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Part III: Dynamic Control of Fluid Models

Summary. In this note we study dynamic control of uid models motivated from a class of

of stochastic optimal network control problems. In particular, we start by reviewing the basic

derivation and properties of uid models. Then, given a stochastic optimal network control problem,

we formulate the associated uid optimization problem. We describe the basic properties of uid

optimal control problems and the characterization of their solution. We prove stability of the

uid optimal control policy, and subsequently derive further properties regarding the transient

behavior of the uid optimal control solution. We provide a brief overview of numerical optimization

algorithms for the solution of these problems. We conclude by considering alternative dynamic

control policies for uid control problems.

The following notation will be useful. Let R+ = [0;1). CR[0;1) denotes the space of continuous

functions on R+. DR[0;1) is the space of right continuous functions on R+ having left limits on

(0;1) (RCLL), endowed with the Skorohod topology; see Ethier and Kurtz [EK86, section 3.5]. Given

a sequence of functions ffng, where fn 2 DR[0;1) for each n and a function f 2 CR[0;1), fn ! f

in the Skorohod topology if and only if fn ! f uniformly on compact sets (u.o.c.). That is,

sup
0�s�t

jfn(s)� f(s)j ! 0; as n!1:

The vector of ones of appropriate dimension will be denoted by 1, bxc will be the integer part of x

rounded down, x ^ y = min(x; y), x _ y = max(x; y), x+ = max(0; x), and �nally all vector equalities

or inequalities should be interpreted componentwise. The transpose of a matrix P will be denoted P 0,

diagfx1; : : : ; xng will denote the n� n diagonal matrix with diagonal elements (x1; : : : ; xn).

III.1 Fluid models: review and properties

We use the following convention: a generic vector of queue lengths (or uid levels) will be denoted by

z, and the initial queue length con�guration will be denoted by q.

Recall the equation that captures the system dynamics:

Z(t) = q +Ex(t) +

KX
k=1

�k(Dx
k(t))�Dx(t); (III.1)

where x is the initial condition (of the Markov state descriptor that depends on q and other auxiliary

quantities) and Dk(t) is the number of class k departures up to time t de�ned by

Dx
k(t) = maxfi : vk(1) + � � �+ vk(i) � T x

k (t)g:
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Consider a sequence of initial conditions fxng � X such that jxnj ! 1 as n ! 1 and for any real

valued process ff(t); t � 0g de�ne its uid scaled counterpart by

�fn(t) =
1

jxnj
fxn(jxnjt): (III.2)

In the sequel, the overbar notation will signify uid scaled quantities and appropriate superscripts

will be used to signify the scaled processes corresponding to some initial condition along the sequence

fxng.

A functional strong law of large numbers (FSLLN) can be derived for the uid-scaled processes de�ned

above. The following is a restatement of Proposition 1.2.4 [Dai98].

Lemma III.1.1 Let fxng � X such that jxnj ! 1 as n!1. Assuming that

lim
n!1

�Rn
a (0) =

1

jxnj
Rn
a (0) =

�Ra and lim
n!1

�Rn
s (0) =

1

jxnj
Rn
s (0) =

�Rs;

as n!1, almost surely

1

jxnj
�k(bjxnjtc)! P 0

kt; u.o.c. (III.3)

1

jxnj
En
k (bjxnjtc)! �k(t� �Ra)

+; u.o.c. (III.4)

1

jxnj
Dn
k (bjxnjtc)! �k(t� �Rs)

+; u.o.c.: (III.5)

The limit processes in (III.3)-(III.5) are deterministic and continuous. Continuity follows from the

fact that the jump size of the scaled processes is decreasing as 1=jxnj, which yields continuous limit

trajectories. The deterministic nature of these limits is a direct consequence of the FSLLN scaling.

Note that the limits �Ra; �Rs depend on the sequence fxng.

Applying the scaling of (III.2) to (III.1) and using (III.3)-(III.5) we get the following result which is

an elaboration of Theorem 2.3.1 in [Dai98].

Theorem III.1.1 [Dai98, Theorem 4.1] For almost all sample paths ! and any sequence of initial

conditions fxng � X such that jxnj ! 1 as n!1, there is subsequence fxnj (!)g with jxnj (!)j ! 1

such that

( �Zxnj (0; !); �R
xnj
a (0; !); �R

xnj
s (0; !)! (z(0; !); �Ra(!); �Rs(!)) (III.6)

( �Zxnj (t; !); �T xnj (t; !))! (z(t; !); �T (t; !)) u.o.c.: (III.7)

Furthermore, (z(�; !); �T (�; !)) satis�es the following set of equations

z(t) = z(0) + �(t1� �Ra)
+ � (I � P 0)M�1( �T (t)� �Rs)

+; (III.8)

z(t) � 0 for t � 0; (III.9)

�I(t) = 1t� C �T (t); �T (0) = 0; (III.10)

�T (t); �I(t) are non-decreasing for t � 0; (III.11)
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together with some additional conditions on (z(�; !); �T (�; !)) that are speci�c to the scheduling policy

employed.

That is, the uid limits depend on ! and on the converging subsequence fxnjg as well (through
�Rs; �Ra).

They are neither deterministic nor unique, but their dynamics are captured by these deterministic and

continuous equations of evolution (III.8)-(III.11). Hereafter. whenever possible the dependence on !

will be suppressed from the notation.

The above set of equations will be referred to as the delayed uid model associated with a multiclass

queueing network under a speci�ed scheduling policy. Moreover, we will say that (z; �T ) 2 FM -or

equivalently that it is a uid solution- if this pair of state and input trajectories satis�es equations

(III.8)-(III.11). It is immediate from (III.8)-(III.11) that the limit processes (z; �T ) are Lipschitz con-

tinuous. Hence, it follows that that they have a time derivative almost everywhere. A path q(�) is

called regular at t if it is di�erentiable at t and its derivative at time t will be denoted by _q(t). Let

v(t) denote the instantaneous uid allocation vector at time t. The cumulative allocation process can

be rewritten as

�T (t) =

Z t

0
v(s)ds; t � 0:

Restricting attention to the case where �Ra = �Rs = 0 and using the a.e. di�erentiability of the limit

processes, for almost all times t � 0 the uid limit model can be expressed as a linear dynamical

system with polytopic constraints in v(t) of the following form:

_z(t) = ��Rv(t); z(0) = q; (III.12)

z(t) � 0; Cv(t) � 1; v(t) � 0 for t � 0; (III.13)

together with some policy speci�c conditions. The uid limit model in (III.12)-(III.13) is called

undelayed. This is the only case studied in the sequel. Once again, the dependence of the uid limits

on the sample path ! has been suppressed. (In the literature the term undelayed refers to the set

of integral equations (III.8)-(III.11) for the case where �Ra = �Rs = 0.) Following our earlier notation

we will say that that (z; v) 2 FM -or equivalently that it is a uid solution- if this pair of state and

input trajectories satisfy equations (III.12)-(III.13). Undelayed limits can be obtained if one restricts

attention to exponential interarrival and service time processes, or in the case of general distributions,

if one lets jxnj ! 1 while keeping Rn
a (0) and Rn

s (0) bounded.

III.2 Formulation of the control problem

III.2.1 Queueing network control problem

The canonical class of network control problems we address is as follows. Let g : RK
+ ! R+ be a C2

convex cost rate function such that, for some constants b; c;�b; �c > 0 such that b � �b, c � �c, and

bjxjc � g(x) � �bjxj�c: (III.14)
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Note that (III.14) implies that g(x) = 0 , x = 0. Given the cost rate function g, the following

stochastic network control problem is considered: choose an allocation process T (t), or equivalently,

an admissible policy �, in order to minimize

J�T (q) = E�
q

Z T

0
g(Z(t))dt; (III.15)

where E�
q denotes the expectation operator with respect to the probability measure P�

q de�ned by any

admissible policy � and initial condition q. The use of T with no time argument will denote a time

horizon and should not be confused with the cumulative allocation T (t).

In this problem formulation attention is restricted to �nite horizon network control problems. It is

convenient to think of T as being long but �nite. The objective in these problems remains �nite

starting from an arbitrary (but �nite) initial condition independent of the traÆc intensity (or load) at

each station, and in particular, this problem remains meaningful even when � 6� 1 where, for example,

long run averages will not exist. This will allow for an easy extension to the heavy-traÆc regime,

where �! 1. This case will be addressed later on.

Complexity. Let P denote the class of problems that can be solved in polynomial running time.

Let NP denote the class of problems for which given a polynomial size certi�cate, we can check in

polynomial time whether this certi�cate is valid. A useful attribute of complexity is hardness. A

problem L is NP-hard if every problem in class NP can be reduced in polynomial time to problem

L; L need not belong to class NP itself { if it does then it is called NP-complete. Let EXPT IME

be the class of problems that can be solved in exponential running time. Clearly, P � NP and

P 6= EXPT IME.

The intractability of the class of problems considered here was formally established in a very strong

sense by Papadimitriou and Tsitsiklis [PT96], where they showed that the multiclass network problem

is EXPT IME-hard. This immediately implies that this problem is of exponential complexity. (This

is true even if one could show that P = NP , which is by itself quite unlikely).

In light of these negative complexity results, the approach we will follow here is based on approxi-

mating (or replacing) the stochastic network by its uid analog -this is a model with deterministic

and continuous dynamics-, solving an associated uid optimal control problem, and then using the

derived uid control policy in order to de�ne an implementable policy in the stochastic network. This

procedure is summarized below:

1. Consider a dynamic control problem for the original stochastic network;

2. Form uid analog of stochastic network and solve the associated uid optimal control problem;

3. Translate/implement the optimal uid control in original stochastic network;

4. Consider uid limit of stochastic network under implemented policy;

5. Verify uid-scale asymptotic optimality and stability.

Stages 1 to 3 are clear. Stages 4 and 5 describe a criterion for performance analysis under the

implemented policy that is consistent with the model approximation adopted at stage 2, in the following
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sense: the implementation is tested for asymptotic optimality in the limiting regime where the model

approximation is valid. This criterion is referred to as uid-scale asymptotic optimality (FSAO). We

will return to this owchart later on. Now we will focus on stage 2.

III.2.2 Fluid optimal control problem

We start by formulating the associated uid model. Discrete jobs moving stochastically through dif-

ferent queues are replaced by continuous uids owing through di�erent bu�ers, and system evolution

is observed starting from any initial state. The deterministic rates at which the di�erent uids ow

through the system are given by the average rates of corresponding stochastic quantities. The uid

optimization problem associated with (III.15) is de�ned by

�V g(q) = min
v(�)

�Z T

0
g(z(t))dt : z(0) = q and (z; v) 2 FM

�
: (III.16)

�V g(q) denotes the value function of the uid optimization problem starting from the initial condition q,

the superscript g denotes the dependence on the cost rate function, and T is the same time horizon that

appears in the performance index in (III.15). The problem in (III.16) is one of transient optimization

or transient recovery starting from a large initial backlog. One should think of T as being long enough

so that starting from any appropriately normalized initial condition z, the transient behavior of the

optimal solution will have settled and the queue length vector will have reached its �nal state of

least achievable cost without being a�ected by the �nite horizon T ; more on this later. Speci�cally,

optimization in the uid model gives information about the path that the state will follow until it

reaches a \�nal" state; for � < 1 this state is at the origin, for � = 1 this is the state of minimum

achievable cost given the initial condition, and if � > 1 this state will correspond to the asymptote of

minimum cost accumulation, along which the uid trajectory will blow up as t increases.

III.2.3 An example

We will analyze the Rybko-Stolyar network shown in Figure 1. For illustrative purposes we shall

consider the following speci�c numerical data:

�1 = �3 = 1; �1 = �3 = 6 and �2 = �4 = 1:5: (III.17)

Control capability in this network is with regard to sequencing decisions between classes 1 and 4 at

server 1 and classes 2 and 3 at server 2. Note that the two job classes waiting to be processed at each

server di�er in their service requirements and routes through the network. Now suppose we wish to
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Figure 1: The Rybko-Stolyar network

�nd a scheduling policy � that minimizes

J�(T ) = E�

Z T

0

4X
k=1

Zk(t)dt; (III.18)

where Zk(t) is the class k queue length at time t, and E� denotes the expectation operator with respect

to the probability measure P� de�ned by any admissible policy �.

Speci�cally, for the Rybko-Stolyar network the uid model equations are as follows. Denoting by vk(t)

the instantaneous fraction of e�ort devoted to serving class k jobs at time t by the associated server,

and by zk(t) the amount of uid in bu�er k at time t, and de�ning vector functions v(t) and z(t) in

the obvious way, one has

_z(t) = ��Rv(t); z(0) = q; (III.19)

v(t) � 0; v1(t) + v4(t) � 1; v2(t) + v3(t) � 1; z(t) � 0; (III.20)

where

� =

2
666664

�1

0

�3

0

3
777775
; R =

2
666664

�1 0 0 0

��1 �2 0 0

0 0 �3 0

0 0 ��3 �4

3
777775
:

The associated uid optimal control problem will be to choose a control v(�) for this uid model that

minimizes

�J(z; T ) =

Z T

0

4X
k=1

zk(t)dt; (III.21)

for some �xed T > 0. The corresponding value function will be denoted by �V (z; T ).

It can be shown that the optimal control for the uid model can be characterized as Last-Bu�er-

First-Served (LBFS) with server splitting whenever an exiting class is emptied at the other server.

That is, each server has responsibility for one incoming bu�er and one exit bu�er; the exit bu�er

is given priority unless the other server's exit bu�er is empty, in which case server splitting occurs.

For an explanation of the latter situation, let us focus on the behavior of server 1 when bu�er 2 (the

exit bu�er for server 2) is empty and bu�er 1 is non-empty. In that circumstance, given the data in
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z�(t) v�(t)

(�;+; �;+) (0; 1; 0; 1)

(+; 0; 0; 0) (1� �3=�4; 1� �3=�3; �3=�3; �3=�4)

(+; 0; �;+) (�2=�1; 1; 0; 1 � �2=�1)

(�;+;+; 0) (0; 1 � �4=�3; �4=�3; 1)

(0; 0;+;+) (�1=�1; �1=�2; 1� �1=�2; 1� �1=�1)

(+;+; 0; 0) (1� �3=�4; 1� �3=�3; �3=�3; �3=�4)

(0; 0; 0;+) (�1=�1; �1=�2; �3=�3; 1� �1=�1)

(0;+; 0; 0) (�1=�1; 1� �3=�3; �3=�3; �3=�4)

(+; 0;+; 0) (�2; �1; �4; �3)=(�1 + �2)

(0; 0;+; 0) (�1=�1; �1=�2; 1� �1=�2; 1� �1=�1)

(0; 0; 0; 0) (�1=�1; �1=�2; �3=�3; �3=�4)

Table 1: Optimal control for the uid model associated with the Rybko-Stolyar network

(III.17), server 1 devotes 25% of its e�ort to bu�er 1 (its own incoming bu�er) so that server 2 can

remain fully occupied with class 2 jobs, and devotes the other 75% of its e�ort to draining bu�er 4

(its own exit bu�er). This policy is myopic in the sense that it removes uid from the system at the

fastest possible instantaneous rate, regardless of future considerations, and it is optimal regardless of

the horizon length T . This yields the following alternative characterization:

v(t) 2 argmin
�
10 _z(t) : v � 0; v1 + v4 � 1; v2 + v3 � 1; z(t) � 0

	
: (III.22)

In more detail, the optimal control is the one described in Table 1, where a \+" signi�es positive

bu�er content, a \0" signi�es an empty bu�er, a \�" signi�es arbitrary bu�er content for the state

vector z(t), and v(t) is the optimal instantaneous allocation vector. Finally, an example of optimal

uid trajectories starting from the initial condition q = [1; 0; 0:5; 1] is depicted in Figure 2.

III.3 Characterization of the Optimal Control

1. Existence. First, note that the control v(t) = R�1� for 0 � t � T is feasible and moreover, it

provides the following upper bound on the value function: 0 � �V g(q) � Tg(q): Moreover, given

the properties of the cost rate function g, it follows that the objective in (III.16) is continuous

in z and thus, the resulting optimization problem is of the form of minimization of a continuous

function in a compact set. Existence of an optimal solution follows from Weiertrass Theorem.

2. Continuity & di�erentiability. Given a compact set of initial conditions fq : jqj � Bg, and using
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Figure 2: Optimal state trajectories in the uid model for q = [1; 0; 0:5; 1]

the Lipschitz continuity of the uid trajectories z(�), we can bound above the set of feasible uid

solutions of (III.16) by BT�, where � is an appropriate growth constant determined by � and

R. Then G = supfrg(z)0(� � Rv) : v 2 V(z); jzj � BT�g, where V(z) = fv : v � 0; Cv �

1; (Rv)k � �k for all k such that zk = 0g is the set of admissible controls when the state is z.

Note that the set of admissible controls is non-empty, since R�1� 2 V(z) for all z � 0. Using

this de�nition, G is a Lipschitz constant for g and consequently for the objective of (III.16) as

well. This implies almost everywhere di�erentiability of the value function �V g for the set of

initial conditions jqj � B. (This is related to the idea of locally Lipschitz functions described in

Dai's notes [Dai98].

A generalized derivative can be de�ned (by choosing an appropriate subgradient) at points where

�V g is not di�erentiable. Since g is C2 it follows that the generalized gradient of �V g, denoted

r �V g, will also be a.e. continuous.

3. Smooth approximation. Hereafter, we proceed under the stronger assumption that r �V g is in

fact everywhere continuous; this assumption is not restrictive, since one could always construct a

smooth approximation of any optimal uid trajectory that is arbitrarily close to it, and proceed

by analyzing this smooth approximation (that has a continuous gradient) thereafter.

4. Characterization of the optimal control. The optimal instantaneous allocation is a state feedback

law that can be characterized by a direct application of dynamic programming principles. The
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following is an informal derivation of the optimality conditions for the solution of this problem

in terms of the cost-to-go function of the optimal control problem, denoted �V g(z(t); t). Note

that the cost-to-go is a function of the current state and the time t; this is a consequence of the

�nite control horizon T . In this notation, �V g(q) should read �V g(q; 0).

�V g(z(t); t) = g(z(t))Æt + min
v2V(z(t))

�V g(z(t+ Æt); t+ Æt) + o(Æt) (III.23)

= g(z(t))Æt + �V g(z(t); t) +
d

dt
�V g(z(t); t)Æt +

+ min
v2V(z(t))

r �V g(z(t); t)0(��Rv)Æt + o(Æt): (III.24)

The optimal control v(t) is computed as the solution of the following linear program

v(t) = argmin
v2V(z(t))

r �V g(z(t); t)0(��Rv) = argmax
v2V(z(t))

r �V g(z(t); t)0Rv: (III.25)

III.4 Stability Analysis of the Fluid Optimal Control Policy

Before we proceed to interpret this equation and review the structural properties of the solution, we

prove stability of the optimally controlled uid model. In passing we obtain an upper bound on the

control horizon T required in order to get a stationary solution starting from any initial condition

with jqj � 1. This will allow us to avoid dealing with the non-stationary nature of the control policy

described above.

Recall the de�nition of stability: the uid model associated with a scheduling policy is stable if there

exists a time T > 0 such that for any solution z(�) of the uid model equations with jz(0)j = 1,

z(t) = 0, for t � T . The next proposition shows that the optimally controlled uid model is stable

provided that � < 1.

Proposition III.4.1 Assuming that � < 1, there exists a constant Tg that depends on the cost rate

function g(�), such that for any T > Tg the uid model (III.12), (III.13) and (III.25) is stable.

Proof. . Given an initial condition q, an input control v̂(t) will be constructed that will linearly translate

the state, starting from q back to the origin. (In the sequel, all quantities related to this construction will

be denoted by a \hat".) Let T̂ (t) be the total allocation process associated to the instantaneous input

control v̂(t) and let t� be the time that the uid network will empty under this control. Rewrite equation

(III.12) in the form

ẑ(t) = q +RŶ (t); where Ŷ (t) = R�1�t� T̂ (t):

In this case, Ŷ (t�) = �R�1q and thus T̂ (t�) = R�1�t� + R�1q. Linear translation from q back to

the origin implies that v̂(t) = T̂ (t�)=t� for all t � t�. By the de�nition of R it follows that R�1 =
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M(I � P 0)�1 = M(I + P + P 2 + � � �), which is elementwise non-negative and thus the instantaneous

control de�ned above satis�es the constraint v̂(t) � 0. Next, the capacity constraints imply that

Cv̂(t) � 1 ) �+
CR�1q

t�
� 1 )

CR�1q

t�
� 1� � ) t� � max

i

(CR�1q)i
1� �i

:

Under the input control v̂(t), the resulting state trajectory is described by

ẑ(t) = q

�
1�

t

t�

�
for t � t� and ẑ(t) = 0 for t > t�; (III.26)

which clearly satis�es the state positivity constraint ẑ(t) � 0.

Let V̂ g(q) be the total cost accrued in the uid model under the input v̂(t), which can be computed from

the expression

V̂ g(q) =

Z t�

0

g (q(1� t=t�)) dt:

This is also an upper bound on the value function �V g(q). (This upper bound is valid even if t� � T .)

Given the control horizon T in (III.16), mint�T g(z(t)) � V̂g(q)=T , where z(t) is the state trajectory under

the policy de�ned by (III.25) that achieves the minimum draining cost �V g(q). Let � be the time that this

minimum is attained. Given the properties of g(�), we have that g(z(�)) � bjz(�)jc, which implies that

jz(�)jc � V̂g(q)=(Tb). Next we choose the control horizon T long enough such that for any 0 <  < 1 we

have that jz(�)j � , independent of the initial condition q. Let

� = max
jqj=1

max
i

(CR�1q)i
1� �i

and Æ = max
jqj�1

g(q) = �b: (III.27)

For any initial condition such that jqj = 1, V̂g(q) � Æt� � �b�. Let Tg = �b�=(cb). Then, for any T > Tg,

there exists a time 0 < � � T such that jz(�)j � .

The remainder of this proof imitates the arguments in Theorem 6.1 of Stolyar [Sto95]. For m = 1; 2; : : :,

let �m = minft > 0 : jz(t)j � m; jz(0)j = m�1g. Modifying (III.27), we can de�ne �m = �m�1 and

Æm = �b(m�1)�c. It follows that

�m � Tg(
�c+1�c)m�1:

Clearly,
P

m �m � Tg=(1��c+1�c) , T0. Continuity of jz(t)j in t, implies that limm jz(
P

m �m)j = 0, and

therefore, that supft > 0 : jz(t)j = 0; jz(0)j = 1g �
P

m �m � Tg=(1 � �c+1�c). By observing that the

uid trajectories under the optimal uid control policy will remain empty once they drain for the �rst

time we complete the proof. �

While this result is hardly surprising due to the optimality implied by (III.25), its derivation provided

an upper bound for the time taken to drain the uid model starting from any initial condition with

jqj = 1 under the in�nite horizon optimal control solution; (III.16) is still well-posed when T = 1,

(III.25) is a characterization of the optimal control, and Proposition III.4.1 is still valid, but, in fact,

the optimal control v(t) no longer depends on t.
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Intuitively, the geometric convergence observed in the proof is due to the Lipschitz paths of the optimal

control; that is, even is jz(t)j is small, the rate of decay is still linear and this yields the desired result.

This should be contrasted with the case where, for example, _z(t) = Az(t) where A is s stable matrix,

i.e., all eigenvalues of A have negative real part. There, the drift decreases as jz(t)j gets small, which

results in the exponential decay z(t) = eAtq. In this case, there is no time T such that z(t) = 0 for

t � T ; i.e., this system is not stable according to our de�nition. For a person familiar with system

theory our original de�nition of stability might have appeared to be too strict; This person would have

asked: \Isn't exponential decay to 0 suÆcient? It must be!" In closer look, however, we see that our

de�nition has the correct form, since it picks up the essential dynamics of our dynamical systems that

are di�erent than the classical models in linear system theory.

Corollary III.4.1 Let z�(�) denote any optimal trajectory for (III.16) with T =1, starting from any

initial condition with jqj � 1. For any  2 (0; 1), z�(t) = 0 for t � T0, where

T0 ,
�b �

c b

1

1� �c+1�c
: (III.28)

Minimizing over  one gets the smallest upper bound T0 at

� =

�
c

�c+ 1

�1=(�c+1�c)

:

The estimate of T0 is important in numerical optimization routines.

If we set T � T0, (III.25) reduces to the stationary solution of the in�nite horizon uid control problem

v(t) = argmin
v2V(z(t))

r �V g(z(t))0(��Rv) = argmax
v2V(z(t))

r �V g(z(t))0Rv: (III.29)

A similar condition can be derived when � = 1. Hereafter, it is assumed that (III.28) is satis�ed.

III.5 Structural Properties of the Optimal Control

1. Bang-bang. The following fact explains some of the structural properties of the solution of

the uid optimal control solution. They are consequences of the deterministic and continuous

dynamics of uid models and the fact that we have bounded controls (v(t) 2 [0; 1]). First, we

need some de�nitions.

� The sequence of time epochs P = ft0; t1; : : : ; tpg is a partition of [0; T ] if 0 = t0 � t1 �

� � � � tp = T . These points will be referred to ti as breakpoints.
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� A function f(t) is piecewise constant (linear) on a partition P , if it is constant (linear)

on [ti�1; ti) for i = 1; : : : ; p. A function f(t) is piecewise constant (linear) on [0; T ] if it is

piecewise constant (linear) with some partition of [0; T ].

Fact III.5.1 Let (z�q (�); v
�
q (�)) denote the optimal uid and control trajectory associated with

(III.16) (where q is the initial condition).

(a) v�q (�) is piecewise constant for some partition P of �nitely many breakpoints.

(b) z�q (�) is continuous and piecewise linear on [0; T ].

(c) If z�q (t) > 0, then v�q (t)k equal either 0 or 1 (this is the bang-bang nature).

In fact, z�q will be Lipschitz continuous for the appropriate growth constant that depends on

�;R. These points can be observed in the optimal uid trajectories depicted in Figure 2.

2. Interpretation of the optimal control. De�ne the vector valued function

rg(z(t)) = R0r �V g(z(t)):

Under the standing assumptions, rg(�) is a continuous function of its argument. This is a dynamic

index rule, or reward function, that de�nes the optimal policy for the uid model. It associates

with each queue length vector z(t) a corresponding K-vector rg(z(t)) of reward rates for e�ort

devoted to processing the various classes of jobs. Under this interpretation, the optimal control at

any point in time simply maximizes total reward over the set of admissible controls. Overloading

notation, this dynamic reward function will also be referred to as the optimal policy for the uid

control problem described in (III.16).

For example, consider the case where z(t) > 0. In this case, V(z(t)) = fv : v � 0; Cv � 1g,

and the optimal instantaneous allocation computed from (III.29) will be to allocate all the e�ort

of each server j to class k 2 C(j) that has the highest instantaneous reward at this station

(rgk(z(t)) > rgl (z(t)) for all l 2 C(j); l 6= k). That is, serve the class with the highest reward rate

at each station.

3. Switching surfaces. Pursuing further the last example, the optimal instantaneous allocation will

only change if the relative priorities between the di�erent classes change at any server change, or

if one of the classes gets depleted. Breakpoints correspond to time instances where the reward

rates corresponding to the optimal trajectory switch priorities in the fashion just described.

Thus, the state space RK
+ will be divided into regions according to the relative orderings induced

by rg(�). These regions are separated by switching surfaces. Identifying these switching planes

is, in general, hard. The following fact leads to a clear mental picture:



Dynamic Control of Fluid Models III { 13

1 2
�

�1 �2

Figure 3: Tandem line - 2 stations

Fact III.5.2 If the cost rate function g is linear, then the switching surfaces are of the form

fz : h0iz = 0; z � 0g; i.e., they are halfspaces through the origin restricted in the positive orthant.

We now describe a simple example that will help highlight this fact. Finally, note that non-linear

cost rate functions would lead to more complex descriptions for the switching surfaces.

4. An example. Consider the example shown in Figure 3. Class 1 jobs arrive with a rate � and

after they receive service at station 1 they become class 2 jobs waiting to be served at station

2. We consider the optimal control of this uid model where the associated cost functional is

a linear holding cost: g(z(t)) = c1z1(t) + c2z2(t). The only scheduling decision to be made is

whether or not to idle the upstream server.

Depending on the choice of network parameters the optimal policy will be di�erent. Optimal

allocations (for the case z(t) > 0) are summarized in Table 2.

Parameter regime v�(t)

Case 1 c1 � c2 (1; 1)

Case 2 c1 < c2 (0; 1)

�1 � �2

Case 3 c1 < c2 (0; 1)

�1 < �2
z1(t)

z2(t)
<

c2
c1

�1 � �

�2 � �1

Case 4 c1 < c2 (1; 1)

�1 < �2
z1(t)

z2(t)
�

c2
c1

�1 � �

�2 � �1

Table 2: Fluid optimal control for 2-station tandem network

Let's go through these cases.

� In case 1, the holding cost for jobs at server 1 is higher than that at server 2, and thus it is

optimal to hold our inventory in the downstream server. Therefore, we never intentionaly
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z1

z2

Idle server 1

_z = (�;��2)

_z = (�� �1; �1 � �2

Figure 4: Two stations in tandem: switching line at
z1(t)

z2(t)
=

c2
c1

�1 � �

�2 � �1

idle server 1; whenever there is work at station 1 we process it at full capacity. Server 2

continues working at full capacity provided that z2(t) > 0.

� In case 2, it is more expensive to hold inventory in the downstream server and moreover,

the upstream server can process jobs faster than the downstream one. Hence, the optimal

policy would hold all inventory at server 1, and then process at server 1 at such a rate in

order to keep server 2 working at full capacity and its bu�er empty; that is, �1v
�
1 = �2. If

z(t) > 0, then server 2 works at full capacity to deplete its queue, whereas server 1 idles

until z2 empties and we get into the scenario just described. This example illustrates that

idling could be desirable in the solution of the uid optimal control problem.

� Cases 3 and 4 are more subtle. Since �2 > �1, if queue was depleted, server 1 would not

have enough processing capacity to keep server 2 busy and that would result in unwanted

idleness in server 2. Therefore, idling server 1 until queue 2 gets depleted as in case 2 is

suboptimal. In order to avoid unwanted idleness at server 2 we need to start processing at

server 1 before we deplete queue 2. However, since the holding cost at queue 2 is higher

than that in queue 1, we will not process at server 1 unless queue 2 starts getting small

enough that eventually that we would incur idleness that will prevent us from optimal

cost draining. This tradeo� between holding costs at queue 2 or unwanted idleness at the

corresponding server leads to the linear switching line in the optimal policy; see Figure 4.

5. Additional properties of optimal trajectories with linear costs. Recall that in the case of linear

holding costs the switching surfaces are halfspaces. Cosnider two starting states q and aq, where

a is a positive constant. It is clear that aq lies in the same region in state space (as de�ned by
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the switching halfspaces), and thus

v�q (0) = v�aq(0):

In fact pursuing that observation a little further we get that for t � 0

v�aq(t) = v�q (t=a) and z�aq(t) = z�q (t=a): (III.30)

Hence, we only need to compute the optimal trajectories for initial conditions on a ball, say

jqj = 1, and then use (III.30) to come with the optimal allocations process and optimal trajectory

starting from aq for any a > 0.

III.6 Numerical Solution of Fluid Optimal Control Problems

The optimization problem described in (III.16) is a continuous time (in�nite dimensional) convex

program over a polytopic feasible set. Overwhelmingly the most popular choice for the cost rate

function g is the linear one. Its popularity is rooted in simple economic arguments, tractability, as

well as pure historical reasons. The resulting problem has been addressed quite extensively in the

literature.

Linear objectives {Separated Continuous Linear Programs (SCLP). The problem in (III.16)

lies in the class of separated continuous linear programs. The essential features for this class of

problems are that

� the state dynamics depend linearly on the control and not on the current state itself (i.e., _z(t)

is a linear function of v(t), independent of z(t));

� the state and the control are non-negative;

� the control satis�es polytopic constraints;

� SCLP does not include state polytopic constraints, but, in fact, they can be incorporated without

any additional algorithmic or theoretical complication.

We know that the optimal control is bang-bang. That is, the optimal control trajectories are piecewise

constant and the optimal state trajectories are piecewise linear. This has a the following natural

interpretation. In linear programming, the optimum occurs at an extreme point of the polytope

of feasible solutions. Similarly, piecewise linear functions are the extreme points within the set of

continuous functions, and thus the optimal trajectory for a SCLP again occurs at an extreme point.

Consequently, the optimal allocation will have to be piecewise constant. Moreover, extreme points
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vk(t)

zk(t)

t1

t1

t2

t2

t3

t3

t4

t4

zk(0)
�1

�2

�3

�4

Figure 5: Bang-Bang structure of uid optimal control solution

will correspond to solutions where the controls will be either at their minimum value, which is 0, or

at the maximum value, which is 1; this is the bang-bang nature.

Figure 5 depicts an example of control and state trajectories. Breakpoints are at times t0; t1; : : : ; t4.

The controls within each time interval are constant. The corresponding trajectory is piecewise linear;

the slopes of each segment are denoted by �1; : : : ; �4. These slopes are linearly related with the controls.

In the sequel we treat them as the decision variables together with the breakpoints t0; t1; : : : ; t4. Note

that instead of the continuum of variables we only have 2KjP j now, where jP j is the number of

breakpoints. We have,

Z T

0
h0z(t)dt =

X
k

hk (area under zk curve)

=
X
k

hk

�X
[area of trapezoids between [ti�1; ti) of slope �i]

�
:

Note that

z(ti) is a linear function of t0; t1; : : : ; ti, �1; : : : ; �i, and z(0).

As a result the area in each trapezoid will be is a non-convex quadratic function of the decision
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variables. The SCLP has been reduced into a low dimensional non-convex quadratic program. This

reduction has been exploited, and very eÆcient algorithms have been proposed in the recent literature.

This method, however, does not extend to the case of convex (but non-linear) cost rate functions.

Discretization over time. The most natural alternative for the problem in (III.16) is to discretize

the system dynamics and solve a �nite dimensional convex program.

The discrete dynamics are given by

z(r + 1) = z(r) + (��Rv(r))Æ; z(0) = q;

and the state and control constraints are

z(r) � 0; v(r) � 0; Cv(r) � 1 for r = 0; : : : ; dT=Æe � 1:

Extending previous terminology, a pair of sequences (z; v) that satisfy the above set of conditions will

be denoted by (z; v) 2 FMÆ. The associated discrete time optimal control problem is:

�V g
Æ (q) = min

v

8<
:
dT=Æe�1X
r=0

g(z(r))Æ : (z; v) 2 FMÆ

9=
; : (III.31)

For the optimal control problem at hand, one can show that for any initial condition q, �V g
Æ (q)!

�V g(q),

as Æ ! 0. In practice, suitable choices for Æ depend on the arrival rates � and feedback matrix R.

The convexity of g(�), implies that (III.31) is a convex optimization problem over a polytopic constraint

set. It can be rewritten in the form

�V g
Æ (q) = min t

s.t. Av � b; GÆ(v) � t; v � 0

where N = dT=Æe, GÆ(v) =
PN�1

r=0 g(z(r)), and A; b describe the polytopic constraint on the control

vectors fv(0); : : : ; v(N � 1)g de�ned by:

A =

2
666666666664

RÆ
...

. . .

RÆ � � � RÆ

C
. . .

C

3
777777777775

; b =

2
666666666664

q + �Æ
...

q + �NÆ

1
...

1

3
777777777775

The value of (III.31) depends on the initial condition through the function GÆ(v), which is the sum of

the g(z(r)) terms, and through the vector b, which can be expressed in the form b = Dq + ~b for the
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obvious choice of D and ~b. The Lagrangian associated with this problem is:

L(t; v; �; �) = t+ �T (Av � b) + �(GÆ(v)� t) (III.32)

By minimizing over t and v, we see that � = 1 and that the required constraint for the dual problem

to be �nite is:

AT � � �rvG
Æ: (III.33)

>From the expression for the Lagrangian we can also calculate r �V g(q). That is,

@L

@q
=

@L

@b

@b

@q
+

@L

@GÆ

@GÆ

@q
= ��TD +rqG

Æ (III.34)

This can be rewritten as

r �V g
Æ (q) = Æ

0
@��TD +

N�1X
r=0

rg(q + �rÆ � ÆR

r�1X
j=0

v�j )

1
A

where v� is the optimal control. Again, additional polytopic constraints on the state and control can

be easily included.

The caveat of this method is that the number of variables grows proportionally to the horizon T and

inversely proportional to the discretization step Æ. This will lead to large optimization problems that

are better suited for o�-line computation.

Of course, for the case of linear cost rate function we have seen that we only need to compute the

optimal solution starting from a small initial condition and then use (III.30) to \zoom out" to the

desired degree. Moreover, we have a bound on the control horizon T required to reach the optimal

solution that will also get smaller if we only need to compute optimal solutions starting from small

initial conditions. Hence, the dimensionality problem is not severe in the case of linear cost rate

functions, and, in fact, it can be used very eÆciently towards the solution of (III.16).

Value function approximation method. In many applications the \thinking time" allowed in

computing the solutions of these uid optimization problems is limited, and most computation should

be carried through o�-line. This is important consideration in order to construct solutions that scale

gracefully with problem size. In these cases, it is typical to sample the state space at a sequence of

points, say fq1; : : : ; qmg, where the solution of the uid optimal control problem is computed. Let

Vi = �V g(qi) and fi = r �V g(qi); for i = 1; : : : ;m:

The following functional approximation to the value function �V g can be used. First, observe that the

objective in (III.16) is convex in the initial condition q and the control sequence v(�). This can be

shown using the convexity of g and the observation that given any two feasible controls v1(�) and v2(�),
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the control v(t) = �v1(t) + (1 � �)v2(t), for � 2 (0; 1), is also feasible. It is easy to conclude that �V g

is convex in q and thus

�V g(q) � Vi + f 0i(q � qi); for i = 1; : : : ;m:

A piecewise linear approximation can be constructed by

V̂g(q) = max
1�i�m

Vi + f 0i(q � qi); (III.35)

which also serves as a lower bound to the value function of (III.16); that is, V̂g(q) � �V g(q) for all

q � 0. The corresponding approximation of r �V g is equal to the fi that corresponds to the maximizer

of (III.35). This approximation is valid for convex cost rate functions. Computing the (approximate)

optimal allocation is cheap, and such a solution could be used for on-line applications. (Meanwhile,

the approximation is continuously re�ned by computing more points on a grid.)

III.7 Dynamic Control of Fluid Models

Fluid optimal control policies capture optimal transient behavior in the uid model. These policies

are speci�ed using a dynamic index or reward function. Here we consider other dynamic uid model

control policies that are not derived from any explicit optimization of the form in (III.16). The

motivation for such an extension is twofold: �rst, it is often the case that the solution of the uid

optimization problem, is not fully speci�ed, and only an approximate description is available; and

second, starting form any initial condition it could be desirable to use control policies derived either

by simpler and more direct methodologies, or by incorporating other considerations not included in

the formulation of (III.16) such as additional design and operational speci�cations.

Minimum time control

In many applications it is either hard to have accurate data regarding the cost rate function g, or one

does not have access to the solution of the uid optimal control problem (III.16). In these cases, a

natural alternative is to try to optimize transient performance by minimizing the time to drain the

initial backlog without any further considerations regarding the cost structure. Minimum time control

is intuitively appealing and, as we now see, has a surprisingly simple solution in the uid model.

Assume that � < 1. Starting from an initial condition q consider the problem of draining the uid

model in minimum time stated below:

�VI(z) = min
v(�)

�Z 1

0
Ifz(t)gdt : z(0) = q and (z; v) 2 FM

�
; (III.36)

where Ifz(t)g is the indicator function, Ifz(t)g = 1 if z(t) 6= 0 else, Ifz(t)g = 0. Given the simple

uid dynamics and using some intuition from the area of minimum time control, one would expect to
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have bang-bang optimal controls that yield piecewise linear optimal trajectories and a value function

�VI that is piecewise linear in the initial condition q. We know show that this is true. In fact, the

minimum-time control trajectory has already been de�ned in the proof of Proposition III.4.1, and it

corresponds to linear translation from q to the origin.

Speci�cally, let t�(q) be the minimum draining time under some feasible control. Then,

z(t�(q)) = q + �t�(q)�R �T (t�(q)) = 0

which implies that �T (t�(q)) = R�1q +R�1�t�(q). The capacity constraints imply that

C �T (t�(q)) � 1t�(q) ) CR�1q � (1� �)t�(q)

) t�(q) � max
1�j�J

(CR�1q)j
1� �j

: (III.37)

In Proposition III.4.1 it was proved that the control trajectory v̂(t) = R�1�+R�1q=t�(q) for t � t�(q)

and v̂(t) = R�1� for t > t�(q) achieves the bound in (III.37).

The value function will be �VI(z) = t�(q), which is indeed piecewise linear as it was argued above.

For example, in the Rybko-Stolyar network and starting from q = [1; 0; 0:5; 1], the minimum time

control will drain the system in t�(q) = 7 time units. However, the cost accrued under this control

is equal to 8:75, which is 21% suboptimal in comparison to the optimal achievable cost in the uid

model; this can be computed from Figure 2 to be 7.22. This result should not be very discouraging,

since the derivation of this policy did not involve any computation and could be very practical for

large networks.

Reward maximizing policies

Motivated by the structure of (III.29) we now de�ne a family of control policies for uid models.

Speci�cally, given a dynamic reward rate function r(�), we de�ne a greedy control policy using the

following instantaneous resource allocation rule:

v(t) 2 argmax
v2V(q(t))

r(q(t))0v: (III.38)

That is, at any point in time the controller allocates resource usage in order to greedily maximize

the \instantaneous reward rate" according to (III.38). This policy mimics the uid optimal control

law described in (III.29), with the optimal reward rate function rg replaced by an arbitrary reward

function that has the following interpretation: it associates with each queue length vector q and each

job class k a positive value rk(q), which is treated as a reward rate for time devoted to processing

class k jobs. As it was explained earlier, the relative magnitudes of the reward rates induce a dynamic

priority rule among classes at the same server.
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We replace the optimal reward rate function rg by an arbitrary reward rate function r that is continuous

and further satis�es a non-idling and a polynomial growth condition. The continuity will be needed

later on, and the growth and non-idling conditions will be used in order to show stability. In particular

we consider the class of reward rate functions r(�) de�ned on RK
+ , which are real valued, strictly

positive, and continuous functions, where each component of which satis�es the growth condition

c1 � rk(q) � c2 + jqjc3 for some c1; c2; c3 > 0 and k = 1; : : : ;K: (III.39)

We start by establishing that the positivity restriction on the reward rate functions implies the fol-

lowing non-idling property for uid models under the policy (III.38); the proof is left as a homework

problem.

Proposition III.7.1 The uid solutions of the set of equations (III.12), (III.13) and (III.38) associ-

ated with a strictly positive reward function r(�) are non-idling in the sense that (Cv(t))k = 1 whenever

(Cz(t))k > 0.

Therefore, reward rate functions that satisfy (III.39) can be interpreted as non-idling dynamic priority

rules with respect to their uid behavior. Note, that nothing has been -or can be- said for any queueing

network behavior, since for now we have not identi�ed a scheduling policy that achieves (III.29) or

(III.38) as their uid limit. These uid models are only studied in isolation. Later on, we will take on

the problem of de�ning scheduling policies in the stochastic networks that achieve this uid limiting

behavior.

The speci�c form of the growth restriction in (III.39) is required for the proof of stability of these

models; it could be relaxed at the expense of a more complicated proof. For the appropriate choice of

the constant c3, (III.39) can be made consistent with (III.14). Note, however, that the positivity (or

non-idling) restriction need not be satis�ed in general by rg, since optimal policies might allow idling

in some cases; recall the 2-station in tandem example. As a result, condition (III.39) does not include

all the reward rate functions rg derived earlier.

Finally, in the case of a constant reward vector, (III.38) simpli�es to

v(t) 2 argmax
v2V(q(t))

r0v: (III.40)

The constant reward vector will induce a static priority rule according to the relative magnitudes of

the various reward rates in the sense described above.

Assuming that � < 1 we now prove stability of these policies by considering two separate cases when r

is a constant vector, and when r(�) is dynamic. Stability is proved by identifying a Lyapunov function
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with the appropriate negative drift. The case of constant reward rate vectors is addressed in the

homework, where you prove the following result:

Proposition III.7.2 Assuming that �i < 1 at every station i, the uid model described by equations

(III.12), (III.13) and (III.40) is stable.

One last observation in the context of constant reward rate vectors is that (III.40) can be rewritten

in the form

v(t) 2 argmin
v2V(q(t))

dV (q(t))

dt
: (III.41)

Equation (III.41) provides a greedy interpretation of the associated uid model, in the sense that

resource usage is instantaneously allocated in order to minimize a linear objective de�ned by the

linear Lyapunov function V (q(t)). The interpretation of the constant vector r as a static priority

rule together with equation (III.41) illustrate a relation between linear Lyapunov functions, static

priorities, and constant reward rate vectors.

Next, we consider the case of a dynamic reward rate function.

Proposition III.7.3 Assuming that �i < 1 at every station i, the uid model described by equations

(III.12), (III.13) and (III.38) is stable.

Proof. Just a sketch. Let g(q(t)) = R�T r(q(t)). Since, R�1 is componentwise non-negative it is clear

that g(q(t)) > 0, for all q(t) 6= 0. Furthermore, without loss of generality we can assume that the following

normalization condition is true: 1 � g(q) � b+ jqj for some constant b > 0. De�ne the functional

V (q(t)) = �

Z 1

t

e��(��t)g(q(�))0 _q(�)d� ; (III.42)

where � > 0 is a discount factor. The functional V (�) can be interpreted as an exponentially weighted

energy function for the uid model. The drift of this functional is given by

dV (q(t))

dt
= g(q(t))0 _q(t): (III.43)

The remainder of the proof establishes that this function has the desired negative drift. (The polynomial

growth of r(�) is used to prove �niteness of V (�) under discounting.) �

An example of a reward rate function. Consider optimal network control problems under linear cost

criteria. In these cases, a sensible starting point, in choosing a control policy for these networks, is

to try to enforce the priority ranking that at any point in time strives to maximize cost draining out

of the system; this is a generalization of the celebrated \c�" rule. Assuming that the linear holding

costs are denoted by hk for each job class k, this greedy policy strives to minimize h0(� �Rv) of the
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admissible controls v 2 V(q(t)). The corresponding policy is precisely (III.40) for the choice r = R0h .

Finally, in the case of non-linear costs described by the cost rate function g(q(t)), the corresponding

dynamic reward rate function will be de�ned by r(q(t)) = R0rg(q(t)).

In the case of the Rybko-Stolyar example analyzed earlier, this reward rate vector will be r = R01 =

[0; 1:5; 0; 1:5]0 . This, indeed, de�nes the LBFS static priority ranking that was shown to be optimal in

the uid model in conjunction with some boundary modi�cations that prevent idleness while maximiz-

ing cost draining out of the system when some of the classes have been depleted. It is interesting to

note that the uid model associated with the static priority policy of LBFS can actually be unstable.

What is the di�erence between the static LBFS and its implementation in (III.40)?

III.8 Notes and References

A detailed discussion of the derivation of uid models and their properties can be found in the notes

by Dai [Dai98]; see also Dai [Dai95], Dai and Weiss [DW96], and Bramson [Bra98] for additional

comments.

The complexity analysis in Papadimitriou and Tsitsiklis [PT96], considered a similar class of scheduling

problems in multiclass networks to the ones studied here; the equivalent for our class of problems easily

follows. A detailed discussion of complexity issues in performance and control of queueing network

can be found in Bertsimas [Ber95b, section 7].

The uid model approach to stochastic network control problems has been studied several researchers

in the past. Examples can be found in Chen and Yao [CY93], Atkins and Chen [AC95], Avram,

Bertsimas and Ricard [ABR95], and Eng, Humphrey and Meyn [EHM96], where heuristic translation

mechanisms based on uid model optimization are described; in fact, related work can be traced back

to Newell [New71]. More recent work can be found in Meyn [Mey97] Chen and Meyn [CM98], and

Bertsimas and Sethuraman [BS97]. We will return to this framework in the next lecture note.

The Rybko-Stolyar network was studied independently by Kumar and Seidman [KS90] and Rybko and

Stolyar [RS92]. The analysis presented here is from Maglaras [Mag99a]. The discussion of uid optimal

control problems in section III.3 is based again on [Mag99a]. Classical results that establish existence

of solutions etc. can be found in Luenberger [Lue69]. A detailed -and very good- exposition of dynamic

programming can be found in Bertsekas [Ber95a, section 3.2]. Section III.4 is from [Mag99a], where

stability and the bound on the time to drain the uid model under the optimal control were established.

Most of the comments in section III.5 are from Pullan [Pul93, Pul95] and Avram, Bertsimas and Ricard

[ABR95]. The two station tandem network example is from [ABR95], where the optimal policy was

computed by writing the dynamic programming equations and then directly applying the maximum
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principle. The observation in III.5.5 is new, but is certainly known to other researchers as well.

The discussion on SCLPs is based on Luo and Bertsimas [LB96]. The basic references in this area

are the papers due to Pullan [Pul93, Pul95, Pul96], Luo and Bertsimas [LB96], and the work of Weiss

[Wei95, Wei97] that addresses specialized examples of SCLPs that have simpler solutions. Despite the

success of these algorithms in the case of linear holding costs, there is still need for them to be extended

to more general cost structures. For example, as it was argued by Van Mieghem [VM95], convex

increasing delay costs provide a more accurate representation of \congestion costs." In this case the

resulting problems would be non-linear, yet convex, and the most natural solution technique relies on

discretization over time and explicit computation of the resulting �nite dimensional convex program. A

wide range of such problems can be addressed with very eÆcient interior point algorithms that perform

very well both in theory and in practice. An extensive list of such problems can be found in the papers

by Vandenberghe, Boyd and Wu [VBW98], Lobo, Vandenberghe, Boyd and Lebret [LVBL97], and

Alizadeh and Schmieta [AS97]. Similar optimal control problems, especially with quadratic costs,

have been studied extensively in the context of Model Predictive Control [Cla94], and they should

provide a good starting reference for the uid optimization problems of interest here.

The derivation of the minimum time control is from [Mag99a]. It is a simple generalization of the

result due to Weiss [Wei96] for the case of re-entrant line (all arrivals go to class 1, and work ows

in a deterministic route from class 1 to class 2 etc { work can visit the same station many times).

The description, interpretation and basic results about reward maximizing policies are from Maglaras

[Mag99b]. Roughly speaking, greedily optimizing over any reward rate function that satis�es a non-

idling constraint (with respect to their uid model behavior) gives a stable uid control policy. This

whole family of policies, parametrized by the reward rate function r(�) will be used later on to design

stable scheduling policies for stochastic networks.
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