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Abstract

Hedge fund managers are often compensated via management fees on the assets un-
der management (AUM) and incentive fees indexed to the high-water mark (HWM).
We develop an analytically tractable model of hedge fund leverage and valuation where
the manager maximizes the present value (PV) of future management and incentive
fees from current and future managed funds. By leveraging on an alpha strategy,
a skilled manager can create significant value for investors. However, leverage also
increases the likelihood of poor performances, which may trigger money outflow, with-
draw/redemption, and forced fund liquidation, causing the manager to lose future fees.
We show that the state variable is the ratio between AUM and HWM, w, which also
measures the optionality of the long position in incentive fees and the short position
in investors’ liquidation and redemption options.

Our main results are (1) managerial concern for fund survival induces the manager
to choose prudent leverage; (2) leverage depends on w and tends to increase following
good performances; (3) both incentive and management fees contribute significantly
to the manager’s total value; (4) performance-triggered new money inflow encour-
ages the manager to increase leverage and has large effects on the manager’s value,
particularly the value of incentive fees; (5) fund restart and HWM reset options are
valuable for the manager; (6) managerial ownership has incentive alignment effects;
(7) when liquidation risk is low, the manager engages in risk seeking and the margin
requirement/leverage constraint binds. For a given compensation contract (e.g. the
widely-used two-twenty), our framework allows us to infer the minimal level of man-
agerial skill, the un-levered break-even alpha, demanded by investors in a competitive
equilibrium.
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Li, Bing Liang, Stavros Panageas, René Stulz, Suresh Sundaresan, Sheridan Titman, Laura Vincent, Jay
Wang, Zhenyu Wang, Mark Westerfield, and seminar participants at ASU, Brock, Columbia, McGill, New
York Fed, UIUC, PREA, SUFE for helpful comments.
†Cornerstone Research. Email: ylan@cornerstone.com.
‡Columbia Business School and NBER. Email: neng.wang@columbia.edu.
§Columbia Business School and Shanghai University of Finance & Economics (SUFE). Email:

yang.jinqiang@mail.shufe.edu.cn.



1 Introduction

Hedge funds’ management compensation contracts typically feature both management fees

and performance/incentive fees. The management fee is charged as a fraction, e.g. 2%, of

assets under management (AUM). The incentive fee, a key characteristic that differentiates

hedge funds from mutual funds, is calculated as a fraction, e.g. 20%, of the fund’s profits.

The cost base for the profit calculation is often investors’ high-water mark (HWM), which

effectively keeps track of the maximum value of the invested capital and critically depends

on the manager’s dynamic investment strategies. This compensation scheme is often referred

to as the “two-twenty” contract. An important feature of hedge funds is the sophisticated

use of leverage. Hedge funds may borrow through the repo markets or from prime brokers,

as well as use various implicit leverage, often via options and other derivatives.

We develop an integrated dynamic framework of leverage and valuation for hedge funds.

By leveraging on the alpha-generating strategy, a skilled manager creates value for investors.

However, leverage also increases the likelihood of poor performances. In practice, a fund

that performs poorly often faces money outflow, withdraw/redemption, or liquidation. We

model performance-triggered fund liquidation via a liquidation boundary. Upon liquidation,

the manager may lose future fees. The manager dynamically chooses leverage to maximize

the present value (PV) of all fees from both the current and future managed funds. Outside

investors rationally participate in the fund given their beliefs about the managerial skills and

leverage strategies.

Specifically, our model contains the following important features: (1) an alpha generating

strategy; (2) management fees as a fraction of the AUM; (3) incentive/performance fees

linked to the HWM; (4) poor performance-triggered liquidation; (5) margin requirement

or leverage constraint; (6) managerial ownership, which is often motivated as an incentive

alignment mechanism; (7) performance-induced new money inflow; (8) the manager’s option

to restart a fund (endogenous managerial outside option) at a cost. To simplify exposition,

in our baseline model, we incorporate the first four features and focus on the manager’s key

tradeoff between the value creation benefit and the liquidation cost due to leverage. We then

introduce each new feature from (5) to (8) individually into our baseline model and analyze

their economic and quantitative implications.

Our model is analytically tractable. We obtain closed-form solutions up to an ordinary
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differential equation (ODE). The key state variable, denoted by w, is the ratio between the

fund’s AUM and its HWM. In a dynamic framework with liquidation or other downside risks,

the risk-neutral manager has incentives to preserve the fund’s going-concern value so as to

collect fees in the future. The risk-neutral manager’s precautionary motive induces risk-

averse managerial behavior. The manager’s optimal leverage increases with alpha, decreases

with variance and the manager’s effective risk aversion, similar to the risk-averse investor’s

portfolio allocation as in Merton (1971). Importantly, unlike the Merton-type investor, both

the manager’s effective risk aversion and leverage are stochastic and depend on w. The closer

the fund’s AUM is to its HWM (the higher w), the less likely the fund is liquidated and the

more likely the manager collects the incentive fees, the less risk aversely the manager behaves

and the higher the leverage.

While our baseline model parsimoniously captures the key tradeoff between value cre-

ation and costly liquidation, such a simple framework inevitably misses some key features

of hedge funds which may have first-order effects. We introduce new features, (5)-(8) listed

previously, one at a time into the baseline model to highlight their implications. First, when

liquidation risk is low, the manager can be risk seeking and the margin requirement becomes

binding. Second, managerial ownership within the fund mitigates agency conflicts. Third,

we incorporate money flow-performance relation and find that it has significant implications

on the manager’s leverage choices and the PVs of management fees and of incentive fees.

Finally, we integrate the manager’s options to start up new funds and/or to reset the fund’s

HWMs in our framework and find that these options are quantitatively valuable.

To provide quantitative implications, we calibrate our baseline model using empirical

leverage moments reported in Ang, Gorovyy, and van Inwegen (2011). Our calibration sug-

gests that the manager collects about 20 cents for each dollar under management in the PV

sense. Under competitive equilibrium, investors break even in PV, and the manager gener-

ates 20% surplus on the AUM and captures all the surplus via their compensation. Out of

the manager’s total value creation of 20 cents on a dollar, 75% is attributed to management

fees (15 cents) and the remaining 25% is delivered via incentive fees (5 cents). By incorpo-

rating managerial risk-seeking incentives/margin requirements, managerial ownership, new

money inflow, and fund restart/HWM reset options, the manager has additional incentives

to lever, which in turn makes the value of incentive fees more important. Quantitatively,
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management fees remain a significant and often majority contributor to the manager’s to-

tal value. Metrick and Yasuda (2010) find that management fees are also quantitatively

important in private equity where funds managers also charge management and incentive

fees via two-twenty-type compensation contracts. While the compensation structure is sim-

ilar in essence, institutional details such as how management fees and performance fees are

calculated differ significantly for hedge funds and private equity funds.

Related literature. There are only a few theoretical papers studying the hedge fund’s

valuation and leverage decisions. Goetzman, Ingersoll, and Ross (2003), henceforth GIR,

provide the first quantitative inter-temporal valuation framework for management and in-

centive fees in the presence of the HWM. They derive closed-form solutions for various value

functions for a fund with a constant alpha and Sharpe ratio. GIR focuses solely on valuation

and does not allow for managerial leverage or any other decisions such as fund closure/restart.

Panageas and Westerfield (2009) study the effects of HWM-based incentive fees on man-

agerial leverage choice and valuation when the manager is compensated solely via incentive

fees. In our baseline model, we introduce two new key features, management fees and liqui-

dation/redemption risk and show that the two new features as well as performance fees all

play critical roles on leverage and the manager’s value. Our model predicts that leverage de-

pends on w, the ratio between the AUM and the HWM, while their model generates constant

leverage at all times. In our model, the manager’s value decreases with HWM and increases

with incentive fees; both predictions are opposite of theirs. Quantitatively, we show that

both incentive and management fees are important contributors to the manager’s total value,

while the manager’s value in their model solely comes from incentive fees by construction.

When liquidation risk is low, the manager becomes risk seeking and the margin requirement

becomes binding. Finally, we incorporate managerial ownership, new money inflow, and

managerial fund restart or HWM reset options, and find that the quantitative implications

of these features can be quite significant.

Hodder and Jackwerth (2007) numerically solve a risk-averse manager’s investment strat-

egy in a discrete-time finite-horizon model. Our work also relates to Dai and Sundaresan

(2010), which point out that the hedge fund is short in two important options, investors’

redemption option and funding options (from prime brokers and short-term debt markets),

and the hedge fund’s short positions in these two options have significant effects on the fund’s
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risk management policies.

2 Model

In this section, we set up a model with essential but minimal ingredients.

The fund’s investment opportunity. The manager can always invest in the risk-free

asset which pays interest at a constant rate r. Additionally, the manager generates risk-

adjusted expected excess returns, referred to as alpha. Without leverage, the incremental

return for the skilled manager’s alpha-generating investment strategy, dRt, is given by

dRt = (r + α) dt+ σdBt , (1)

where B is a standard Brownian motion, α denote the expected return in excess of the

risk-free rate r, and σ is the return volatility. Alpha measures scarce managerial talents,

which earn rents in equilibrium (Berk and Green (2004)). As we will show later, even with

time-invariant investment opportunity, the optimal leverage will change over time due to

managerial incentives and liquidation risk.

Let W be the fund’s AUM and D denote the amount invested in the risk-free asset.

The investment amount in the alpha strategy (1) is then W −D. Let π denote the (risky)

asset-capital ratio, π = (W − D)/W . Hedge funds often borrow via short-term debt and

obtain leverage from the fund’s prime brokers, repo markets, and the use of derivatives.1 For

a levered fund, D < 0 and π > 1. For a fund hoarding cash, D > 0 and 0 < π < 1.

Managerial compensation contracts. Managers are paid via both management and

incentive fees. The management fee is specified as a constant fraction c of the AUM W ,

{cWt : t ≥ 0}. The incentive fee often directly links compensation to the fund’s performance

via the so-called high-water mark (HWM).

When the AUM W exceeds the HWM H, the manager collects a fraction k of the fund’s

performance exceeding its HWM and then resets the HWM H. We introduce the dynamics

of the HWM H on the boundary W = H in Section 3.

1Few hedge funds are able to directly issue long-term debt or secure long-term borrowing.
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When the AUM W is below the HWM H, the HWM may still evolve due to indexed

growth or investors’ withdrawal. Let g denote the growth rate of H in the absence of payout.

This growth rate g may be set to zero, the interest rate r, or other benchmarks. As in GIR,

investors in our model are paid continuously at a rate δWt where δ ≥ 0 is a constant.

Naturally, the fund’s HWM is adjusted downward to account for the payout rate δ. To

summarize, when W < H, the HWM H evolves deterministically as follows,

dHt = (g − δ)Htdt , if Wt < Ht . (2)

When g = δ, (2) implies that the HWM H is the running maximum of W , Ht = maxs≤t Ws,

in that the HWM is the highest level that the AUM has attained.

Fund liquidation. As in GIR, the fund can be exogenously liquidated with probability λ

per unit of time. By assumption, the manager can do nothing to influence this liquidation

likelihood. Let τ1 denote the exogenous stochastic liquidation time.

Next, we turn to endogenous liquidation. With an alpha strategy and no frictions, the

model features constant return to scale with an unbounded alpha generating technology

(via leverage). Therefore, the optimal leverage for a risk-neutral manager would be infinite

without frictions, an economically unrealistic case. High leverage implies highly volatile

AUM and hence potentially very large losses for the fund. Large losses may cause investors

to lose confidence in the manager, triggering liquidation.

Additionally, conflicts of interest and incomplete contracts within institutions (clients)

potentially cause institutional clients to liquidate their positions in the hedge fund even if

they believe that the hedge fund manager has alpha but is simply unlucky. For example,

pension fund managers may involuntarily liquidate investments in the hedge fund due to

their career concerns or simply the difficulty to convince retirees or the pension fund board

that the selected hedge fund manager who just incurred a huge loss is unlucky, but skilled.

We assume that the fund’s sufficiently disappointing performance triggers liquidation.

Specifically, when the AUM W falls to a fraction b of its HWM H, the fund is liquidated.

For example, if b = 0.7, the fund will be liquidated if the manager loses 30% of the AUM

from its HWM. GIR makes a similar liquidation assumption in their valuation model. Unlike

GIR, the AUM dynamics in our model are endogenous. Let τ2 denote this endogenous
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performance-triggered stochastic liquidation time,

Wτ2 = bHτ2 . (3)

The above liquidation condition has been used by Grossman and Zhou (1993) in their

study of investment strategies by institutional investors facing what they refer to as “draw-

down” constraints. In their terminology, 1 − b is the maximum “drawdown” that investors

allow the fund manager before liquidating the fund in our model. Grossman and Zhou (1993)

state that “the authors’ knowledge and experience of the area of investment management

where leverage is used extensively (such as the trading of futures, options, and foreign ex-

change) has convinced us that an essential aspect of the evaluation of investment managers

and their strategies is the extent to which large drawdowns occur. It is not unusual for such

managers to be fired subsequent to achieving a large drawdown, nor is it unusual for the

managers to be told to avoid drawdowns larger than 25%.”

The fund is liquidated either exogenously at stochastic time τ1 or endogenously at τ2.

At liquidation time τ = τ1 ∧ τ2, the manager receives nothing and investors collect the

fund’s AUM Wτ . While leveraging on an alpha strategy creates value, the manager is

averse to losing all future fees upon liquidation. As a result, from investors’ perspective, the

manager effectively under-invests by choosing a conservative leverage in order to preserve

future management and incentive fees. The manager chooses the fund’s leverage to balance

the benefits of leveraging against the cost of liquidation.

Dynamics of AUM. The fund’s AUM Wt evolves as follows

dWt = πtWt (µdt+ σdBt) + (1− πt)rWtdt− δWtdt− cWtdt

−k [dHt − (g − δ)Htdt]− dJt , t < τ . (4)

The first and second terms in (4) describe the change of AUM W given the manager’s leverage

strategy. The third term gives the continuous payout to investors. The fourth term gives the

flow of management fees (e.g. c = 2%), and the fifth term gives the incentive/performance

fees which is paid if and only if the AUM exceeds the HWM (e.g. k = 20%).2 The process

J in the last (sixth) term is a pure jump process which describes the purely exogenous

2The manager collects the incentive fees if and only if dHt > (g − δ)Htdt.
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liquidation risk: The AUM W is set to zero when the fund is exogenously liquidated. This

pure jump process occurs with probability λ per unit of time.

Various value functions for investors and the manager. We now define various

present values (PVs). Let M(W,H; π) and N(W,H; π) denote the PVs of management and

incentive fees, respectively, for a given dynamic leverage strategy π,

M(W,H; π) = Et

[∫ τ

t

e−r(s−t)cWsds

]
, (5)

N(W,H; π) = Et

[∫ τ

t

e−r(s−t)k [dHs − (g − δ)Hsds]

]
. (6)

We assume that the manager collects neither management nor incentive fees after stochastic

liquidation.3 Let F (W,H; π) denote the PV of total fees, which is given by

F (W,H; π) = M(W,H; π) +N(W,H; π) . (7)

Similarly, we define investors’ value E(W,H) as follows

E(W,H; π) = Et

[∫ τ

t

e−r(s−t)δWsds+ e−r(τ−t)Wτ

]
. (8)

In general, investors’ value E(W,H) is different from the AUM W because of managerial

skills. The total PV of the fund V (W,H) is given by the sum of F (W,H) and E(W,H):

V (W,H; π) = F (W,H; π) + E(W,H; π) . (9)

The manager’s optimization and investors’ participation. Anticipating that the

manager behaves in self interest, investors rationally demand that the PV of their payoffs,

E(W,H), is at least higher than their time-0 investment W0 in order to break even in PV.

At time 0, by definition, we have H0 = W0. Thus, at time 0, we require

E(W0,W0; π) ≥ W0 . (10)

Intuitively, the surplus that investors collect depends on their relative bargaining power

versus the manager. In perfectly competitive markets, the skilled manager collects all the

3We may allow the manager to close the fund and start a new fund. The manager then maximizes the
PV of fees from the current fund and the “continuation” value from managing future funds. This extension
will significantly complicate the analysis. We leave it for future research.
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surplus, and the above participation constraint (10) holds with equality. However, in periods

such as a financial crisis, investors may earn some rents by providing scarce capital to the

manager and hence investors’ participation constraint (10) may hold with slack.

The manager dynamically chooses leverage π to maximize the PV of total fees,

max
π

F (W,H; π) , (11)

subject to the liquidation boundary (3) and investors’ voluntary participation (10).

3 Solution

The manager maximizes the PV of total fees by trading off the benefit of leveraging on

the alpha strategy against the increased liquidation risk due to leverage. We consider the

parameter space where leverage-induced liquidation risk is sufficiently significant so that

the manager’s optimal leverage management problem is well defined and admits an interior

leverage solution.4 We show that optimal leverage is time-varying. The manager de-levers

as the fund gets close to the liquidation boundary in order to lower the fund’s volatility,

preserve the fund as a going-concern so that the manager continues to collect fees.

The interior region (W < H). In this region, we have the following Hamilton-Jacobi-

Bellman (HJB) equation,

(r + λ)F (W,H) = max
π

cW + [πα + (r − δ − c)]WFW (W,H) (12)

+
1

2
π2σ2W 2FWW (W,H) + (g − δ)HFH(W,H) .

The first term on the right side of (12) gives the management fee, cW . The second and third

terms give the drift (expected change) and the volatility effects of the AUM W on F (W,H),

respectively. Finally, the last term on the right side of (12) describes the effect of the HWM

H change on F (W,H). Note that there is no volatility effect from the HWM H because H

is locally deterministic in the interior region. The left side of (12) elevates the discount rate

from the interest rate r to (r + λ) to reflect the exogenous stochastic liquidation likelihood.

The HJB equation (12) implies the following first-order condition (FOC) for leverage π:

αWFW (W,H) + πσ2W 2FWW (W,H) = 0 . (13)

4Otherwise, the benefit of leveraging is too large and may cause value to be infinity, an unrealistic case.
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The FOC (13) characterizes the optimal leverage, when F (W,H) is concave in W , equiva-

lently stated, the second-order condition (SOC) is satisfied. When the SOC is violated, we

need additional constraints to ensure that the firm has a finite optimal leverage, as we show

in Section 6. Next, we turn to the behavior at the boundary W = H.

The upper boundary (W = H). Our reasoning for the boundary behavior essentially

follows GIR and Panageas and Westerfield (2009). A positive return shock increases the AUM

fromW = H toH+∆H. The PV of total fees for the manager is then given by F (H+∆H,H)

before the HWM adjusts. Immediately after the positive shock, the HMW adjusts toH+∆H.

The manager collects the incentive fees k∆H, and consequently the AUM is lowered from

H + ∆H to H + ∆H − k∆H. The PV of total fees is F (H + ∆H − k∆H,H + ∆H). Using

the continuity of F (W,H) before and after the adjustment of the HWM, we have

F (H + ∆H,H) = k∆H + F (H + ∆H − k∆H,H + ∆H). (14)

By taking the limit as ∆H approaches zero and using Taylor’s expansion rule, we obtain

kFW (H,H) = k + FH(H,H) . (15)

The above is the value-matching condition for the manager on the boundary W = H. By

using essentially the same logic, we obtain the following boundary conditions for the PV of

management fees M(W,H) and the PV of incentive fees N(W,H) at the boundary W = H:

kMW (H,H) = MH(H,H) and kNW (H,H) = k +NH(H,H).

The lower liquidation boundary (W = bH). At the liquidation boundary W = bH,

the manager loses all future fees in our baseline model, in that

F (bH,H) = 0 . (16)

This assumption is as the one in GIR. However, unlike GIR, the manager influences the

liquidation likelihood via dynamic leverage. Recall that without this liquidation boundary

(b = 0), the risk-neutral manager will choose infinite leverage and the manager’s value

is unbounded. By continuity, we require b to be sufficiently high so that the manager is

sufficiently concerned about the liquidation risk and thus prudently manages leverage. In

Section 9, we extend our model to allow the manager to start a new fund, enriching the

baseline model by providing the manager with exit options.
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The homogeneity property. Our model has the homogeneity property: If we double

the AUM W and the HWM H, the PV of total fees F (W,H) will correspondingly double.

The effective state variable is therefore the ratio between the AUM W and the HWM H,

w = W/H. We use the lower case to denote the corresponding variable in the upper case

scaled by the contemporaneous HWM H. For example, f(w) = F (W,H)/H.

Summary of main results. With sufficiently high liquidation boundary b, the optimiza-

tion program converges and optimal leverage is finite and time-varying. Using the homo-

geneity property to simplify the FOC (13), we obtain the following formula for leverage:

π(w) =
α

σ2ψ(w)
, (17)

where ψ(w) is given by

ψ(w) = −wf
′′(w)

f ′(w)
. (18)

With sufficiently large liquidation risk, the risk-neutral manager behaves in a risk-averse

manner, which implies that the manager’s value function f(w) is concave. Therefore, we

may naturally interpret ψ(w) = −wf ′′(w)/f ′(w) as the manager’s “effective” relative risk

aversion, which is analogous to the definition of risk aversion for a consumer.

Analogous to Merton’s mean-variance portfolio allocation rule, optimal leverage π(w) is

given by the ratio between (1) the excess return α and (2) the product of variance σ2 and

risk aversion ψ(w). However, unlike Merton (1971), the manager in our model is risk neutral,

the curvature of the manager’s value function and the implied stochastic effective relative

risk aversion ψ(w) are caused by the endogenous liquidation risk. Using the optimal leverage

rule and Ito’s formula, we may write the dynamics for w = W/H as follows,

dwt = [π(wt)α + r − g − c]wtdt+ σπ(wt)wtdBt − dJt , (19)

where the optimal leverage π(w) is given by (17) and J is the pure jump process leading to

liquidation, as we have previously described.

The manager’s value f(w) solves the following ordinary differential equation (ODE),

(r − g + δ + λ)f(w) = cw + [π(w)α + r − g − c]wf ′(w) +
1

2
π(w)2σ2w2f ′′(w) , (20)
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subject to the following boundary conditions,

f(b) = 0 , (21)

f(1) = (k + 1)f ′(1)− k . (22)

Additionally, investors’ voluntary participation condition (10) can be simplified to

e(1) ≥ 1 . (23)

Equation (21) states that the manager’s value function is zero at the liquidation boundary b.

Equation (22) gives the condition at the right boundary w = 1. Using the optimal leverage

π(w), we may calculate the PV of management fees m(w), the PV of incentive fees n(w),

investors’ payoff e(w), and the total fund value v(w). The appendix contains the details.

4 Leverage and the manager’s value

We first choose the parameter values and then analyze the model’s results.

4.1 Parameter choices and calibration

As in GIR, our model identifies δ + λ, the sum of payout rate δ and the fund’s exogenous

liquidation intensity λ. We refer to δ + λ as the total withdrawal rate. Similarly, our model

identifies r− g, which we refer to as the net growth rate of w (without accounting for fees).

Our model is parsimonious and we only need to choose the following parameter values: (1)

the un-levered α, (2) the un-levered volatility σ, (3) the management fee c and the incentive

fee k, (4) the total withdrawal rate, δ + λ, (5) the net growth rate of w, r − g, and (6)

the liquidation boundary b. All rates are annualized and continuously compounded, when

applicable.

We choose the commonly used 2-20 compensation contract, c = 2% and k = 20%.

We set the net growth rate of w to zero, r − g = 0. Otherwise, even unskilled managers

will collect incentive fees by simply holding a 100% position in the risk-free asset. We set

the exogenous liquidation probability λ = 10% so that the implied average fund life (with

exogenous liquidation risk only) is ten years. Few hedge funds have regular payouts to

investors, we choose δ = 0. The total withdrawal rate is thus δ + λ = 10%.
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We now calibrate the remaining three parameters: excess return α, volatility σ, and

the liquidation boundary b. We use two moments from Ang, Gorovyy, and van Inwegen

(2011), which report that the average long-only leverage is 2.13 and the standard deviation

for cross-sectional leverage is 0.616 (for a data-set from a fund-of-hedge funds). Calibrating

to the two leverage moments and the equilibrium condition, e(1) = 1, we identify α = 1.22%,

σ = 4.26%, and b = 0.685. The implied Sharpe ratio for the alpha strategy is η = α/σ = 29%.

Our calibration-implied maximum drawdown before investors liquidate the fund (or

equivalently fire the manager) is 1 − b = 31.5%. Interestingly, this calibrated value 31%

is comparable to the drawdown level of 25% that is quoted by Grossman and Zhou (1993)

in their study of investment strategy with drawdown constraints.

4.2 Leverage π, managerial value f(w), and risk aversion ψ(w)

Dynamic leverage. Figure 1 plots leverage π(w) for b ≤ w ≤ 1. Leverage π(wt) is

stochastic and time-varying. At the liquidation boundary b = 0.685, the fund is barely

levered, π(b) = 1.03. At the upper boundary w = 1, leverage reaches π(1) = 3.18. For

our calibration, as w increases, the manager increases leverage. The higher the value of w,

the closer the manager is to collecting incentive fees and the more distant the fund is from

liquidation, incentive fees become deeper in the money, and the higher leverage π(w).

0.7 0.75 0.8 0.85 0.9 0.95 1
1

1.5

2

2.5

3

3.5

w

dynamic investment strategy:  !(w)

Figure 1: Dynamic leverage π(w).

12



The manager’s value f(w) and managerial risk aversion ψ(w). With sufficiently

high performance-triggered liquidation risk, f(w) is concave in w. Panel A of Figure 2

plots f(w). Quantitatively, for each unit of AUM, the manager creates 20% surplus in PV,

f(1) = 0.20, and collect the surplus via management and incentive fees. Panel B of Figure 2

plots the risk-neutral manager’s “effective” risk aversion, ψ(w). At the liquidation boundary

b = 0.685, ψ(b) = 6.50, which is much larger than ψ(1) = 2.11, the manager’s risk aversion

at w = 1. The manager’s effective risk aversion ψ(w) is stochastic and ranges from 2 to 6.5,

which is comparable to the typical values for the coefficient of relative risk aversion.

0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

w

A. present value of total fees:  f(w)

0.7 0.8 0.9 1

2

3

4

5
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7

w

B. effective risk aversion:  !(w)

Figure 2: The manager’s scaled value function f(w) and the “effective” risk aver-
sion, ψ(w) = −wf ′′(w)/f ′(w).

The risk-neutral manager behaves in a risk-averse manner in our model because of aver-

sion to inefficient (and hence costly) fund liquidation. For our calibration, as w increases,

liquidation risk decreases and managerial risk aversion ψ(w) falls.

4.3 Marginal effects of AUM and HWM on manager’s value

The marginal value of the AUM W , FW (W,H). The homogeneity property implies

that the marginal value of the AUM is FW (W,H) = f ′(w). Panel A of Figure 3 plots f ′(w).

At the liquidation boundary b = 0.685, f ′(b) = 1.46, which implies that the manager receives
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Figure 3: The sensitivities of the manager’s value function F (W,H) with respect
to the AUM W and the HWM H, FW (W,H) and FH(W,H).

1.46 in PV for an incremental unit of AUM at w = b. As w increases, f ′(w) decreases. At

w = 1, f ′(1) = 0.33, which is only 23% of f ′(b) = 1.46. Intuitively, a dollar of AUM near the

liquidation boundary b is much more valuable than a dollar near w = 1 because the former

decreases the risk of fund liquidation and can potentially save the fund from liquidation.

The higher the value of w, the lower the liquidation risk and thus the lower the marginal

value of AUM f ′(w).

The marginal impact of the HWM H, FH(W,H). Using the homogeneity property,

we have FH(W,H) = f(w)−wf ′(w). Panel B of Figure 3 plots FH(W,H) as a function of w.

Increasing H mechanically lowers w = W/H, which reduces the value of incentive fees and

increases the likelihood of investors’ liquidation. Because the manager is long in incentive

fees and short in the liquidation option, increasing H lowers F (W,H), FH(W,H) < 0.

Quantitatively, the impact of the HWM H on F (W,H) is significant, especially when w

is near the liquidation boundary. Because FH(W,H) < 0 and dFH/dw = −wf ′′(w) > 0 due

to the concavity of f(w), the impact of HWM H on the manager’s total value F (W,H) is

smaller when the value of w is higher.

Even when the manager is very close to collecting incentive fees (w = 1), a unit increase
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of the HWM H lowers the manager’s value F (H,H) by 0.13, which follows from FH(H,H) =

f(1)−f ′(1) = −0.13. The impact of H on F (W,H) is even greater for lower values of w. At

the liquidation boundary b = 0.685, the impact of HWM on manager’s value is about one to

one in our calibration, FH(bH,H) = f(b)− bf ′(b) = −1.00. Intuitively, for a given value of

W , increasing H moves the fund closer to liquidation and lowers the fund’s going-concern

value. The closer the fund is to liquidation, the more costly a unit increase of the HWM H.

In a model with incentive fees only, Panageas and Westerfield (2009) show that the

manager’s value function increases with the HWM H opposite to ours. Next, we value the

manager’s incentive and management fees.

5 Valuing incentive and management fees

In this section, we calculate the PV of management fees m(w) and the PV of incentive

fees n(w), and then assess their contributions to the manager’s total value f(w). First, we

sketch out the valuation formulas. The value functions M(W,H), N(W,H), E(W,H), and

V (W,H) are all homogeneous with degree one in AUM W and HWM H. Therefore, we will

use their respective values scaled by HWM H. The lower case maps to the variable in the

corresponding upper cases, e.g. M(W,H) = m(w)H and N(W,H) = n(w)H.

Valuation formulas. The scaled values m(w) and n(w) solve the following ODEs,

(r − g + δ + λ)m(w) = cw + [π(w)α + r − g − c]m′(w) +
1

2
π(w)2σ2w2m′′(w) , (24)

(r − g + δ + λ)n(w) = [π(w)α + r − g − c]n′(w) +
1

2
π(w)2σ2w2n′′(w) , (25)

with the following boundary conditions

m(b) = n(b) = 0 , (26)

m(1) = (k + 1)m′(1) , (27)

n(1) = (k + 1)n′(1)− k , (28)

We next explore the quantitative implications of valuation formulas. Figure 4 plots n(w)

and m(w) and their sensitivities n′(w) and m′(w).
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The value of incentive fees n(w). Panel A plots n(w). By assumption, at the liquidation

boundary w = b, n(b) = 0. As w increases, n(w) also increases. At the upper boundary

w = 1, n(1) = 0.05. At the moment of starting the fund where w = 1, incentive fees

contribute about one quarter of the manager’s total value f(1) = 0.20,

0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

w

A. value of incentive fees:  n(w)

0.7 0.8 0.9 1
0

0.05

0.1

0.15

w

C. value of management fees:  m(w)

0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

w

B. marginal value of AUM W:  n!(w)

0.7 0.8 0.9 1
0

0.5

1

1.5

w

D. marginal value of AUM W:  m!(w)

Figure 4: The value of incentive fees n(w), the value of management fees m(w),
and their sensitivities, n′(w) and m′(w).

Panel B plots n′(w), which is the “delta” for the value of incentive fees, using the option

pricing terminology. Incentive fees are a sequence of embedded call options, and N(W,H) is

thus convex in the AUM W . At the liquidation boundary b = 0.685, the delta for incentive

fees equals n′(b) = 0.05. As w increases, incentive fee delta n′(w) also increases and reaches

the value of n′(1) = 0.21 at w = 1. Note that n(w) is the present value of possibly an

infinite sequence of incentive options for the manager to collect 20% of profits should the
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AUM exceed the HWM in the future.

The value of management fees m(w). Panel C plots m(w). When the fund is liquidated,

m(b) = 0. As w increases, m(w) increases. At w = 1, m(1) = 0.15, which is 75% of the

manager’s total value, f(1) = 0.20. Quantitatively, management fees contribute more than

incentive fees to the manager’s total compensation. For our calibration, m(1) is three times

the value of incentive fees n(1) = 0.05. Intuitively, the management fee acts as a wealth tax

on the AUM provided that the fund is alive. The present value of a flow based on wealth tax

at 2% can thus be significant. For the private equity industry, Metrick and Yasuda (2010)

also find that management fees contribute to the majority of total managerial compensation.

Panel D plots m′(w). At the liquidation boundary w = b, m′(b) = 1.41, which is about

29 times of n′(b) = 0.05. This is not surprising because the vast majority of the manager’s

value f(w) derives from management fees when w is near liquidation. The manager loses

all future management fees when the fund is liquidated. Intuitively, the manager effectively

holds a short position in the liquidation (put) option. As w increases, m′(w) decreases. At

w = 1, m′(1) = 0.13, which is lower than n′(1) = 0.21. This is not surprising because the

incentive fee is very close to being in the money at w = 1.

The manager collects management fees as long as the fund survives, but only receives

incentive fees when the AUM exceeds the HWM. Incentive fees, as a sequence of call options

on the AUM, encourage managerial risk taking. Management fees, as a fraction c of the

fund’s AUM, effectively give the manager an un-levered equity cash flow claim in the fund

provided the fund is alive. However, upon liquidation, the manager receives nothing and

moreover loses all future fees. Therefore, fund liquidation is quite costly for the manager

and the manager optimally chooses a prudent use of leverage for survival so as to collect

management fees. Quantitatively, in our model, management fees dominate incentive fees in

the manager’s total compensation.

For expositional simplicity, we have so far intentionally chosen a parsimonious baseline

model. In the next four sections, we extend our model along four important dimensions:

risk seeking incentive under leverage constraint, managerial ownership, new money flow, and

managerial outside restart option.
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6 Risk seeking with leverage constraint

In our preceding analysis, the risk-neutral manager behaves in an effectively risk-averse man-

ner, i.e. ψ(w) > 0 because the manager is sufficiently concerned about performance-triggerd

liquidation (drawdown) risk. Indeed, the manager’s effective risk aversion is necessary to

ensure that the manager’s value is finite without other constraints.

We now generalize our model so that the manager can potentially behave in a risk-

seeking manner. This generalization is important since it is often believed that incentive

fees encourage managerial risk seeking. To ensure that the manager’s value f(w) is finite,

we impose the following leverage constraint, which is also often referred to as a margin

requirement,

π(w) ≤ π , (29)

where π > 1. For assets with different liquidity and risk profiles, margin requirement π may

differ. For example, individual stocks have lower margins than Treasury securities do. See

Ang et al. (2011) for a summary of various margin requirements for different assets.

With the leverage constraint (29), the optimal investment strategy π(w) is given by

π(w) = min

{
α

σ2ψ(w)
, π

}
, (30)

where ψ(w) is given by (18). When the constraint (29) does not bind, the manager behaves

in an effectively risk-averse manner, ψ(w) > 0. Let w denote the minimal level of w such that

the leverage constraint (29) binds, which implies π(w) = π for w ≤ w ≤ 1 . Because w is op-

timally chosen by the manager, the manager’s value f(w) is twice continuously differentiable

at w = w, in that the following conditions are satisfied at w,

f(w−) = f(w+), f ′(w−) = f ′(w+), f ′′(w−) = f ′′(w+) . (31)

Dynamic leverage π(w) and effective risk attitude ψ(w). Figure 5 plots dynamic

leverage policy π(w) and the corresponding “effective” risk attitude ψ(w) for three levels of

the liquidation boundary b = 0.2, 0.5, and 0.685. We set the margin constraint π = 4 and

keep remaining parameter values the same as those for the baseline calibration.
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Figure 5: Dynamic leverage π(w) and managerial risk attitude ψ(w).

For the case with b = 0.685, the manager chooses prudent leverage and the margin

constraint π ≤ 4 never binds. As we decrease b from 0.685 to 0.5, the manager becomes

less concerned about liquidation and hence increases leverage π(w) causing the leverage

constraint (29) to bind for w ≥ w = 0.67. However, the manager remains effectively risk

averse, i.e. ψ(w) > 0.

Importantly, the manager may engage in risk seeking with low liquidation risk. Consider

the case with b = 0.2. The margin requirement π ≤ 4 binds and the manager chooses the

maximally allowed leverage π = 4 for w ≥ w = 0.27. Interestingly, while behaving effectively

in a risk-averse manner in the region 0.27 ≤ w ≤ 0.48, the manager becomes risk seeking

(ψ(w) < 0) in the region w ≥ 0.48. See the part of the solid line below the horizontal dashed

line in Panel B. In the risk-seeking region, margin requirement such as (29) is needed to

ensure the convergence of the optimization problem.

7 Managerial ownership

Hedge fund managers often have equity positions in the fund that they run, which poten-

tially mitigates managerial conflicts with investors. In this section, we analyze the effects of

managerial ownership on leverage and valuation.
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7.1 Model setup and solution

Let φ denote managerial ownership in the fund. For simplicity, we assume that φ remains

constant over time. Let Q(W,H) denote the manager’s total value including both the value

of total fees F (W,H) and the manager’s pro rata share of investors’ value φE(W,H),

Q(W,H) = F (W,H) + φE(W,H) . (32)

The manager dynamically chooses the investment policy π to maximize (32). Using the

homogeneity property, we write Q(W,H) = q(w)H where q(w) is the manager’s scaled total

value. In Appendix, we show that the optimal investment strategy π(w) is given by

π(w) =
α

σ2ψq(w)
, (33)

where ψq(w) is the manager’s effective risk aversion defined by

ψq(w) = −wq
′′(w)

q′(w)
. (34)

With managerial ownership φ, the manager’s effective risk aversion ψq(w) and hence leverage

π(w) naturally depend on q(w), the sum of the value of fees f(w) and the value of the fund’s

ownership φe(w). The Appendix provides the ODE and boundary conditions for q(w).

7.2 Results

We first illustrate how leverage π(w) depends on the manager’s equity ownership, and then

analyze the quantitative implications of managerial ownership.
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Figure 6: Dynamic investment strategy π(w) and “effective” risk aversion ψq(w)
with managerial ownership (φ = 0.2).

Dynamic leverage π(w) and effective risk aversion ψq(w). Figure 6 plots the man-

ager’s optimal leverage π(w) and the risk aversion measure ψq(w) for φ = 0.2 and φ = 0

(the baseline case). All other parameter values are the same for the two cases. Leverage

π(w) is higher and correspondingly the effective risk aversion ψq(w) is lower, with managerial

ownership φ = 0.2 than without ownership, φ = 0, ceteris paribus. The larger the inside

equity position φ, the more the manager cares about investors’ value e(1), encouraging the

manager to choose a higher leverage.

Quantitative results. Table 1 shows the effects of managerial ownership φ on leverage

and values. As we increase φ from 0 to 20%, leverage π(1) increases from 3.18 to 3.30,

the value of management fees m(1) decreases from 15% to 13.9%, the value of incentive

fees n(1) increases from 4.8% to 5.7%, and investors’ value e(1) increases from 1 to 1.02.

Inside equity ownership improves incentive alignments between the manager and investors

by making the manager less concerned about liquidation risk/friction and encouraging the

manager to reduce under-investment and choose a higher leverage.

Managerial ownership increases the value of incentive fees n(1) but lowers the value of

management fees m(1), as leverage makes liquidation more likely. However, the quantitative
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Table 1: The effects of managerial ownership.

The parameter values are: r − g = 0, δ + λ = 10%, α = 1.22%, σ = 4.26%, b = 0.685,
c = 2%, and k = 20%.

φ π(1) m(1) n(1) f(1) e(1) v(1)

0 3.1753 0.1497 0.0480 0.1977 1 1.1977
10% 3.2300 0.1442 0.0528 0.1970 1.0142 1.2112
20% 3.3038 0.1388 0.0568 0.1956 1.0242 1.2197
50% 3.5188 0.1255 0.0646 0.1901 1.0408 1.2309

effect on neither n(1) nor m(1) is significant. Moreover, because m(1) and n(1) move in

opposite directions with comparable magnitudes, the manager’s total value f(1) remains

about 20%, effectively unchanged. While ownership influences the manager’s leverage choice

and various values, the quantitative effects of ownership are not large (even when φ = 50%,

as we see from the last row of Table 1).

8 New money flow

Money chases after good performances in hedge funds. We next incorporate this feature into

our model. We show that the manager benefits significantly from the new money inflows.

8.1 Model setup

We model performance-triggered money inflows as follows: whenever the fund’s AUM exceeds

its HWM, new money flows into the fund. Because the HWM H grows deterministically at

the rate of (g − δ) in the interior region W < H, the fund’s AUM only exceeds its HWM

and new money subsequently flows in, when dHt − (g − δ)Htdt > 0.

Let dIt denote the new money inflows over time increment (t, t + ∆t). We assume that

dIt is proportional to the performance measure dHt − (g − δ)Htdt > 0, in that

dIt = i [dHt − (g − δ)Htdt] , (35)

where the constant parameter i > 0 measures the sensitivity of dIt with respect to the fund’s

performance. For example, suppose Wt = Ht = 100 and the next year’s realized AUM is
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Wt+1 = 115. Then, the manager collects 3 = 20% × 15 in incentive fees. With i = 0.8, the

new money inflow is dIt = 12 = 0.8× 15, which is about 12% of the fund’s AUM.

Including the new money inflow term into (4), we write the AUM dynamics as,

dWt = πtWt (µdt+ σdBt) + (1− πt)rWtdt− δWtdt− cWtdt

−(k − i) [dHt − (g − δ)Htdt]− dJt , t < τ . (36)

There are two types of investors, current and future investors. Let E(W,H) denote the

PV of all investors including both current and future investors. Future investors have not

contributed any capital yet since their contributions will be in the form of new (stochastic)

money flows. Nonetheless, we can still value them. Let E1(W,H) and E2(W,H) denote the

PV of investments for current and future investors, respectively. In equilibrium, we need to

ensure that both current and future investors are willing to invest in the fund. The manager

benefits from the new money inflow in two ways. New money inflow increases the fund’s

AUM and hence management fees. Additionally, should the AUM exceeds the HWM in the

future, the manager will collect incentive fees on a larger asset base.

8.2 Model solution

Leverage formula and valuation formulas for fees. New money significantly influ-

ences the manager’s value, investors’ payoffs, and leverage π. Given f(w), the optimal lever-

age π(w) is still given by the mean-variance formula, (17)-(18). The Appendix characterizes

the ODE and boundary conditions for f(w), m(w), and n(w).

Current investors’ value e1(w). In the appendix, we characterize the ODE and boundary

conditions for e1(w). The current investors’ voluntary participation condition is

e1(1) ≥ 1 . (37)

We next turn to the PV of (future) new money inflow from future investors. First, we

calculate“the total discounted amount of all future money inflows.” Then, we assess the PV

of the total discounted amount of new money inflow.

The total expected discounted amount of new money flow. New money flows in

when the fund’s AUM exceeds its HWM. Let X(W,H) denote the total expected discounted
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amount of all future money inflows, which is given by

X(W,H) = Et

[∫ τ

t

e−r(s−t)i [dHs − (g − δ)Hsds]

]
, (38)

where τ is stochastic liquidation time. Because new money can only possibly flow in at

w = 1, current and future investors share the same HWM. This property is desirable because

we only need to track a single fund-wide HWM for all investors. Consequently, this richer

specification with new money flow is as tractable as the baseline model with a single investor.

We note that X(W,H) is the discounted amount of future capital. In order to account

for the manager’s alpha-generating technology on the new capital contributed by future

investors, we next calculate the PV of the future investors’ contribution E2(W,H). Again,

using the homogeneity, we characterize e2(w).

The PV of future investors’ contributed capital e2(w). In the appendix, we char-

acterize the ODE and boundary conditions for e2(w). The difference between the value of

future investors e2(w) and the discounted amount of new money inflow x(w) gives the net

surplus for future investors created by the alpha strategy.

The fund’s total net surplus z(w). The scaled fund’s value v(w) equals the sum of all

investors’ value e(w) and the manager’s value f(w). Summing the existing capital w and

discounted amount of future money inflows x(w) gives the total capital, w+ x(w). Let z(w)

denote the scaled total net surplus, which equals the difference between v(w) and w+ x(w),

z(w) = v(w)− (w + x(w)) = e1(w) + e2(w) + f(w)− (w + x(w)) . (39)

8.3 Results

Dynamic investment strategy π(w) and effective risk aversion ψ(w). Figure 7 plots

leverage π(w) and the manager’s effective risk aversion ψ(w) for the case with i = 0.8 and

compares with the baseline case where i = 0.
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Figure 7: Dynamic investment strategy π(w) with new money inflow.

The new money inflow rewards the manager by increasing the AUM upon which manage-

ment and incentive fees are based in the future. The higher the new money inflow i, the less

risk-aversely the manager behaves (lower ψ(w)) and the higher the leverage. Additionally,

the higher the value of w, the more valuable the new money to the manager, the lower the

manager’s effective risk aversion ψ(w), and the higher the leverage ψ(w). At w = 1, when

i = 0.8, leverage is π(1) = 5.11, which is 61% higher than the leverage, π(1) = 3.18 in

the baseline case with no new money inflow; correspondingly, the manager’s effective risk

aversion is ψ(1) = 1.31, which is 38% lower than the baseline case with i = 0.
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Figure 8: PV of incentive fees n(w) and PV of management fees m(w).

Figure 8 plots the value of incentive fees n(w) and the value of management fees m(w).

This figure is consistent with our intuition that n(w) responds strongly to the new money

inflow sensitivity i, while management fees m(w) responds much less to i. Panel A shows that

the higher the value of w, the stronger the effect of new money inflow i on n(w). Interestingly,

new money inflow has two opposing effects on m(w). On one hand, the new money inflow

increases future AUMs, which in turn increase m(w). On the other hand, future new money

flow encourages leverage and hence increases the liquidation risk, which in turn lowers m(w).

As a result, for sufficiently high w, m(w) increases with the new money inflow i because the

positive AUM effect dominates the negative liquidation effect. For sufficiently low w, the

opposite holds. Therefore, new money flow has ambiguous effects on m(w) as shown in Panel

B. Quantitatively, the effect of new money inflow is not strong.

Comparative statics with respect to new money flow i. In Table 2, we turn to the

comparative static results of the new money inflow parameter i. We keep all other parameter

values the same as in the baseline case with i = 0.

The quantitative effect of new money flow is significant. As we increase i from 0 to 1,

leverage π(1) increases significantly from 3.18 to 5.62, and the manager’s total value f(1)

increases by 45% from 0.2 to 0.29. Mostly the new money flow effect operates through the
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Table 2: The effects of new money flow

The parameter values are: r − g = 0, δ + λ = 10%, α = 1.22%, σ = 4.26%, b = 0.685,
c = 2%, and k = 20%.

i π(1) m(1) n(1) f(1) e1(1) x(1) e2(1) z(1)

0 3.1753 0.1497 0.0480 0.1977 1 0 0 0.1977
0.2 3.6565 0.1511 0.0574 0.2085 1.0107 0.0573 0.0580 0.2199
0.5 4.3743 0.1550 0.0750 0.2300 1.0247 0.1873 0.1920 0.2594
0.8 5.1086 0.1618 0.1001 0.2619 1.0367 0.4001 0.4148 0.3133
1.0 5.6197 0.1688 0.1240 0.2928 1.0429 0.6197 0.6463 0.3623

value of incentive fees n(1), which increases by 2.6 times from 4.8% to 12.4%. New money

flow rewards the manager when the fund is doing well and thus particularly influences the

value of incentive fees n(1). The value of management fees m(1) also increases with i, because

new money inflow causes a higher asset base so that the manager collects more fees in the

future. Quantitatively, the new money flow has a much bigger effect on n(1) than on m(1).

With new money flow i = 1, out of the manager’s total value f(1) = 0.293, management

fees m(1) account for about 58% and incentive fees contribute to the remaining 42%. With

a smaller new money inflow i = 0.5, out of f(1) = 0.23, management fees and incentive fees

account for about two thirds and one third, respectively. Therefore, even with new money,

management fees continue to account for the majority of the manager’s value.

While most benefits of the new money flow accrue to the manager, investors are also

better off. The current investors’ value e1(1) increases by 4% from 1 to 1.043 as the new

money flow i increases from 0 to 1. Interestingly, future investors are also better off by 4%

per unit of AUM. This is due to the property that all investors, current and future, in our

model share the same HWM, which substantially simplifies our analysis. With i = 1, the

total net surplus equals z(1) = 36.2%, out of which the manager, current investors, and

future investors collect 29.3%, 4.3%, and 2.6%, respectively.

We have thus far assumed that the manager loses everything and receives no outside

option when the fund is liquidated. This assumption is unrealistically strong. In reality,

hedge fund managers re-start new funds after fund liquidation or closure.5 We next generalize

5Using numerical solution in a discrete-time finite-horizon setting, Hodder and Jackwerth (2007) empha-
size the option value of endogenous fund closure but not the option value of restarting a fund.
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our model to allow the manager to have fund closure and restart options.

9 Restart options

We generalize the baseline model to incorporate manager’s restart options and then use the

model to illustrate the quantitative implications of restart options on leverage and valuation.

9.1 Model setup and solution

The manager can voluntarily close the fund and start a new one whose size depends on the

manager’s track record. We analyze a stationary framework with infinite restart options.

In the appendix, we analyze the case with one restart option. The reality is likely to lie

between the stationary and one-restart-option settings. In the end of this section, we provide

sensitivity analysis with respect to the number of restart options.

A stationary model with infinite restart options. At any moment when the current

fund’s AUM is W and its HWM is H, the manager has an option to start a new fund with

a new AUM, which we denote as S(W,H). Let ν denote the ratio between the new fund’s

AUM S(W,H) and the previous fund’s closing AUM W , i.e. ν = S(W,H)/W . To illustrate

the effects of restart options, we assume that the ratio ν satisfies

ν(w) = θ0 + θ1w +
θ2

2
w2 , (40)

where θ1 > 0 and θ2 < 0. Intuitively, the better the fund’s performance, the larger ν.

Additionally, the impact of w on ν diminishes as we increase w. The manager faces the

following tradeoff with regard to the restart option. By closing the existing fund and starting

a new one, the manager benefits by resetting the fund’s HWM and hence being much closer

to collecting incentive fees but forgoes the fees on the closed fund. Additionally, the new

fund’s AUM S(W,H) may be smaller than the closed fund’s AUM W and it is costly to

close the existing and start a new fund. The manager chooses the timing which influences

the start-up AUM size of the new fund.

In the interior region (w < 1), we have an ODE similar to the one for the baseline model.

Importantly, the new economics appears at the restart option boundary. Let f∞(w) denote

the manager’s scaled value function with infinite rounds of restart options. Let w∞ denote
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the optimal threshold for the restart option. The manager chooses the optimal boundary

w∞ so that the following value-matching and smooth-pasting conditions are satisfied,

f∞(w∞) = w∞ν(w∞)f∞(1) , (41)

f ′∞(w∞) = (ν(w∞) + w∞ν
′(w∞))f∞(1) . (42)

Condition (41) requires that the manager’s value f∞(w) is continuous at the moment of

abandoning the existing fund and starting a new fund. At the optimally chosen restart

boundary w∞ given by he smooth pasting condition (42), the manager is just indifferent

between starting the new fund or not. For w < w∞, the manager immediately closes the

existing fund and starts a new one.

An alternative and technically equivalent interpretation of our framework with restart

options is that the manager has an option to reset the HWM following poor fund performance

as the optionality embedded in incentive fees becomes significantly out of money. Resetting

the HWM causes some investors to withdraw their capital and leave the fund. Both fund

restart and HWM reset interpretations are consistent with our model.

9.2 Model results

Parameter choice and calibration. We calibrate the three new parameters, θ0, θ1, and

θ2, in (40) which determines the new fund’s size, as follows. We target (1) the restart

boundary W to be 80% of the fund’s AUM H, i.e. w∞ = 0.8; (2) the subsequent fund’s

AUM to be 75% of the previous fund’s AUM, i.e. ν(w∞) = 0.75; (3) the new fund’s size

is zero when the manager is forced to liquidate at w = b, i.e. ν(b) = 0. Using these three

conditions, we obtain θ0 = −24.75, θ1 = 61.47, and θ2 = −74. The AUM for each consecutive

fund decreases by 25% from the previous fund’s HWM in our calibration. Quantitatively,

we show that only the first several restart options matter (due to discounting and shrinking

fund sizes in the future following poor performances). For the comparison purpose, we use

the same parameter values as in the baseline when feasible.

Dynamic investment strategy π(w) and effective risk aversion ψ(w). Figure 9 plots

the optimal investment strategy π(w) and the manager’s effective risk aversion ψ(w) for two

cases, infinite restart options and no restart option as in the baseline case. Quantitatively,
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the manager’s restart options significantly increase leverage. For example, π(1) = 4.08 with

∞ restart options while π(1) = 3.18 in our baseline with no restart options. Correspondingly,

the manager’s effective risk aversion ψ(1) falls from 2.11 to 1.64 at w = 1 due to restart

options. At the moment of starting up the new fund, w∞ = 0.8 and leverage π(0.8) = 2.20,

which is much larger than leverage π(0.8) = 1.63 in the baseline case with no restart option.

Intuitively, the manager becomes more aggressive in deploying leverage because the manager

is effectively less risk averse with restart options than without.
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Figure 9: Investment strategy π(w) and risk attitude ψ(w) with restart options.
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Figure 10: PV of total fees f(w) and relative value of restart options f1(w)/f2(w)−1.

The PV of total fees f(w) and the value of restart options. Figure 10 quantifies

the value of restart options. At the optimally chosen restart option boundary w∞ = 0.8,

f∞(0.8) = 0.130, which is about 20% higher than f(0.8) = 0.109 for the baseline case with no

restart options. Even at w = 1 when restart option becomes least valuable, f∞(1) = 0.217,

which is 10% higher than f(1) = 0.198 in the baseline. In summary, the value of restart

options is large.

Present value of incentive fees and management fees. We now analyze the effects

of restart options on the values of incentive fees and of management fees. Panel A of Figure

11 plots the value of incentive fees n∞(w) with infinite restart options. The effect of restart

options on incentive fees n(w) is very large. At w = 1, n∞(1) = 0.104, which is 2.17

times of n(1) = 0.048 in the baseline case. At the optimal restart boundary w∞ = 0.8,

n∞(0.8) = 0.063, which is 5.76 times of n(0.8) = 0.011 in the baseline case.
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Figure 11: Present value of incentive fees n(w) and management fees m(w).

In contrast, restart options have negative effects on the value of management fees m(w).

At w = 1, m∞(1) = 0.112, which is 75% of the value of management fees m(1) = 0.150 in the

baseline case. At the restart boundary w∞ = 0.8, m∞(0.8) = 0.068, which is 69% of the value

of management fees n(0.8) = 0.098 in the baseline case. This seemingly counter-intuitive

negative effect can be understood as follows. Restart options have two opposing effects on

the value of management fees. First, restart options make the manager more aggressive

with leveraging and abandoning the fund, which cause each fund to be shorter lived than

the single fund in the baseline. With restart options, the manager collects management fees

from many rounds of funds. Theoretically, the net effect of restart options on m(w) can go

either way. For our calibration, the negative effect of restart options on the current fund’s

management fees outweighs the positive effect of more funds causing m(w) to be lower with

the introduction of restart options.

The value of first, second, and remaining restart options. Having focused on the

stationary case with infinite restart options, we now turn to the sensitivity analysis with

respect to the number of restart options. We consider four cases where the manager has
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Table 3: The effects of increasing the number of restart options.

This table reports the first fund’s restart boundary w, leverage π(1), and various value
functions as we increase the total number of the manager’s restart options.

Option # w π(1) ψ(1) m(1) n(1) f(1) e(1) v(1)

0 0.685 3.1753 2.1105 0.1497 0.0480 0.1977 1 1.1977
1 0.788 3.6051 1.8587 0.1390 0.0675 0.2065 1.0070 1.2135
2 0.794 3.8204 1.7539 0.1308 0.0802 0.2110 1.0072 1.2182
∞ 0.800 4.0791 1.6427 0.1124 0.1042 0.2166 1.0067 1.2233

zero, one, two, and infinite restart options.6 Table 3 reports the results in the first fund that

the manager runs across the four cases. As we increase the number of restart options, the

manager values future more, hence exits the current fund sooner, chooses a more aggres-

sive investment strategy, and values incentive fees more. Surprisingly, with more funds to

manage, the value of management fees m(1) may still decrease with the number of restart

options, which is seen in Table 3. Intuitively, more aggressive investment and exit strategies

make the manager lose more management fees from the current fund than being potentially

compensated from future funds’ management fees in PV.

Quantitatively, restart options have much stronger effects on the value of incentive fees

than on the value of management fees. For our calculation, incentive fees increase from less

than 5% in the baseline with no restart option to 10.4% with infinite restart options. Out

of the total increase of the manager’s value f(1), which is about 1.9%, from 19.8% in the

baseline case to 21.7% in the stationary case, an increase of 1.3%, which is about two thirds

of the total increase of f(1), is attributed to the first two restart options. Our calibrated

exercise thus suggests that the first few restart options carry most values for the manager.

10 Conclusions

Hedge fund managers are paid via management fees and incentive fees. For example, “two

twenty” is a commonly used compensation contract with 2% management fees on the AUM,

and 20% incentive fees on the profits, where the cost basis for profit calculation is often the

6See the appendix for the case with one restart option. For cases with multiple restart options, we have
more complicated notations, but the analysis is essentially the same and is available upon request.
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high-water mark (HWM). We develop a valuation model where the manager dynamically

chooses leverage to maximize the PV of both management and incentive fees from the current

and future managed funds (with money inflow/outflow, fund closure/restart options, and

investors liquidation options). Outside investors in each fund rationally participate in the

fund given their beliefs about the managerial skills and leverage strategies. Leverage increases

the asset base upon which the alpha strategy is deployed but also increases the likelihood

and costly consequences of investors’ liquidation, redemption/drawdown, and shrinking fund

sizes in the future following poor performances. Our framework allows investors to predict

the manager’s time-varying choice of the fund’s leverage, evaluate their investments, and

calculate the cost of the managerial compensation contract.

In our model, the key state variable, denoted as w, is the ratio between the fund’s AUM

and its HWM. The risk-neutral manager has incentives to preserve the fund’s going-concern

value so as to collect fees in the future. This survival/precautionary motive causes the

manager to behave in an effectively risk-averse manner. The greater liquidation risks and/or

costs, the more prudently the manager behaves. Optimal leverage increases with alpha and

decreases with variance. Additionally, leverage decreases with the manager’s endogenously

determined effective risk aversion, both of which change with w. The higher the value of w,

the less likely the fund is liquidated, the more likely the manager collects the incentive fees,

the less risk aversely the manager behaves, and the higher the leverage.

We further incorporate additional important institutional features into our framework.

First, we show that the manager engages in risk seeking when liquidation risk is low. Under

such a scenario, margin requirement or leverage constraint may be necessary to ensure that

leverage and the manager’s value are finite and economically sensible. Second, managerial

ownership in the fund helps mitigate agency frictions. Third, we incorporate money flow-

performance relation into our model and show that this relation has significant implications

on the manager’s value and leverage. Finally, we introduce the manager’s options to start

up new funds and find that these options are valuable.

Quantitatively, our calibration suggests that the manager needs to create significant

value to justify their compensation contracts. Both management fees and incentive fees

are important contributors to the manager’s value. Our baseline calibration suggests that

the manager needs to create 20% value surplus on the AUM to justify their two-twenty
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contracts. Out of the manager’s total value creation of 20 cents on a dollar, 75% is attributed

to management fees (15 cents) and the remaining 25% is due to incentive fees (5 cents). By

incorporating features such as new money flow, fund restart (HWM reset) options, and

managerial ownership, we find that incentive fees contribute much more to the manager’s

value. However, it seems robust that management fees carry a significant fraction, 50% or

more of the total manager’s value.

In reality, managerial skills may be unknown and time-varying. Learning about unknown

managerial skills is a topic for future research. Moreover, managers with no skills may

pretend to be skilled in order to collect fees. It is thus important for investors to infer and

learn about managerial skills. While we have developed a single fund manager’s leverage

policy, we plan to integrate our model into an industry equilibrium setting where managers

have different skills/alpha.
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Appendix

A Technical details

For Section 3. We conjecture that the value function F (W,H) takes the following homo-

geneous form in W and H:

F (W,H) = f(w)H , (A.1)

where w = W/h. When the manager’s value is given by (A.1), we have

FW (W,H) = f ′(w), FWW (W,H) = f ′′(w)/H, FH(W,H) = f(w)− wf ′(w) . (A.2)

Substituting them into the HJB equation (12) and the boundary conditions (15)-(16), we

obtain ODE (20) with boundary conditions (21)-(22). Substituting (A.1) and (A.2) into the

leverage FOC (13), we obtain the optimal leverage formula given in (17). Applying the Ito’s

formula to (2) and (4), we obtain the (optimally controlled) stochastic process (19) for w.

For Section 5. Applying the standard differential equation pricing method to M(W,H)

defined in (5) and N(W,H) defined in (6), we obtain the ODE (24) and (25) for m(w) and

n(w), respectively. For the boundary behavior at Wt = Ht, we use the same argument as the

one for F (W,H). Consider the scenario where the asset value increases by ∆H over a small

time interval ∆t, the HWM is then re-set to H + ∆H. The continuity of value functions

before and after the adjustment of the HWM imply

M(H + ∆H,H) = M(H + ∆H − k∆H,H + ∆H), (A.3)

N(H + ∆H,H) = k∆H +N(H + ∆H − k∆H,H + ∆H) . (A.4)

By taking the limit as ∆H approaches zero and using Taylor’s expansion rule, we obtain

kMW = MH , kNW = k +NH . (A.5)

Using the homogeneity property, we obtain the boundary conditions (27) and (28) for m(w)

and n(w) at w = 1, respectively. At the lower liquidation boundary (W = bH), the manager

loses both of management fees and incentive fees, and hence (26) holds.
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For Section 7. With managerial ownership, in the region W < H, the manager’s total

value Q(W,H) solves

(r + λ)Q(W,H) = max
π

[c+ φ(δ + λ)]W + [πα + (r − δ − c)]WQW (W,H) (A.6)

+
1

2
π2σ2W 2QWW (W,H) + (g − δ)HQH(W,H) .

The FOC for leverage π is

αWQW (W,H) + πσ2W 2QWW (W,H) = 0 . (A.7)

Using the homogeneity property, Q(W,H) = q(w)H, we simplify (A.6) and obtain the

following ODE for q(w):

(r−g+δ+λ)q(w) = [c+ φ(δ + λ)]w+[π(w)α+r−g−c]wq′(w)+
1

2
π(w)2σ2w2q′′(w) . (A.8)

The optimal leverage π(w) is given by (33)-(34). Because q(w) = f(w) + φe(w), the lower

boundary condition becomes q(b) = φb. Using the same analysis as the one for F (W,H), we

obtain the upper boundary condition q(1) = (k + 1)q′(1)− k.

For Section 8. We provide the ODEs and boundary conditions for various value functions

in three steps: (1) f(w), m(w), and n(w); (2) the current investors’ value e1(w); (3) the

total expected discounted amount of new capital x(w); and (4) the PV of future investors’

contributed capital e2(w).

(1) The PVs of total fees, management, and incentive fees: f(w), m(w), and

n(w). The continuity of the manager’s value before and after hitting the HWM implies

F (H + ∆H,H) = k∆H +F (H + ∆H − k∆H + i∆H,H + ∆H + i∆H). By taking the limit

as ∆H approaches zero and using Taylor’s expansion rule, we obtain

(k − i)FW (H,H) = k + (1 + i)FH(H,H) . (A.9)

Using the homogeneity property, we simplify the boundary condition (A.9) as

f(1) =
(k + 1)f ′(1)− k

1 + i
. (A.10)
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Similarly, we may also obtain the following boundary conditions for m(w) and n(w):

m(1) =
(k + 1)m′(1)

1 + i
, (A.11)

n(1) =
(k + 1)n′(1)− k

1 + i
. (A.12)

At the liquidation boundary w = b, the manager collects no fees, which implies (A.13),

f(b) = m(b) = n(b) = 0 . (A.13)

Now we turn to analyze the PV of current investor’s payoff E1(W,H).

(2) Current investors’ value e1(w). First, we turn to the boundary W = H. The

continuity of value function implies

E1(H+∆H,H) = −i∆HE1(H+∆H,H)+E1(H+∆H(1−k+i), H+∆H+i∆H) . (A.14)

By taking the limit as ∆H approaches zero and using Taylor’s expansion rule, we obtain

(k − i)∂E1(H,H)

W
= −iE1(H,H) + (1 + i)

∂E1(H,H)

H
. (A.15)

Simplifying the above condition yields

e1(1) = (k + 1)e′1(1) . (A.16)

Using the standard pricing method, the current investors’ value e1(w) solves

(r − g + δ + λ)e1(w) = (δ + λ)w + [π(w)α + r − g − c]we′1(w) +
1

2
π(w)2σ2w2e′′1(w),(A.17)

with the boundary conditions,

e1(b) = b , (A.18)

e1(1) = (k + 1)e′1(1) , (A.19)

(3) The total expected discounted amount of new money flow x(w). At the mo-

ment when new money flows in, X(W,H) satisfies the value matching condition,

X(H + ∆H,H) = i∆H +X(H + ∆H − k∆H + i∆H,H + ∆H + i∆H) . (A.20)
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Here, the first term on the right side of (A.20) is the amount of new money inflow and the

second term gives the value of X after incentive fee payment and new money inflow. By

taking the limit ∆H → 0 and using Taylor’s expansion rule, we obtain

(k − i)XW (H,H) = i+ (1 + i)XH(H,H) . (A.21)

Using the homogeneity property, we simplify (A.21) as follows,

x(1) =
(k + 1)x′(1)− i

1 + i
. (A.22)

The homogeneity property also implies that x(w) satisfies the following ODE,

(r − g + δ + λ)x(w) = [π(w)α + r − g − c]wx′(w) +
1

2
π(w)2σ2w2x′′(w) , b < w < 1 .(A.23)

From ODE (A.23), there is no money inflow when w < 1. In sum, x(w) solves (A.23) subject

to boundary condition (A.22) and x(b) = 0, the condition at the liquidation boundary b.

(4) The PV of future investors’ contributed capital e2(w). At the upper boundary

W = H, the continuity of value function implies

E2(H+∆H,H) = i∆HE1(H+∆H,H)+E2(H+∆H−k∆H+i∆H,H+∆H+i∆H) . (A.24)

By taking the limit as ∆H approaches zero and using Taylor’s expansion rule, we obtain

(k − i)∂E2(H,H)

W
= iE1(H,H) + (1 + i)

∂E2(H,H)

H
. (A.25)

Simplifying the above condition yields

e2(1) =
(k + 1)e′2(1)− ie1(1)

1 + i
. (A.26)

The future investors’ scaled value e2(w) satisfies the following ODE

(r − g + δ + λ)e2(w) = [π(w)α + r − g − c]we′2(w) +
1

2
π(w)2σ2w2e′′2(w) , (A.27)

with the boundary conditions,

e2(b) = 0 , (A.28)

e2(1) =
(k + 1)e′2(1)− ie1(1)

1 + i
. (A.29)
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For Section 9. In this appendix, we characterize the solution when the manager has two

start-up options. That is, should the manager close the first fund whose AUM size and

HWM at the moment of closure are denoted as W 1 and H1, respectively, the manager has

an option to start up a new fund whose size is denoted as W 2, equals S(W 1, H1) = ν(w1)W 1,

where w1 = W 1/H1 and the function ν(w) is given in (40).

At the moment of closing the current fund and starting a new one, value is continuous,

F 1(W 1, H1) = F 2(ν(w)W 1, ν(w)W 1) . (A.30)

Note that the HWM is re-set when the manager restarts the fund (see the right side of

(A.30)). Additionally, the optimal control implies the smooth-pasting condition. Let w1 be

the optimal boundary to restart the new fund. We thus have

f1(w1) = w1ν(w1)f2(1) , (A.31)

f ′1(w1) = (ν(w1) + w1ν
′(w1))f2(1) , (A.32)

where (A.32) captures the manager’s optimal exercising of the exit/restart option.
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