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Summary. We have seen how to formulate and solve a 
uid optimal control problem associated

with a stochastic network control problem. In this note we describe a family of discrete-review

policies that can be used as a general mechanism to translate the solution of a 
uid optimal

control problem back into the original stochastic network in a way that guarantees several desirable

properties. Namely, stability and 
uid-scale asymptotic optimality; the latter tests the implemented

policy for asymptotic optimality in the limiting regime where the model approximation is valid

and the stochastic problem reduces to one of transient optimization. We describe the general

structure of these policies, their basic characteristics, and �nally sketch a proof of stability and


uid-scale asymptotic optimality. A brief remark about elementary large deviations bounds is

included. Another family of continuous-review policies will be described that achieve the same

stability and 
uid-scale asymptotic optimality properties. We conclude with some extensions to

this framework and a short discussion on recent bibliography on the topic.

IV.1 The Fluid Model Approach to Network Control Problems

Dynamic control problems for stochastic processing networks are both analytically and computation-

ally hard. While most often one relies on the use of heuristics that are validated through simulation

studies, one approach that has emerged from research over the past 10-15 years is based on a hier-

archy of approximate models that provide tractable \relaxations" of these problems as a framework

for analysis and synthesis. In particular, we have seen that the analytical theory associated with 
uid

approximations has produced important insights in understanding how the performance of a multi-

class network depends on di�erent design and control parameters. This is our starting point here.

Speci�cally, the approach taken here is based on approximating (or replacing) the stochastic network

by its 
uid analog -this is a model with deterministic and continuous dynamics-, solving an associated


uid optimal control problem, and then using the derived 
uid control policy in order to de�ne an

implementable policy in the stochastic network. This procedure is summarized below:

1. Consider a dynamic control problem for the original stochastic network;

2. Form 
uid analog of stochastic network and solve the associated 
uid optimal control problem;

3. Translate/implement the optimal 
uid control in original stochastic network;

4. Consider 
uid limit of stochastic network under implemented policy;
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Figure 1: The Rybko-Stolyar network

5. Verify 
uid-scale asymptotic optimality and stability.

Stages 1 to 3 are clear. Stages 4 and 5 describe a criterion for performance analysis under the

implemented policy that is consistent with the model approximation adopted at stage 2, in the following

sense: the implementation is tested for asymptotic optimality in the limiting regime where the model

approximation is valid. This criterion is referred to as 
uid-scale asymptotic optimality (FSAO). To

be more precise, 
uid limits are derived through a Law of Large Numbers (LLN) type of scaling, where

one observes the system behavior starting form a large initial condition for a proportionally long time

horizon, which essentially yields a deterministic transient response model. Thus, the proposed criterion

tests whether in the 
uid limit regime the system's limiting performance achieves that of the optimal


uid (transient) response that was used in stage 3 in designing the policy under investigation. This is

a \minimal" requirement for the implemented policy. In comparison to the original problem at hand,

it provides a relaxed notion of optimality that appears to be simpler and one that hopefully could be

achieved even for the general class of multiclass networks. Finally, apart from FSAO, we also require

that the original stochastic network is stable under the implemented policy provided that the traÆc

intensity parameter at each station is less than one. This note analyzes stages 3 to 5.

IV.1.1 Rybko-Stolyar Revisited

Recall the Rybko-Stolyar network shown in Figure 1 for the parameters: �1 = �3 = 1; �1 = �3 =

6 and �2 = �4 = 1:5. The 
uid model associated with the Rybko-Stolyar network is as follows.

_z(t) = ��Rv(t); z(0) = q; (IV.1)

v(t) � 0; v1(t) + v4(t) � 1; v2(t) + v3(t) � 1; z(t) � 0; (IV.2)

where

� =

2
6664
�1
0

�3
0

3
7775 ; R =

2
6664

�1 0 0 0

��1 �2 0 0

0 0 �3 0

0 0 ��3 �4

3
7775 :

Fluid optimal control policy. The optimal control for the 
uid model can be characterized as

Last-Bu�er-First-Served (LBFS) with server splitting whenever an exiting class is emptied at the

other server. That is, each server has responsibility for one incoming bu�er and one exit bu�er; the

exit bu�er is given priority unless the other server's exit bu�er is empty, in which case server splitting
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occurs. For an explanation of the latter situation, let us focus on the behavior of server 1 when bu�er

2 (the exit bu�er for server 2) is empty and bu�er 1 is non-empty. In that circumstance, given the

system parameters, server 1 devotes 25% of its e�ort to bu�er 1 (its own incoming bu�er) so that server

2 can remain fully occupied with class 2 jobs, and devotes the other 75% of its e�ort to draining bu�er

4 (its own exit bu�er). This policy is myopic in the sense that it removes 
uid from the system at the

fastest possible instantaneous rate, regardless of future considerations, and it is optimal regardless of

the horizon length T .

Policy translation. Given the solution to the 
uid optimization problem, which has the structure

of a static priority rule together with some \boundary modi�cations," we now seek to translate the

derived policy back into the original stochastic network. The following natural alternatives arise.

LBFS. The simplest candidate policy is to use the static priority rule that emerges from the optimal


uid control law, which gives priority to exiting classes in each server. As we know by now, this policy

is unstable! That is, the static priorities derived from the optimal 
uid control policy by neglecting

\boundary behavior" have catastrophic performance: they cause instability!

LBFS with priority reversal (LBFS/PR). Here each server uses LBFS as its \default," but switches

to the opposite priority when the other server's exit bu�er is empty. This policy is stable, but its

asymptotic performance is not satisfactory, as will be explained below.

LBFS with server splitting (LBFS/SS). Here we implement exactly the optimal policy derived form

the 
uid model, splitting server e�ort in the percentages prescribed by the 
uid optimal control

policy. Whenever one of the queue lengths is empty, any positive server utilization predicted by the

optimal 
uid control policy for this class will not be implementable due to the discrete dynamics of the

stochastic network. In such cases, this percentage of server utilization will be reallocated to the other

class waiting to be processed at that server, if this is non-empty. For example, when q = (0; 0;+;+)

the optimal server allocation from the 
uid control problem is (0:25; 1; 0; 0:75), yet the implemented

server allocation in the stochastic network will be (0; 0; 1; 1); a \+" denotes positive bu�er content.

Again, this policy is stable, but its asymptotic performance is not satisfactory.

Performance analysis of candidate policies. Using any one of the control policies just described,

it is natural to consider system behavior under a sequence of initial conditions fqng, such that jqnj ! 1

as n ! 1, keeping all other system parameters �xed. Consider, for example, the case where qn =

n[1; 0; 0:5; 1]. Let Zn(�) be the four dimensional queue length process with initial state Zn(0) = qn,

de�ne its 
uid scaled version as

�Zn(t) =
Zn(nt)

n
; 0 � t � T; (IV.3)

and ask whether �Zn converges to a limit trajectory as n ! 1 that is optimal in the 
uid model.

Essentially, we are testing whether the system behavior under one of the implemented policies ap-

proaches -as n grows and the stochastic problem approaches one of 
uid, or transient, optimization-

the optimal performance that one started with.

For both LBFS/PR and LBFS/SS, the scaled processes �Zn do converge to a deterministic limit as

n ! 1, but that limit does not coincide with the optimal 
uid trajectory. That is, although these

policies may be intended as implementations of the optimal 
uid control policy, they do not in fact
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achieve as their 
uid limits a trajectory that is optimal in the 
uid model. In detail, both LBFS/PR

and LBFS/SS will introduce undesirable idling periods at server 2 while waiting for new class 1 jobs

to complete service at station 1. This behavior will not change as n grows, since queue 2 will always

have either one or no jobs waiting, and this will lead to the suboptimal behavior claimed above. Both

policies fail because the servers are too slow in switching from myopically draining cost out of the

system to guarding against idleness that will prevent optimal cost draining in future times. Following

this argument one would expect that performance under LBFS/SS will be worse than that under

LBFS/PR. Do you agree? Why?

Finally, some concluding remarks. Despite the apparently modest objective of FSAO, the meaning

of the 
uid policy in the original network is subtle. This will be demonstrated in the next section

through the analysis of the Rybko-Stolyar network, where although the associated 
uid optimization

problem is \trivial," each of three \obvious" interpretations in the stochastic network is \wrong." In

fact, given the solution of the associated 
uid optimal control problem, which is easily computable,

it is surprisingly diÆcult to translate the optimal 
uid control policy into an implementable policy in

the original stochastic network, due to the �ner structure of the original network model.

IV.2 Fluid-scale Asymptotic Optimality

Fluid-scale asymptotic optimality is a relaxed notion of optimality in comparison to the original

criterion in the stochastic network, consistent with the policy design procedure considered here. The

following de�nition is adapted from Meyn [Mey97b]:

De�nition IV.2.1 Consider any sequence of initial conditions fxng � X such that jxnj ! 1 as

n ! 1 and assume that for every converging subsequence fxnjg and some random variable �Z(0),
�Znj (0)! �Z(0) almost surely. Then a policy �� is said to be asymptotically optimal under 
uid scaling

if for all admissible scheduling policies �

lim inf
n!1

�
E��

xn

Z T

0
g( �Zn(t))dt�E�

xn

Z T

0
g( �Zn(t))dt

�
� 0: (IV.4)

Remark. Meyn [Mey97b] stated this de�nition for the case of linear costs, where he considered the

limit as T ! 1, and restricted attention to stable scheduling policies. By focusing on a �nite horizon

cost, one need not impose this stability restriction, which is diÆcult to check. Furthermore, the �nite

horizon criterion remains meaningful even when the traÆc intensity at every station is not restricted

to be strictly less than one, which allows the study of networks in heavy-traÆc. Choosing T according

to (III.28), we exactly recover Meyn's criterion in this �nite horizon setting. Finally, the assumption

regarding the a.s. convergence of the initial 
uid scaled queue length vector appears to be a mild one

and it will be motivated shortly.

Fluid limit equivalent conditions. One would like to establish a criterion of 
uid-scale asymptotic

optimality that depends on the 
uid limit trajectories and not the prelimit of 
uid scaled sequences as

in (IV.4). To gain intuition we only consider the simpler sequence of initial conditions �Zn(0) = nq, for
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which limn
�Zn(0) = q a.s.. In this case, the property of FSAO is reduced to checking whether starting

from an arbitrary initial condition z the 
uid limit under a candidate policy achieves the optimal cost

of �V g(z); this was the check performed in the Rybko-Stolyar example. Let's see why.

Given that g is non-negative and all processes �Zn are de�ned in the same probability space, (X;BX)

equipped with the probability measure P �, we have by Fatou's Lemma,

lim inf
n

E�
xn

�Z T

0
g( �Zn(t))dt

�
� E�

�
lim inf

n

Z T

0
g( �Zn(t))dt

�
: (IV.5)

Note that since the limiting initial condition is deterministic, the expectation operator on the RHS

can be omitted; this was with respect to the distribution of the limiting initial condition that is a

proper random variable by assumption -see the de�nition. Under the sequence of initial conditions

considered here, the limit of these sequences exists a.s., and it is equal to

lim
j

Z T

0
g( �Zn(t; !))dt =

Z T

0
g(z(t))dt;

where z(0) = q. Clearly, Z T

0
g(z(t))dt � �V g(q); (IV.6)

which implies that

lim inf
n

E�
xn

�Z T

0
g( �Zn(t))dt

�
� �V g(q); (IV.7)

and the FSAO criterion has now been reduced to checking whether for all limiting initial conditions

q, the 
uid limit under a speci�ed policy achieves satis�es (IV.6) with equality; i.e., achieves asymp-

totically optimal performance under 
uid scaling.

Remark. For a more general sequence of initial conditions one simply needs to be more careful with

the this limiting procedure, but the 
uid limit condition that needs to be checked is the same. We have

restricted attention to sequences of initial conditions that yield undelayed 
uid limits. This is intuitive

when studying 
uid optimal control problems, and moreover greatly simpli�es the required analysis for

asymptotic optimality.

Interpretation of the FSAO criterion. Fluid model optimality is a property about transient

response. In the stochastic network, FSAO says that the transient recovery of the system when

initialized from a large initial backlog and observed over a proportional time horizon will again be

optimal. It will mimic the optimal response computed in the 
uid model.

IV.3 Discrete-Review Policies for RS Network

Discrete-review (DR) policies, and speci�cally, policies that

1. step through time in large intervals of time, and
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2. within each such interval a deterministic planning logic is employed,

have also been proposed by other researchers in the areas of applied probability and network control.

The same idea will be used here, where in particular,

3. the deterministic planning logic employed is based on the solution of the associated 
uid optimal

control problem.

Policy mechanics. A discrete-review policy is de�ned by or is derived from a function l : R+ ! R+,

the function rg : RK
+ ! RK derived in section III.3, plus a K-dimensional vector � that satisfy the

following restrictions. First, l(�) is real valued, strictly positive, concave, and further satis�es

l(x)

log(x)
> c0 and

l(x)

log(x)
!1 as x!1; (IV.8)

and
l(x)

x
! 0 as x!1: (IV.9)

The signi�cance of the growth condition (IV.8) will become apparent later on. Second, � is a vector

in RK
+ that satis�es

� > �; (IV.10)

where � is the K-vector of service rates.

Under any of the policies to be considered, system status will be observed at a sequence of times

0 = t0 < t1 < t2 < : : :; we call tj the j
th review point and the time interval between tj and tj�1 the j

th

planning period. De�ne l0 = al(jZ(0)j), where a is a small (� 1) positive constant; the value of this

constant is not crucial to the operation of the proposed discrete-review policy and for that reason it

is not included as one of the de�ning quantities of these policies. Given that the queue length vector

z = Z(tj) is observed at tj , server activities over the next planning period are determined by solving

a linear program, the data for which involve l(�), rg(�), and �. To be speci�c, having observed z the

controller sets ~z = z=jZ(0)j,

l = l0 _ l(jzj); r = rg(~z); and � = l�; (IV.11)

and then solves the following linear program: choose a K-vector x of time allocations to

maximize r0x (IV.12)

subject to z + l��Rx � �; x � 0; Cx � l1: (IV.13)

Interpretation.

� Overall structure. The basic structure is the following: at every review point we observe the

work-in-process (WIP) in the network, and based on that we decide on the length of the next

planning horizon. At every review period we plan on what to do based on the solution of a linear

program, the data for which is derived using the solution of the associated 
uid optimization

problem. In order to ensure smooth operation of the system we enforce safety stock requirements.
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� Magnitude of planning horizon and safety stocks. At �rst pass, it is convenient to think that

when jZ(t)j � O(n) then l � c log(n). The safety stock requirements are � = �l. The condition

(IV.10) (� > �) ensures that every vector of time allocations computed from the solution of the

planning LP will be implementable from stock in hand upon review.

(This way we will try to avoid the problems we had in the Rybko-Stolyar and the criss-cross

networks, where the system incurred undesirable idleness because the servers were starved while

waiting for work to be forwarded to them.)

� The constraints of the planning LP. First, an interpretation of this planning logic will be provided

assuming that this linear program is feasible; the case where (IV.12)-(IV.13) is infeasible will be

dealt with shortly. Intuitively, the controller �rst computes the nominal length of the planning

period l(jzj), and a target safety stock � to be maintained upon completion of this planning

period, as a function of the observed queue length vector. In general, l0 � l(jzj), unless jzj

is very small in which case l0 provides a lower bound on the planning horizon which is in the

appropriate time scale. Then the nominal time allocations for the ensuing planning period

are computed using the linear program (IV.12)-(IV.13): the decision variable xk represents the

nominal amount of time that will be devoted to serving class k jobs over this planning period.

The constraint z+ l��Rx � � implies that the target ending queue length vector will be above

a speci�ed threshold requirement, while Cx � l1 states that the total time allocation for each

of the servers cannot exceed its capacity. It is implicit in this formulation that the planning

problem involves a deterministic \continuous variable" approximation.

� The LP objective. The linear programming form of this planning algorithm is motivated by the

structure of the optimal 
uid control policy of equation (III.29). The transformation from z

to ~z simply reduces the planning phase for each review period to a common normalized prob-

lem. Therefore, planning decisions are roughly taken according to the 
uid control policy one

started with, and safety stocks are enforced so that the corresponding processing plans will be

implementable in the stochastic network.

� Processing plan. Given the vector of nominal time allocations x, a plan expressed in units of

jobs of each class to be processed over the ensuing period, and a nominal idleness plan expressed

in units of time for each server to remain idle over the same period are formed as follows:

p(k) =

�
xk
mk

�
^ qk for k = 1; : : : ;K; and ui = l � (Cx)i for i = 1; : : : ; S: (IV.14)

The execution of these decisions is as follows. First, the plan p is implemented in open-loop

fashion; that is, each server i processes sequentially p(k) jobs for each class k 2 Ci. The

construction of the processing plan p using equation (IV.14) ensures that it will be implementable

from jobs present at the beginning of this review period. Let di denote the time taken to complete

processing of these jobs at server i and let Æi = (l � di)
+ be the nominal time remaining until

the end of the ensuing period. In the second phase of execution, each server i will idle for ui ^ Æi
time units. The completion of both execution phases for all servers signals the beginning of the

(j + 1)st review period.
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� Infeasible planning logic. An alternative logic is employed when (IV.12)-(IV.13) is infeasible in

order to steer the state above the desired threshold levels and resume proper operation. To

avoid unnecessary details, we will not give the precise description of this step here. Instead,

we will work through the required actions for the Rybko-Stolyar network (still with the same

parameters). Assume that the system is currently empty. We now need to accumulate the

suÆcient amount of safety stock in the four bu�ers which is given by the vector �. Consider the

following methodology: idle server 1 and 2 until we have �1 + �2 jobs into bu�er 1 and �3 + �4
jobs in bu�er 3; process �2 jobs in server 1 and �4 at server 2. How long do you think this will

take? The claim is that when jZ(0)j = n is large, this plan will take at most a few multiples

of j�j. A similar -but slightly more complex- argument will do the trick for general multiclass

networks that may have Markovian routing.

Hereafter, the notation DR(rg; l; �) will denote the discrete-review policy derived from the functions

rg(�), l(�), and the vector � that satisfy (IV.8)-(IV.9) and (IV.10). In the sequel, we will use a subscript

to di�erentiate between di�erent review periods.

Markov state descriptor. For a multiclass network under any policy in the proposed family the

underlying continuous time Markov chain is de�ned as follows. Assume that tj � t < tj+1 and de�ne

the parameter N(t) to be equal to 1 if the linear program (IV.12)-(IV.13) is feasible or otherwise set

it equal to the number of remaining executions of the processing plan p̂ (the latter is relevant info for

the infeasible planning logic). Let p(t) be a K-vector, where pk(t) is the number of class k jobs that

remain to be processed at time t according to the processing plan pj or p̂j , depending on whether the

planning LP was feasible. Let u(t) be the S-vector of remaining idling times for each of the servers for

the ensuing planning period. Finally, let Ra(t) be the jEj-vector and Rs(t) be the K-vector associated

with the residual arrival and service time information. The Markovian state descriptor will then be

X(t) = [Z(t); N(t); p(t); u(t); Ra(t); Rs(t); jZ(0)j]; (IV.15)

and X will represent the underlying state space. Imitating Dai's argument [Dai95] and using the

strong Markov property for piecewise deterministic processes of Davis [Dav84], it is easy to show that

the process fX(t); t � 0g is a strong Markov process with state space X. The associated norm will

be

kX(t)k = jZ(t)j+N(t) + jp(t)j+ ju(t)j+ jRs(t)j+ jRa(t)j:

Behavior of DR policies. We know review the basic properties for these policies.

� Enforcing the safety stocks renders the implementation of the processing plans to be trivial.

� The planning logic of (IV.12)-(IV.13) will mimic the allocations that one gets by the direct

solution of the 
uid optimal control problem. As the review horizons become longer the accuracy

of the 
uid approximation embodied in (IV.13) increases.

� Suppose that the WIP in the system is of O(n). There are three relevant time scales in the

system. The macroscopic behavior of the system evolves in a time scale which is of order n. The

relevant time scale for control actions is of order l(n). Finally, the microscopic scale of individual
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events is of order of magnitude given by mean interarrival or service times. Conditions (IV.8)-

(IV.9) ensure the separation of these three time scales. This is a important feature for DR

policies. In detail, (IV.8) ensures that l(n) is increasing with n. As a result as n becomes larger

the accuracy of the execution of each processing plan will become more accurate, while relative

to the macroscopic time scale that describes the overall system performance, it appears as if we

are reviewing status at an ever increasing rate (this follows from (IV.9)). Therefore, the 
uid

scaled (or transient) performance of the system will approach the optimal transient response

computed in the 
uid model. Finally, the safety stock requirements are becoming negligible

when compared to the queue lengths that are of order n.

� Scheduling complexity of DR policies during each review period is low. This is due to the fact

that the execution of a discrete-review policy is insensitive to the precise processing sequence

followed and thus, the overall complexity is that of a linear program of size equal to K, the

number of classes in the network, which scales very gracefully with the size of the network.

That is, the computational e�ort required in each planning phase is constant as a function of

the review period length, the load in the network, and the amount of work to be scheduled.

This is an important feature, for if the scheduling complexity had a superlinear growth rate as

a function of jzj, then the associated computational delay would become signi�cant relative to

the time allocated to processing jobs, which would degrade performance and could a�ect the

stability of the controlled network.

IV.4 A Basic Result from Large Deviations

Let fYig be a sequence of iid zero mean random variables. The SLLN says thatPn
i=1 Yi
n

! 0 a:s::

A more detailed argument can reveal how fast does the sample mean
P

i Yi=n converges to 0 as a

function of n. Using Markov's (or Chebyshev's) inequality we get that

P

 X
i

Yi � n�

!
= P

�
e�
P

i Yi � e�n�
�

� e��n�Ee�
P

i Yi

= e��n�
�
Ee�Y1

�n
=

�
e���Ee�Y1

�n
If Ee�Y1 <1 for some � > 0, then for every � > 0 we get a bound of the form

P

 X
i

Yi � n�

!
� e�h(�)n;

where h(�) = sup�(��� logEe�Y1) is a convex function and h(�) > 0 (h(�) is called the rate function).

(Similar results can be obtained for sample path properties when we analyze a sequence of processes

rather than a sequence of random variables.)
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In words the bound derived above says that the probability that the sample average of n iid random

variables di�ers by more that � from its true mean, decays exponentially in n and the rate in the

exponent is given by h(�).

Suppose that
P

i Yi=n converges to � with rate function hy(�) and
P

iXi=n converges to � with rate

function hx(�), then
P

i(Xi + Yi)=n converges to �+� with rate function hx+y(�) = minfhx(�); hy(�)g;

that is, the rate of convergence is the minimum of the two.

Large deviations analysis of a DR policy. We want to bound the di�erence between the ending

state after the execution of a processing plan and the nominal ending state computed using the planning

LP. The ending state upon completion of the processing plan will be

zj+1 = zj +E(tj+1 � tj)� pj +
X
k

�k(pj(k)):

First, a bound is obtained for the duration of execution of the processing plan. Second, a bound is

obtained for di�erences due to the external arrival process; this is proved using the previous result

on the duration of execution of each plan and the large deviations fact we developed earlier for all

sequences of service time random variables. Finally, we bound the di�erences due to the Bernoulli

routing random variables. (The details will be �lled in later... HW?) The end result is that

P (jzj+1 � (zj + �lj �Rxj)j > lj�) � e�f(�)lj ;

where f(�) is the appropriate rate function. That is, large exceedances relative to the length of the

planning horizon occur with probabilities that decay exponentially in l. Moreover, it is easy to now

argue that

P (zj+1 6� (1� �)�j+1) � e�h(�)lj ;

Identical bounds can be derived for the bahavior of the policy under the infeasible logic with the

exception that the time taken to complete the corresponding processing plan is longer, but bounded

above by a small multiple of l with high probability.

Choice of l(�). We can now provide a justi�cation for conditions (IV.8)-(IV.9). Suppose that the

WIP in the system is of O(n). If l � c
f(�) log(n), then errors of order at least as large as �l occur with

probability 1=nc; alternatively, we are tracking the desired trajectory computed through the planning

LP to within �l with probability 1� 1=nc. This will ensure that

� the planning LP for the next review period is feasible

� there is enough stock in hand for the next review period

and moreover, asymptotically as n!1

� the infeasible planning logic is never invoked.

This will allow us to obtain the desired 
uid limits. Here is why: as n gets large the infeasible planning

logic is never used, so it suÆces to analyze the behavior of the policy under the planning LP; for this
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we know that the errors in our execution will be of order l(n); for the 
uid scaled processes -or when

we focus to macroscopic transient behavior- that implies that the DR policy mimics the optimal 
uid

model behavior to within errors of order l(n)=n that become negligible as n grows. Hence, the desired

result will follow. Finally, the penalty we are paying due to the safety stock requirement is of order

log(n)=n, which is again small.

Remark. The tool of large deviations has found extensive use over the recent past in many areas of

management science and applied probability in general. The idea presented here, even though simple, it

is quite powerful. It is worth investing some time getting familiar with its basic usage.

IV.5 Asymptotic Analysis of Discrete-Review Policies

The main theorem proved in this section is the following:

Theorem IV.5.1 Consider a multiclass open queueing network under the discrete-review policyDR(rg; l; �).

For almost all sample paths ! and any sequence of initial conditions fxng � X such that jxnj ! 1

as n!1, there is subsequence fxnj (!)g with jxnj (!)j ! 1 such that

�Znj (0; !)! z(0; !) (IV.16)

( �Znj (�; !); �T nj (�; !))! (z(�; !); �T (�; !)) u.o.c.; (IV.17)

( �Nnj (�; !); �pnj (�; !); �unj (�; !))! (0; 0; 0) u.o.c.; (IV.18)

and the cumulative allocation process can be expressed in the form

�T (t; !) =

Z t

0
v(�; !)d� for t � 0: (IV.19)

The pair (z; v) satis�es equations

_z(t) = ��Rv(t); z(0) = q; (IV.20)

z(t) � 0; v(t) � 0; Cv(t) � 1; (IV.21)

and the policy speci�c equation

v(t) 2 argmax
v2V(z(t))

rg(z(t))0v: (IV.22)

Remark. In particular, it easily follows that the proposed policy is asymptotically optimal under 
uid

scaling. (The limit trajectory starting from any limiting initial condition is the one that satis�es the

optimality conditions in the 
uid model.)

� If � < 1, the policy DR(rg ; l; �) will also be stable. Why?

� Given a cost rate function g(�) and the solution rg of the associated 
uid optimal control problem,

we now have a way to translate this 
uid control policy in the stochastic network in a way that

guarantees FSAO and stability.
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� If we replace rg by any reward rate function r(�), we would get that the 
uid limits underDR(r; l; �)

satisfy the conditions of this theorem with rg replaced by r in (IV.22). Thus we can also translate

the family of reward maximizing 
uid control policies described in note III. For example, any priority

rule implemented in this setting (for the approriate choice of r) will result in a stable scheduling

policy.

� For example, in the Rybko-Stolyar network LBFS is unstable, but LBFS implemented in a DR

structure (e.g., with r = [1; 5; 1; 5]) will result in a stable policy. The DR structure acts as a

stabilization mechanism that prevents f the system from entering undesirable stravation periods.

We now provide an overview for the proof of this theorem. We start by establishing that the probability

that the infeasible will have to be employed is vanishingly small in the following sense. Given the

sequence of review points t0; t1; : : : and any time t � 0, let jmax = minfj : tj � ntg.

Proposition IV.5.1 De�ne the sequence of events fAng, where An = f! : 9j � jmax; such that znj 6�

(1� �)�nj g. Then for any � > 0, P (lim supnAn) = 0.

Proof. Recall that jxnj = n. Given the de�nition of l0 and the growth condition (IV.8), for any � > 0

and any constant � > 0, there exists an N(�; �) > 0 such that for any n � N(�; �) we have that

ln0 > � log(n):

Set N(�; �) = max(N(�; �); N1; N2). Using the bounds mentioned in the previous section one gets that

P(An) = P (zn1 6� (1� �)�n1 ) +

+

jmaxX
j=1

P
�
znj+1 6� (1� �)�nj+1; z

n
i � (1� �)�ni ; i � j

�
� e�� log(n) +

+

jmaxX
j=1

P
�
znj+1 6� (1� �)�nj+1 j z

n
i � (1� �)�ni ; i � j

�
�

P (zni � (1� �)�ni ; i � j)

�
1

n�
+

jmaxX
j=1

P
�
znj+1 6� (1� �)�nj+1 j z

n
i � (1� �)�ni ; i � j

�

�
jmax

n�
:

For � � 3,

X
n

P(An) = �
X

n�N(�;�)

P(An) +
X

n>N(�;�)

jmax

n�

� N(�; �) + c
X

n>N(�;�)

1

n��1

< 1:
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The desired result follows from the Borel-Cantelli Lemma. 2

Theefore it suÆces to study system behavior for planning decisions obtained through the solution

of (IV.12)-(IV.13). For any sample path !, let �Xn(t; !) be the (scaled) nominal allocation process,

which is equal to the sum of all planned allocation times over all review periods up to time t, along

the sample path !. Similarly, let �T n(t; !) be the (scaled) actual allocation process, which is equal to

the sum of all actual time allocations observed during execution of the processing plans for all review

periods up to time t. The second part of the proof bounds the di�erence between �Xn(�) and �T n(�) as

a consequence of the FSLLN.

Proposition IV.5.2 j �T n(t)� �Xn(t)j ! 0 a.s., as n!1.

Therefore, to obtain the 
uid limit under a DR policy we just need to study the limits under the

nominal allocations computed from the planning LP in (IV.12)-(IV.13). Once again, �x again time

at some t � 0. Choose j such that tj � nt < tj+1 and let xnj denote the nominal allocation over the

jth planning period, which is of length ln(jznj j). It is easy to see that �lnj = lnj =n ! 0 as n ! 1. Let

�xn(t; !) = xnj =l
n
j and observe that

�Xn(t; !) =
X
j

�xn(t; !)�lnj !

Z t

0
v(�; !)d� ;

that is, as n ! 1 the Riemann sum converges to this de�nite integral for some v(�; !) not yet

speci�ed. From Proposition IV.5.2 and the basic theorems regarding 
uid limit convergence, it follows

that �Xn(t; !) converges to some limit, �X(t; !), which is absolutely continuous; this is also the limit of
�T n(t; !). It follows that

v(t; !) =
d �X(t; !)

dt
almost everywhere on the real line and thus, it is suÆcient to study the limit of �xn(t; !) along the

sequence fyng in order to establish the 
uid limit of the nominal allocation process.

Proposition IV.5.3 For a.e. !, �xn(t; !)! v	(q(t; !))

To prove this proposition one �rst expresses the optimality conditions (including the dual of the plan-

ning LP and the corresponding complementarity conditions) that the nominal allocation should satisfy.

These conditions are linear constraints on several variables that can be treated as, for example, the

non-idling conditions that we have seen eralier. The limiting conditions are the optimality conditions

of the LP in (III.29), and hence we are done.

The desired theorem now easily follows by combining these results with the classical arguments that

guarantee existense of 
uid limits studied earlier.

IV.6 Continuous-Review Policy for Rybko-Stolyar Network

Returning to the Rybko-Stolyar example, a 
uid-scale asymptotically optimal discrete-review policy

can now be de�ned using the optimal control description given earlier. The choices of threshold values
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Figure 2: Trajectory tracking: optimal 
uid trajectories (vs) state trajectories under CR(rg; �):

Z(0) = 200[1; 0; 0:5; 1]; (n = 200)

and planning horizon lengths can be de�ned from any vector � and function l(�) that satisfy the

appropriate conditions. These choices can be �ne-tuned using a subsequent simulation study.

This policy can be further simpli�ed by exploiting the structure of the Rybko-Stolyar network in order

to form a threshold -or continuous-review- policy that achieves the same asymptotic performance.

Denote by �(�) = �l(�), the function that dynamically computes the desired safety stock requirements.

The desired threshold policy will be one that gives priority to the exiting class at each server unless,

the exit class at the other server is below the associated threshold requirement, in which case the

incoming class gets higher priority. This is LBFS with priority reversal below the desired threshold

and is denoted by CR(	g; �). Figure 2 depicting simulated trajectories for the continuous-review

implementation for the case n = 200, illustrates the trajectory tracking of these policies; the optimal


uid trajectories overlaid for comparison.

This simple characterization of this CR policy hinges on the special structure of this network and

the corresponding 
uid optimal policy. In general, one cannot avoid the LP characterization of the

nominal allocation at any time t. The following CR policy will have the desired asymptotic properties.

Choose instantaneous server activities by solving a di�erent linear program given below

v(t) 2 argmax r( ~Z(t))
0

v (IV.23)

subject to Z(t) + (��Rv)l(t) � �(t); v � 0; Cv � 1: (IV.24)

� This family of CR policies achieves exactly the same properties as their DR counterparts.

� The large deviations analysis described earlier needs to be modi�ed, since we now need process

convergence results. Eventually, through somewhat harder work, one gets stronger results that

say that the network processes lie within a tube of diameter l(n) around the desired 
uid limiting

trajectories.
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� DR policies seem more natural to implement in most prctical scenarios. However, CR policies

have improved performence in comparison to DR, and in some cases they can still provide

reasonable models for practical systems of capacity or bandwidth allocation among many \small"

users.

IV.7 Extensions

We list several extensions to the network models under investigation that can be readily incorporated

within the proposed framework with only minor modi�cations both in the conceptual and implemen-

tation levels. This is possible because both 
uid approximations and the proposed family of control

policies are largely insensitive to many subtle modeling details that lie below their level of resolution.

In contrast, within mainstream queueing network analysis, many of these extensions would normally

venture into radically di�erent domains of application and research, and would not be able to be

treated in a uni�ed framework.

� Admission and routing control capability. Routing control was added in the last HW. Admission

control can be done in a similar manner. The 
uid control problem is still one with deterministic

and continuous dynamics with polytopic constraints on the instantaneous control. The DR

policy can easily incorporate these changes in the de�nition of the processing plan. Now we also

decide on routing decisions and on how many jobsto be admitted over each period.

� Switchover times (and/or costs). A practical feature of stochastic processing networks that is

commonly omitted from mathematical models of these systems is that of setup delays/costs (or

switchover delays) that are incurred when a server switches between processing di�erent classes

of jobs. There is an extensive literature for these problems mostly under the rubric of polling

systems that focuses on single server systems and often restricts attention to simple classes of

policies, most often some variant of round-robin or serve-to-exhaustion policies.

In the context of discrete-review policies setup delays can be introduced at no extra cost in

complexity or performance. This follows by exploiting the fact that planning horizons vary in

a longer time-scale than that of setup delays incurred in switching between classes and thus,

the cumulative time spent in setups will be small compared to the cumulative time spent in the

actual processing of jobs.

Speci�cally, let dk;l be the setup time required for server i to switch from processing class k jobs

to processing class l jobs, where k; l 2 Ci, and set di = maxk;l2Ci dk;l. Then the maximum time

spent by server i in setups within every review period is bounded above by jCijdi, since only

one setup need to be done per job class in executing the open-loop processing plans, which is

constant as a function of jZ(t)j. As jZ(t)j increases, the cumulative time spent in setups becomes

negligible in comparison to the cumulative time spent in processing jobs at each station, and

asymptotically under 
uid scaling it vanishes. Using this last observation it should not be

surprising that all the analysis and results provided so far will extend to the case of multiclass

networks with setups.
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� Multiserver stations. Such networks arise often within the context of computers systems, man-

ufacturing systems, call centers and other applications in service operations.

Assume that each server at a given station is capable of processing the same set of job classes

and that the service rate of the jth server at station s(k) in processing class k jobs (k 2 Ci) is

a
s(k)
j ~�k, where ~�k is a normalized service rate for class k jobs and the constants a

s(k)
j describe the

relative processing eÆciencies of the various servers at station s(k). Under these assumptions,

each station may be comprised of servers that are allowed to have di�erent processing capabilities

and di�erent distributional characteristics, but their average service rates cannot di�er by more

than just a constant of proportionality.

Setting �k =
P

j a
s(k)
j ~�k, all of the results derived so far immediately port to the case of multi-

server stations. Once again, the main step required in this extension was to replace each station

by a single-server that had the same average processing capability, which is then used in the

de�nition of the 
uid approximation and of the associated discrete-review policy.

� Batch processing stations. These are servers capable of handling more than one job simulta-

neously, which are common in some manufacturing systems such as semiconductor wafer fabs

(well-drive furnaces for example).

Each station is allowed to process jobs in batches and the maximum batch size at station i will

be denoted by ci. Let � = diagfcs(1); : : : ; cs(k)g and R̂ = (I � P 0)M�1�. The 
uid model

description is given by (IV.20)-(IV.21), where R̂ has been substituted for R. Essentially, one has

replaced the batch processing server by a faster server that processes one job at a time. In order

for this substitution to be justi�ed, one has to ensure that the station always serves jobs in full

batches. This will be ensured within a discrete-review framework if at every review period the

safety stock level is set to be � = l��. That is, we enforce enough safety stock for one periods

worth of work expressed in full batches.

IV.8 Notes and References

The focus on 
uid approximations is primarily motivated by recent developments in the area of stability

analysis of stochastic networks via 
uid model analysis. The important breakthrough in this area was

the theory developed by Dai [Dai95]; see also Chen and Mandelbaum [CM91], Rybko and Stolyar

[RS92], Dai and Meyn [DM95], Dai and Weiss [DW96], Chen [Che95], Stolyar [Sto95], and Bramson

[Bra98] for further discussions, re�nements, and improvements. Simultaneously, there has been a

growing interest in using 
uid models in a synthesis framework as the one described here. Examples

can be found in Chen and Yao [CY93], Atkins and Chen [AC95], Avram, Bertsimas and Ricard

[ABR95], and Eng, Humphrey and Meyn [EHM96], where heuristic translation mechanisms based on


uid model optimization are described; in fact, related work can be traced back to Newell [New71].

The papers closest to the spirit of htis note are Meyn [Mey97b] and Chen and Meyn [CM98], where

the authors try to solve directly the stochastic control problem (for the case of Poisson arrivals and

exponential service times) by �rst approximating the value function with the one derived from the

solution of the 
uid optimization problem, and then using value or policy iteration. In this context,
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Meyn [Mey97b] �rst proposed the 
uid-scale asymptotic optimality criterion. Related work can also

be found in Bertsimas and Sethuraman [BS97].

Apart from the connections related to stability analysis, the use of 
uid models is also motivated

from the extensive literature on optimal control for deterministic systems with continuous dynamics

(see, for example, the books Athans and Falb [AF66], Bryson and Ho [BH75], and Bertsekas [Ber95]),

and from the vast computational simpli�cations they o�er that has been exploited in developing

eÆcient optimization algorithms (see Pullan [Pul93, Pul95, Pul96], Weiss [Wei95, Wei97], Luo and

Bertsimas [LB96], and Maglaras [Mag97]). Recently, Betrsimas and Gamarnik developed very eÆcient

algorithms for 
uid optimal control problems for tandem networks. They �rst showed that for this

class of networks there at most 2K breakpoints in the optimal trajectories, and then used this fact

to propose a polynomial time algorithm for this class of networks. On a separate direction, Maglaras

considered 
uid optimal control problems with linear cost structures and characterized the class of

problems that admit greedy optimal solutions in the form of a semide�nite program; this is equivalent

to a closed-form solution of the 
uid optimization problem. EÆcient solution of 
uid optimal control

problems is an active topic of research.

Apart from these simpli�cations, there are positive results that suggest that the solution of the 
uid

optimal control problem retains signi�cant information about the original stochastic network control

problem. For example, policies such as the c� rule and the generalized c�-rule, have been shown to

be optimal for both the underlying stochastic networks and their associated 
uid models; see Chen

and Yao [CY93], Bertsimas, Paschalidis and Tsitsiklis [BPT95] and Haji and Newell [HN71], and

Van Mieghem [VM95] respectively. In a separate direction, Meyn [Mey97a] showed that the optimal

behavior in the stochastic network starting from a large initial condition and over a proportionally

long horizon approaches the optimal behavior in the 
uid model. In the spirit of positive results like

these, the premise of the 
uid model approach to network control problems is that although we are

using a \weak" (FSAO) criterion for what constitutes a \good" control policy, this relaxed notion of

optimality will guide us in designing \near-optimal" policies for the original stochastic network control

problems.

The main issue that arises as part of this policy design framework is that of translating the 
uid control

policy in the stochastic network. A few simple examples have been analyzed in the papers cited above,

but no general mechanism has been constructed that guarantees 
uid-scale asymptotic optimality or

even stability for the policy extracted from the 
uid solution. The same problem of back-translation

-only in more acute form- has been observed in the context of the heavy-traÆc approach to network

control problems; see Harrison [Har88, Har96a], Harrison and Wein [HW89, HW90], Williams [Wil96],

Kushner and Martins [KM96]. (There, one would follow exactly the same synthesis procedure with

the only di�erence that 
uid models are now replaced by the Brownian approximating models and


uid scaling by di�usion -or Central Limit Theorem type of- scaling. More on this later.)

The �rst such general translation mechanism was proposed by Harrison [Har96a] in his BIGSTEP ap-

proach to dynamic control for stochastic networks; this was done in the context of Brownian approxi-

mations and heavy-traÆc limits. Harrison [Har96b] rigorously proved that BIGSTEP is asymptotically

optimal (in the heavy-traÆc sense) for a simple two station network. The family of discrete-review

policies we describe here is the �rst general translation mechanism that has been rigorously analyzed
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for a wide class of networks. It is an extension -or generalization- of BIGSTEP that hinges on the

discrete-review structure proposed by Harrison. The results we present are from [Mag99b, Mag99a].

Discrete-review policies, and speci�cally, policies that step through time in large intervals within which

a deterministic planning logic is employed, have been proposed by other researchers in the areas of

applied probability and network control. Some examples that are closer to our work can be found

in Bertsimas and Van Ryzin [BVR91], Bambos and Walrand [BW93], Tassiulas and Papavassiliou

[TP95], and Gans and Van Ryzin [GVR97], but other related papers can be found as well.

Continuous review policies (or threshold policies like the ones considered in section IV.6 have also

appeared as heuristic translation mechanisms in the literature; see Harrison and Wein [HW89] and

Harrison [Har96b]. The general family of continuous-review policies we proposed at the end of section

IV.6 is from [Mag98].

Some comments on the extensions mentioned in section IV.7. Systems with switchover delays (or

setups) have been studied extensively in the literature mostly under the rubric of polling systems that

focuses on single server systems and often restricts attention to simple classes of policies, most often

some variant of round-robin or serve-to-exhaustion policies; see for example [Tak90, FK94, JPR98].

Systems with more general processing characteristics in the context of our work have been described

by Harrison in [Har96a]. In particular, a simple parallel server network where the processing charac-

teristics at each station are allowed to vary more substantially is studied in [HMJ98]. Finally, there

is a signi�cant literature on queueing networks with batch servers, but most of it is concentrated

on simpler network models and results either of product form nature or of combinatoric optimiza-

tion [Neu67, DS73, Med75, GW91, AADT92, Ser93, MT97]. Batch processing networks within the

framework of 
uid model analysis and DR policies have been studied in [MK97].
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