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The Statistical and Economic Role of Jumps
in Continuous-Time Interest Rate Models

MICHAEL JOHANNES∗

ABSTRACT

This paper analyzes the role of jumps in continuous-time short rate models. I first
develop a test to detect jump-induced misspecification and, using Treasury bill rates,
find evidence for the presence of jumps. Second, I specify and estimate a nonparamet-
ric jump-diffusion model. Results indicate that jumps play an important statistical
role. Estimates of jump times and sizes indicate that unexpected news about the
macroeconomy generates the jumps. Finally, I investigate the pricing implications of
jumps. Jumps generally have a minor impact on yields, but they are important for
pricing interest rate options.

THERE IS STRONG ANECDOTAL EVIDENCE that jumps play an important role in de-
termining the dynamics of interest rate movements, although most models
are based on diffusions and explicitly rule out their possibility. For example,
Figure 1 displays the daily changes in the 3-month Treasury bill (T-bill) rate
from 1991 to 1993, a period during which the short rate fell from 7 to just more
than 3 percent; of note are the relatively infrequent but large spikes, interpreted
here as “jumps.”

Given the magnitude of the jumps, the obvious question is: what generated
these movements? It turns out that each of the large movements in Figure 1
coincided with the arrival to the Treasury market of significant information
regarding the current or future state of the economy. This observation also holds
over other time periods during which news about the macroeconomy generated
the largest movements in yields.1 Thus, at least anecdotally, jumps appear to
be an important conduit through which macroeconomic information enters the
term structure.

∗Johannes is with the Finance and Economics Division, Graduate School of Business, Columbia
University. This is a revised version of my Ph.D. dissertation at the University of Chicago. I
thank Torben Andersen, Federico Bandi, John Cook, Pete Kyle, Nick Polson, Pietro Veronesi, Brian
Viard, and seminar participants at Cirano/University of Montreal, Columbia, Duke, Northwestern,
Chicago, and the Board of Governors of the Federal Reserve for their comments. I would especially
like to thank my dissertation committee: Lars Hansen, John Cochrane, and José Scheinkman. The
comments of the Editor and the anonymous referees led to significant improvements. All errors
are mine.

1 Fleming and Remolona (1997), Balduzzi, Elton, and Green (2001) and Furfine (2001) find that
as many as 20 different macroeconomic announcements significantly impact yield changes in the
Treasury market and, moreover, the largest yield movements are generated by these macroeco-
nomic announcements.

227



228 The Journal of Finance

1991 1991.2 1991.4 1991.6 1991.8 1992 1992.2 1992.4 1992.6 1992.8 1993
−40

−30

−20

−10

0

10

20

D
ai

ly
 C

ha
ng

es
, B

as
is

 P
oi

nt
s

Figure 1. Daily changes in basis points in the 3-month Treasury bill rate from 1991 to
1993.

In this paper, I examine the statistical and economic role of jumps in
continuous-time interest rate models. Statistically, the presence of jumps im-
plies that diffusion models are misspecified. I develop a new procedure to test
for jump-induced misspecification and results provide strong evidence for the
presence of jumps. Next, I propose and estimate a flexible jump-diffusion model
to quantify the statistical role of jumps in interest rates. Finally, to gauge eco-
nomic impact, I analyze the connection between jumps and macroeconomic
news arrivals, and I also explore how jumps affect the pricing of bonds and
some simple interest rate derivatives.

To test for the presence of jumps, I compare the unconditional and condi-
tional nonnormalities in interest rates with analogs generated by candidate
diffusion models.2 I compute the finite sample distribution of these statistics
under the null using bootstrapping or Monte Carlo methods. As benchmark
or null models, I consider the nonparametric single-factor model, which has
received considerable attention in the literature, and the multifactor mod-
els of Andersen and Lund (1997, 1998) that incorporate time-varying central
tendency and stochastic volatility.

2 This provides an alternative to the test developed in Aı̈t-Sahalia (2002). The test developed
here depends on a given null model while Aı̈t-Sahalia’s test is model independent.
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Results indicate that none of the diffusion models can generate nonnormali-
ties consistent with those of observed Treasury rates. Andersen and Lund (1997)
reach a similar conclusion suggesting that it “remains difficult to replicate the
fat-tailed, or non-Gaussian, innovations of the conditional distribution” (p. 19).
While it may be possible that extra diffusive factors or more flexible factor
dynamics can remedy this misspecification, recent work indicates that this is
unlikely, at least with the models currently in use. For example, Ahn, Dittmar,
and Gallant (2002) analyze a battery of three-factor affine and quadratic mod-
els and conclude that none of the models “are able to capture the ARCH and
non-Gaussian features of the observed data” (p. 275). Moreover, none of the
models they study pass their omnibus chi-square test, a measure of overall fit.

Why do these diffusion models fail? Diffusion models induce interest rate
increments that are approximately normal over short time intervals while the
increments of actual data are very nonnormal; thus, it is difficult for diffusion
models to fit the observed data. Huang (1985) provides an alternative, more
intuitive interpretation. He notes that the information structures in diffusion
models are generated by Brownian motions and these filtrations have the prop-
erty that “no events can take us by surprise” (Huang (1985), p. 60). Since jumps
are precisely the events that take market participants by surprise, diffusion
models are misspecified.

These results, combined with the anecdotal evidence presented earlier link-
ing jumps and macroeconomic events, point to the importance for formally es-
timating models with jumps. Toward this end, I introduce a simple yet flexible
model of the short rate that incorporates the lessons of the single-factor dif-
fusion literature, while also allowing for jumps.3 I develop and justify an esti-
mation procedure that provides nonparametric estimates of the drift, diffusion,
and jump intensity, as well as the parameters of the jump distribution. This
procedure extends Stanton’s (1997) estimator to multivariate jump-diffusions,
and the asymptotic properties are derived in Bandi and Nguyen (2003). Due to
concerns regarding potentially inaccurate inferences resulting from the use of
approximations to asymptotic distributions, I rely on Monte Carlo simulations
that provide finite sample confidence bands.

Estimation results indicate that jumps play a dominant role in interest rate
dynamics. At low rates, jumps generate more than half of the conditional vari-
ance of interest rate changes; this proportion increases to almost two-thirds
at high rates. These results are consistent with the intuition that follows from
Figure 1, which shows that typical diffusive movements are small (as a pro-
portion of variance) and that the infrequent but large movements dominate.
The probability of a jump on a given day is about 6 percent at low rates and
more than 20 percent at high rates, with a three standard deviation jump-move
corresponding to approximately 50 basis points at low rates and as much as

3 Ahn and Gao (1999), Aı̈t-Sahalia (1996a, 1996b), Stanton (1997), Jiang (1998), and Bandi
(2000) all find that the diffusion coefficient is a nonlinear function of the short rate. The evidence
for nonlinearities in the drift is more tenuous as there is some question regarding the reliability
of statistical methods for testing nonlinearity in the drift or diffusion (see, e.g., Pritsker (1998),
Chapman and Pearson (2000), and Jones (2003)).
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150 basis points at high rates. The jump-diffusion model easily generates pat-
terns of conditional and unconditional kurtosis that are consistent with the
data. Together, these results imply that jumps play an important statistical
role in interest rate dynamics.

To examine the economic implications of jumps in interest rates, I first con-
sider the connection between model-implied jumps and macroeconomic shocks.
To do this, I estimate jump times and jump sizes and examine the periods from
1991 to 1993 and 1979 to 1982 in detail. In the 1991 to 1993 period, the fil-
ter identifies all of the large moves in Figure 1 as jumps. Moreover, each of
these moves coincided with unexpected macroeconomic news arrivals such as
surprise Federal Reserve target changes, unemployment announcements, the
Soviet coup, the outbreak of the Gulf War, and the 1992 Bush–Clinton pres-
idential debates. Similar results hold for the 1979 to 1982 period, although
the particular news items that coincided with the large moves were naturally
different.

These results are the first to provide model-based evidence that jumps are
a primary conduit through which information about the macroeconomy enters
the term structure. While jumps are interesting in their own right, they pose
new modeling challenges. For example, the evidence indicates a high-frequency
relation between macroeconomic variables and yields, in contrast to the lower-
frequency relations typically modeled in the macroeconomic literature (see, e.g.,
Ang and Piazzesi (2003) who analyze interactions at the monthly frequency).
These results are also related to Piazzesi (2001, 2003) who develops term struc-
ture models that embed jump processes triggered by macroeconomic announce-
ments. In the Piazzesi models, jumps occur only on days when macroeconomic
variables such as unemployment or inflation are announced. Our results, on
the other hand, indicate that jumps occur only when the announcements con-
tain significant unexpected components. That is, it is not the announcement
that matters per se, but rather the surprise component.

Finally, I examine the pricing implications of jumps in interest rates. First, I
find that unless investors place substantial risk premiums on jump components,
jumps have little impact on the yield curve. This is not surprising as the yield
curve is a static, cross-sectional entity that depends on the distribution of the
average interest rate. Due to this fact, jump-diffusion and diffusion models with
the same conditional mean and variance will generate similar yield curves.
Does this imply that jumps are irrelevant for pricing? Not necessarily. I also
compute the price of call options on the 3-month T-bill rate in diffusion and
jump-diffusion models with the same instantaneous first and second moments.
For short maturities, the pricing difference can be quite large for out-of-the-
money options, which implies that jumps in interest rates have a similar impact
as jumps in equity index prices. In both markets, the impact of jumps is most
clearly seen in higher-moment departures from conditional normality, and the
effect appears in drastically different prices for out-of-the-money options (see,
e.g., Bakshi, Cao, and Chen (1997) or Pan (2002)).

This paper is related to a number of other papers that study the impact of
jumps in interest rates. On the theoretical side, Ahn and Thompson (1985),
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Duffie and Kan (1996), Baz and Das (1996), Duffie, Pan, and Singleton (2000),
and Chacko and Das (2002) generate closed- or near-closed-form formulas for
bond and bond option prices in the presence of jumps. On the empirical side,
this paper is closely related to Das (2001). Das (2001) incorporates jumps into
generalizations of the Vasicek model and finds strong evidence for jumps in
the daily federal funds rate. However, as pointed out by Hamilton (1996), the
federal funds rate is subject to severe regulation-induced microstructure ef-
fects (settlement Wednesdays and the last-day-of-the-quarter/year effects) that
spuriously induce jumps in the daily federal funds rates.4

The following section, Section I, develops and implements diagnostics to
detect when diffusion models are misspecified due to the presence of jumps.
Section II develops a jump-diffusion model of the short rate. Section III de-
velops a nonparametric estimation procedure and provides estimation results.
Section IV considers the economic implications of jumps and Section V
concludes.

I. Jumps and Diffusion Models

The main difference between models with and without jumps is the continuity
of the sample path. By construction, diffusion models are continuous functions
of time whereas jump models have occasional discontinuities. If the short rate
were observed continuously through time, {rt}t≥0, then jump sizes would also
be observed as discontinuities: at a jump time τ , the jump size, Zτ , would be
rτ = rτ− + Zτ , where rt− = lim

s↑t
rs. In practice, observations are available only

discretely and the above limit cannot be computed. This implies that statisti-
cal metrics based on discretely observed interest rates must be used to detect
jumps.

To test for the presence of jumps, I use the information contained in the uncon-
ditional and conditional distributions of interest rate increments, p(rt+� − rt)
and p(rt+� − rt | rt), respectively. The true continuous-time model generates
these distributions over an observation interval of length � as the solution
to a stochastic differential equation. The idea is simple: any given single-factor
or multifactor diffusion model induces a distribution of increments, and it is
straightforward to compare the distributional properties of the model with
those of the data.

The following discrete-time example provides the intuition for the tests. Sup-
pose that interest rates evolve according to

rt+� − rt = µ(rt)� + σ (rt)εt+� + Jt+�Zt+�, (1)

where Jt = 1 (with probability λ�) indicates the arrival of a jump, εt ∼ N(0, �)
and Zt ∼ N(0, σ 2

z ). In this model, the conditional mean is µ(rt)� and the con-
ditional variance is σ 2(rt)� + λ�σ 2

z . Based only on the first two moments, the

4 For example, the microstructure effects often induce daily changes of more than 100 basis
points and, as Hamilton notes, some are as large as 800 basis points.
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Table I
Summary Statistics

Summary statistics for daily Treasury bill rates from January 1965 to February 1999.

Standard First
Mean Deviation Skewness Kurtosis Autocorrelation

rt 6.47 2.57 1.41 5.26 0.99
rt+� − rt 7.5 × 10−5 0.11 0.20 24.30 0.14

jump model is observationally equivalent to a model without jumps with a drift
coefficient of µ(rt)� and a diffusion coefficient equal to σ 2(rt)� + λ�σ 2

z . This
suggests that to test for the presence of jumps, one needs to analyze higher-
moment departures from normality in p(rt+� − rt) and p(rt+� − rt | rt). These
departures from normality are commonly measured by the skewness and kur-
tosis statistics.

While it is easy to compute statistics such as the unconditional or conditional
kurtosis, it is difficult to use such statistics for formal hypothesis testing of
diffusion models. The reason is as follows. Suppose that interest rate increments
are very nonnormal, as reflected by the kurtosis statistic (Table I indicates
that the kurtosis of daily 3-month T-bill rate increments is more than 24).5

A standard test for nonnormalities would compare the kurtosis statistic to its
value under the null hypothesis that the data is normally distributed. This is
not valid in our setting because diffusion models induce increments that are
generally not normally distributed. For example, in the Cox, Ingersoll, and Ross
(1985) model,

rt+� − rt =
∫ t+�

t
κr (θr − rs) ds +

∫ t+�

t
σr

√
rs dWs, (2)

where Ws is a scalar Brownian motion, κr is the speed of mean reversion, θr
is the long-run mean, and σr is the volatility. Due to the randomization of the
Brownian increment by

√
rs, the stochastic integral

∫ t+�

t σr
√

rs dWs is not nor-
mally distributed (it is a scale mixture of normals). This implies that the un-
conditional and conditional distributions of rt+� − rt are fat-tailed relative to a
normal distribution.

To test diffusion models based on measures of nonnormalities, we need to
compute the distribution of the test statistic under the null hypothesis of a
given diffusion model. To do this, I use Monte Carlo hypothesis testing, or,
bootstrapping. This procedure, which has a long history in statistics, is typically
used in two settings: when the distribution of the test statistic is unknown,

5 This result is not an artifact of the short end of the Treasury curve, as longer maturity Treasury
and Libor rates also exhibit extremely high kurtosis. For example, daily changes in 3-month Libor
from 1991 to 2000 has a kurtosis of 19 (similar for the period from 1970 to 2000) and the daily
changes in the 5-year, constant-maturity Treasury yield from 1962 to 2000 (the longest period for
which the Treasury data is available) has a kurtosis of nearly 16.
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or, when there is reason to believe finite sample approximations to limiting
distributions are inaccurate.6 Here, both of these concerns are relevant.

To test for a given model’s ability to generate unconditional or conditional
nonnormalities consistent with observed data, I follow Conley et al. (1997) and
Pritsker (1998) and implement the following procedure:

1. Estimate the statistic from a sample of interest rate data. For example,
with T observations, equally spaced at length �, {r1, . . . , rT}, compute the
unconditional kurtosis coefficient, k̂;

2. For a given diffusion model, simulate a large number, G, of sample paths
from the true continuous-time model {r g

1, . . . , r g
T }G

g=1;
3. For each sample path, recompute the test statistic. This produces a sample

of size G, {k̂(g )}G
g=1, from the distribution of the statistic conditional on a

given T and �; and,
4. Use the quantiles of the empirical distribution to obtain the critical values

of the test statistic under the null, and compare the statistic estimated
from observed data to the critical values.

Provided G is large enough, this procedure provides an exact finite sample
hypothesis test based on the null of a given model. I use G = 1,000, which is
twice as many simulations as used by Conley et al. (1997) and Pritsker (1998),
and which guarantees that we have a reliable picture of the finite sample dis-
tribution of the test statistics.

To measure departures from normality, I compute unconditional kurtosis
statistics over various time horizons (daily, weekly, and monthly) and the daily
conditional kurtosis. I also compute the corresponding skewness statistics, but
these have no ability to discriminate across models as I cannot reject any of
the models at conventional significance levels. This should not be a surprise as
there is little noticeable asymmetry in the distribution of T-bill rate changes.

The conditional kurtosis over a fixed interval of length � is defined as the
fourth conditional moment divided by the second conditional moment squared:

k�(r)
�= E

[
(rt+� − rt)4

∣∣ rt = r
]

(
E

[
(rt+� − rt)2

∣∣ rt = r
])2

. (3)

Given that k�(r) is a function of the short rate level, hypothesis testing is more
difficult in this case. The reason is that Monte Carlo simulations provide the
pointwise distribution of k�(r) under the null and it is not valid to simply com-
pare two functions point-by-point. To construct a formal test, I follow Härdle and
Mammen (1993) and consider integrated metrics.7 Specifically, I estimate the
integrated conditional kurtosis,

∫
k�(r) dr, and the integrated squared kurtosis,∫

k2
�(r) dr, which provide two metrics of total conditional kurtosis. I also com-

pute the density-weighted statistics,
∫

k�(r)p(r) dr and
∫

k�(r)2 p(r) dr, where

6 These tests are typically attributed to Barnard (1963).
7 I would like to thank a referee for suggesting this procedure.
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p(r) is the marginal distribution of r. However, they gave the same result
as the Lebesgue-measure weighted estimates and do not warrant separate
reporting.

There are two main advantages to the above testing procedure. First, it does
not rely on � → 0 or T → ∞ asymptotics, nor on the approximation of the condi-
tional distribution by a normal distribution, as is the case in an Euler discretiza-
tion in which the discretization interval matches the observation frequency.
Rather, the testing procedure merely compares the tail behavior of interest rate
increments with the increments generated by a candidate continuous-time dif-
fusion model. Second, provided G is large enough, this procedure provides exact
finite sample hypothesis testing.

Aı̈t-Sahalia (2002) develops an alternative test to detect jumps, which relies
on a positivity condition of derivatives of the conditional density. The approach
is unlikely to work in an interest rate setting due to difficulties that arise
in estimating the conditional density—unlike the equity option application in
Aı̈t-Sahalia (2002), the sampling error in estimating interest rate densities is
typically quite high (see, e.g., Conley et al. (1997) and Pritsker (1998)).

A. Diffusion Benchmarks

The previous section discussed a general methodology for testing the ability
of a diffusion model to generate tail behavior consistent with observed interest
rate increments. This section describes the benchmark diffusion models used in
formal testing. I first consider the popular nonparametric single-factor model

drt = µ(rt) dt + σ (rt) dWt , (4)

where µ(·) and σ 2(·) are flexible unknown functions of rt. The nonparametric
and other nested parametric models have been advocated in a number of recent
papers (see, e.g., Ahn and Gao (1999), Aı̈t-Sahalia (1996a, 1996b), Bandi (2000),
Chan et al. (1993), Jiang (1998), and Stanton (1997)). Many of these papers find
nonlinearities in the diffusion, which result in a greater randomization of the
Brownian increment and thus a greater potential to generate nonnormalities.
The model in equation (4) nests all single-factor models in which the spot rate is
an invertible function of a state variable. In this regard, it does not nest certain
quadratic models; I will discuss this latter set of models below.

As a multifactor benchmark, I consider the stochastic volatility model of
Andersen and Lund (1997, 1998),

drt = κr (µr − rt) dt + rγ
t
√

Vt dW 1
t

d log(Vt) = κv(µv − log(Vt)) dt + σv dW 2
t ,

(5)

where the two Brownian motions are uncorrelated. I also implement Andersen
and Lund’s (1997) three-factor model with a time-varying central tendency
factor. However, as these authors note, this additional factor provides no help
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in generating nonnormalities and the results of the three-factor model are the
same as those of the two-factor model.

The stochastic volatility model is an important benchmark as time-varying
volatility is a popular method to generate departures from conditional normal-
ity. The stochastic volatility model also allows for a nonlinear interest rate
level effect, rγ

t , in the diffusion function, and for nonlinear mean reversion in
the drift of the volatility process.8 An additional motivation to use the Ander-
sen and Lund specification is the fact that they model the 3-month T-bill rate,
the rate that is often used in the analysis of single-factor models (e.g., Stanton
(1997)). It is important to note that there exist many other multifactor models,
especially in the affine and quadratic classes. I discuss the performance of these
models below.

To implement the specification tests, I need to estimate the model parame-
ters and nonnormality statistics. For the multifactor models, I use Andersen
and Lund’s (1997) parameter estimates. For the single-factor model, I use the
first-order nonparametric estimation scheme of Stanton (1997) whose asymp-
totic properties are derived in Bandi and Phillips (2002) and Bandi (2000). The
estimators are given by

1
�

Ê
[
(rt+� − rt) j

∣∣ rt = r
] =

∑T
i=1 K

( ri� − r
h j

) (r(i+1)� − ri�) j

�∑T
i=1 K

( ri� − r
h j

) =
{

µ̂(r) : j = 1

σ̂ 2(r) : j = 2,
(6)

where {ri�}T
i=1 are the observed increments, K(·) is a Gaussian kernel, and

(h1, h2) are bandwidths. Given the moment estimates, forming the appropri-
ate ratios of kernel estimates of the conditional moments provides estimates of
the conditional kurtosis.

Nonparametric estimators have a number of advantages. First, they require
little prior information relating to the functional form of the conditional expec-
tations. Asymptotically, the nonparametric estimates will recover the true con-
ditional expectation function if it is a smooth (continuous and differentiable)
function of the underlying state variable (see Bandi (2000) for formal condi-
tions). Second, nonparametric estimators are local. This implies that conclu-
sions about high interest rate environments depend very little on data from low
interest rate environments and vice versa. This implies that removing part of
the sample, for example, the volatile 1979 to 1982 period, does not substantively
change any of the conclusions. Finally, kernel estimators are computationally
easy to evaluate and thus it is feasible to construct Monte Carlo confidence
bands.

To implement the kernel estimates, the bandwidth parameters must be cho-
sen. When the data are independent and identically distributed there are the-
oretically optimal bandwidth choices, but there are no related results for data
generated from diffusion models. Bandwidth selection is important, however,

8 The process violates the linear growth condition. As shown by Downing (2000), the model does
not have any degeneracies and a unique solution appears to exist.
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for identifying nonlinearities in the drift function, but this is not our objective
and thus it is less of a concern here. Following Chapman and Pearson (2000), I
allow the drift and diffusion bandwidths to differ and choose each bandwidth us-
ing the following internally consistent procedure. For given bandwidths h1 and
h2, equation (3) provides the estimates of the drift and diffusion. Given these
estimates, I simulate sample paths from the implied diffusion model and then,
using the same bandwidth choices, reestimate the drift and diffusion for each
simulated path.9 I consider bandwidth combinations for the drift and diffusion
coefficients of the form h = c × ŝ, where ŝ is the estimated standard deviation
of the sample path, and c varies from 0.3 to 1.5 in increments of 0.05. Finally,
I report estimates based on the bandwidths that result in the smallest finite
sample bias.

To implement the Monte Carlo procedure, I generate G = 1,000 Monte Carlo
sample paths. To match the observed frequency between observations, the dif-
fusion must be sampled at a fixed interval � = 1/252. This is achieved by simu-
lating paths at intervals of length �/5, and sampling every fifth point to reduce
any discretization bias. The median across the simulations and the quantiles of
the simulated drift, diffusion, skewness, and kurtosis summarizes the Monte
Carlo simulation. I average simulations across their empirical support and per-
form no extrapolation, to avoid drawing conclusions over regions outside those
reached by the simulations.

B. Empirical Results

I use secondary market quotes for the 3-month T-bill to estimate and test
the models. The 3-month T-bill has a number of advantages over other short
maturity interest rates. These bills are very liquid, have small bid–ask spreads,
and are free of idiosyncratic effects (Duffee (1996) and Fleming and Sarkar
(1999)) that could spuriously induce nonnormalities. In using 3-month T-bill
data, I am directly modeling the yield as opposed to the instantaneous spot
rate. As noted by Honore (1998) and Chapman, Long, and Pearson (1999), there
is an important difference between the instantaneous spot rate and the yield
on a short maturity instrument. These authors show that estimates of the drift
and diffusion may be biased in parametric models when yields proxy the short
rate. This is not a concern at this stage as I am not invoking a parametric term
structure model.10

Table I summarizes and Figure 2 plots the data. With daily data, it is im-
portant to document the effects induced by omitting weekends and holidays.
To measure the impact of omitting pairs of observations split by weekends or

9 For certain simulated sample paths (those whose maximum value is relatively small), the
estimates of the second moment are approximately zero for large values of the state. To avoid the
numerical problems of dividing by numbers close to zero, in all simulations I add a small number
(10−15) to the moment estimates.

10 Provided the yield is an invertible and twice-differentiable function of the spot rate, a single-
factor diffusion model for the yield is fully consistent with a single-factor model for the spot rate.
To see this, assume drt = µ(rt) dt + σ (rt) dWt. Ito’s lemma implies that the yield yt is given by
dyt = µy(yt) dt + σy(yt) dWt for some drift and diffusion if the spot rate can be inverted from the
yields. Since I do not impose a parametric model on the drift and diffusion, there is no bias.
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Figure 2. The time series of the level and changes (in basis points) in the 3-month Trea-
sury bill rate, January 1965 to February 1999.

holidays, I remove these observations which leave, ignoring holidays, Monday/
Tuesday, Tuesday/Wednesday, Wednesday/Thursday, and Thursday/Friday ob-
servation pairs. The original and reduced data sets are virtually identical in
terms of their statistical properties, and none of the conclusions regarding ei-
ther the shortcomings of the diffusion models or the qualitative structure of
the jump processes change. I also considered the effects of rounding (Trea-
sury yields are rounded to a given basis point); all conclusions are robust to
rounding.11

B.1. The Single-Factor Diffusion Model

Drift and diffusion estimates for the single-factor model and their Monte
Carlo confidence bands are given in the top panels of Figure 3.12 I report es-
timates for rt ∈ [0.029, 0.16], which cover the (0.5, 99.5) quantiles of the data.

11 I thank a referee for suggesting this experiment.
12 The bandwidths used for the drift and diffusion are h1 = 1.25 × ŝ and h2 = 0.4 × ŝ. These

choices are consistent with the findings of both Chapman and Pearson (2000) and Bandi and
Nguyen (1999) who recommend oversmoothing the drift relative to the diffusion. The higher mo-
ments are estimated using the same bandwidth as the second moment.
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Figure 3. Nonparametric estimation results for the single-factor diffusion model. The
solid line is the function estimated from short rate data, the dashed line is the Monte Carlo median,
and the dash–dot lines are the (10%, 90%) Monte Carlo confidence bands.

The simulation results indicate that the estimates are unbiased, at least for
rates less than 12 percent. Since there are few observations at high rates, the
relatively wide confidence intervals should not be surprising.

The diffusion coefficient estimates are more precise than the drift coefficient
estimates. Bandi and Phillips (2002) provide an explanation for this result.
They prove that consistent estimation of the drift requires a long time span
(large T) and a high sampling frequency (small �). The results in this study
imply that daily data are a short-enough sampling frequency to estimate the
diffusion, but 34 years are not a long-enough time span to estimate the drift.
There is an additional subtle point: unlike Chapman and Pearson (2000), who
document that there is significant bias in drift estimates at higher interest
rates, I do not find this result.13

13 A potential explanation for this is that I did not extrapolate off the support of the simulated
sample paths when computing the Monte Carlo estimates. Extrapolation could cause the sort of
bias reported in Chapman and Pearson (2000). I would like to thank Matt Pritsker for extensive
conversations regarding the patterns of bias in diffusion models.
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Table II
Statistical Tests

Panel A provides the conditional and unconditional kurtosis statistics from the observed data.
Panels B, C, and D provide the quantiles of the conditional and unconditional kurtosis statistics
under the null of the nonparametric single-factor model, the two-factor stochastic volatility model
of Andersen and Lund (1997), and the nonparametric jump-diffusion model, respectively.

Unconditional Kurtosis Conditional Kurtosis

Daily Weekly Monthly Absolute Squared

Panel A: 3-Month Treasury Bill Rate Data

24.3015 17.1501 16.1618 1.9459 0.0896

Panel B: Nonparametric Diffusion Model

50% 6.7860 6.5015 6.1384 0.4403 0.0057
75% 8.8370 8.7195 8.1935 0.5889 0.0080
90% 10.9935 11.1683 11.1018 0.6623 0.0096
95% 12.6059 12.6580 12.9536 0.6969 0.0106
99% 15.4791 15.7653 17.7360 0.7790 0.0131

Panel C: Stochastic Volatility Model

50% 6.8121 6.4437 5.5203 0.5903 0.0138
75% 7.7988 7.5810 6.7470 0.7046 0.0180
90% 9.3758 9.0718 8.7403 0.8300 0.0235
95% 10.9601 11.4194 10.5507 0.9455 0.0287
99% 16.5754 17.2357 17.0542 1.2712 0.0576

Panel D: Jump-Diffusion Model

50% 22.9943 10.1425 7.3117 1.8406 0.0705
75% 28.4758 12.5991 9.6654 2.1455 0.1300
90% 35.1220 16.5203 13.0704 2.4656 0.1651
95% 39.8182 20.1456 15.3049 2.7073 0.1929
99% 46.6100 23.2665 20.0280 3.1219 0.2748

The single-factor diffusion model is misspecified. Table II summarizes the
nonnormality tests. Panel A provides the sample statistics and Panel B provides
quantiles of the finite sample distribution of the test statistics under the null
of the nonparametric diffusion model. By all metrics, the model is unable to
generate kurtosis close to that in the observed data. For example, at a daily level,
the median of the kurtosis distribution is less than 7 and the 99th percentile
is 15.5, compared to a kurtosis statistic in the sample of more that 24. The
conditional tests (which should have more power) provide an even stronger
rejection.

Graphically, the inability of the model to generate realistic amounts of con-
ditional kurtosis can be seen in the bottom-right panel in Figure 3. The condi-
tional kurtosis is about 10 to 20 percent smaller than its sample counterpart
over much of the support of the data. Figure 3 indicates that the diffusion
model comes closer to matching the conditional kurtosis at high interest rates.
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The reasons for this are intuitive: the local variance of the process, σ 2(r), is
more than 20 times larger at high rates than at low rates. This nonlinear-
ity creates additional randomization of the Brownian increment at the high
rates that generates greater conditional kurtosis. The model has the great-
est difficulty generating nonnormalities at low rates where σ 2(r) is roughly
constant and interest rate increments are approximately a random walk. The
conditional skewness plot in the lower-left panel is included for completeness,
but, again, provides little additional insight.14 These conclusions do not de-
pend on the bandwidth parameters as similar patterns of kurtosis occur for
all of the possible bandwidth choices, although the smoothness of the esti-
mates does vary. In the limit, as the bandwidth increases, the nonparamet-
ric estimates converge to the unconditional kurtosis, which yields the same
conclusion.

B.2. Multi-factor Models

This section repeats the exercise of the previous section using the stochastic
volatility model and parameter estimates of Andersen and Lund (1997). The
conclusions of this experiment are similar to those in the single-factor diffu-
sion model. Panel C of Table II indicates that the stochastic volatility model
generates roughly the same amount of unconditional kurtosis as the nonpara-
metric diffusion model, and is therefore rejected. Moreover, while the stochastic
volatility model does generate more conditional kurtosis than the nonparamet-
ric diffusion model, it is still strongly rejected by the formal tests. The same
conclusions hold for the three-factor model of Andersen and Lund (1998), which
adds a stochastic central tendency factor.

There is one further point that needs to be addressed. Andersen and Lund
(1997, 1998) use weekly data to estimate their models, whereas I use daily
data. It is safe to conclude that the misspecification they find with regard
to fitting the nonnormalities would be more pronounced if they used daily
data for two reasons. First, as indicated by Table II, the nonnormalities in
the short rate are more pronounced in daily data than in weekly data. Sec-
ond, diffusion models become more “normal,” in a distributional sense, over
daily intervals than weekly (see, e.g., Duffie and Pan (1997) and Das and Sun-
daram (1999)). Thus, with the change to daily frequencies, the data become less
normal while the models become more normal, which generates even greater
misspecification.

C. The Shortcoming of Diffusion Models

The results indicate that the single-factor and certain multifactor diffusion
models do not generate enough kurtosis, conditional or unconditional, to match
estimates from short rate data. A number of points are in order. First, the single-
factor diffusion model can fit the first two conditional moments of the short

14 In the jump-diffusion model given later, the error bands on the conditional skewness are much
wider and contain the sample estimates.
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rate but cannot fit the higher moments as there are no more degrees of freedom
available. Second, it is not the case that there does not exist a multifactor
diffusion model that can match the conditional or unconditional kurtosis. For
example, increasing σv in Andersen and Lund’s model by 75 percent increases
the kurtosis to levels close to those of the T-bill data. However, the cost of
this modification is severe: with the higher σ v, the maximum of many of the
simulated sample paths is greater than 60 percent, and the volatility of daily
movements is more than double that in the data.

It appears that none of the multifactor diffusion models that have been esti-
mated to date can fit the observed nonnormalities in interest rates. Ahn et al.
(2002) analyze numerous three-factor affine and quadratic models and find that
none of them can fit the tails of the distribution. Dai and Singleton (2000) find
further that a number of three-factor affine models cannot fit the nonnormali-
ties in swap rates as indicated by their specification tests.

One way to see the shortcoming of diffusion models is to approximate the con-
ditional kurtosis using stochastic Taylor series expansions.15 The idea, based
on Mihlstein (1974), is to expand conditional moments,

E[ f (rt+�) | rt = r] = f (rt) + L f (rt)� + 1
2L

2 f (rt)�2 + 1
6L

3 f (rt)�3 + O(�4), (7)

where L is the generator of rt applied to a given function f in its domain. Ap-
plying a second-order expansion to a univariate diffusion,

E
[
(rt+� − rt)2

∣∣ rt = r
] = σ 2(r)� + O(�2) (8)

and

E
[
(rt+� − rt)4

∣∣ rt = r
] = 3σ 4(r)�2 + O(�3), (9)

which implies that, to order �, the conditional kurtosis over a �-interval of a
single-factor diffusion is approximately 3; thus, deviations from normality are
necessarily small.

Next, consider an affine stochastic volatility model,

drt = κr (θr − rt) dt +
√

Vt dW r
t (10)

and

dVt = κv(θv − Vt) dt + σv

√
Vt dW v

t , (11)

and assume the Brownian motions are uncorrelated. In this case, the second-
order expansions imply that

E
[
(rt+� − rt)2

∣∣ rt = r
] = E(Vt)� + O(�2)

15 I would like to thank a referee for suggesting this procedure.
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and

E
[
(rt+� − rt)4

∣∣ rt = r
] = 3E

(
V 2

t

)
�2 + O(�3).

Since E(V 2
t ) = θ2

v κv + θvσ
2
v

2 and E(Vt) = θv,

kurt�(r) = 3
(

κv + σ 2
v

2θv

)
+ O(�3).

Using parameter estimates from Collin-Dufresne, Goldstein, and Jones (2002),
the second-order expansion implies that kurt�(r) = 3.34. A third-order approx-
imation is a very complicated expression as it depends on the level of the short
rate. In the case in which the short rate is equal to its long-run average, rt = θr,
the third-order expansion implies that kurt�(r) = 3.42. This should not be a
surprise as the short rate is effectively a random walk when rt ≈ θr. The kur-
tosis is slightly greater, kurt�(r) = 3.88, if we consider the polar case of r = 0
as the mean reversion contributes. In a stochastic volatility model, the only
way to generate large nonnormalities is to have E[V2

t | rt] > (E[Vt | rt])2, which
requires strong contemporaneous interactions between volatility and the spot
rate; such interactions are not supported in the data.

The problem with low-dimensional diffusion-based models is that there is
not a factor that can move rapidly enough to generate the large but isolated
movements often seen in short rate movements. In all of these models, the factor
that drives the fourth conditional moment also drives the second moment. Thus,
if volatility is high, the fourth moment is high also, and their effects to a large
extent cancel.

II. A Jump-Diffusion Model of the Short Rate

Given the inability of popular diffusion models to generate fat tails, I consider
a simple generalization incorporating jumps. Suppose the interest rate solves

drt = µ(rt) dt + σ (rt−) dWt + d

(
Nt∑

n=1

rτn− (eZn − 1)

)
, (12)

where Wt is a scalar Brownian motion, Nt is doubly stochastic point process
with stochastic intensity λ(rt), and Zn ∼ N (µz , σ 2

z ) are the marks of the point
process that arrive at time τn. I assume that µ, σ , λ, and Z have sufficient
regularity for the solution to equation (12) to be well defined. The Appendix
provides a formal statement of these conditions.

The jump specification in (12) implies that the probability of a jump arriv-
ing over a short time interval is approximately λ(rt) dt. At a jump time τn, the
jump size induces a discontinuity in the sample path whose size depends on
the current spot rate, rτn = rτn−eZn . Thus, the Fτn− conditional distribution of
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jump sizes is log-normal and rt cannot jump negative. The jump size specifi-
cation and the nonparametric jump intensity provide the flexibility to capture
periods such as 1979 to 1982. Since the drift and diffusion coefficients are non-
parametric, the model nests the entire single-factor class of diffusion models
and also the jump-diffusion models considered by Ahn and Thompson (1985),
Duffie and Kan (1996), Baz and Das (1996), Chacko and Das (2002), and Zhou
(2001).

The model in (12) implies that jumps occur at random, unpredictable times,
which is an implication of both the time-homogeneity and the continuity of
the jump intensity. This may at first appear to be at odds with the observa-
tion that many of the events that induce jumps occur at regularly scheduled
intervals. For example, the Federal Open Market Committee (FOMC) meets
every 6 weeks and federal agencies release macroeconomic data at monthly or
quarterly frequencies.

Note first that it is not the fact that an announcement occurs that matters,
but rather that the announcement contains a large, unanticipated component.
Every week there are consensus forecasts for a large number of announcements
and only if a reported number is significantly different than anticipated is there
a response in the market. This is especially true for Federal Reserve target
changes, which are often fully anticipated.

Second, it is not possible to explicitly model all of the regularly scheduled
events that cause jumps. The reason is that there are too many announce-
ments that have been shown to be important. Fleming and Remolona (1997)
and Balduzzi et al. (2001) find that more than 25 monthly announcements have
significant impacts on Treasury yields. Additionally, every 6 weeks the FOMC
meets and every quarter other macroeconomic data such as GDP growth are re-
leased. Often there are multiple announcements per day since there are only 22
trading days a month, on average. Without ultra-high frequency data (5-minute
intervals) it is impossible to disentangle these announcements.

A shortcoming of the model is that, although there are three random factors,
there is only one single-state variable. However, my goal is to study the role
of jumps and not to find the model with the lowest pricing errors. Thus the
model in (12) is useful for a number of purposes. First, as noted in the previous
section, additional diffusive factors cannot remove the misspecification in the
tails of the distribution, it is important to test whether a parsimonious jump
specification can remove the misspecification. Second, it is straightforward to
estimate the jump times and sizes in this model, which allows us to connect jump
arrivals with macroeconomic events. Finally, principal components analysis of
zero-coupon Treasury yields from 1959 to 1998 indicates that a single factor,
the short rate, explains about 95 percent of the variation in yields.16 Thus, from
a time-series perspective, the vast majority of interest rate moves are due to a
single factor, and, consequently, it is important to understand the dynamics of
this dominant factor.

16 The data used are an updated version of the McColluch–Kwon data covering 18 yields with
maturity up to 10 years. I would like to thank Michael Brandt for providing the data.
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III. Estimation and the Statistical Role of Jumps

This section provides a general methodology for the nonparametric identifi-
cation and estimation of jump-diffusion processes. Although the results apply
for multivariate jump-diffusions, I consider the univariate model in (12) trans-
formed into logarithms,

d log(rt) = µ(rt) dt + σ (rt−) dWt + d

(
Nt∑

n=1

Zn

)
, (13)

where I have redefined the drift and diffusion coefficients. For the current ap-
plication, I assume that the mean jump size is zero. Originally, the parameter
was estimated but it was indistinguishable from zero and added significant
noise into the estimation of the other components. As Figure 2 shows, the
large movements are quite symmetric and thus this assumption is of little
consequence.

The first step for estimation is to identify µ(r), σ 2(r), λ(r), and σ 2
z . Under

regularity conditions given in the Appendix,

lim
�↓0

1
�

E[log(rt+�/rt) | rt = r] = µ(r), (14)

lim
�↓0

1
�

E
[

log(rt+�/rt)2
∣∣ rt = r

] = σ 2(r) + λ(r)E[Z 2], (15)

and

lim
�↓0

1
�

E
[

log(rt+�/rt) j
∣∣ rt = r

] = λ(r)E[Z j ]. (16)

These limiting moment conditions extend the well-known instantaneous mo-
ment conditions of a diffusion. Specifying the process in logarithms with mean-
zero jumps ensures that µ(r) retains its interpretation as the local mean of the
process. It also implies that the jump components λ(r) and σ 2

z can be identified
using the fourth and sixth moments, since

lim
�↓0

1
�

E
[

log(rt+�

/
rt)4 | rt = r

] = 3λ(r)
(
σ 2

z

)2 (17)

and

lim
�↓0

1
�

E
[

log(rt+�

/
rt)6 | rt = r

] = 15λ(r)
(
σ 2

z

)3
. (18)

Once the jump components are identified, the second moment identifies the
diffusion coefficient, σ 2(r), and the first moment identifies the drift.
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In practice, the limiting moment conditions cannot be directly estimated as
data are observed at fixed intervals. Instead, I consider an approximate iden-
tification scheme. For the drift, I assume that for small �,

1
�

E[log(rt+�/rt) | rt = r] ≈ µ(r) (19)

is a reasonable approximation. In the case of single-factor diffusions, Stanton
(1997) argues that for � as large as 1 month, the error in the above approx-
imations is negligible. I provide Monte Carlo evidence below that shows that
the discretization bias is small in the jump-diffusion model. To estimate the
conditional moments, I use nonparametric kernel estimators, as in the diffu-
sion setting. The only problem is that the ratio of the sixth-to-fourth moments
is not constant.17 I estimate the jump variance by integrating the ratio of the
sixth-to-fourth moments over the stationary density. Alternatively, one could
use the Lebesgue-measure weighted average; the results are substantively the
same.

Bandi and Nguyen (2003) derive the limiting distribution under the assump-
tion that the realizations are recurrent and that µ(r), σ (r), and λ(r) are smooth
functions. I use Monte Carlo simulations to justify the estimation procedure
and provide finite sample confidence bands. I use an Euler approximation to
generate sample paths and, as in the diffusion case, I simulate rt at a higher
frequency to replicate the observed samples from the continuous-time model.

Figure 4 plots the nonparametric jump-diffusion estimation results.18 The
upper-left panel gives the drift estimation results that are similar to the results
in the diffusion model. As indicated by the wide Monte Carlo confidence bands,
it is again difficult to make any firm conclusions regarding the shape of the
drift coefficient.

The top-right panel of Figure 4 plots the instantaneous second moment. Re-
sults indicate that it is accurately estimated. If the data were generated by a
single-factor diffusion model, the second moment would estimate σ 2(r). With
jumps, the second moment estimates σ 2(r) + λ(r)σ 2

z . Consistent with earlier re-
sults, it is easier to estimate the second moment than the drift coefficient. The
lower-left panel reports estimates of λ(r), scaled to daily units (the vertical axis
gives the daily probability of a jump). The intensity varies between 6 percent
and 25 percent depending on the short rate level. The Monte Carlo results in-
dicate the estimation procedure provides approximately unbiased estimates,
with the width of the confidence bands increasing with the short rate.

17 Although it is not constant, the function (in a pointwise sense) is not statistically different from
a constant function as the Monte Carlo confidence bands are relatively wide. I thank a referee for
raising this point.

18 The bandwidths used for the drift and diffusion are h1 = 1.25 × ŝ and h2 = 0.4 × ŝ. The band-
widths for the fourth and sixth moments are 0.75 × ŝ. Note that using a larger bandwidth for the
higher moments does not introduce any systematic bias and is formally justified in Bandi and
Nguyen (2003).
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Figure 4. Nonparametric estimation results for the jump-diffusion model. The solid line
is the function estimated from short rate data, the dashed line is the Monte Carlo median, and the
dash–dot lines are the (10%, 90%) Monte Carlo confidence bands. To frame the results, the lower-
right panel contains an additional solid line that is the total conditional variance, σ 2(r) + σ 2

ξ λ(r)
(the latter solid line is the higher solid line in the panel).

The bottom-right panel of Figure 4 plots the results for the diffusion coeffi-
cient estimates. Note that these estimates are not as smooth as those of the drift
or jump intensity. This is necessary to avoid inducing any bias. If the bandwidth
on the second moment is increased, the estimated diffusion coefficient will be
biased and for large bandwidths, the bias can be severe. It is more difficult to
estimate σ 2(r) because it depends on three other estimates (the jump variance,
jump intensity, and second moment), which magnifies any sampling error. The
lower-right panel also provides a volatility decomposition, with the solid upper
line giving the total second moment. The ratio of the diffusion coefficient to
the total second moment, σ 2(r)/[σ 2(r) + λ(r)σ 2

z ], is the proportion of variance
generated by the diffusion component, and the estimates imply that diffusive
components explain about half the volatility at low rates and only about a third
at high rates. Thus, jump components dominate the conditional volatility of
interest rate changes. As a comparison, Eraker, Johannes, and Polson (2003)
find that jump in equity indices typically generates about 10 to 15 percent of
the variance of returns.
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Table III
The Impact of Jumps

Confidence intervals for implied jump impacts as a function of the spot rate, rt. For each of the
level of the spot rate, one, two, and three standard deviation (σz) confidence intervals are given for
the impact of a jump on the spot rate.

rt(exp(±σz) − 1) rt(exp(±2σz) − 1) rt(exp(±3σz) − 1)

rt = 0.05 (−0.0018, 0.0018) (−0.0035, 0.0037) (−0.0051, 0.0057)
rt = 0.10 (−0.0035, 0.0037) (−0.0070, 0.0075) (−0.0103, 0.0114)
rt = 0.15 (−0.0053, 0.0055) (−0.0104, 0.0112) (−0.0154, 0.0171)

The point estimate of σ 2
z is 0.0013 with a Monte Carlo median of 0.0013

and a (10, 90) percent confidence band of (0.0012, 0.0018). These estimates
imply that the finite sample distribution is skewed slightly upward. To see the
impact on the level of the short rate, Table III gives confidence intervals for
jump impacts for various levels of the short rate. The implied jump impacts are
quite plausible. For low levels of interest rates, a one standard deviation move
is 18 basis points while a three standard deviation move is 50 basis points. At
higher levels of interest rates, although not common, the model implies that
with a jump intensity of 25 percent, 100 basis points movements in interest rate
levels would occur about once every 100 days. In fact, from Figure 2, there have
been a number of daily changes greater than 100 basis points when interest
rates were at high levels.

Panel D in Table II indicates that the jump-diffusion model does provide
an accurate fit to the unconditional kurtosis statistic at a daily, weekly, and
monthly interval and also for the conditional measures. Thus, jumps are sig-
nificant in a statistical sense and provide a simple and intuitive mechanism for
capturing the tail behavior of interest rates. The next section investigates the
economic implications of jumps.

IV. The Economic Role of Jumps

A. Jumps and Macroeconomic Events

In this section, I investigate the connection between the occurrence of
jumps and macroeconomic news arrivals. To identify the events that caused the
jumps, I estimate the filtering distribution of jump times and jumps sizes, which
is given by p(Jt+� = 1 | rt+�, rt , θ̂t) and E[Zt+� Jt+� | rt+�, rt , θ̂t], where, θ̂t =
{µ̂(rt), σ̂ 2(rt), λ̂(rt), σ̂ 2

z } are the estimated characteristics. Computing these den-
sities is straightforward using the Gibbs sampler that iteratively samples from
p(Jt+� | rt+�, rt , θ̂t , Zt+�) and p(Zt+� | rt+�, rt , θ̂t , Jt+�), both of which are stan-
dard distributions. The algorithm produces a sequence {{Jg

t+�}T
t=1, {Zg

t+�}T
t=1}G

g=1,
which are draws from the joint distribution p(Jt+�, Zt+� | rt+�, rt , θ̂t , ). Since
there is no parameter uncertainty, the algorithm converges quickly. I chose G =
5,000 and discard the first 2,000 iterations as a burn-in period.
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Figure 5. The time series of short rate changes, estimated jump probabilities, and es-
timated jump sizes, 1991–1993. The markers, A–I, represent the following dates and events:
(A) 01/09/1991, the outbreak of the Gulf War; (B) 2/1/1991, a U.S. unemployment announcement
and comments by the Federal Reserve; (C) 8/19/1991, the Kremlin coup and the collapse of the
Soviet Union; (D) 8/21/1991, the emergence of Boris Yeltsin as leader of the remnants of the Soviet
Union; (E) 12/20/1991, the Federal Reserve lowers the discount rate; (F) 4/9/1992, large Japanese
equity market decline; (G) 7/2/1992, the Federal Reserve lowers the discount rate; (H) 9/4/92, a U.S.
unemployment announcement; and, (I) October 1992, the Bush–Clinton presidential debates.

In order to focus on specific time periods, I consider the period from 1991 to
1993 mentioned in the introduction, the 1979 to 1981 period of high interest
rates, and the Fall 1998 period. Figure 5 displays the changes in the short
rate (top panel), the estimated jump probabilities (middle panel), and jump
sizes (bottom panel) from 1991 to 1993. The filter identifies a number of jumps
(around 10) over this period. This may seem low as the arrival intensity over
this period is between 5 and 10 percent. However, since the jumps are mean
zero, many of them are too small to be identified. The jump size estimates
indicate that many of the jumps were quite large, some approaching 30 basis
points. For 1992 when the 3-month T-bill rate was less than 4 percent, the three
largest declines, denoted F, G, and H, correspond to percentage changes of −5,
−9, and −7 percent, respectively.

Given model-implied jump times and sizes, we can identify the events that
generated the jumps. The following is a list of the jump dates and any major
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news events on that date: (A) 01/09/1991, the outbreak of the Gulf War;
(B) 2/1/1991, a U.S. unemployment announcement and comments by the Federal
Reserve; (C) 8/19/1991, the Kremlin coup and the collapse of the Soviet Union;
(D) 8/21/1991, the emergence of Boris Yeltsin as leader of the remnants of the
Soviet Union; (E) 12/20/1991, the Federal Reserve lowers the discount rate;
(F) 4/9/1992, large Japanese equity market decline; (G) 7/2/1992, the Federal
Reserve lowers the discount rate; (H) 9/4/92, a U.S. unemployment announce-
ment; and, (I) October 1992, the Bush–Clinton presidential debates.

These events indicate that there were three major sources of jumps: first,
official announcements regarding the current state of the economy such as un-
employment announcements; second, announcements by the Federal Reserve
regarding monetary policy; and, third, exogenous political–economic events in
the United States or other important countries. The fall of the Soviet Union,
the realization that the Gulf War would indeed occur, and problems for major
trading partners such as Japan all had large impacts on interest rates. Ignor-
ing the political debates, the remaining jumps were generated equally by reg-
ularly scheduled announcements (unemployment and Federal Reserve target
changes) and by surprise macroeconomic news (Gulf War, Kremlin Coup, etc.).
These results reinforce the intuition conjectured earlier, namely, that jumps
provide the mechanism through which information about the macroeconomy
enters the Treasury market.

Figure 6 displays jump time estimates in 1979. As interest rates increased,
the jump intensity increased and more jumps arrived. This is consistent with
the following explanation. As jumps occurred when unanticipated information
arrived, market participants’ forecasts during both the monetary experiment
and periods of high interest rates were less accurate, which led to more unan-
ticipated information arrivals and more jumps. The events generating jumps in
1979 were slightly different than those for the period from 1991 to 1993. There
were 12 jumps identified with high probability (more than 60 percent) and the
news that generated these jumps included trade deficit, industrial production,
GNP, consumer prices and retail sales announcements, events associated with
gas prices (riots associated with gas shortages, a diesel fuel tax strike, and the
announcement of energy quotas), President Carter’s declaration of war on infla-
tion, Ford Motor Company’s layoffs, and the Iranian crises. Again, all of these
events provided news regarding the current and future state of the macroecon-
omy. Only one of the movements identified as a jump in 1979 occurred without
any major news (10/22/79). Furthermore, similar types of events generated the
jumps observed in 1981.

These results point toward a different interpretation of the 1979 to 1982 pe-
riod than the interpretation suggested by stochastic volatility or regime switch-
ing models. In both of these models, the 1979 to 1982 period of high interest
rates is interpreted as a period of high volatility. In contrast to this explana-
tion, the jump model argues that the source of the large movements was an
increased rate of surprise information arrivals.

Finally, Figure 7 provides some evidence of misspecification via jump proba-
bilities in the Fall of 1998. During the Long-Term Capital Management
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Figure 6. The time series of the short rate level and estimated jump probabilities in 1979.

crisis in September 1998, there is a period during which there are jumps on
four consecutive days. This is extremely unlikely at the relatively low rates
that were observed during this period, and these results indicate that this
period of time might be more accurately modeled with a stochastic volatility
factor.

B. Jumps and the Term Structure

This section considers the impact of jumps on bond prices. I compute the
zero-coupon term structure using the jump-diffusion model in equation (13) as
the model of the short rate and I compare the resulting term structure to one
generated by the nonparametric diffusion model. This exercise may suffer from
the proxy problem of Chapman et al. (1999). However, these authors show that
the expected bias from this procedure is small unless there is a substantial
market price of risk and nonlinearities in the drift or diffusion.

Pricing in the presence of jumps is more complicated than in the diffusion
case. In general, continuously distributed jumps introduce an incompleteness
in the market, as the discontinuity cannot be hedged with a finite number
of securities. Standard arguments in Björk, Kubanov, and Runggaldier (1997)
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Figure 7. The time series of the short rate level and estimated jump probabilities in 1998.

indicate that there exists a new measure, Q, equivalent to P, such that the price
of a zero-coupon bond is

P (rt , τ ) = EQ
t

[
exp

(
−

∫ t+τ

t
rs ds

)]
.

Under Q, the spot rate evolves according to

d log(rt) = [µ(rt) − ηtσ (rt)] dt + σ (rt) dWt(Q) + d

(
Nt (Q)∑
n=1

Zn(Q)

)
,

where ηt is the market price of diffusive risks, Nt(Q) is a doubly stochastic point
process under Q with intensity λQ(rt), the jump sizes are distributed �Q, and
Wt(Q) is a standard Brownian motion. This measure is not unique and thus
additional information is required to pin it down.

To focus on the role of jumps and their associated market prices of risk,
I assume that there is no market price of risk for diffusive components. This
assumption may not be critical as Stanton (1997) finds that the diffusive market
price of risk is close to zero for both low and high interest rates. I assume the
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market prices of jump risk take a simple form: the jump arrival rate under Q is
λ(rt)Q = θ1λ(rt) and the jump distribution under Q is Zn(Q) ∼ N (θ2, θ3σ

2
z ). The

parameters θ1, θ2, and θ3 are interpreted as risk premia parameters. I use the
estimates obtained earlier to compare the nonparametric diffusion and jump-
diffusion models, which implies that the diffusion and jump-diffusion models
have common first and second moments.

The usual procedure at this point is to calibrate the model to a given day’s
yield curve (Aı̈t-Sahalia (1996a)). Instead, I consider a comparative statics
exercise that documents how the yield curve depends on the given risk-neutral
parameters. The parameters chosen are arbitrary and are given by θ1 = (0.75,
1.25), θ2 = (−0.001, 0.001), and θ3 = (0.75, 1.25). These risk premia alter the
intensity and jump variance by 25 percent and change the jump mean by ap-
proximately 10 basis points. To compute bond prices, I used the Monte Carlo
method with 10,000 simulations from the continuous-time model. Together, the
number of simulations and the discretization interval (1 day) are chosen to ren-
der the Monte Carlo error negligible (less than 1 basis point at the long end of
the yield curve).

Figures 8 and 9 give the resulting yield curves when the current short level
is 5 and 10 percent, respectively. In both cases, the upper-left panel displays
the term structure of interest rates for the models without risk premiums. The
yield curves are quite similar, but this is not surprising. The bond price de-
pends on the conditional distribution of the average interest rate over the life
of a bond, P (rt , t, T ) = EQ[e−(T−t)r̄t,T | rt], where r̄t,T is the average interest rate.
Since the diffusion and jump-diffusion models have the same conditional mean
and volatility, they generate similar conditional distributions of the average
interest rate, which implies that bond prices are not very different. The mod-
els do differ slightly at the long end of the curve, however, due to a Jensen’s
inequality-type effect.

The upper- and lower-right panels display the impact of the arrival (θ1) and
the jump variance (θ3) risk premiums. When rt = 0.05, these parameters affect
the yield curves similarly as an increase in either results in a small but sig-
nificant increase in yields. The largest yield increases occur in the middle of
the curve indicating the jump variance effects the curvature of the yield curve.
The lower-left panel gives the results for the mean jump-size risk premium.
The yield curves are particularly sensitive to this parameter. A positive θ2 in-
creases the average jump size and the yields, as the average short rate over the
life of the bond increases. In the case rt = 0.10, the effects are largely similar,
with the exception that the market price of jump volatility risk induces a hump
at short horizons, while the yield curve falls below the risk-neutral curve for
higher rates.

C. Jumps and Interest Rate Option Prices

Although jumps may not necessarily have a large impact on the cross-section
of bond prices, they do have a large impact on the dynamics of interest rate
movements. This implies that jumps may have the greatest impact on derivative
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Figure 8. Term structures for the diffusion and jump-diffusion models assuming that the
initial spot rate, rt, is 0.05. The upper-left panel gives yield curves under the two models with
no risk premiums. The upper-right panel shows the effect of the jump-intensity risk premium, θ1,
the lower-left panel shows the effect of the jump-mean risk premium, θ2, and the lower-right panel
shows the effect of the jump-volatility risk premium, θ3.

contracts such as bond options, caps, or floors whose prices depend heavily on
the tails of the conditional distribution of interest rate increments.

I consider the 3-month T-bill option traded on the Chicago Board of Exchange,
which has a European-style exercise. The call option price is

C(K , t, T , rt) = EQ
t

[
exp

(
−

∫ T

t
rs ds

)
max(YT ,3 − K , 0)

]
, (20)

where YT,3 is the 3-month T-bill discount rate. Since the impact of jumps will
likely be greatest for out-of-the-money contracts, I consider the difference in out-
of-the-money option prices for short maturity options. As in the previous section,
I consider option prices generated by the diffusion and jump-diffusion models,
such that the first two moments are equal. The option prices are computed by
Monte Carlo simulation.

Table IV provides the relative differences in option prices for contracts ma-
turing in 2 weeks, 1 month, and 3 months. For each contract, I report the
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Figure 9. Term structures for the diffusion and jump-diffusion models assuming that the
initial spot rate, rt, is 0.10. The upper-left panel gives yield curves under the two models with
no risk premiums. The upper-right panel shows the effect of the jump-intensity risk premium, θ1,
the lower-left panel shows the effect of the jump-mean risk premium, θ2, and the lower-right panel
shows the effect of the jump-volatility risk premium, θ3.

Table IV
The Impact of Jumps on Option Prices

The relative differences between Treasury-bill call option prices under a diffusion and jump-
diffusion model where the first two instantaneous moments are constrained to be equal.

2-Weeks 1-Month 3-Months

Strike 6.00 6.50 6.75 6.00 6.50 7.00 6.00 7.00 8.00

Difference −0.0103 0.2837 0.6271 0.0189 0.0835 0.4091 −0.0035 0.0895 0.6748

relative difference for call option prices for the at-the-money and two out-of-
the-money contracts. If CD denotes the diffusion-based call price and CJD the
jump-diffusion call price, Table IV reports (CJD − CD)/CJD. The initial spot rate
for all of the contracts is 6 percent. In all cases I report option prices for strikes
that are above the minimum tick level. Not surprisingly, the results indicate
large differences in the call option prices. While at-the-money option prices are
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similar, options with 2 weeks to maturity and only 50 basis points out-of-the-
money differ by almost 30 percent. For longer maturities, the differences can be
as great provided the contracts are sufficiently out-of-the-money. Glasserman
and Kou (2003) argue that implied volatility skews embedded in cap prices are
well captured by incorporating jumps.

These pricing results are similar to those in Aı̈t-Sahalia (1996a), who finds
only small differences in bond prices generated by the Vasicek (1978) model, the
Cox et al. (1985) model, and a nonparametric diffusion models, but relatively
large differences for bond option prices. Also, and not surprisingly, the above
results are similar to those in equity option pricing for which jumps have the
greatest impact on short maturity, out-of-the-money options (see Bakshi, Cao,
and Chen (1997) and Pan (2002)). The main difference between the interest rate
options and equity options is that interest rate jumps are symmetric whereas
equity index jumps tend to be negative, which leads to the implied volatility
smirk.

Some option-implied evidence supporting the importance of jumps comes
from Christiansen and Hansen (2002). They find that implied volatilities for
short maturity options have a strong smile shape. For example, for options with
maturities between 7 and 90 days, Christiansen and Hansen find that implied
volatility for out-of-the-money call options is 19.45 percent, 6.98 percent for
at-the-money, and 19.67 percent for in-the-money options. This indicates that
there is a severe volatility smile, and mean zero jumps are capable of generating
this sort of pattern.

V. Conclusion

This paper analyzes the role of jumps in continuous-time models of the short
interest rate. Results indicate that jumps are both economically and statis-
tically important. Diffusion models ignore jumps and are misspecified in the
sense that they cannot accurately capture the tail behavior of interest rate
changes. Estimates imply that jumps remove the tail misspecification and,
moreover, generate more than half the conditional variance of interest rate
changes. For pricing purposes, jumps have an important impact on interest
rate option prices, but they play a lesser role in determining the cross section
of bond prices.

Using model-implied jump times and sizes, I find that jumps are typically
generated by the surprise arrival of news about the macroeconomy. This poses
new challenges for interest rate modeling, and, in particular, points to the im-
portance of the approach of Piazessi (2001, 2003), who formally incorporates
the Federal Reserve and macroeconomic announcements into a term structure
model. One problem with this approach, however, is that there are a large num-
ber of announcements that generate jumps, and it is intractable to model more
than a few announcements.

Jumps provide an interesting avenue for investigating the impact of macroe-
conomic variables on the term structure. For example, if a jump arrives only
when a surprise macroeconomic announcement is released, the conditional
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distribution of jump sizes provides a view of how the market translates
macroeconomic news into the yield curve. The next step is to explicitly ana-
lyze multifactor models incorporating predictable and unpredictable jumps in
the spot rate.

Appendix: Regularity and Moment Conditions

This appendix states the regularity conditions that guarantee the existence
and uniqueness of the stochastic differential equations used in the text and also
derives the limiting moment conditions used for identifying the drift, diffusion,
jump intensity, and jump size volatility. References on stochastic differential
equations of this type include Gihkman and Skorohod (1972) and Jacod and
Shiryaev (1987).

The general form of the jump-diffusion model is given by

rt+� = rt +
∫ t+�

t
µ(rs) ds +

∫ t+�

t
σ (rs−) dWs +

Nt+�∑
n=Nt+1

c(rτn− , Zn), (A1)

where {τn}n≥1 are the jump times, Nt is a counting process with stochastic inten-
sity λ(rt), Zn are the marks of the point process, � is the jump size distribution,
and c is the jump impact function that translates the marks into jumps in rt.
Setting c = 0 or λ = 0 provides the results for the diffusion case.

I impose the following regularity conditions: (A) µ, σ 2, c, and λ ≥ 0 are con-
tinuous functions of r and � is independent of rt; (B) µ, σ 2, c, and λ satisfy the
linear growth condition

|µ(x)| + |σ (x)| + λ(x)
∫

|c(x, z)|� (dz) ≤ k(1 + |x|), (A2)

for a positive constant k, and the local Lipschitz condition, for any N > 0 and
for both |x| ≤ N and |y| ≤ N, there is a kN such that

|µ(x) − µ( y)| + |σ (x) − σ ( y)| + λ(x)
∫

|c(x, z) − c( y , z)|� (dz) ≤ kN |x − y |; (A3)

(C) λ(x)
∫ |c(x, z)|p� (dz) ≤ k(1 + |x|p); and, (D) E(r p

0 ) < ∞ for p > 2. These con-
ditions guarantee the existence and uniqueness of a strong solution to the
stochastic differential equation (see Gihkman and Skorohod (1972), Chapter 2).
In addition, conditions B, C, and D also imply that E|rt|p ≤ αE(1 + |r0|p) < ∞,
where α is a finite constant depending on t and p but not N. Moreover, this
guarantees finite conditional moments and provides the bound used below in
a dominated convergence argument.

The derivation of the limiting moment conditions in the diffusion case is
given in Gikhman and Skorohod (1972, pp. 68–69). Consider the conditional
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first moment in the diffusion model

1
�

Et,r [rt+� − rt] = 1
�

Et,r

[∫ t+�

t
µ(rs) ds

]
= Et,r

[∫ 1

0
µ(rt+�v) dv

]

=
[∫ 1

0
Et,r [µ(rt+�v)] dv

]
, (A4)

where Et,r[rt+� − rt] = E[rt+� − rt | rt = r], the change of variables v = s − t
�

is
used, and Fubini’s theorem is applied to exchange the order of integration and
expectation. The solution rt(ω), is continuous (rt is a diffusion) for all ω ∈ A, with
P(A) = 1, and lim�↓0 rt+v� = rt with probability 1. By the assumed continuity of
the drift function, lim�↓0 µ(rt+v�) = µ(rt) with probability 1. The linear growth
condition implies that µ(rt+�v) ≤ k(1 + |rt+�v|), which in turn implies that the
right-hand side is dominated by an Et,r-integrable random variable. Dominated
convergence implies that Et,r[µ(rt+�v)] converges to Et,r[µ(rt)] = µ(rt). Another
application of dominated convergence implies that lim�↓0 Et,x[ rt+� − rt

�
] = µ(r).

The higher instantaneous moments are derived in a similar manner by passing
the limits under the integral after an application of Ito’s Lemma:

1
�

Et,r

[(
Rt+�

t

) j
]

= 1
�

Et,r

∫ t+�

t

[
j
(
Rs

t

) j−1
µ(rs) + 1

2
j ( j − 1)

(
Rs

t

) j−2
σ 2(rs)

]
ds, (A5)

where Rs
t = (rs − rt). The conditional moments are finite, again by (A) and (B),

and the same dominated convergence arguments apply.
In the jump-diffusion model, Ito’s Lemma implies that if rt solves A1, then if

µ, σ, c, λ, and � are sufficiently regular and g is twice differentiable,

dg (rt) = Lg (rt) dt + Ag (rt) dt + gx(rt)σ (rt) dWt + d

(
Nt∑

n=1

[g (rτn) − g (rτn− )]

)

− λ(rt)
∫

Z

[
g (rt + c(rt , z) − g (rt))

]
� (dz) dt, (A6)

where L and A are differential operators for the diffusion and jump component

Lg (x) = gx(x)µ(x) + 1
2 gxx(x)σ 2(x) (A7)

and

Ag (x) = λ(x)
∫

Z
[g (x + c(x, z) − g (x) − gx(x)c(x, z)]� (dz), (A8)

respectively.
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To derive the limiting moments of the jump-diffusion model, proceed as in the
diffusion case noting that rt is now right-continuous. To identify the diffusion
and jump parameters, we apply Ito’s Lemma to functions of the form (rt+� − r)j

for j > 2. This results in

Et,r
[
(rt+� − rt) j ]

= Et,r

[∫ t+�

t

[
j
(
Rt

s

) j−1
µ(rs) + 1

2
j ( j − 1)

(
Rt

s

) j−2
σ 2(rs)

]
ds

]

+ Et,r

[∫ t+�

t
λ(rs)

∫
Z

[(
Rt

s + c(rs, z)
) j − (

Rt
s

) j − j
(
Rt

s

) j−1c(rs, z)
]
� (dz) ds

]
.

(A9)

For example, the limiting value of terms such as Et,r
1
�

[
∫ t+�

t (rs − rt)µ(rs) ds]
must be evaluated. Since lims↓t rs = rt, lim�↓0 µ(rt+v�) = µ(rt) with probabil-
ity 1. The finite moments imply that higher-order conditional moments are fi-
nite, Fubini’s theorem and the same dominated convergence argument together
imply

lim
�↓0

1
�

Et,r

[∫ t+�

t
(rs − rt)µ(rs) ds

]
= 0.
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