯nition of nested allocations.) Lee and Hersh [24]
introduced and analyzed a discrete-time model, Markov model that allows for an arbitrary
order of arrivals. For further work on single-leg allocation problems, see Brumelle et al.
[12], Kleywegt and Papastavrou [22], Lautenbacher and Stidham [23], Liang [25], Stone and
Diamond [35], Subramanian et al. [36] and Zhao [45]. For analysis of multiple-leg (network)
allocation problems, see Cooper [13], Curry [14], Dror et al. [17], Glover et al. [21], Simpson
[33], Talluri [37], Talluri and van Ryzin [38], [39] and Williamson [40], [41]. A recent
survey of yield management research is provided by McGill and van Ryzin [29]; Talluri and
Barnhart [2] provide an overview of yield management and other airline operation research
areas.

Despite the success of this body of work, most of the above-mentioned models make a
common, simplifying - and potentially problematic - assumption; namely, that consumer
demand for each of the fare classes is completely independent of the controls being applied
by the seller. That is, the problem is modeled as one of determining which exogenously
arriving requests to accept or reject, and it is assumed that the likelihood of receiving a
request for any given fare class does not depend on which other fares are available at the
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time of the request. However, casual observation - and a brief re°ection on one's own
buying behavior as a consumer - suggests that this is not the case in reality. The likelihood
of selling a full fare ticket may very well depend on whether a discount fare is available at
that time; the likelihood that a customer buys at all may depend on the lowest available
fare, etc. Clearly, such behavior could have important revenue management consequences
and should be considered when making control decisions.

We lay no claim to uncovering this de¯ciency. Indeed, many researches have tried to
address \buy-up" (buying a higher fare when lower fares are closed) and \buy-down" (sub-
stituting a lower fare for a high fare when discounts are open) e®ects in the context of
traditional models. Phillips [31] proposed a \state-contingent" approach to yield manage-
ment that adjusts controls based on forecasts that depend on the controls in e®ect (the
system \state") at any point in time, though no recommendations on how to obtain such
forecasts are given. Belobaba [4] proposed a correction to the EMSR heuristics that intro-
duces a probability of buying a higher fare when a low fare is closed. While conceptually
appealing for a two-fare-class model, such pair-wise \buy-up" probabilities are problematic
in a multiple-fare-class setting. The probability of buying a given high fare should depend
on which other high fares are also available. Also, one cannot directly observe \buy-up",
so how does one separate \original" sales from \buy-up" sales? How are the probabilities

(forecasts) adjusted when there are price changes? etc. Despite these di±culties, we are
aware of several airlines that have experimented with or regularly use this approach. In-
deed, Andersson [1] describes an signi¯cant research and development e®ort by SAS to apply
logit choice models to estimate buy-up and dilution factors, which were then incorporated
in various buy-up/dilution heuristics at one of SAS's hubs.

Another stream of work on understanding choice behavior is the passenger origin and

destination simulator (PODS) studies of Belobaba and Hopperstad. (See [7].) PODS is
a detailed simulation model of passenger purchase behavior developed by Hopperstad at
Boeing. It includes factors for airline preference, time preference, path preference and price
sensitivity. While it is a very detailed simulation model, the focus of the PODS studies is to
test the performance of traditional forecasting and optimization methods under conditions of
complex passenger choice behavior rather than to develop new estimation and optimization
methods. Nevertheless, the PODS studies have provided many useful insights and clearly
demonstrate the signi¯cant impact that choice behavior has on the performance of yield
management systems.

The only theoretical models and methods that partially address choice behavior issues
are dynamic pricing models, such as those studied by Bitran et al. [10], Feng and Gallego
[18] and Gallego and van Ryzin [19], [20]. While these models allow demand to depend on
the current price (the control in this case), they assume only one product is sold at one
price at any point in time. Thus, customers face a binary choice; to buy or not to buy. In
reality, airlines o®er many fares simultaneously and customers choose among them based
on price together with their preferences for non-price factors, such as refundability and
whether or not they can meet various restrictions (e.g. Saturday night stay, minimum-stay
and maximum-stay). The above dynamic pricing models do not capture this complexity,
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whereas in our model these restrictions are attributes whose values determine the customer
choices.

In summary, while many attempts have been made to understand the impact of choice

behavior on traditional yield management methods and to develop simple heuristics that
partially capture buy-up and buy-down behavior, to date there is no methodology that
directly and completely addresses the problem. In this paper, we develop a methodology
that we believe ¯lls this void. We analyze a single-leg yield management problem in which
we explicitly model consumer choice behavior using a multinomial logit (MNL) model,
which is a form of random utility model. The MNL is both a theoretically sound and
empirically well-tested model of consumer choice behavior. (See Ben-Akiva and Lerman
[8].) As mentioned above, Andersson [1] and colleagues at SAS have also applied the MNL
to estimate airline passenger choice with encouraging results. Thus, it is a natural candidate
for a choice-based optimization model.

Given this MNL model of consumers, we then formulate the single-leg, multiple-fare-
class yield management problem as one of selecting a subset of fare classes to o®er at each
point in time. We derive optimality conditions for the resulting dynamic program. While
the policy might appear to be potentially complex under this model, we show that a simple,
nested allocation policy is optimal at each point in time - a policy no more complex than
that of Lee and Hersh [24]. This means that the policy produced by our method can easily
be implemented in current, single-leg systems that rely on nested allocations or booking
limits.

We also develop a practical estimation procedure for our model. One major di±culty
in estimating choice models in the yield management setting is that one typically cannot
observe no-purchase decisions. In many industries where yield management is actively
practiced, the sale transactions are conducted remotely and the only available data are
purchase transactions. For example, consider a airline ticket purchase: a customer or agency
can look at the availability and fares on a computerized reservation system and, given the
available fares, the customer may decide not to take any °ight; an airline has no way of
recording this no-purchase event. Thus, it is impossible to distinguish between periods with
no arrival and periods in which there was an arrival and the arriving customer decided

not to purchase. We overcome this incomplete data problem by applying the expectation-
maximization (EM) method of Dempster et al. [15] to the traditional maximum-likelihood
discrete-choice parameter estimation. The method allows us to simultaneously estimate
both the parameters of the choice model and the arrival rates using only transaction data
on sales. Together, our estimation procedure and optimization model provide a theoretically
sound, consistent, practical and complete approach to the problem.

The remainder of the paper is organized as follows: In Section 1 we de¯ne the choice-
based model of the problem. In Section 2 we formulate a dynamic program and analyze the
resulting optimal policy. Section 3 describes our EM-based estimation procedure. Finally,
some brief numerical examples are given in Section 4 and our conclusions are given in
Section 5.
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1 Model

Time is discrete and indexed by t, and the indices run backwards in time (e.g. smaller
values of t represent later points in time). In each period there is at most one arrival.
The probability of arrival is denoted by ¸, which we assume is the same for all time pe-
riods t. (Extending the results to time-varying arrival probabilities is straightforward but
cumbersome; we omit the details to simplify the exposition.) There are n fare classes and
N = f1; :::;ng denotes the entire set of fare classes. Each fare class j 2 N has an associated
revenue rj, and without loss of generality we index fare classes so that r1 ¸ r2 ¸ :::rn ¸ 0.

In each period t, the airline must choose a subset St µ N of fare classes to o®er.
When the fares St are o®ered, the probability that a customer chooses class j 2 St is
denoted Pj(St). We let j = 0 denote the no-purchase choice; that is, the event that the
customer does not purchase any of the fares o®ered in St. P0(St) denotes the no-purchase
probability. The probability that a sale of class j is made in period t is therefore ¸Pj(St),
and the probability that no sale is made is ¸P0(St) + (1 ¡ ¸). (Note this last expression
re°ects the fact that having no sales in a period could be due either to no arrival at all or
an arrival that does not purchase; as mentioned, this leads to an incomplete data problem
in practice.)

The choice probabilities Pj(S) are assumed to follow a MNL model. (See Ben-Akiva and
Lerman [8] for a very readable, comprehensive reference on discrete choice models including
the MNL.) In the MNL, consumers are utility maximizers and the utility of each choice is a
random variable. Modeling utility as random can re°ect either heterogeneity in preference
among individual consumers or the presence of unobservable explanatory variables in the
utility. In either case, as a result of uncertainty in the utilities, the choice outcome of any
given consumer is uncertain.

Formally, the utility of each alternative j is assumed to be of the form

Uj = uj + »j

where uj is the mean utility of choice j and »j is an i.i.d., Gumbel random noise term with
mean zero and scale parameter one for all j. Because utility is an ordinal measure, the
assumption of zero mean and a scale parameter of one are without loss of generality; (see

Ben-Akiva and Lerman [8].) Similarly, the no-purchase utility is assumed to be

U0 = u0 + »0;

where and »0 is also Gumbal with mean zero and scale parameter one. Again, since utility
is ordinal, without loss of generality we can assume u0 = 0. To estimate the mean utility, it
is common to model it as a linear function of several know attributes (e.g., price, indicator
variables for product restrictions, etc.), much as one would do in a linear regression model.
Thus, we assume uj = ¯Txj where xj is a vector of known attributes of choice i and ¯ is a
vector of weights on these variables. The weights ¯ can be estimated from historical data
on choice outcomes via maximum likelihood estimation. (See Section 3.)
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Under this utility model, one can show (See Ben-Akiva and Lerman [8] for a derivation.)
that the choice probabilities are given by

Pj(St) =
euj

P
i2St e

ui + euo
; j 2 S or j = 0: (1)

For notational convenience, we de¯ne vj = euj ; j = 0;1:::;n, so that the choice probabilities
can be expressed as

Pj(S) =
vjP

i2S vi + 1
; j 2 S or j = 0: (2)

(Recall, u0 = 0 so v0 = 1.) Note that since ex is monotone increasing in x, higher values of
uj imply higher values of vj .

2 Optimization

We next formulate a single-leg problem based on this choice model. Let C denote the
aircraft capacity, T denote the number of time periods, t denote the number of remaining

periods (recall time is indexed backwards) and x denotes the number of remaining seats.
De¯ne the value function Vt(x) as the maximum expected revenue obtainable from periods
t; t¡ 1; :::; 1 given that there are x seats remaining at time t. Then the Bellman equation
for Vt(x) is

Vt(x) = maxStµN

8
<
:
X

j2St
¸Pj(St)(rj +Vt¡1(x¡ 1))+ (¸P0(St) + 1¡ ¸)Vt¡1(x)

9
=
;

= maxStµN

8
<
:
X

j2St
¸Pj(St)(rj ¡¢Vt¡1(x))

9
=
;+ Vt¡1(x); (3)

where ¢Vt¡1(x) = Vt¡1(x)¡Vt¡1(x¡1) denotes the marginal cost of capacity, and we have
used the fact that for all S, X

j2S
Pj(S) + P0(S) = 1:

The boundary conditions are

Vt(0) = 0; t = 1; :::;T and V0(x) = 0; x= 1; :::; C: (4)

A sequence of sets S¤t (x) achieving the maximum in (3) forms an optimal Markovian policy
(cf. Bellman [3] and Bertsekas [9]).

Potentially, each optimization on the right hand side of (3) could require an evaluation
of all 2n subsets. However, we show next that the search can be reduced to an evaluation of
only n sets. This result will also be used to show that the optimal policy has a form similar
to the \nested allocation" schemes of traditional single-leg models.
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Theorem 1 Let Ak = f1;2; ::; kg denote the set of the k highest fare classes. Then there
is an optimal policy that consists of only opening fares in the sets Ak; k = 1; :::; n.

Proof
Note that using (2) the optimization on the right hand side of (3) can be expressed as a
nonlinear, integer (binary) program

IP ) max

Pn
j=1 zjvj(rj ¡ c)Pn
j=1 zjvj +1

s.t

zj 2 f0;1g; j = 1; :::;n;

where to simplify notation we let c = ¢Vt¡1(x) denote the marginal value of capacity at
the next time period. Consider the continuous relaxation of this problem

NLP) max

Pn
j=1 yj(rj ¡ c)Pn
j=1yj +1

s.t

0 · y · v;
where y = (y1; :::; yn) and v = (v1; :::; vn). We will show this continuous relaxation NLP has
an optimal solution of the form y¤ = (v1; :::; vk;0; :::; 0). Since this solution is equivalent to
the feasible solution z1 = z2 = ::: = zk = 1; zk+1 = zk+2 = ::: = zn = 0 of IP, this will imply

that the relaxation is tight and that Ak is an optimal solution to (3).

To begin, for a real number w, satisfying 0 · w · Pn
j=1vj , consider the subspace

H(w) = fyjPn
j=1 yj = wg. Note onH(w), the denominator in the objective function of (5)

is constant. Thus, since the numerator is linear, the problem is reduced to a continuous
knapsack problem on the subspace H(w), and the optimal solution is the greedy solution:
assign as much of the \mass" w as possible to the highest value class (Class 1 with value

r1¡ c) until the constraint v1 is reached, then move on to next highest value class (Class
2 with value r2¡ c) until the constraint v2 is reached, etc., stopping when the full mass w
is completely allocated. Since an optimal solution, y¤, to (5) corresponds to a particular
value w¤ =

Pn
j=1 y

¤
j , it follows that the optimal solution is also of this form. Namely,

y¤ = (v1; :::; vk;®
¤;0; :::; 0);

where ®¤ := w¤ ¡Pk
j=1 vj < vk+1. If ®¤ = 0, the relaxation (5) is tight as claimed and Ak

is the optimal solution in the DP recursion (3).

To analyze ®¤, consider the function

gk(®) =
ak®+ bk
®+ dk

(5)

where ak = rk+1 ¡ c, bk =
Pk
j=1 vj(rj ¡ c) and dk =

Pk
j=1vj + 1. From (5), one can see

that gk(®) is the value of the solution y = (v1; :::; vk;®; 0; :::;0) to the relaxation NLP. It
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therefore follows that ®¤ must maximize the function gk(®) on [0; vk+1], else y¤ would not
be optimal for NLP. Note however that the derivative of gk(¢)

g0k(®) =
akdk ¡ bk
(®+ dk)2

; (6)

has a sign that is independent of ®. Thus, gk(®) is monotone. If akdk ¡ bk > 0, then gk(®)
is an increasing function on [0; vk+1] and is therefore maximized at the right end point vk+1,
which contradicts the assumption ®¤ < vk+1. If akdk ¡ bk < 0, then gk(®) is a decreasing
function and is maximized at the left end point 0, which implies ®¤ = 0. If akdk ¡ bk = 0,
then the function gk(®) is constant on [0; vk+1], so any value of ® is optimal. In particular,
® = 0 is optimal. Therefore, there always exists an optimal solution with ®¤ = 0, so that
y¤ = (v1; :::; vk;0; :::; 0) is an optimal solution to the relaxation (5) for some value k. Since
this solution is also feasible for the original integer program (5), the theorem is proven. 2

Note that as a result of Theorem 1, the DP recursion can be simpli¯ed to

Vt(x) =maxk2N

8
<
:

kX

j=1

¸Pj(Ak)(rj ¡¢Vt¡1(x))

9
=
;+ Vt¡1(x); : (7)

This is solvable in O(nCT) time, where recall T is the number of time periods and C is the
capacity. For example, a problem with n = 10 fare classes, C = 100 seats and T = 1;000
time periods would require 106 steps, each of which requires only a simple comparison of
real numbers if properly implemented (e.g. by storing the probabilities Pj(Ak) rather than
computing them at each step).

Let k¤(x) denote the smallest index of a set Ak that optimizes the DP recursion (7). It
is useful to know how the optimal index k¤(x) changes as a function of the marginal value
¢Vt¡1(x):

Theorem 2 The optimal index k¤(x) is decreasing in ¢Vt¡1(x).

Proof
De¯ne gk(®) by (5) as in the proof of Theorem 1 and recall that gk(®) corresponds to the
value of the solution y = (v1; :::; vk; ®; 0; :::; 0) to (5). Note that we can write

g0k(®) =
rk+1 ¡Pk

j=1(rj ¡ rk+1)vj ¡ c
(®+

Pk
j=1 vj +1)2

: (8)

where c = ¢Vt¡1(x) as before. As before, since the sign of g0k(®) does not depend on ®,
this implies that gk(®) is monotone on the interval [0; vk+1]. We next analyze the sign of
g0k(®). Since the denominator of g0k(®) is always positive, its sign is determined by the sign
of the numerator.

Note that the numerator of g0k(®) is decreasing in both k and c. That it is decreasing in
c is trivial. That it is decreasing in k follows since: i) rk+1 is decreasing in k, ii) each term,
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(rj ¡ rk+1)vj , in the sum (which is subtracted) is increasing in k, and iii) these terms are
nonnegative (rj ¸ rk+1 for j · k) and the number of terms increases with k.

From the proof of Theorem 1, a necessary condition for k¤ to be the smallest optimal

index is that g0k¤ (0)· 0 (else, k¤+1 is optimal) and g0k¤¡1(0)> 0 (else k¤¡1 is the smallest
optimal index). Since g0k(0) is decreasing in k, it therefore follows that g0k(0) > 0 for all
k = 1; :::; k¤¡ 1 and g0k(0) · 0 for all k ¸ k¤. Thus k¤(x) can be de¯ned as

k¤(x) = minfk : g0k(0) · 0g:

Now, since g0k(®) is also decreasing in c for all k, it follows that k¤(x) is decreasing in c as
well. 2

We show next that the marginal values are decreasing in the remaining capacity x.
Combined with Theorem 2, this implies that the optimal index k¤(x) is decreasing in x as
well. Therefore, at any point in time, it is optimal to sequentially close down fare classes

from lowest to highest as capacity is consumed. Because of this property, the optimal policy
can be implemented as a nested allocation policy at each point in time, where Class 1 is
always open, Class 1 and 2 are open as long as x exceeds a \protection level" µ1, Classes 1,2
and 3 are open as long as x exceeds a second protection level µ2 ¸ µ1, etc. (Alternatively,
one could construct \booking limits" Bj = C¡µj instead of protection levels as described in
Belobaba [5]and Brumelle and McGill [11].) Unlike the static models studied by Belobaba
[5], Brumelle and McGill [11], Curry [14] and Robinson [32], however, the protection levels
in our policy will change with time t. This is identical to the behavior one encounters
in other dynamic models, for example Lee and Hersh [24]. Nevertheless, it is likely that
protection levels will not change drastically with t, in which case static booking levels would
be optimal (or approximately optimal) over short periods of time. Moreover, in practice
protection levels (or allocations) are updated frequently even when using static models to
re°ect changes in forecasts. Thus, we believe that the choice-based optimal policy can
rather easily be incorporated within the nested allocation control methods currently used
by many airlines.

We next provide the formal proof of the decreasing marginal value property:

Theorem 3 ¢Vt(x) ·¢Vt(x¡ 1); t = 1; :::;T; x= 1; :::; C

Proof
The proof is by induction on t. First, the statement is trivially true for t = 0 by the
boundary conditions (4). Assume it is true for period t ¡ 1. From 3 and the de¯nition of
k¤(x),

¢Vt(x)¡¢Vt(x¡ 1) = (¢Vt¡1(x)¡¢Vt¡1(x¡ 1))

+

k¤(x)X

j=1

¸Pj(Ak¤(x))(rj ¡¢Vt¡1(x))
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¡
k¤(x¡1)X

j=1

¸Pj(Ak¤(x¡1))(rj ¡¢Vt¡1(x¡ 1))

¡
k¤(x¡1)X

j=1

¸Pj(Ak¤(x¡1))(rj ¡¢Vt¡1(x¡ 1))

+
k¤(x¡2)X

j=1

¸Pj(Ak¤(x¡2))(rj ¡¢Vt¡1(x¡ 2)) (9)

From the optimality of the set de¯ned by k¤(¢), the following inequalities hold:

k¤(x¡1)X

j=1

¸Pj(Ak¤(x¡1))(rj ¡¢Vt¡1(x¡ 1)) ¸
k¤(x)X

j=1

¸Pj(Ak¤(x))(rj ¡¢Vt¡1(x¡ 1))

and

k¤(x¡1)X

j=1

¸Pj(Ak¤(x¡1))(rj ¡¢Vt¡1(x¡ 1))¸
k¤(x¡2)X

j=1

¸Pj(Ak¤(x¡2))(rj ¡¢Vt¡1(x¡ 1))

Substituting into (9) we obtain

¢Vt(x)¡¢Vt(x¡ 1) · (¢Vt¡1(x)¡¢Vt¡1(x¡ 1))

+
k¤(x)X

j=1

¸Pj(Ak¤(x))(rj ¡¢Vt¡1(x))

¡
k¤(x)X

j=1

¸Pj(Ak¤(x))(rj ¡¢Vt¡1(x¡ 1))

¡
k¤(x¡2)X

j=1

¸Pj(Ak¤(x¡2))(rj ¡¢Vt¡1(x¡ 1))

+
k¤(x¡2)X

j=1

¸Pj(Ak¤(x¡2))(rj ¡¢Vt¡1(x¡ 2))

Rearranging and canceling terms yields

¢Vt(x)¡¢Vt(x¡ 1) · (1 ¡
k¤(x)X

j=1

¸Pj(Ak¤(x)))(¢Vt¡1(x)¡¢Vt¡1(x¡ 1))

+
k¤(x¡2)X

j=1

¸Pj(Ak¤(x¡2))(¢Vt¡1(x¡ 1)¡¢Vt¡1(x¡ 2))

By induction, ¢Vt¡1(x)¡¢Vt¡1(x¡1) · 0 and ¢Vt¡1(x¡1)¡¢Vt¡1(x¡2) · 0. Therefore,
¢Vt(x)¡¢Vt(x¡ 1) · 0. 2
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Note that the result of Theorem 3 is independent of the MNL assumptions; it holds
for any choice probabilities and whenever the optimization and control are performed op-
timally according to the DP recursion 3. Thus, marginal values are decreasing under any
model of choice behavior, which is intuitive. (Nonmonotonicty of the marginal values could
occur if there is demand for multiple seats (group requests); See for example Kleywegt and
Papastavrou [22], Lee and Hersh [24] and Young and Van Slyke [44]). The nested allocation
structure of Theorems 1 and 2, however, requires the MNL assumptions.

2.1 Additional comments on the optimality conditions

By reexamining the optimality condition (6) we can gain some additional insight into the
choice-based policy. Note from the proof of Theorem 1, that it is optimal to open fare
class k + 1 if and only if g0k(0) ¸ 0. By rearranging (6) and using (1), we can express this
condition as

rk+1¡¢Vt¡1(x)¸
kX

j=1

Pj(Ak)(rj ¡¢Vt¡1(x)): (10)

This expression is intuitive: The left hand side is the \net gain" from selling class k + 1;
that is, the revenue we get from class k+1 minus the opportunity cost, ¢Vt¡1(x), of using
a unit of capacity. The right hand side is the expected net gain from o®ering only classes
Ak = f1; :::; kg (e.g. the sum over all classes in Ak of the probability that a customer chooses
i from Ak times the net gain from selling i.). The condition (10) simply says that if the net
gain from selling k+ 1 is more pro¯table than the gamble of o®ering only Ak, then it pays
to open k+ 1; else, k +1 should be closed.

The expression (10) should be compared to the optimality condition for traditional yield
management models (See Lee and Hersh [24].); namely, it is optimal to open class k +1 if
and only if

rk+1¡¢Vt¡1(x)¸ 0

Note the right hand side above is zero while the right hand side of (10) is positive. This
happens because in the traditional model if we close class k+1, we lose all demand for that
class. Therefore it is optimal to accept fare k + 1 whenever rk+1 exceeds the opportunity
cost ¢Vt¡1(x). However, in the choice-based model, if we close class k+ 1 customers chose
from among the other classes that are o®ered (e.g. from Ak). Hence, the threshold on the
right hand side of (10) is greater than zero. This di®erence re°ects the fact that customers
may \buy-up" to a higher class.

3 Estimation

We next consider the problem of estimating the model parameters ¯ and ¸ from historical

data. Estimation of the MNL model given a complete set of choice data is a well-studied
problem. In particular, the maximum likelihood estimate (MLE) has good computational
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properties (Its log is jointly concave in most cases; See McFadden [27].), and the method
has proved robust in practice. (See Ben-Akiva and Lerman [8] for further discussion and
case examples.)

In our case, we have an arrival probability as well as choice parameters to estimate.
However, given complete observations, estimation for our model is only a slight modi¯-
cation of the MNL case. In particular, let D denote a set of intervals, indexed by t, in
which independent arrival events and choice decisions have been observed. The set D could
combine intervals from many °ight departures and, deviating somewhat from our notational
convention thus far, t here does not necessarily represent the time remaining for a particular
°ight. For each period t 2D, let

at =

(
1 if customer arrives in period t
0 otherwise

Let A denotes the set of periods t with arrivals (at = 1) and ¹A =D¡A denote the periods
with no arrivals. If t 2 A, let j(t) denote the choice made by the arriving customer. (For
t 2 ¹A de¯ne j(t) arbitrarily.) Finally, as before let St denote the set of open fare classes in
interval t. The likelihood function is then

Y

t2D

"
¸

e¯
T xj(t)

P
i2St e

¯T xi +1

#at
(1 ¡¸)(1¡at)

Taking logs, we obtain the log-likelihood function

L =
X

t2D

2
4at

0
@¯Txj(t)¡ ln(

X

i2St
e¯

T xi + 1)

1
A +at ln(¸) + (1¡ at) ln(1¡ ¸)

3
5 : (11)

Note that L is separable in ¯ and ¸. Maximizing L with respect to ,̧ we obtain the estimate

^̧ =
1

jDj
X

t2D
at =

jAj
jDj ;

where jDj (resp. jAj) denotes the cardinality of D (resp. jAj). The MLE, ^̄, is then
determined by solving

max
¯

X

t2A

0
@¯Txj(t) ¡ ln(

X

i2St
e¯

Txi + 1)

1
A (12)

This is simply the usual maximum likelihood problem for the MNL applied to those periods
with customer arrivals. Combining these two estimates gives the MLE for our model with
complete data.

As mentioned, the di±culty with this approach in practice is that one rarely observes
all arrivals. Typically, only purchase transaction data are available. Thus, it is impossible
to distinguish a period without an arrival, from a period in which there was an arrival but
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the arriving customer did not purchase. With this incompleteness in the data, the above
MLE procedure cannot be used.

One can write down the ML formula for estimating the discrete-choice parameters with

incomplete data, but as often happens in such cases, the function becomes very complex
(and non-concave) and di±cult to maximize. To overcome this problem, we propose using
the expectation-maximization (EM) method of Dempster et al. [15]. The method works
by starting with arbitrary initial estimates, ^̄ and ^̧. These estimates are then used to
compute the conditional expected value ofL: E[Lj ^̄; ^̧] (the expectation step). The resulting
expected log-likelihood function is then maximized to generate new estimates ^̄ and ^̧ (the
maximization step) and the procedure is repeated until it converges. While it is true that
technical convergence problems can arise, in practice the EM method is a robust and e±cient
way to compute maximum likelihood estimates for incomplete data. (See McLachlan and
Krishnan [30] for a comprehensive reference on the EM method.) Moreover, it has also
been used in other yield management contexts, in particular by McGill [28] to estimate
multi-variate normal demand data with censoring.

To apply the EM method in our case, let P denote the set of periods in which customers
purchase and ¹P = D ¡ P denote period in which there are no purchase transactions. We
can then write the complete log-likelihood function as

L =
X

t2P

2
4ln(¸) + ¯Txj(t)¡ ln(

X

i2St
e¯

T xi + 1)

3
5

+
X

t2 ¹P

2
4at

0
@ln(¸)¡ ln(

X

i2St
e¯

Txi +1)

1
A + (1 ¡ at) ln(1¡ ¸)

3
5 : (13)

The unknown data are the values at; t 2 ¹P in the second sum. However, given estimates ^̄

and ^̧, we can determine their expected values (denoted ât) easily via Bayes's rule:

ât
:
= E[atjt 2 ¹P; ^̄; ^̧] = P(at = 1jt 2 ¹P; ^̄; ^̧)

=
P(t 2 ¹P jat = 1; ^̄; ^̧)P(at = 1j ^̄; ^̧)

P(t 2 ¹P j ^̄; ^̧)

=
^̧P0(Stj ^̄)

^̧P0(Stj ^̄) + (1¡ ^̧)
; (14)

where

P0(Stj ^̄) =
1

P
i2St e

^̄T xj + 1

is the no-purchase probability for observation t given ^̄.

Substituting ât into (13) we obtain the expected log-likelihood for the incomplete data

E[Lj ^̄; ^̧] =
X

t2P

2
4¯Txj(t)¡ ln(

X

i2St
e¯

Txi +1)

3
5¡

X

t2 ¹P

ât ln(
X

i2St
e¯

T xi + 1)
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+
X

t2P
ln(¸) +

X

t2 ¹P

(ât ln(¸) + (1 ¡ ât) ln(1 ¡¸)) : (15)

As in the case of the complete log-likelihood function, this function is separable in ¯ and
.̧ Maximizing with respect to ¸ we obtain the updated estimate

¸¤ =
jP j+P

t2 ¹P ât
jP j+ j ¹P j : (16)

This is intuitive; our estimate of lambda is the number of observed arrivals, jP j, plus
the estimated number of arrivals from unobservable periods,

P
t2 ¹P ât, divided by the total

number of periods jP j + j ¹P j = jDj. We can then maximize the ¯rst two sums in (15) to
obtain the updated estimate ¯¤. Note that this expression is of the same functional form
as the complete data case (12). The entire procedure is then repeated.

Summarizing the algorithm:

Step 0: Initialize ^̄ and ^̧.

Step 1: Expectation step

{ For t 2 ¹P , use the current estimates ^̄ and ^̧ to compute ât from (14).

Step 2: Maximization step

{ Compute ¸¤ using (16).

{ Compute ¯¤ by solving

max
¯

8
<
:
X

t2P

0
@¯Txj(t)¡ ln(

X

i2St
e¯

T xi + 1)

1
A ¡

X

t2 ¹P

ât ln(
X

i2St
e¯

T xi +1)

9
=
;

Step 3: Convergence test

{ IF k(^̧; ^̄)¡ (¸¤;¯¤)k < ², THEN STOP;

{ ELSE ^̧ Ã ¸¤, ^̄Ã ¯¤ and GOTO Step 1.

Since the expected log-likelihood,E[Lj ^̄; ^̧], given in (15) is continuous in both (¯;¸) and
( ^̄; ^̧), a result by Wu [43] shows that if the sequence of estimates converges, the resulting
value will be a stationary point of the incomplete log-likelihood function. Whether the
sequence diverges - or converges to something other than the global maximum - is more

di±cult to determine. In practice, the method has proved to be very robust in other contexts
and this has been our experience in simulated experiments for our problem. (See McLachlan
and Krishnan [30] for further discussion of convergence properties of the EM algorithm.)
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4 Numerical Example

In this section we provide results of a small simulation study to compare our choice-based
method to a traditional single-leg method. Both the estimation and optimization methods
were tested. In the simulation study, we made the assumption that demand in fact coincides
with the MNL model of this paper. This is admittedly a somewhat optimistic assumption
and does not address the validity of the choice model itself. While validating the MNL
model is certainly important both from a theoretical and implementation standpoint, it
would require extensive empirical testing against alternate demand models, and such a
study is beyond the scope of this paper. At the same time, testing the model under MNL
behavior gives some indication of its potential; in particular, if such a test shows that the
choice-based model performs signi¯cantly better than traditional methods, then one cannot
reject the hypothesis that it is a potentially superior approach. A more positive conclusion

than this will require extensive empirical and simulation testing and actual implementation
experience.

The traditional model we tested against was Belobaba's EMSR-b heuristic [6]. This is
one of the most common seat protection heuristics used in practice. It is a ¯xed protection
level policy, which sets a static set of protection levels for fare classes 1 through n¡ 1 given
by the vector µ = (µ1; : : : ; µn¡1), where µ1 · µ2 · : : : µn¡1. (There is no protection level

for the lowest fare class, n.) Protection levels are nested in the sense that µj represents the
number of seats to reserve (protect) for all of fare classes 1; 2; : : : ; j. Reservations for fare
class j+1 are accepted if and only if the number of seats remaining is strictly greater than
the protection limit µj . (Such policies are optimal when low fare classes book strictly before
higher fare classes and fare class demands are mutually independent [11].)

EMSR-b sets the protection levels µj as follows: Given estimates of the means, ¹̂j , and

standard deviations, ¾̂j , for each fare class j, the EMSR-b heuristic sets µj so that

rj+1 = ¹rjP( ¹Xj > µj);

where ¹Xj is a normal random variable with mean
Pj
i=1 ¹̂i and variance

Pj
i=1 ¾̂

2
i , and ¹rj is

a weighted average revenue, given by

¹rj =

Pj
i=1 ri¹̂iPj
i=1 ¹̂i

:

The idea behind this approximation is to reduce the complexity of the fully nested problem
by aggregating fare classes 1; 2; ::; j into a single fare class. Then, one treats the problem as
a simple, two-fare-class problem and applies Littlewood's rule [26].

Converting the choice model parameters into inputs for the EMSR-b method is some-
what tricky. While there are several options for doing this, current industry practice, by and
large, is to forecast demand in each fare-class independently (using, for example, time-series
methods), and if a particular fare-class is closed to unconstrain (uncensor) the demand by
using either the EM algorithm or other methods. One interpretation of this practice is that
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j 1 2 3 4 5 6 7 8 9 10
rj 600 550 475 400 300 280 240 200 185 175
vLj 0.407 0.438 0.490 0.549 0.638 0.657 0.698 0.741 0.758 0.769

vHj 0.050 0.064 0.093 0.135 0.223 0.247 0.301 0.368 0.397 0.417

Table 1: Fares and vj values for numerical example

it is an attempt to forecast demand for each fare-class when all other fare-classes are open.
We adopted this interpretation lacking any compelling alternative. Therefore, the demand
inputs we used in our simulations is the demand for class i given that all other classes are
open. Speci¯cally, ¹j = ¸TPj(N) and ¾2

j = T¸Pj(N)(1 ¡ ¸Pj(N )). (Demand is binomial
with T trials and probability ¸Pj(N) of success.)

To test the two methods, we simulated arrivals and applied each method to control fare
class availability. The capacity was C = 185 seats and there were n = 10 fare-classes with
fares as shown in Table 1. For simplicity, we assumed the random utility had only one
attribute, x, which was simply the price. The co-e±cient, ¯, on the price attribute was
taken to be either ¯L = ¡0:0015 (low price sensitivity, denoted L) or ¯H = ¡0:005 (high

price sensitivity, denoted H). The values vLj = e¯
Lx and vHj = e¯

Hx are shown in Table 1
as well.

Arrivals over the booking period were generated by simulating a homogeneous Poisson
process with mean 205. (Thus, if the booking period is broken up into intervals of size ¢,
then ¸ = 205¢ in the choice-based DP.) The choice parameter as estimated using the EM
method as described in Section 3. The training set consisted of 50 simulated days during
which the available classes were controlled using EMSR-b as described above. The EM
method produced an estimates of ^̄L =¡0:0014 and ^̄H =¡0:0048, which are very close to
the actual values of ¯L =¡0:0015, ¯H = ¡0:005. To mimic the real-world combination of
forecasting and optimization, these estimated value was used in the choice DP algorithm.

Bookings were generated for a booking period of 100 simulated days and the controls
from each method were applied to simulate accept/deny decisions. The results of 15 simu-
lated °ights are shown in Table 2. In the case where the price sensitivity is low, the choice
DP has signi¯cantly higher revenues; 65,693 versus 53,543 for EMSR. This represents a
22.7% improvement in revenue, which is very large when compared to the typical 1-2%
di®erences in revenues that one ¯nds when comparing optimization methods. In the case of

high price sensitivity, the revenue di®erence between the two methods is essentially identical
within the simulation error of our test. This is not unsurprising since buy-up in particular
can best be exploited when customers are not very price sensitive.
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Low Price Sensitivity High Price Sensitivity
Choice DP EMSR Choice DP EMSR

Avg. Revenue 65,693 53,543 36,615 36,745
Load Factor 71% 93% 66% 78%

Table 2: Simulation Results

In terms of qualitative behavior, the choice DP frequently closes lower-fare classes to
force consumers to buy-up to higher fares. EMSR-b, in contrast, opens up many more fare
classes and allows customers to buy at lower prices. This di®erence shows up in the load
factors, which are lower for the choice-based DP. While this drop in load-factors may at ¯rst

be worrisome, it is not unexpected given that the choice-based DP is deliberately increasing
the probability that customers will not purchase by restricting discounts. However, the
revenue increases from the higher fares more than compensate for these lower volume of
sales in the low-price-sensitivity case and produce essentially the same revenues in the high-
price-sensitivity case. While the magnitude of these results are speci¯c to this particular set
of numbers and choice probabilities, the results do show how it may be possible to increase
revenue by exploiting choice behavior.

5 Conclusion

We believe that the choice-based DP in combination with the EM estimation procedure

provides an appealing alternative to traditional yield management methods. The MNL
logit is a well-developed model that is conceptually sound and has worked well in other
application contexts. The DP model itself is no more complex than traditional models and
the policy can be implemented as a nested allocation policy, so no major changes in control
structure are needed. Finally, the EM estimation procedure is no more complicated than
traditional, censored forecasting methods and can be applied to currently available data.

As for additional work, we see several topic worthy of further study. One is to generalize
the method to other choice models, for example the nested logit model or the generalized
extreme value (GEV) models [8], which might be more useful in certain settings. The EM
method can probably be extended easily, but the simple nesting property may not hold
for more general choice models. Another worthwhile extension would be to model choice
among a set of °ights. This was one of the topics investigated by Andersson at SAS [1] and
it would be interesting to see if the estimation and optimization methods could be extended
to model control of a set of related °ights. Similar but even more complex would be to
extend the model to networks. In both these cases, exact dynamic programming will most
likely be impractical, so it would be interesting to see what approximation methods could
be developed.

Finally, it would be worthwhile to devise both tests and estimation procedures for a
heterogeneous mix of customer segments (e.g.: business and leisure) with distinct choice
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parameters for each segment. Theoretically, it would be interesting to extend the control
results when the demand is composed of such a mix.
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