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Abstract

We provide a formal treatment of both static and dynamic portfolio choice using the Dis-

appointment Aversion preferences of Gul (1991). Our dynamic formulation nests the standard

dynamic CRRA asset allocation problem as a special case. While different from Kahneman and

Tversky (1979)’s loss aversion utility, these preferences imply asymmetric aversion to gains

versus losses and avoid some of the problematic features loss aversion utility displays in asset

allocation settings. By calibrating a number of data generating processes to US data on stock

and bond returns, we find realistic portfolios for disappointment averse investors with utility

functions exhibiting low curvature. Moderate variation in parameters can robustly generate

substantial cross-sectional variation in portfolio holdings, including optimal non-participation

in the stock market.



1 Introduction

The US population displays a surprisingly large variation in equity holdings, including a major-

ity of households not holding stocks at all.1 Driven in part by a large equity premium, standard

portfolio choice models often predict large equity positions for most investors and fail to gen-

erate the observed cross-sectional variation in portfolio choice (see, for example, Campbell

and Viceira, 1999). One approach to explain these portfolio puzzles is to combine transactions

costs, such as a fixed cost to entering the stock market, with various sources of background

risk. Another potential explanation is heterogeneity of preferences. Standard constant relative

risk aversion (CRRA) preferences cannot provide an answer, since they cannot generate non-

participation at any level of risk aversion, except in the presence of large transactions costs (see

Liu and Loewenstein, 2002). However, a rapidly growing literature builds on the framework of

Kahneman and Tversky (1979) to investigate asset allocation in the presence of loss aversion,

which embodies an asymmetric attitude towards gains versus losses (see Benartzi and Thaler,

1995; Berkelaar and Kouwenberg; 2000; Aı̈t-Sahalia and Brandt, 2001; Gomes 2003).2 Port-

folio choice problems with loss aversion generate more realistic (that is, lower) equity holdings

than standard models.

We provide a formal treatment of portfolio choice in the presence of loss aversion, but

rather than relying on Kahneman and Tversky (1979)’s behavioral prospect theory, we use the

axiomatic Disappointment Aversion (DA) framework of Gul (1991). These preferences are

a one parameter extension of the expected utility framework and have the characteristic that

good outcomes – outcomes above the certainty equivalent – are downweighted relative to bad

outcomes. The larger weight given to outcomes which are bad in a relative sense gives rise to

the name “disappointment-averse” preferences, but they also imply an aversion to losses.

In the literature, DA preferences have only appeared in equilibrium models with consump-

tion, not in portfolio choice problems. Epstein and Zin (2001) embed a number of alternative

preferences, including DA preferences, into an infinite horizon consumption-based asset pricing

model with recursive preferences. Bekaert, Hodrick and Marshall (1997) consider asset return

predictability in the context of an international consumption-based asset pricing model with DA

preferences. These models endogenously generate more realistic equity premiums than models

with standard preferences. When we investigate portfolio choice under DA preferences, we

1 See, among many others, Mankiw and Zeldes (1991), Haliassos and Bertaut (1995), Heaton and Lucas (1997),

and Vissing-Jørgensen (2002).
2 Roy (1952), Maenhout (1999), Stutzer (2000) and Epstein and Schneider (2002) provide an alternative treat-

ment of an investor’s asymmetric response to gains and losses, by modelling agents who first minimize the possi-

bility of undesirable outcomes.
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show that investors with high enough disappointment aversion do not participate in the equity

market.

Loss aversion is not only introspectively an attractive feature of preferences, but as we

demonstrate, it also circumvents the problem posed by Rabin (2000): within the expected utility

framework, anything but near risk neutrality over modest stakes implies manifestly unrealistic

risk aversion over large stakes. Whereas both behavioral Kahneman and Tversky (1979) loss

aversion (LA) preferences and DA preferences share this advantage, DA preferences are a very

viable alternative to LA preferences for three main reasons.

First, DA utility is axiomatic and normative. Although DA-utility is non-expected utility,

it is firmly grounded in formal decision theory. Gul (1991) replaces the independence axiom

underlying expected utility by a slightly weaker axiom to accommodate the violation of the

independence axiom commonly observed in experiments (the Allais paradox) but retains all the

other assumptions and axioms underlying expected utility. This closeness with the standard

expected utility framework brings a number of benefits. For example, DA preferences embed

CRRA preferences as a special case. Thus, the portfolio implications of loss aversion are di-

rectly comparable to a large body of empirical work in standard preference settings, and allow

us to retain as much of the insight offered by expected utility theory as possible.

Second, we demonstrate that with LA utility, finite optimal solutions do not always exist,

particularly with empirically relevant data generating processes (DGP’s). Third, DA prefer-

ences eliminate the arbitrary choices required by LA. In particular, Kahneman and Tversky

(1979)’s prospect theory offers no guidance about how to choose and update the reference point

to which gains and losses are compared. With DA utility, on the other hand, the reference point

is the certainty equivalent and hence is endogenous.3 Moreover, we propose a tractable and

natural dynamic DA setting that nests a dynamic CRRA problem and endogenously updates the

reference point.

Our paper proceeds in four steps. The first two sections develop a portfolio choice frame-

work under DA preferences. In Section 2 we focus on a static setting and show that DA pref-

erences can generate stock non-participation. Section 3 generalizes the set-up to a dynamic

long-horizon framework, which preserves CRRA preferences as a special case of DA prefer-

ences. Given the popularity of LA preferences, we consider them as an alternative in Section

4. Section 5 explores the empirical implications of portfolio choice under DA preferences. We

calibrate two DGP’s (one with and one without predictability) to US data on Treasury bills

and stock returns and examine static and dynamic asset allocation for a wide set of parameters.

3 Routledge and Zin (2003) recently provide an extension of the Gul (1991) framework where the reference

point can be below the certainty equivalent.
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Finally, Section 6 concludes.

2 Static Asset Allocation under DA Preferences

We use the standard CRRA utility case to set up the basic asset allocation framework in Section

2.1. Section 2.2 extends the framework to DA preferences and derives a stock market non-

participation result.

2.1 CRRA Utility

The investment opportunity set of an investor with initial wealthW0 consists of a risky asset

and a riskless bond. The bond yields a certain return ofr and the risky asset yields an uncertain

return ofy, both continuously compounded. The investor chooses the proportion of her initial

wealth to invest in the risky assetα, to maximize the expected utility of end-of-period wealth

W , which is uncertain. The terminal wealth problem avoids the computational complexities

of allowing for consumption decisions and makes our work comparable to both the standard

portfolio choice literature (see, for example, Kim and Omberg, 1996; Brennan, Schwartz and

Lagnado, 1997; Liu, 1999; and Barberis, 2000), and the asset allocation with loss aversion

literature (see, for example, Bernatzi and Thaler, 1995; Berkelaar and Kouwenberg, 2000; Aı̈t-

Sahalia and Brandt, 2001; Gomes, 2003).

Formally, the problem is:

max
α

E[U(W )], (1)

whereW is given by:

W = αW0(exp(y)− exp(r)) + W0 exp(r). (2)

Denoting risk aversion byγ, under CRRA preferences the utility functionU(W ) takes the form:

U(W ) =
W 1−γ

1− γ
. (3)

Since CRRA utility is homogenous in wealth, we setW0 = 1.

The first-order condition (FOC) of equation (1) is solved by choosingα such that:
∫ ∞

−∞
W−γ(exp(y)− exp(r))dF (y) = 0, (4)

whereF (·) is the cumulative density function of the risky asset return. This expectation can be

computed by numerical quadrature as described in Tauchen and Hussey (1991). This procedure

3



involves replacing the integral with a probability-weighted sum:

N∑
s=1

psW
−γ
s (exp(ys)− exp(r)) = 0. (5)

TheN values of the risky asset return ({ys}N
s=1}) and the associated probabilities ({ps}N

s=1}) are

chosen by a Gaussian quadrature rule, whereWs represents the investor’s terminal wealth when

the risky asset return isys.4 For future reference, we denote the excess returnexp(y)− exp(r)

by xe.

2.2 Disappointment Aversion

2.2.1 Definition

DA utility µW is implicitly defined by the following equation:

U(µW ) =
1

K

(∫ µW

−∞
U(W )dF (W ) + A

∫ ∞

µW

U(W )dF (W )

)
, (6)

whereU(·) is the felicity function, which we choose to be power utility, that isU(W ) =

W (1−γ)/(1 − γ), A ≤ 1 is the coefficient of disappointment aversion,F (·) is the cumulative

distribution function for wealth,µW is the certainty equivalent (the certain level of wealth that

generates the same utility as the portfolio allocation determiningW ) andK is a scalar given

by:

K = Pr(W ≤ µW ) + APr(W > µW ). (7)

If 0 ≤ A < 1, the outcomes below the certainty equivalent are weighted more heavily than

outcomes above the certainty equivalent. These preferences are outside the standard expected

utility framework because the level of utility at the optimum (or the certainty equivalent of

wealth) appears on the right hand side. Although this is a non-expected utility function, CRRA

preferences are a special case forA = 1. WhenA < 1 individuals are averse to losses, or

disappointment averse.

For DA preferences, the optimization problem becomes:

max
α

U(µW ) (8)

where the certainty equivalent is defined in equation (6) and end of period wealthW is given

by equation (2). ForU(·) given by power utility, optimal utility remains homogenous in wealth

4 Balduzzi and Lynch (1999), Campbell and Viceira (1999), and Ang and Bekaert (2002), among others, all

apply quadrature approaches to asset allocation problems.
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and we setW0 = 1. The implicit definition ofµW makes the optimization problem non-trivial

(see Epstein and Zin, 1989 and 2001) and we relegate a rigorous treatment to an Appendix,

available upon request.

The FOC for the DA investor is:

1

A
E

[
∂U(W )

∂W
(exp(y)− exp(r))1{W≤µW }

]

+ E

[
∂U(W )

∂W
(exp(y)− exp(r))1{W>µW }

]
= 0, (9)

where1 is an indicator function. IfµW were known, we could solve equation (9) forα in

the same way as expected utility. The only difference is that for states belowµW , the original

utilities have to be scaled up by1/A. However,µW is itself a function of the outcome of

optimization (that is,µW is a function ofα). Hence, equation (9) must be solved simultaneously

with equation (6) which definesµW .

The closeness between expected utility and DA preferences allows us to derive a new al-

gorithm to solve the DA asset allocation problem (equations (6) and (9)). Specifically, the DA

problem can be viewed as a CRRA maximization problem with a changed probability distri-

bution, where the probabilities above the certainty equivalent are down-weighted byA, and

the new probabilities are then re-normalized. We present the details of this new approach in

Appendix A.

2.2.2 Non-Participation

In an expected utility framework investors always hold a positive amount of equity if the risk

premium is positive. However, with DA preferences it may be optimal not to participate in

the stock market.5 This immediately implies that CRRA preferences cannot deliver the same

empirically relevant dispersion in stock holdings we can obtain with DA preferences.

Proposition 2.1 Non-Participation under Disappointment Aversion.

Suppose the expected excess returnE(xe) is positive. Then under DA preferences, there ex-

ists a level ofA, A = A∗, such that forA < A∗ investors hold no equity. This non-participation

levelA∗ is independent of risk aversionγ.

Proof: See Appendix B.

5 Dow and Werlang (1992), Epstein and Schneider (2001), and Liu (2002) show that a similar non-participation

result can be obtained with ambiguity-averse preferences.
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The Appendix shows thatA∗ is given by:

A∗ = −E[xe|xe ≤ 0]Pr(xe ≤ 0)

E[xe|xe > 0]Pr(xe > 0)
.

The intuition for the non-participation result is straightforward. AsA decreases, a DA investor

becomes more averse to losses. Consequently, her optimal allocation to equities decreases.

At a particularA, sayA∗, the optimal portfolio weight becomes zero. Ifxe were to have a

discrete distribution, the more dramatic the negative excess return states are and the higher their

probability, the less disappointment aversion it takes forα∗ to reach zero and the higherA∗

will be. This critical point does not depend on the curvature of the utility function since as

α∗ approaches zero, the certainty equivalent approachesRf = exp(r) and the marginal utility

terms cancel out in the FOC’s. ForA < A∗ the optimal allocation remains zero. Shorting is

not optimal, since the certainty equivalent is increasing inα for α < 0. This occurs because for

α < 0, negative excess return states have higher wealth thanRf and are hence downweighted.

The fact thatA∗ only depends on the excess return distribution generalizes to the multiple

risky asset case when asset returns are jointly normally distributed. In that case, two fund

separation applies, and the excess return distribution of the tangency portfolio determinesA∗.

However, under alternative distributions, non-participation in one asset need not imply non-

participation in another asset.

To illustrate non-participation, consider a binomial model to approximate the excess return

xe ≡ exp(y) − exp(r). In this simplest case, the excess return can beu with probability p

andd with probability1 − p.6 Under this setting, the critical level ofA which results in non-

participation is:

A∗ = −(1− p)d

pu
.

To calibrate the tree, we assume that US equity returns are log-normally distributed. For quar-

terly stock return data from 1926 to 1998, we find that the mean continuously compounded

equity return is 10.63% and the volatility is 21.93% (see Table 1). The mean continuously com-

pounded short rate is 4.08%, so that the continuously compounded equity premium is 6.55%.

Denote the implied average simple gross return and volatility bym ands. We match these two

moments by settingu = m + s− exp(r) = 0.3504 andd = m− s− exp(r) = −0.1553, with

p = 0.5. The implied simple excess return premium from the binomial approximation is 9.76%.

For this model, we find thatA∗ = 0.44. That is, if an investor’s utility in the loss region, relative

to the utility in the gain region, is scaled up by 1/0.44 = 2.27, she chooses not to participate in

6 In standard notation with binomial trees,u andd refer to gross returns of the risky asset, but we use them to

indicate the excess return states.
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the market. To appreciate the importance of this result, suppose we would like to generate low

stock holdings using a CRRA utility function, assuming the binomial stock model as the DGP.

For comparison, to obtain an optimal equity allocation of 5%,γ must be set equal to 33.7.

However, the extreme states inherent in the two-date approximation exaggerate the non-

participation region. We can find the correct answer for a log-normal distribution by numerical

integration, and find thatA∗ = 0.36. A two-period/three-date binomial tree is sufficient to

approximate the log-normal solution much more closely. At time 0, there are two possible

states to be realized at time 1, and at time 1 (after 6 months), there are again two possible states

for time 2 from each of the two branches of time 1, giving a total of three possible states at the

end of the year with a recombining tree. At each branch, the probability of an upward move is

p. Calibrating the tree, the three states areuu = 0.4808, ud = du = 0.0699 anddd = −0.2301.

Note that only the lower state is disappointing. In this case:

A∗ = − (1− p)2dd

p2uu + 2p(1− p)ud
= 0.37. (10)

Because the historical equity premium we use is high and its estimation subject to substantial

sampling error, Figure 1 shows the region of stock non-participation as a function of different

expected equity returns. To produce the plot, we vary the expected equity return in the binomial

gamble from 0 to 20% and plotA∗ on the vertical axis. The circle shows the empirical expected

total equity return 10.63%, or the empirical risk premium 6.55%, corresponding toA∗ = 0.37.

For an expected excess return of 16%,A∗ drops to just over 0.20. Values ofA above the line in

Figure 1 induce investors to participate in the market. This is the “participation” region. Values

of A below A∗ define the “non-participation” region, where investors hold no equity. While

this is an illustration of non-participation with a simple binomial model of equity returns, we

compute optimal non-participation regions for more realistic DGP’s in Section 5.

3 Dynamic Asset Allocation under DA Preferences

We embed DA preferences in a dynamic asset allocation setting, which nests dynamic CRRA

asset allocation as a special case. The dynamic setting is important for several reasons. First, the

recent empirical portfolio choice literature has devoted much attention to the dynamic effects of

asset allocation (see Brennan, Schwartz and Lagnado, 1997, among many others). Second, our

dynamic extension of DA utility has a number of desirable mathematical and rational properties

that are hard to replicate with LA preferences. Finally, our dynamic extension enables the

standard technical tools, in particular dynamic programming, to be used with portfolio choice
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problems with DA utility. Section 3.1 discusses how we solve the dynamic asset allocation

problem under CRRA utility before we present our formulation of dynamic portfolio choice

under DA preferences in Section 3.2.

3.1 Dynamic CRRA Utility

Our problem for dynamic CRRA utility is to find a series of portfolio weightsα = {αt}T−1
t=0 to

maximize:

max
α0,...,αT−1

E0[U(WT )] (11)

whereα0, . . . , αT−1 are the portfolio weights at time 0 (withT periods left),. . . , to timeT − 1

(with 1 period left), andU(W ) = W 1−γ/(1 − γ). WealthWt at time t is given byWt =

Rt(αt−1)Wt−1 with

Rt(αt−1) = αt−1(exp(yt)− exp(rt−1)) + exp(rt−1).

Since CRRA utility is homogenous in wealth, we setW0 = 1 as in the static case.

Using dynamic programming, we obtain the portfolio weights at each horizont by using the

investor’s (scaled) indirect utility,Qt+1,T :

α∗t = arg max
αt

Et[Qt+1,T W 1−γ
t+1 ] (12)

whereQt+1,T = Et+1

[
(RT (α∗T−1) . . . Rt+2(α

∗
t+1))

1−γ
]
, and QT,T = 1. The FOC’s of the

investor’s problem are, for allt:

Et[Qt+1,T R−γ
t+1(αt)xe,t+1] = 0, (13)

wherexe,t+1 = (exp(yt+1)− exp(rt)) is the excess return at timet+1. This expectation can be

solved using quadrature in a similar manner to the static problem. ForN states, we must track

N values ofQt+1,T at each horizon. There are alsoN portfolio weights, one corresponding

to each state, at each horizon. Henceα∗t represents one ofN portfolio weights at horizont,

depending on which state is prevailing at that time in the conditional expectation of equation

(12).

In equation (12), if(yt+1, rt+1) is independent of(yt, rt) for all t, thenQt+1,T is independent

of Wt+1 ≡ R1−γ
t+1 (αt), so the indirect utility in equation (12) becomes:

Et[Qt+1,T W 1−γ
t+1 ] = Et[Qt+1,T ]Et[R

1−γ
t+1 (αt)] (14)

SinceEt[Qt+1,T ] does not depend onαt, the objective function for the optimization problem at

time t is equivalentlyEt[R
1−γ
t+1 (αt)]. Thus, the problem reduces to a single-period problem and

there is no horizon effect.
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3.2 Dynamic DA Utility

The generalization of DA utility to multiple periods is non-trivial. Therefore, we first explore

a two-period example in Section 3.2.1, which highlights various considerations we must ad-

dress to generalize DA to a dynamic, long horizon set-up. Section 3.2.2 presents our dynamic

programming algorithm for the full-fledged multi-period case.

3.2.1 Two Period Example

Suppose there are three datest = 0, 1, 2 and two statesu, d for the excess equity return at dates

t = 1, 2. Hence, this is the two period binomial tree example of Section 2.2.2, but we allow

for rebalancing after each period. Without loss of generality we specify the risk-free rate to be

zero. The distribution of returns is independent across time. In this special setting,Rt(αt−1) is

given by1 + αt−1u in stateu and1 + αt−1d in stated. The agent chooses optimal portfolios at

datest = 0 andt = 1.

At t = 1 for each stateu andd, the investor choosesα1 to maximizeµ1 given by:

K1µ
1−γ
1 = E[R1−γ

2 (α1)1{R2(α1)≤µ1}] + A E[R1−γ
2 (α1)1{R2(α1)>µ1}], (15)

whereK1 = Pr(R2(α1) ≤ µ1)+APr(R2(α1) > µ1). Since the distribution is IID, the optimal

utility µ∗1 is the same across states, that isµ∗1(u) = µ∗1(d).

Suppose att = 0 the investor defines the DA utility function as:

K0µ
1−γ
0 = E0[(R1(α0)R2(α

∗
1))

1−γ1{R1(α0)R2(α∗1)≤µ0}]

+ A E0[(R1(α0)R2(α
∗
1))

1−γ1{R1(α0)R2(α∗1)>µ0}], (16)

whereK0 = Pr(R1(α0)R2(α
∗
1) ≤ µ0) + APr(R1(α0)R2(α

∗
1) > µ0). That is, she computes

the certainty equivalent of end-of-period wealth, given her current information. There are four

states{uu, ud, du, dd} with portfolio returns{(1 + α0u)(1 + α∗1u),(1 + α0u)(1 + α∗1d),(1 +

α0d)(1 + α∗1u), (1 + α0d)(1 + α∗1d)}. Since we cannot a priori assumeα∗0 = α∗1, returns are not

necessarily recombining (theud return can be different from thedu return) and we must track

all the return states both att = 1 andt = 0. Hence, the number of states increases exponentially

with the number of periods. Moreover, the optimization is time-dependent, so portfolio weights

may depend on the horizon even when returns are IID.

This example highlights two related difficulties in extending DA utility to a dynamic case,

which contrast with the computationally convenient, recursive, dynamic programming approach

presented in Section 3.1 for CRRA utility. First, the number of states increases exponentially
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with the horizon while the computational advantage of dynamic programming relies on the

dimension of the state-space being kept the same at each horizon. Second, while the reference

point is endogenously determined each period, it depends on all possible future return paths.

Furthermore, an interesting feature of the set-up of equation (16) is that even with IID returns

there are horizon effects. These complexities make solving dynamic DA problems not only

harder, but they also make extending DA portfolio choice problems to a world with DGP’s that

require extra state variables (to accommodate predictability, for example) next to impossible.

Therefore, we develop a dynamic extension of DA which does not suffer from these problems.

Most importantly, our approach is tractable enough to apply to realistic DGP’s.

We present a dynamically consistent way to compute the certainty equivalent which does

not increase the state-space with each horizon and endogenously updates the reference point.

The key assumption is that future uncertainty, as far as the choice of the future endogenous

reference point is concerned, is captured in the certainty equivalent. This assumption is similar

to the way the recursive formulation of Kreps and Porteus (1979) and Epstein and Zin (1989)

captures future uncertainty. We illustrate this dynamic DA formulation with the simple two-

period example. Instead of using actual future returns to compute the certainty equivalent at

t = 0, we use the certainty equivalent att = 1:

K0µ
1−γ
0 = E0[(R1(α0)µ

∗
1)

1−γ1{R1(α0)µ∗1≤µ0}] + A E0[(R1(α0)µ
∗
1)

1−γ1{R1(α0)µ∗1>µ0}], (17)

whereK0 is now defined asK0 = Pr(R1(α0) ≤ µ0)+APr(R1(α0) > µ0). In this formulation,

there are only two states{u, d} and we only need to track{(1 + α0u)µ∗1, (1 + α0d)µ∗1}. Hence,

the state-space remains at two states each period.

This investor uses the next period’s indirect utilityµ∗1 to form the DA utility this period,

so (17) is a dynamic programming problem. Notice that the endogenous reference point also

updates itself and depends on the future optimal return. Finally, this generalization of DA

utility to a dynamic setting also preserves the property that the CRRA dynamic program (using

the CRRA indirect utility) is a special case forA = 1. Like CRRA utility, the DA portfolio

weights in this generalization of DA utility to a dynamic setting do not exhibit horizon effects

if the return DGP is IID.

Although the non-recombining utility specification in (16) has many undesirable features,

it remains a valid theoretical preference specification. We illustrate the differences between

the optimal asset allocations resulting from solving the problem in (16) versus the specification

in (17) in the case of the two-period binomial tree. At date 1, both problems look the same.

Assuming a positive risk premium, we know thatα∗1 ≥ 1. Hence, the up state has a lower

weight. (If the risk premium is negative, the down state would have a lower weight.) Therefore,
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the DA utility can be written as:

µ1−γ
1 =

(1− p)(1 + α1d)1−γ + Ap(1 + α1u)1−γ

(1− p) + Ap
. (18)

The corresponding FOC forα1 is:

(1− p)(1 + α1d)−γd + Ap(1 + α1u)−γu = 0,

so the optimal portfolio weightα∗1 is given by:

α∗1 =
κ− 1

u− κd
,

where

κ =

(
− Apu

(1− p)d

)1/γ

.

At datet = 0, the problem in equation (16) remains unchanged because returns are IID (see

equation (13)). For the non-recombining case, the actual utility specification depends on the

magnitude ofµ0 relative to the four states. The ordering of the states depends on whetherα0

is smaller or larger thanα1. In an Appendix available upon request, we fully analyze this case

and show that the utility can be in four regions. For each case, the FOC’s can be derived, and

we must check whether the resulting optimal utility is indeed in the assumed region. Corner

solutions are also possible, where the optimal solution lies at the border of a region, which may

happen for low levels ofA.

Table 2 summarizes our findings for two different calibrations of the binomial tree. On

the left, we reportα0 andα1 assuming one period is 6 months and the total horizon is 1 year.

On the right, we assume one period is one quarter and the total horizon is 6 months. Theα1

weight is also the optimal solution for the specification in (15). It is clear that there are indeed

horizon effects with the specification using equation (16), which can be quantified by looking

at the difference betweenα0 andα1. Interestingly,α0 > α1, so that longer horizons mitigate

the disappointment aversion. The differences are small for highA but become larger for lowA.

Nevertheless, we still obtain non-participation forA < 0.65.

3.2.2 Dynamic DA Algorithm

Building on the DA utility defined in equation (17), we present an algorithm for solving the

dynamic asset allocation problem under DA preferences. Our problem is similar to the problem

described in equation (11), but the utility function is now DA utility. We start the dynamic

program at horizont = T − 1. We solve:

max
αT−1

µT−1(αT−1), (19)

11



whereµT−1 is defined by:

KT−1µ
1−γ
T−1 ≡ ET−1[R

1−γ
T (αT−1)1{RT (αT−1)≤µT−1}]

+ A ET−1[R
1−γ
T (αT−1)1{RT (αT−1)>µT−1}], (20)

with KT−1 = Pr(RT (αT−1) ≤ µT−1) + APr(RT (αT−1) > µT−1). We solve for the optimal

portfolio weightα∗T−1, with the corresponding optimal utilityµ∗T−1, as in the one-period prob-

lem. At this horizon, the allocation problem is equivalent to the static problem, but we solve for

each quadrature state, yieldingN optimal state-dependent portfolio weights and utilities.

At horizont = T − 2 we solve:

max
αT−2

µT−2(αT−2), (21)

whereµT−2 is defined by:

KT−2µ
1−γ
T−2 ≡ ET−2[R

1−γ
T−1(αT−2)(µ

∗
T−1)

1−γ1{{RT−1(αT−2)µ∗T−1≤µT−2}]

+ A ET−2[R
1−γ
T−1(αT−2)(µ

∗
T−1)

1−γ1{RT−1(αT−2)µ∗T−1>µT−2}], (22)

with KT−2 = Pr(RT−1(αT−2) ≤ µT−2) + APr(RT−1(αT−2) > µT−2). To solve forα∗T−2 and

µ∗T−2 at a particular state att = T − 2, we need only track theN states forµ∗T−1 atT − 1. We

continue this process fort = T − 3 until t = 0.

If A = 1, then at horizont = T − 2 the DA utility reduces to:

µ1−γ
T−2 = ET−2[R

1−γ
T−1(αT−2)(µ

∗
T−1)

1−γ] = ET−2[R
1−γ
T−1(αT−2)QT−1,T ], (23)

which is the standard CRRA problem. Note that if returns are IID, then at each horizon, exactly

the same DA problem applies and the portfolio weights are independent of the horizon. More

generally, to solve the DA problem at each horizon, we simultaneously use the FOC and the

definition of the certainty equivalent, which also occurs in the static case (see equations (6) and

(9)).

4 Disappointment Aversion versus Loss Aversion

There is a large literature documenting how the risk attitudes of individuals differ from the pre-

dictions of expected utility theory. The behavioral work of Kahneman and Tversky (1979) has

been very influential in this area. In Section 4.1, we define LA utility following Kahneman and

Tversky (1979). Both the LA and DA preferences capture similar features of human behavior,
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and we comment how LA and DA preferences imply risk aversion with respect to both small

and large stakes, a feature not shared by CRRA utility.

LA preferences have been far more popular than DA preferences in applied finance work.

This is surprising for a number of reasons. First, the grounding of DA preferences in decision

theory makes them more attractive to economists using rational dynamic programming tools.

Second, whereas we are able to formulate a mathematically well-defined static and dynamic

asset allocation framework under DA preferences, this is considerably harder under LA prefer-

ences. Sections 4.2 to 4.4 briefly illustrate some of the problems encountered when applying

the original Kahenman-Tversky formulation to an asset allocation framework. These problems

include the real possibility of infinite optimal asset allocations and the sensitivity of the asset

allocation to the choice of the reference point. The shortcomings of LA have led researchers em-

ploying this behavioral utility function to modify the original Kahneman-Tversky specification

and we discuss various implementations in Section 4.5. The attraction of the DA framework is

precisely that it accommodates loss aversion without other behavioral implications.

4.1 Loss Aversion and Rabin (2000) Gambles

4.1.1 Kahneman-Tversky (1979) Loss Aversion

With χ representing a gain or loss relative to a reference pointB0, the LA utility of Kahneman

and Tversky (1979) is given by:7

U(χ) = −λE[(−χ)(1−γ1)1{χ≤0}] + E[χ(1−γ2)1{χ>0}], (24)

where1 is an indicator variable,χ = W − B0 = Rf + αxe − B0 is the gain or loss of

final wealthW relative to the benchmarkB0, Rf = exp(r) is the gross risk-free rate andxe =

exp(y)−exp(r) is the excess stock return wherey is the equity return. The parameterλ governs

the additional weight on losses. According to Kahneman and Tversky,λ = 2.25, so losses

are weighted 2.25 times as much as gains, andγ1 = γ2 = 0.12, implying the same amount of

curvature across gains and losses. Following the behavioral literature, we consider only the case

of 0 ≤ γ1 < 1 and0 ≤ γ2 < 1 since the felicity function(−λ(−χ)1−γ11{χ≤0} + χ(1−γ2)1{χ>0})

is monotone in wealth only if0 ≤ γ1 < 1 and 0 ≤ γ2 < 1.8 Hence, both LA and DA

7 Kahneman and Tversky (1979) argue that the expectation in equation (24) should be taken under a subjective

measure, but for now we assume that the objective (real) measure holds.
8 Note that the utility function implies different preference orderings ifχ is expressed in different units unless

γ1 = γ2 or the difference betweenγ1 andγ2 is very small. Expressingχ in returns (soχ has no dimension)

circumvents this problem. Note that LA utility is not defined atW = B0 for γ > 1.
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preferences incorporate an asymmetric treatment of good and bad outcomes that is not present

in standard expected utility. LA utility is different from DA utility because the LA felicity

function is not globally concave in wealth. When expressed in wealth levels, the LA utility

function is S-shaped, implying risk-seeking behavior in the loss region and risk aversion in the

gain region. The non-concavity has important consequences for optimal portfolio choice under

LA utility.

4.1.2 Rabin (2000) Gambles

Rabin (2000) demonstrates a striking problem arising in the expected utility framework. His

“calibration theorem” is best illustrated with an example. Suppose that for some ranges of

wealth (or for all wealth levels), a person turns down gambles where she loses $100 or gains

$110, each with equal probability. Then she will turn down 50%-50% bets of losing $1,000 or

gaining ANY sum of money. We call such a gamble a “Rabin gamble”. Since DA preferences

do not fall into the expected utility category, they do not necessarily suffer from the Rabin-

gamble problem.

Figure 2 illustrates this. Imagine an investor with $10,000 wealth. If he has CRRA pref-

erences, a risk aversion level ofγ = 10 makes him reject the initial 100/110 gamble. The

graphs in the left-most column show both his utility and willingness-to-pay relative to the Ra-

bin gamble of losing $1,000 and gaining the amount on thex-axis. The willingness-to-pay to

avoid the gamble is the difference between the certain wealth the investor has available by not

taking on the gamble minus the certainty equivalent of the gamble. If the willingness-to-pay

is negative, rational agents would accept the gamble. The last amount on the right hand side

of thex-axis represents $25,000. It is apparent from the top graph that the marginal utility of

additional wealth becomes virtually zero very fast. The willingness-to-pay to avoid the gamble

asymptotes to about $280, even if the potential gain is over $1,000,000. The extreme curvature

in the utility function drives the continued rejection of the second gamble even as the possible

amount of money to be gained increases to infinity.

With DA preferences, an investor need not display an extremely concave utility function

to dislike the original 100/110 gamble, because he hates to lose $100. The middle column of

Figure 2 shows utility levels and willingness-to-pay for DA utility. An investor withγ = 2

andA = 0.85 rejects the original gamble, but this investor loves the Rabin gambles. In fact,

the willingness-to-pay decreases rapidly and quickly becomes negative. As an example, our

DA investor would be willing to pay $3,664 to enter a bet where she can gain $25,000 but

may lose $1,000 with equal probability. For lowerγ, or higherA, this amount increases. For
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example, ifγ = 0 andA = 0.85, the DA investor would be willing to pay $10,946 to take on

this 1,000/25,000 gamble.

For LA preferences, we must first introduce a notion of willingness-to-pay because the LA

utility in equation (24) is defined over gains and losses. However, since gains and losses are

always evaluated relative to a benchmark, wealth is implicitly given as the gain or loss plus

the reference point. Denoting the LA utility in equation (24) asULA, we define the certainty

equivalent of LA,µLA
W , as:

µLA
W =





U
1

1−γ2
LA + B0 if ULA > 0,

− (−ULA

λ

) 1
1−γ1 + B0 if ULA ≤ 0

(25)

whereB0 is the benchmark of the gamble, which is initial wealth in our case.

The last column of Figure 2 shows utility levels and willingness-to-pay for a LA investor

with benchmark parametersγ = 0.18 andλ = 2.25 from Kahneman and Tversky (1979). This

investor also rejects the initial 100/110 gamble but likes the Rabin gambles. For example, the

LA investor would be willing to pay $8,671 to enter a bet to gain $25,000 with probability

one half, and lose $1,000 with probability one half. Hence, both the DA and LA preference

functions can resolve the Rabin puzzle. From introspection, over-weighting losses relative to

gains seems to yield much more reasonable attitudes towards risk.

4.2 Characterizing Optimal LA Portfolio Weights

When the portfolio weight in equitiesα is very large in absolute magnitude (so thatχ → αxe

asα → ±∞), the utility function approaches:

−λα1−γ1E[(−xe)
1−γ11{xe≤0}] + α1−γ2E[x1−γ2

e 1{xe>0}], for α → +∞
|α|1−γ1E[(−xe)

1−γ11{xe≤0}]− λ|α|1−γ2E[x1−γ2
e 1{xe>0}], for α → −∞ (26)

wherexe is the excess return on equity. Hence, the term with the higher exponent onα domi-

nates. In particular, forγ1 > γ2 the second term dominates so there is no finite optimal portfolio

weight. The behavioral literature has mostly considered only the case ofγ1 = γ2 = γ following

Kahneman and Tversky (1979) (see Benartzi and Thaler, 1995; Berkelaar and Kouwenberg,

2000; and Barberis, Huang and Santos, 2001). Even in this restricted case, extreme LA port-

folio weights are likely.9 Appendix C outlines general conditions under which finite portfolio

9 Sharpe (1998) analyzes a closely related bilinear utility function, which can be represented asλxe1{xe≤0} +

xe1{xe>0}. Sharpe shows that this bilinear utility function implies extreme portfolio weights under empirically

relevant circumstances (see also Aı̈t-Sahalia and Brandt, 2001).
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solutions with LA preferences are possible. Interestingly, we find that LA may produce local

maxima (see Benartzi and Thaler, 1995), even though the global maximum is either−∞ or

+∞. Such local maxima exist for realistic parameter values.

4.3 Choice of the LA Reference Point

Kahneman and Tversky (1979)’s prospect theory gives no guidance to the choice of the ref-

erence pointB0, which must be set exogenously. As noted by Benartzi and Thaler (1995),

different horizons can turn the LA optimization into a totally different problem. For example,

for very long rebalancing periods the effect of the benchmark is negligible if the benchmark

is current wealth, or current wealth times the risk-free rate. This is because the benchmark in

accumulated wealthW = Rf + αxe−B0 is swamped by the equity returns over long horizons.

Moreover, in a dynamic setting there is no clear guidance about how the loss aversion reference

point should be updated. If the choice of reference point is current wealth times the risk-free

rate, as specified by Barberis, Huang and Santos (2001), then the LA optimal portfolio weight,

if finite, is zero:

Proposition 4.1 If the benchmarkB0 is equal to current wealth times the risk-free rate then the

optimal portfolio weightα∗ = 0 or the optimal portfolio weight is unbounded.

Proof: See Appendix C.

Hence, for this particular benchmark the only possible portfolio weights are−∞, 0 or+∞. In

contrast, in DA utility, the reference point defining elating outcomes (“gains”), versus disap-

pointing outcomes (“losses”) is endogenous and we show that DA portfolio weights are finite.

4.4 Subjective Probability Transformations

When the risk premium is zero, CRRA or DA investors hold zero equity. This is not always

the case for LA investors. Kahneman and Tversky (1979) propose to use a subjective rather

than an objective probability distribution to take expectations in equation (24). Kahneman and

Tversky call the transformed objective probabilities “decision weights.” The transformation

involves over-weighting small probability events and under-weighting large probability events.

Whereas the literature empirically applying loss aversion (Benartzi and Thaler, 1995; Berkelaar

and Kouwenberg, 2000; Barberis, Huang and Santos, 2001; Gomes, 2003) has not used these

probability transformations, it is useful to point out one of their undesirable properties. In

particular,
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Proposition 4.2 If the risk premium is zero, then the optimal portfolio weight in LA could be

less than zero (α∗ < 0).

Proof: See Appendix C.

Short positions may result with LA even with zero risk premiums since the LA probability

transformation downweights probabilities, rather than events. Similar to LA, DA also involves

an implied probability transformation. However, Appendix A shows that DA uses a CRRA max-

imization problem with transformed probabilities such that the probabilities for wealth above

the certainty equivalent are downweighted. The major difference between the probability trans-

formation of DA and LA is that DA’s probability transformation is endogenous, while LA’s is

arbitrary.10

4.5 Loss Aversion in the Literature

The possible non-finite optimal portfolio weight under LA preferences is due to the global non-

concavity of the LA utility function. Specifically, LA utility, as defined by Kahneman and

Tversky (1979) and used by Benartzi and Thaler (1995), is finite for negative wealth. Proposi-

tion 4.2 shows that LA investors may be more risk-seeking than CRRA investors. An important

consequence is that there is no guarantee that non-corner solutions can be found. Various ap-

proaches have been taken in the literature to practically implement LA. Most of them rely on

imposing additional restrictions on the original specification so that the utility function is suf-

ficiently negative, or negative infinity, at zero wealth. This allows the original LA utility to be

“pseudo-concavified” (Berkelaar and Kouwenberg, 2000) but changes the fundamental nature

of the original specification.11

For example, to avoid corner solutions Gomes (2003) adds a term to the LA utility function,

which for big enough losses makes the utility function again concave:

U(W ) = VBL − λE[((−χ))(1−γ1)1{W<W≤B0}] + E[(χ)(1−γ2)1{W>B0}],

whereVBL is defined by Gomes as:

VBL = E[W 1−γ1{W≤W}]− c

10 The subjective probability transformation of LA also violates first-order stochastic dominance and transitivity.

In contrast, these properties are maintained under DA preferences (see Machina, 1982; Gul, 1991).
11 Benartzi and Thaler (1995), although working with the original Kahneman and Tversky (1979) LA specifi-

cation, do not perform an optimization problem. They evaluate LA utility as a function of the equity portfolio

holding, but only between zero and 1. Calibrating a binomial tree to the U.S. stock market, we find that this is

likely a local optimum, with utility being maximized atα = +∞.
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andc is a constant set to make the utility function continuous atW = W . By using another

CRRA term, negative wealth can be assigned negative infinite utility, forcing wealth to be pos-

itive. Another approach is taken by Berkelaar and Kouwenberg (2000), who do not modify

Kahneman and Tversky (1979)’s original specification, but instead explicitly restrict wealth to

be positive.

Barberis, Huang and Santos (2001)’s utility function has two components. The first compo-

nent is a log utility function defined over consumption. The second component is defined over

wealth and embeds loss aversion. The loss aversion component is piece-wise linear (γ1 = 0 and

γ2 = 0), following Benartzi and Thaler (1995). In an asset allocation framework, their utility

function can be written as:

U(W ) = E[log(W )]− λE[(−χ)1{W≤B0}] + E[χ1{W>B0}].

The log utility function endogenously enforces a positive wealth constraint, since wealth at zero

yields negative infinite utility. Barberis, Huang and Santos choose the reference point as cur-

rent wealth times the risk-free rate. In the original Kahneman and Tversky (1979) formulation

without the Barberis-Huang-Santos log utility term, we know from Proposition 4.1 that the only

finite optimal equity portfolio weight for this choice of reference point is zero. These practi-

cal implementation problems inherent in LA preferences make DA preferences a very viable

alternative to model loss aversion.

5 Disappointment Aversion and Stock Holdings

5.1 Data and Data Generating Processes

To examine portfolio choice under realistic DGP’s, we use quarterly US data from 1926 to

1998 on nominal stock returns and Treasury bill interest rates. We use two main DGP’s in this

paper that largely conform to the DGP’s prevalent in the extensive literature on dynamic asset

allocation.12 In our first model, stock returns are IID over time and the interest rate follows a

first-order autoregressive system. In our second model, we accommodate predictability. Fol-

lowing most of the dynamic asset allocation literature, we consider only one possible predictor

of stock returns and consider a system where an instrument linearly predicts stock returns in the

conditional mean of equity returns. Whereas many authors have focused on yield variables, we

use the interest rate itself. This has the advantage of reducing the state space and introduces an

12 See for example Kandel and Stambaugh (1996), Balduzzi and Lynch (1999), Campbell and Viceira (1999),

and Barberis (2000).
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interesting dynamic since the predictor itself is the return on an investable asset. We are also

unlikely to lose much predictive power, since Ang and Bekaert (2003) find that the short rate

is the most robust predictor of international stock returns. Ang and Bekaert (2003) and Goyal

and Welch (2003) demonstrate that the dividend yield, which has been previously used by many

authors to forecast returns, has no forecasting power when data of the late 1990’s are added to

the sample.

Our two DGP’s for nominal data are special cases of a bivariate VAR on stock returns and

interest rates:

Xt = c + ΦXt−1 + Σ
1
2 εt, (27)

whereXt = (ỹt rt)
′, ỹt = yt− rt−1 is the continuously compounded excess equity return andrt

is the risk-free rate, measured by the quarterly T-bill interest rate, andεt ∼ N(0, I).

The “No Predictability” model imposes all elements ofΦ to equal zero exceptΦ22, and the

“Predictability” model constrains all elements ofΦ exceptΦ12 andΦ22 to be zero. Estimates

for these DGP’s are reported in Table 3. In both systems, there is negative contemporaneous

correlation between shocks to short rates and stock returns. The predictability system reveals

that the short rate is not a significant predictor of stock returns over the full sample period. In

fact, predictability is much stronger in the post-1940 period. Although we do not report results

for this alternative sample explicitly, we investigated a DGP estimated on post-1940 data. With

this DGP, equity is relatively more attractive, but our main results are unchanged.

We now proceed to derive optimal asset allocations for various parameter configurations

under the two DGP’s. Since the DGP’s are first-order Markov processes, they lend themselves

easily to discretization, which we detail in Appendix D.

5.2 No Predictability Case

In this system, the excess premium is constant and IID, while short rates are autoregressive and

negatively correlated with equity returns. For a given risk aversion, portfolio allocations in this

system depend on the horizon, but they do not depend on the level of the short rate (as we show

later). This is not surprising given that our set-up is similar to that of Liu (1999). Liu proves

this result analytically in a continuous-time problem with the short rate following a Vasicek

(1977) model. Under the Vasicek term structure model, excess returns of bonds have a constant

risk premium, constant volatilities, and are perfectly correlated with the short rate. Similarly, in

our no predictability system, excess stock returns have a constant risk premium and a constant

volatility. Although in our setting the correlation between equities and the short rate is not

unity, Liu’s result obtains. Given that there is no short rate dependence, we only discuss general
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patterns in optimal equity portfolio weights.

Because there is little guidance on the choice of parameter values, we characterize portfolio

choice for DA preferences (which include CRRA as a special case) across a wide set of param-

eter values. Figure 3 establishes benchmark asset allocations for CRRA preferences restricting

the curvature parameterγ to the interval[2, 10], a range suggested by decades of empirical re-

search, withγ = 2 as the most popular choice (see Friend and Blume, 1975). Moderately risk

averse CRRA agents (γ = 2) should put close to 100% of their portfolio in equities. Equity

allocations of 50% to 60% start to appear atγ’s between 3 and 4, but CRRA utility never pro-

duces a non-participation result. Figure 3 also shows that the equity proportion is slightly larger

for longer horizons and hence agents gradually decrease their equity proportions as they age.

Table 4 reports the asset allocation results forγ = 2 andγ = 5 (the middle of the[2, 10]

range), and two horizons (3 months and 10 years), and also reports standard errors for the

weights, computed using the delta method (see Ang and Bekaert, 2002).13

Because the equity return mean is measured with large sampling error, these standard errors

are quite large. Nevertheless, the weights atγ = 2 (0.927) andγ = 5 (0.370) are both signif-

icantly different from zero at the 1% level and, using a Wald test, significantly different from

each other (p-value = 0.0006). However, for bothγ = 2 andγ = 5, the equity weight is no

longer statistically significant from zero onceA reaches 0.80.14

Table 4 shows one of our main results. For the no predictability system, the criticalA∗

required to induce investors to participate in the market isA∗ = 0.6030. That is, scaling up the

utility of disappointing outcomes by 1.66 (1/0.6030) produces non-participation. Note that all

investors hold zero equity atA∗ irrespective ofγ (see Proposition 2.1). Hence, variation inA

(from 1 to 0.6030), for a CRRA investor with the “normal” curvature in the utility function of

γ = 2, leads to variation in equity holdings from close to 100% to 0%. Forγ = 2, droppingA

to 0.85 is sufficient to bring the equity allocation close to 60%. The effect on asset allocation of

lower A is less dramatic for higherγ, which is apparent from the column withγ = 5.

Turning now to horizon effects, Table 4 shows that the portfolio weights for 1-quarter and

13 We have checked the accuracy of these standard errors using a small-scale Monte Carlo (with 400 parameter

draws), which is extremely time-consuming because of the long computation time required to solve the DA prob-

lem for every parameter draw. The Monte Carlo standard errors are very similar to the standard errors computed

using the delta-method. For low levels ofA, the delta-method tends to overstate the standard errors because it fails

to fully account for the non-linearity induced by non-participation.
14 The Wald test for the hypothesis that the 1-quarter horizon portfolio weights corresponding toA = 1.00 and

A = 0.65 for γ = 2 are the same rejects the null with p-value less than 0.0001. Similarly, a test that the 1-quarter

horizon portfolio weights forA = 1.00 andA = 0.65 are equal forγ = 5 also rejects with p-value less than

0.0001.

20



10-year horizons are very similar. The columns labeledχ2 p-value in Table 4 report the p-value

of a Wald test that the portfolio weights for the 1-quarter and 10-year horizons are the same.

This tests overwhelmingly fails to reject for allγ andA. Looking at the point estimates of

the portfolio weights across horizons, the horizon effect becomes larger whenA is decreased,

reaching a 4.67% difference forA = 0.65 andγ = 2.

While the statistical significance and economic magnitude of the horizon effects are small,

their existence in a system without predictability warrants some further elaboration. In our

estimated system, portfolio weights do not depend on the short rate but there is a weak positive

horizon effect: agents with longer horizons hold more equity. From Samuelson (1991) and

others, processes with positive persistence induce negative horizon effects (they are “riskier”

over longer periods), whereas negatively correlated processes induce positive horizon effects. In

our empirical estimates, shocks to stock returns and short rates are slightly negatively correlated

(−0.0474) (see Table 3), which induces weak positive hedging demands.

The size of hedging demands is primarily determined by the rebalancing horizon, the pre-

dictor variable used to forecast equity returns and the correlation between predictor innovations

and returns. Brandt (1999) and Ang and Bekaert (2002) find that frequent rebalancing reduces

the size of hedging demands and Aı̈t-Sahalia and Brandt (2001) and Lynch (2001) also find that

the magnitude of hedging demands depends very much on the choice of predictor variable.

We also considered a system with heteroskedasticity, changing the interest rate process in

equation (27) to a simple square root modelrt+1 = cr + ρrt + σr
√

rtεt,r with the equity return

given byyt+1 = cy +σy,r
√

rtεt+1,r +σyεt+1,y to match the same unconditional moments implied

by the VAR (27). Becauseσr and the conditional correlation between interest rates and excess

equity returns are small, the results are rather uninteresting. The portfolio weights are invariably

slightly smaller than what we obtain for the homoskedastic case, with the differences becoming

slightly larger with horizon. However, the differences are very small never exceeding 0.008,

and we do not report the results to conserve space.15

5.3 The Impact of the Rebalancing Frequency

With LA preferences, the rebalancing frequency is very important. For example, if the bench-

mark is current wealth, the longer the rebalancing frequency, the more irrelevant the benchmark

becomes. This observation is in fact critical to the argument of Benartzi and Thaler (1995), who

claim that it is myopic loss aversion which accounts for the puzzling lack of equity holdings

15 We also incorporated heteroskedasticity into the predictability system in Section 5.4, with a square root process

for interest rates, and find it totally dominated by the conditional mean effects.
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among investors. Of course, in our framework, the rebalancing frequency is likely to be less

important, since the reference point is endogenous and changes with the rebalancing frequency

in an internally consistent fashion.

Table 5 confirms this. The first line of the table simply expands on the results of Table

4, showing that longer horizons induce slightly higher equity allocations. The table then also

displays results for three other rebalancing frequencies: 2-quarters, 1-year and 2-years. These

portfolio weights are computed by temporally aggregating the one-quarter VAR (see Appendix

D) and then discretizing the resulting dynamic system as a first-order VAR over the myopic

frequency.16 Generally, the effect of changing the rebalancing frequency is very small. Because

there is no predictability, the main effect comes from changes in the annualized volatility of

interest rates with different rebalancing frequencies, which first decreases from0.0173×√4 =

0.0346 at the 1-quarter horizon to0.0286 at the 1-year horizon (making equities relatively more

attractive) and then increases back to0.0560 ÷ 2 = 0.0396 for the two-year frequency. The

mechanism here is very different from the drastic change in the benchmark level that drives

the results in Benartzi and Thaler (1995). Our results are driven by changes in the DGP at the

different frequencies.

5.4 Predictability Case

Table 6 reports myopic portfolio weights corresponding to three annualized interest rates levels

0.0392, 0.0816 and 0.1208 forγ = 2, 5 and various disappointment levelsA, for the system

with predictability of excess returns. The special case of CRRA utility is given byA = 1.

The interest rates represent a state close to the unconditional mean (r = 0.0392), an extremely

high interest rate (r = 0.1208), and one in the middle of the range. As interest rates increase,

the equity holding decreases. The effect is quite pronounced. For example, aγ = 2 investor

holds 64% in the market portfolio forA = 0.85 at r = 0.0392. Whenr increases to 0.0816

this investor’s portfolio weight decreases to 37%. This is not surprising. In the system with

predictability, higher interest rates lower the conditional equity premium (Table 3 shows that a

1% increase in the short rate decreases the equity premium by 60 basis points). Of course, the

standard errors on the weights remain large.

The criticalA∗ required for investors to participate in the equity market now depends on the

interest rate and rises from 0.60, over 0.69 to 0.79 for the three interest rates reported in Table

16 Formally, temporal aggregation leads to a VARMA(1,1) system in the new frequency, but taking the MA

component into account in the optimal asset allocation is infeasible. For a myopic horizon, the VAR approximation

should be very accurate.
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6. The critical levelA∗ increases with the interest rate because higher short rates lower the

equity premium, giving stocks more room to disappoint. Stock non-participation now occurs

for smaller degrees of disappointment aversion (higherA). At high interest rate levels, sinceA∗

is high, modest cross-sectional variation inA produces substantial variation in equity partici-

pation. The näıve reaction of some retail investors to pull out of the stock market when money

market rates are high is thus optimal in this framework.

In Figure 4, we graph optimal equity weights under DA preferences withγ = 2 and

A = 0.85 for various horizons as a function of the interest rate. As is also the case for CRRA

utility, the portfolio weight curve is downward sloping and hedging demands are small. At

first, hedging demands are positive and increase with higher interest rates. For very high in-

terest rates, they become negative. At interest rates above approximately 12%, as the horizon

increases, the interest rate at which the investor switches entirely to risk-free bonds decreases.

To help gain intuition on this result, the bottom panel graphsA∗ as a function of the interest

rate for various horizons. At very high interest rates,A∗ increases with horizon which causes

equity holdings to decrease and produces the negative hedging demands. This is because for

longer horizons,A∗ is determined not only by the one-period ahead distribution of excess re-

turns, but also depends on future certainty equivalents of wealth. For very high interest rates

(above 14.7%), the equity premium is negative. At high interest rate levels, for long horizons

the probability of landing in the negative equity premium region is larger than for short hori-

zons. This effect increasesA∗ for longer horizons at high interest rates. For low interest rates,

around 2-4%, the probability of ending in the negative equity premium region is almost zero,

so at low interest rates we find small positive hedging demands, as in the no predictability case.

In Table 6, the drop in equity holdings going fromA = 1.0 to A = 0.85 is about 30%,

and more generally, the portfolio weights decline almost linearly with the interest rate. This

prompts the question whether the state dependence of DA utility is different from CRRA utility.

If this is the case, we may find DA outcomes using CRRA utility with a higher risk aversion

coefficient. Figure 5 vividly illustrates that CRRA utility cannot replicate DA asset allocations.

For each short rate, we start from the optimal equity weight at a horizon of one quarter for a DA

investor withγ = 5 or γ = 2 and withA = 0.85. We then find a CRRA investor, characterized

by γ, that chooses the same portfolio. If the above claim were true, we should find a horizontal

line. In contrast, the line starts out relatively flat but then rapidly ratchets upward non-linearly

for higher short rates, so the aversion of the DA investor to stocks increases non-linearly with

higher interest rates. The implied CRRA risk aversion increases as a function of the short

rate because the higher the short rate, the lower the equity premium, so the more stocks can

disappoint. At very high interest rates, a DA investor withA = 0.85 holds zero equity, which
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can only be captured by infinite CRRA risk aversion.

6 Conclusions

In this article, we use the disappointment aversion (DA) preference framework developed by

Gul (1991) to study the dynamic asset allocation problem. DA preferences incorporate loss

aversion in that they treat gains and losses asymmetrically, but are fully axiomatically moti-

vated and admit easy comparison with standard expected utility. From the perspective of the

smooth concave nature of constant relative risk averse (CRRA) preferences, the behavior of

many investors often appears puzzling: investors often do not invest in the stock market, and a

portfolio choice model with predictable equity returns often leads to substantially levered eq-

uity positions. Investors who are averse to disappointing outcomes should hold significantly

less equity even with moderate curvature in the utility function. Moreover, we show that for

high enough disappointment aversion, an investor’s optimal equity position is zero.

By calibrating a number of data generating processes to actual US data on stock and bond

returns, we find very reasonable portfolios for disappointment averse investors with utility func-

tions exhibiting quite low curvature. DA preferences affect horizon effects and the state depen-

dence of asset allocation in such a way as to not be replicable by a CRRA utility function with

higher curvature. Despite the large equity premium, stocks may disappoint! Whereas the pri-

mary focus of the recent literature has been on the effects of predictability or background risk

on portfolio choice, our results suggest the importance of understanding the investor’s attitude

towards risk. The proper specification of an investor’s utility function matters as much as, if not

more, than the proper specification of the stochastic environment. Consequently, it is encourag-

ing to see related work such as Barberis, Huang and Santos (2001) who embed prospect theory

in a dynamic portfolio choice model with consumption.

Whether heterogeneity in preferences or heterogeneity in circumstances is the more fruit-

ful direction to pursue to explain the portfolio choice evidence remains to be seen. There is

a scarcity of experimental work on risk preferences, and almost none on the kind of prefer-

ences we examine in this paper. Loomes and Segal (1994) focus on the implications of different

utilities for the order of risk aversion. Standard CRRA preferences exhibit second-order risk

aversion (the insurance premium the investor is willing to pay to avoid a gamble is proportional

to the variance of the gamble), while DA preferences exhibit first order risk aversion (the in-

surance premium is proportional to volatility). They observe both first and second order risk

aversion in their subjects. Although they note that the first order risk aversion embedded in DA
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preferences may not be strong enough relative to their experimental evidence, their results cou-

pled with ours definitely suggest to take heterogeneity in preferences as a potentially important

determinant of portfolio choice.

There are a number of interesting avenues for future work. Disappointment averse agents

dislike negative skewness much more than standard CRRA agents. Hence, the regular occur-

rence of equity market crashes inducing such skewness may further scare investors away from

equity investments or it may induce them to buy (costly) insurance against such crashes. This

may account for the recent popularity of put-protected products which seem to have lured many

investors into the stock market. In an international context, the occurrence of correlated bear

markets (see Ang and Bekaert, 2002; Das and Uppal, 2003) may induce home bias in asset

preferences for disappointment averse investors. Although DA preferences yield portfolio allo-

cations promisingly close to actual holdings in partial equilibrium settings, we must ultimately

investigate whether DA preferences can be accommodated in an equilibrium model of risk.
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Appendix

A Numerical Solution of the Portfolio Allocation Problem
under DA Preferences – A New Algorithm

To solve equations (6) and (9) numerically, we use quadrature to approximate the definition of

µW in equation (6) by:

µ1−γ
W =

1

K

( ∑
s:Ws≤µW

psW
1−γ
s +

∑
s:Ws>µW

ApsW
1−γ
s

)
, (A-1)

and the FOC in equation (9) by:

∑
s:Ws≤µW

psW
−γ
s (exp(ys)− exp(r)) +

∑
s:Ws>µW

ApsW
−γ
s (exp(ys)− exp(r)) = 0. (A-2)

We solve equations (A-1) and (A-2) simultaneously to yield the portfolio weightα that maxi-

mizes the utility of this disappointment-averse investor. Appendix D discusses the discretization

procedure.

Let xe = (exp(y)− exp(r)) denote the excess stock return. WithN quadrature points there

areN outcomes forxe, {xes}N
s=1, with probability weights{ps}N

s=1. Without loss of generality,

we can orderxe from low to high across statess. The utility equivalentµ∗W corresponding to

the optimal portfolio weightα∗ can be in any ofN intervals:

[ exp(r) + α∗xe1, exp(r) + α∗xe2 ),

[ exp(r) + α∗xe2, exp(r) + α∗xe3 ),

...

[ exp(r) + α∗xe,N−1, exp(r) + α∗xeN ).

Supposeµ∗W lies in [ exp(r) + α∗xei, exp(r) + α∗xe,i+1 ) for some statei. Thenα∗ solves:

∑

s:Ws≤exp(r)+α∗xe,i

ps(W
∗
s )−γxes +

∑

s:Ws>exp(r)+α∗xe,i+1

Aps(W
∗
s )−γxes = 0, (A-3)

whereW ∗
s = exp(r)+α∗xes. Equation (A-3) is a CRRA maximization problem with a changed

probability distributionπi = {πis}N
s=1, where the probabilities for wealth above the certainty

equivalent are downweighted, that is:

πi ≡ (p1, ..., pi, Api+1, ..., ApN)′

(p1 + ... + pi) + A(pi+1 + ... + pN)
. (A-4)
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Our algorithm is as follows. We start with a statei and solve the CRRA problem with

probability distributionπi. Then we compute the certainty equivalent,µ∗Wi, given by:

µ∗Wi =

(
N∑

s=1

(W ∗
s )1−γπis

) 1
1−γ

. (A-5)

Then, we check if in this state the following is true:

µWi ∈ [ exp(r) + α∗i xei, exp(r) + α∗i xe,i+1). (A-6)

If this is true fori = i∗ thenα∗ = α∗i andµ∗W = µ∗Wi. As the states are ordered in increasing

wealth across states for a given portfolio weight, it is easy to do a bisection search algorithm

(with intermediate CRRA optimizations) to obtain the DA portfolios. If we start our search for

i∗ at the midpoint of theN states and find thatµWi > (<) exp(r) + α∗i xe,i+1, then we begin a

search in the upper (lower) half of the state space.

Gul (1991)’s appendix describes a similar algorithm. Both our algorithm and Gul’s require

the solution of an optimization problem in each discrete state. The difference is that in our

algorithm we solve a simple smooth CRRA problem, whereas Gul requires a non-linear maxi-

mization involving an indicator function. For his optimization problem, gradient-based search

algorithms cannot be used, and thus our algorithm is numerically more tractable.

We can extend this solution to the dynamic DA problem in Section 3.2. Specifically, if

wealthWs is increasing across statess for a given portfolio weight, and the certainty equivalent

for horizont, µts, is also increasing across states for a given portfolio weight, thenW̃s = Rsµs,t

is also increasing across statess.

B Proof of Proposition 2.1

Define:

A∗ = −E[xe|xe ≤ 0]Pr(xe ≤ 0)

E[xe|xe > 0]Pr(xe > 0)
. (B-1)

As we formally show,A∗ is the level of disappointment such that forA ≤ A∗, α∗ = 0 and for

A > A∗, α∗ > 0. Note that this definition ofA is independent of risk aversionγ.

Considering optimality atα = 0 is special since the certainty equivalent equals the gross

risk free rateRf = exp(r) and the definition of disappointing or elating states switches whenα

changes from negative to positive (ifxe > 0, Rf + αxe > Rf only for positiveα). Therefore,

we must consider left and right-handside derivatives to determine optimality.

Consider firstA < A∗. We show that the optimal asset allocation atA is α∗ = 0. We start

by denotingν(A,α) as the certainty equivalent as a function of the disappointment levelA and
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the portfolio weightα:

ν(A, α)1−γ =
1

K

{
E[U(W )1{W≤ν(A,α)}] + AE[U(W )1{W>ν(A,α)}]

}
, (B-2)

with K = Pr(W ≤ ν(A,α))+APr(W > ν(A,α)). Recall thatW = Rf +αxe in our setting.

The derivative ofν(A,α) with respect toα is given by:

ν(A,α)−γ · ∂ν(A,α)

∂α
=

1

K

{
E[W−γxe1{W≤ν(A,α)}] + AE[W−γxe1{W<ν(A,α)}]

}
. (B-3)

This is the well-known first order condition, derived for instance in Epstein and Zin (2001) and

Bekaert, Hodrick and Marshall (1997). This expression is the same as the derivative of the terms

in the integrands in (B-2). However, taking the derivative ofν(·) with respect toα also involves

taking the derivatives ofK with respect toα and the derivatives of the certainty equivalent in

the integration limits, both with respect toα. In the NBER working version of this paper, we

explicitly show that the latter two derivatives of the indicator functions sum to zero.

Whenα approaches zero, we haveW = Rf andν(A, 0) = Rf . Hence, we can equivalently

express1{W≤ν(A,α)} as1{αxe≤0} and, analogously,1{W>ν(A,α)} as1{αxe>0}. Clearly, the value

of these indicator functions depends on whether we approach zero from the left or the right. Let

us first take the LHS derivative ofν(·) atα = 0. First, note that becauseα < 0:

1{αxe≤0} = 1{xe≥0}

1{αxe>0} = 1{xe<0}. (B-4)

Second, the termsν(A, 0)−γ andW−γ cancel on each side of the equation. Consequently, we

obtain:
∂ν

∂α

∣∣∣
α=0−

=
1

K

{
E[xe1{xe≥0}] + AE[xe1{xe<0}]

}
, (B-5)

whereK = Pr(xe ≥ 0) + APr(xe < 0). Sinceα < 0, states wherexe < 0 have higher wealth

than the certainty equivalent and these are now downweighted byA, sinceA ≤ 1. But then:

∂ν

∂α

∣∣∣
α=0−

≥ E[xe]

K
> 0, (B-6)

by the assumption of a positive risk premiumE[xe] > 0 and becauseK > 0. Hence, we

conclude that∂ν
∂α

> 0 and it must be thatα∗ ≥ 0 because the utility function is globally concave

in α.

Now let us consider the case of the RHS derivative andα∗ > 0. In this case, we have:

1{αxe≤0} = 1{xe≤0}

1{αxe>0} = 1{xe>0}. (B-7)
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Consequently, we obtain:

∂ν

∂α

∣∣∣
α=0+

=
1

K

{
E[xe1{xe≤0}] + AE[xe1{xe>0}]

}
. (B-8)

Here, as is usual, the good states are positive excess return states, sinceα > 0 and they are

downweighted byA. By assumption,A ≤ A∗, so that:

∂ν

∂α

∣∣∣
α=0+

<
1

K

{
E[xe1{xe≤0}] + A∗E[xe1{xe>0}]

}
= 0, (B-9)

where the equality follows by definition ofA∗. Hence, it must be the case thatα∗ ≤ 0.

Combining the two cases above, we haveα∗ = 0. Note that in the above argument for the

utility function increasing inα for α < 0, we only used the fact thatE[xe] > 0 andA ≤ 1.

We use the extra assumptionA < A∗ to show the utility function is decreasing inα for α > 0.

WhenA > A∗, the utility function is increasing atα = 0+ as well as atα = 0−, therefore

α∗ > 0. Note that the RHS of equation (B-9) also constitutes the FOC atA∗.

C Optimal Portfolio Solutions Under Loss Aversion Utility

The following proposition gives conditions under which a finite portfolio choice solution with

LA preferences is possible.

Proposition C.1 Existence of Optimal LA Portfolio Weights
Consider the LA utility function in equation (24), withγ1 = γ2 = γ and0 ≤ γ < 1. Then

there exists a finite solution for the optimal portfolio weightα∗ only when bothB1 < 0 and
B2 < 0 whereB1 andB2 are given by:

B1 = −λE[(−xe)
1−γ1{xe≤0}] + E[x1−γ

e 1{xe>0}]

B2 = E[(−xe)
1−γ1{xe≤0}]− λE[x1−γ

e 1{xe>0}]. (C-1)

Under these conditions, the optimal weightα∗ depends on the benchmarkB0 but is independent
of λ.

Proof: When the portfolio weightα → +∞ then

U → (α)1−γB1,

soU → +∞ if B1 > 0 and there is no optimal weight. Similarly,

U → (|α|)1−γB2,

whenα → −∞, soU → +∞ if B2 > 0 and there is no optimal weight. Therefore, the optimal

portfolio weight can only exist ifB1 < 0 andB2 < 0.
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If both B1 < 0 andB2 < 0, then asα →∞, U → −∞ and asα → −∞, U → −∞. Since

U is monotonic in wealth for0 ≤ γ < 1 there must exist an optimal solutionα∗. ¥

Proof of Proposition 4.1

If B0 = W exp(r), then LA utility becomes:

U = (|α|)1−γB21α≤0 + α1−γB11α>0, (C-2)

whereB1 and B2 are defined in equation (C-1). IfB1 < 0 and B2 < 0, the utility U is

maximized atα = 0. If B2 > 0, thenα → −∞ andU → +∞, soα∗ = −∞. Similarly, if

B1 > 0, thenU → +∞ asα → +∞, soα∗ = +∞. ¥

Proof of Proposition 4.2

Suppose the risk premium is zero, and the probability of a negative equity return occuring is

smaller than the probability of a positive equity return. Then the probability transformation of

prospect theory assigns a higher probability weight to the negative return, which makes the risk

premium negative under the subjective measure. Hence an agent with these preferences shorts

the stock.¥

D Estimation and Discretization of Data Generating Processes

We estimate the following Vector Autoregression (VAR):

Xt = c + ΦXt−1 + ut (D-1)

whereut ∼ IID N(0, Σ). For our systemXt = (ỹt rt)
′ whereỹt = yt− rt−1 is the excess equity

return andrt is the short rate. The optimal lag choice by the Bayesian Information Criteria

(BIC) is 1 lag.

The system without predictability hasΦ =

(
0 0

0 ρ

)
and in the system with predictability,

Φ =

(
0 b

0 ρ

)
.

Equation (D-1) can be written in compact form as:

X = B ∗ Z + U (D-2)

whereX = (X1 . . . XT ) (2×T ), B = [c Φ] (2×3), U = (u1 . . . uT ) (2×T ), Z = (z0 . . . zT−1)

(3×T ) with zt = [1 X ′
t]
′ (3× 1). The restrictions are written asRβ = r with β = vec(B). The
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unrestricted maximum likelihood estimator, whereΦ is unconstrained is given by:

β̂ = ((ZZ ′)−1Z ⊗ I)Y,

whereY = vec(X). The restricted maximum likelihood estimator is given by:

β̂c = β̂ +
(
(ZZ ′)−1 ⊗ I

)
R′ (R((ZZ ′)−1 ⊗ I)R′)−1

(r −Rβ̂). (D-3)

andB̂ = devec(β̂c).

The estimate ofΣ is given byΣ̂ = 1/T (Û ′Û), whereÛ = X − B̂Z. The estimated

covariance of̂βc is given by:

ĉov(β̂c) = Γ⊗ Σ̂− (Γ⊗ Σ̂)R′
(
R(Γ⊗ Σ̂)R′

)−1

R(Γ⊗ Σ̂) (D-4)

whereΓ = (ZZ ′)−1. The estimated covariance of vech(Σ̂) is given by:

ĉov(vech(Σ̂)) =
2

T
D−1

(
Σ̂⊗ Σ̂

)
(D−1)′ (D-5)

whereD−1 is the Moore-Penrose inverse ofD, the duplication matrix which makes vec(C) =

D vech(C) for a symmetric matrixC.

Time Aggregation of VAR’s

Define the time-aggregated processX̄t+k,k = Xt+1 + · · ·+ Xt+k overk horizons. IfXt follows

the VAR given byXt+1 = µ + ΦXt + εt+1, with εt+1 ∼ IID N(0, Σ), then we can define a

time-aggregated VAR:

X̄t+k,k = µ̄ + Φ̄X̄t,k + ut+k,k. (D-6)

The companion form of the time-aggregated VARΦ̄ is simplyΦ̄ = Φk andµ̄ is given by:

µ̄ = (I + Φ + · · ·+ Φk)µ. (D-7)

The conditional covarianceEt(ut+k,ku
′
t+k,k) = Σ̄ is given by:

Σ̄ = Σ + (I + Φ)Σ(I + Φ)′ + · · ·+ (I + Φ + · · ·+ Φk)Σ(I + Φ + · · ·+ Φk)′

+ (Φ + Φ2 + · · ·+ Φk)Σ(Φ + Φ2 · · ·+ Φk)′

+ (Φ2 + · · ·+ Φk)Σ(Φ2 + · · ·+ Φk)′ + · · ·+ ΦkΣ(Φk)′. (D-8)

Discretization of VAR’s
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We construct an approximate discrete Markov chain to the VAR in equation (D-1) using the

quadrature-based methods of Tauchen and Hussey (1991). For the system forXt = (ỹt rt), with

ỹt = yt − rt−1 the excess equity return andrt the short rate,̃yt may be dependent on lagged

rt but not vice-versa, sort is the driving variable in the system. We chooseN = 50 points for

the short rate over a uniform grid and denote these as{ri}. The short rate is very persistent, so

many points are necessary for an accurate approximation (see Tauchen and Hussey, 1991). We

use a uniform grid because points chosen by Gaussian-Hermite quadrature perform poorly in

optimization as they are too widely spaced. We construct the transition probabilitiesΠr (N×N)

for going from stateri to rj, 1 ≤ i, j ≤ N by evaluating the conditional density ofrj (which is

conditionally Normal) and then normalizing the densities so that they sum to unity. This is the

driving process of the discretized system.

We chooseM = 30 discrete states for̃yt. These states are chosen using Gaussian-Hermite

points approximating the unconditional distribution ofỹt implied by equation (D-1). To include

ỹt in the discretization we note that for each stateri, anN × M vectorπi can be constructed

giving the transition probabilities going from stateri (1 ≤ j ≤ N) to (rj, ỹj) (1 ≤ j ≤
N × M). The distribution ofỹt conditional onri is normal, and is discretized by evaluating

the distribution ofỹt conditional onri for going from stateri to state(rj, ỹj). A Choleski

decomposition is used to take account of the contemporaneously correlated error termsut in

equation (D-1). The vectorsπi can be stacked to give aN ×NM probability transition matrix

Πry giving the probabilities from{ri}, 1 ≤ i ≤ N to {rj, ỹj}, 1 ≤ j ≤ NM . The Markov

chain constructed this way matches first and second moments of the VAR in equation (D-1) to

3-4 significant figures. It is possible to also construct a squareΠ matrix, but this matrix will

have repeated rows.
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Table 1: Summary Statistics of the Data

stock T-bill excess
mean 0.1063 0.0408 0.0655
std 0.2193 0.0173 0.2197
auto -0.0575 0.9273 -0.0532

All data are quarterly. Stock data represent S&P 500 returns, with dividends. The T-bill
data are 3-month T-bill returns from CRSP. Excess returns refer to stock returns in excess of
T-bill returns. All returns are continuously compounded. The mean and standard deviation
are annualized by multiplying by 4 and 2, respectively. The first autocorrelation is denoted
by “auto.” The data sample is 1926-1998.

Table 2: Optimal Portfolio Weights for the Two-Period Binomial Tree

Rebalancing Frequency Rebalancing Frequency
is One Half-Year is One Quarter

A α0 α1 α0 α1

1.00 0.8901 0.8901 0.9136 0.9136
0.95 0.8943 0.8144 0.8496 0.7974
0.90 0.8009 0.7286 0.7763 0.6752
0.85 0.7483 0.6383 0.6386 0.5456
0.80 0.6825 0.5431 0.4881 0.4106
0.75 0.5667 0.4423 0.3228 0.2666
0.70 0.4384 0.3354 0.1402 0.1135
0.65 0.2957 0.2214 0.0000 0.0000
0.60 0.1359 0.0995 0.0000 0.0000

The table lists optimal DA portfolio weights in equity for the two period (three dates)
recombining binomial tree as described in Section 3.2.1. The curvature coefficient isγ =
2.00 for all cases. The binomial tree is calibrated to U.S. stock return data. In the left-
hand columns labelled “Rebalancing Frequency is One-Half Year,”u = 0.2132 andd =
−0.1198, with the base period being 6 months, and the horizon being 1 year. In the right-
hand columns labelled “Rebalancing Frequency is One Quarter,”u = 0.1365 andd =
−0.0908, with the base period being 1 quarter, and the horizon being 6 months.
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Table 3: Parameter Estimates for the Data Generating Processes

No Predictability Predictability
System System

c1 0.0161 0.0223
(0.0064) (0.0099)

c2 0.0008 0.0008
(0.0003) (0.0003)

Φ12 – -0.6049
(0.7416)

Φ22 0.9273 0.9273
(0.0219) (0.0219)

σ1 0.1095 0.1094
(0.0015) (0.0015)

σ2 0.0032 0.0032
(0.0000) (0.0000)

ρ -0.0474 -0.0475
(0.0585) (0.0585)

The model is:
Xt = µ + ΦXt−1 + Σ

1
2 εt

with Xt = (ỹt rt)′, ỹt the excess one-period stock return, andrt the short rate. Stock
returns are S&P500 returns and the short rate is the 3 month T-bill interest rate. All returns
are continuously compounded. All elements ofΦ are constrained to be zero except forΦ22

in the No Predictability System. In the Predictability System,Φ11 andΦ21 are constrained
to be zero. The correlation between the errors ofỹt andrt is denotedρ. The data sample is
quarterly from 1926-1998.
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Table 4: Portfolio Weights for the No Predictability System

Curvature Parameterγ = 2 Curvature Parameterγ = 5
A 1 qtr 10 yrs χ2 test p-value 1 qtr 10 yrs χ2 test p-value

1.00 0.9270 0.9359 0.9870 0.3703 0.3835 0.9524
(0.2728) (0.2730) (0.1098) (0.1110)

0.95 0.8331 0.8455 0.9815 0.3324 0.3473 0.9459
(0.2729) (0.2638) (0.1094) (0.1106)

0.90 0.7337 0.7499 0.9764 0.2925 0.3091 0.9395
(0.2728) (0.2748) (0.1090) (0.1113)

0.85 0.6283 0.6485 0.9716 0.2503 0.2688 0.9319
(0.2743) (0.2921) (0.1085) (0.1089)

0.80 0.5165 0.5408 0.9645 0.2057 0.2262 0.9229
(0.2717) (0.2741) (0.1080) (0.1044)

0.75 0.3976 0.4324 0.9537 0.1584 0.1809 0.9126
(0.2698) (0.3281) (0.1075) (0.0985)

0.70 0.2710 0.3116 0.9399 0.1080 0.1327 0.9142
(0.2689) (0.2701) (0.1069) (0.1224)

0.65 0.1357 0.1824 0.9240 0.0542 0.0844 0.8906
(0.2667) (0.2233) (0.1062) (0.1138)

Critical A∗ to Induce Participation
1 qtr 10 yrs

A∗ 0.6030 0.6001

Optimal portfolio weights for DA for various horizons forγ = 2 andγ = 5 for the system
without predictability. Portfolios are rebalanced quarterly. The critical level ofA required
to participate in the equity market is given byA∗. Standard errors are given in parentheses.
Theχ2 test reports a p-value that the 1 quarter horizon portfolio weight is the same as the
10 year horizon portfolio weight.
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Table 5: Portfolio Weights with Different Rebalancing Frequencies for the No Predictability
System forγ = 2 andA = 0.85

Portfolio Weights for Different Rebalancing Frequencies

Rebalancing Horizon
Frequency 1 qtr 2 qtrs 1 year 2 years

1 qtr 0.6283 0.6290 0.6332 0.6403
(0.2743) (0.2724) (0.2743) (0.2991)

2 qtrs 0.6348
(0.2717)

1 year 0.6683
(0.2714)

2 years 0.6462
(0.2741)

Critical A∗ for Different Rebalancing Frequencies

Rebalancing Horizon
Frequency 1 qtr 2 qtrs 1 year 2 years

1 qtr 0.6030 0.6028 0.6024 0.6017
2 qtrs 0.5965
1 year 0.5656
2 years 0.5927

The table lists optimal portfolio weights for various horizons for DA utility withγ = 2
andA = 0.85 for the system without predictability. For the portfolio weights in the row
labelled “1-qtr,” we report optimal portfolio weights for the quarterly VAR rebalanced each
quarter, for different horizons from 1-quarter to 2-years. For the rows labelled “2-qtrs”
to “2-years,” the DGP is a time-aggregated VAR. For example, for the 2-qtr rebalancing
frequency, we use a VAR time-aggregated over 2-quarters. These portfolio weights are
myopic. The critical level ofA required to participate in the equity market is given byA∗.
Standard errors are given in parentheses.
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Table 6: Myopic Portfolio Weights for the Predictability System

r = 0.0392 r = 0.0816 r = 0.1208
A γ = 2 γ = 5 γ = 2 γ = 5 γ = 2 γ = 5

1.00 0.9379 0.3747 0.6704 0.2675 0.4224 0.1685
(0.2735) (0.1101) (0.4172) (0.1668) (0.6769) (0.2701)

0.95 0.8438 0.3367 0.5758 0.2296 0.3278 0.1308
(0.2736) (0.1097) (0.4171) (0.1664) (0.6768) (0.2695)

0.90 0.7443 0.2967 0.4760 0.1897 0.2283 0.0911
(0.2735) (0.1093) (0.4170) (0.1660) (0.6768) (0.2690)

0.85 0.6389 0.2545 0.3705 0.1477 0.1235 0.0493
(0.2737) (0.1088) (0.4187) (0.1656) (0.6665) (0.2682)

0.80 0.5269 0.2098 0.2590 0.1033 0.0130 0.0052
(0.2724) (0.1083) (0.4118) (0.1652) (0.6687) (0.2677)

0.75 0.4079 0.1625 0.1408 0.0562 0.0000 0.0000
(0.2715) (0.1078) (0.4127) (0.1645)

0.70 0.2810 0.1120 0.0153 0.0061 0.0000 0.0000
(0.2697) (0.1072) (0.4097) (0.1634)

0.65 0.1455 0.0581 0.0000 0.0000 0.0000 0.0000
(0.2675) (0.1065)

A∗ = 0.5998 A∗ = 0.6941 A∗ = 0.7943

The table lists myopic (three month horizon) portfolio weights for the system with short
rate predictability. We list weights corresponding to three (annualized) interest rate states
0.0392, 0.0816 and 0.1208 forγ = 2 andγ = 5 and various disappointment levelsA. The
critical disappointment level required to participate in the equity market is given asA∗.
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The plot shows the critical levelA∗ required for an investor to hold equity as a function of the total excess
expected return (on thex-axis). For anyA higher than the solid line denotingA∗, investors hold a positive
amount of equity (“participation region”). For anyA lower than the line investors hold zero equity (“non-
participation region”). To produce the plot, we use a binomial tree with three states (two periods) for excess
returns and graphA∗ given by equation (10). To calibrate the binomial tree, letµ̄ denote the mean and̄σ
denote the standard deviation of continuously compounded returns (10.63% and 21.93%, respectively) and
let the continuously compounded risk-free rate ber = 4.08%. Define the log-normal mean for one-period as
m = exp( 1

2 µ̄ + 1
2 σ̄2) and standard deviations = exp( 1

2 µ̄ + 1
2 σ̄2)

√
(exp(σ̄2)− 1) for a half-year node. The

three statesuu, ud anddd at the end of the year are given byuu = ũ2 − exp(r), ud = ũ× d̃− exp(r) and
dd = d̃2 − exp(r), whereũ = m + s andd̃ = m − s. The circle showsA∗ = 0.37, corresponding to the
empirical total expected return 10.63%, or an expected excess return of 6.55%.

Figure 1: Stock Market Participation under Disappointment Aversion
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Optimal equity portfolio weights for CRRA utility for the no predictability case. The cur-
vature parameterγ is on the horizontal axis. We show the portfolio weight for a horizon
of 3 months, 1 year, 5 year and 10 years (dynamically rebalancing each quarter) on the
vertical axis. Portfolio weights are the same for all short rate states.

Figure 3: Equity Portfolio Weights for CRRA Utility in the No Predictability Case
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The top plot shows equity portfolio weights under DA utility for the system with short
rate predictability forγ = 2 andA = 0.85. The short rate is on the horizontal axis, and
the portfolio weights are on the vertical axis. We show portfolio weights corresponding
to 4 different horizons (3 months, 1 year, 5 years, 10 years); rebalancing is always quar-
terly. The bottom plot shows the corresponding minimumA∗ required to induce equity
participation corresponding to the same horizons as the top plot.

Figure 4: Equity Portfolio Weights andA∗ under DA Utility in the Predictability Case
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We plot the impliedγ under CRRA utility which produces the same portfolio weight as
under DA utility forγ = 2 andA = 0.85 (top plot) andγ = 5 andA = 0.85 (bottom plot).
We show (annualized) short rates on the horizontal axis and the implied CRRA coefficient
on the vertical axis.

Figure 5: Implied CRRA Risk Aversion for DA Utility in the Predictability Case
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