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Quadratic Transform Approximation for CDO Pricing in Multifactor Models∗
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Abstract. The multifactor version of copula models has the ability to generate complex correlation structure
among defaults that is useful in fitting the base correlation skew. However, multifactor models have
often been dismissed for their intractability. Even the semianalytical approach using Laplace trans-
forms is computationally challenging, because although the model is tractable upon conditioning on
the factors, unconditioning usually requires high efforts of integrating out the factors. To circum-
vent this problem, this paper develops a fast, closed-form approximation to the Laplace transform
in multifactor models. The method, which approximates the conditional transform in a way that
lends itself to closed-form unconditioning in arbitrarily high dimensions, is applicable to a range of
models with Gaussian factors, including models that extend the standard Gaussian copula to allow
stochastic recovery rates and factor loadings. We analyze the accuracy and convergence properties
of the approximation. Numerical examples illustrate the speed and accuracy of the method.

Key words. CDOs, Laplace transforms, multifactor models, Gaussian copula, transform inversion, quadratic
approximation
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1. Introduction. The pricing of collateralized debt obligations (CDOs) and other portfolio
credit derivatives requires the modeling of default times of obligors in the portfolio. One
then seeks to compute the distribution of the portfolio’s loss that results from defaults over
fixed time horizons. Given these marginal loss distributions, valuing a CDO tranche reduces
to calculating expectations of option-like payoffs tied to the portfolio losses. Calculating
economic capital and other measures of portfolio credit risk also relies on a portfolio’s loss
distribution at fixed dates. Correlation among defaults plays an important role in determining
the distribution of portfolio losses.

Correlation among reference entities is usually modeled by specifying a copula of default
times. The copula is driven by a set of random “factors,” conditional on which the obligors
become independent. The single-factor Gaussian copula has become a standard model for
CDO pricing. In fact, the price of a CDO tranche is typically quoted through an implied
correlation parameter associated with the single-factor Gaussian copula model. (Another
popular measure of correlation is known as the base correlation, which is also implied from
the single-factor Gaussian copula model.)

The single-factor Gaussian copula model, however, is not consistent with the market in
that it cannot match the prices of all CDO tranches simultaneously. This is evident in the smile
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138 PAUL GLASSERMAN AND SIRA SUCHINTABANDID

of the implied correlation curve and the skew of the base correlation curve. Various models
have been proposed in the attempt to fit this correlation skew. Some replace the Gaussian
factor with more heavy-tailed distribution (see, for example, Burtschell, Gregory, and Laurent
[6] and Gregory and Laurent [11]), while others extend the Gaussian copula model to allow
randomness in the recovery rates and factor loadings (see, for example, Andersen and Sidenius
[5] and Burtschell, Gregory, and Laurent [7]). However, these models are mostly tested in their
single-factor versions, while their multifactor counterparts have not received much treatment,
most likely because of the added complexity in computing the model outputs. In particular,
the multifactor Gaussian copula model, the most natural extension to the standard single-
factor model, has been left largely unexplored.

Multifactor models are appealing for several reasons. First, they enable one to create a
richer correlation structure that offers more flexibility in calibrating to the market correlation
skew. As we find in our numerical examples, it is possible to generate the skew simply by
including some “group-specific factors”—factors that affect only certain subsets of obligors
in the portfolio. Multifactor models with group-specific factors can also, in theory, find use
in problems that involve more than one CDO structure; in such problems, the correlation
ascribed to a pair of names can vary depending on the CDO structure to which they belong.
Last, there is a conceptual link between multifactor models and Merton’s structural model of
default [19]; the latent variables in the normal copula can be associated with changes in the
values of the underlying firms. In such an idealized setting, the number of factors describing
the correlations between these variables would be comparable to the number of factors in an
equity valuation model, which could easily be 10 or more.

Pricing under multifactor models, however, is challenging. The standard procedure typ-
ically begins by conditioning on the factors, after which obligors become independent. This
enables one to compute the conditional loss distribution through convolution of the individual
loss distributions (as in the recursive method of Andersen, Basu, and Sidenius [4]). Alterna-
tively, one computes the Laplace transform of the conditional loss distribution, which, thanks
to the conditional independence, is simply the product of the transforms of losses from indi-
vidual assets (see, for example, Gregory and Laurent [10], Haaf, Reiss, and Schoenmakers [12],
and Laurent and Gregory [15]). (Yet another approach, presented in Iscoe et al. [14], uses a
representation of the hockey stick function to directly approximate tranche prices, conditional
on the factors.) All the approaches mentioned above ultimately require one to uncondition
the factors, which entails multidimensional integration in as many dimensions as there are
factors. This quickly becomes infeasible when the number of factors is high, and it presents
the main obstacle in the practical use of multifactor models.

This paper develops a quadratic transform approximation (QTA) technique to address
this problem. Our method approximates the conditional Laplace transform—which is readily
available—with the exponential of a quadratic function of the factors. We choose this class of
functions because their expectations can be evaluated in closed form, regardless of the number
of factors. We thus circumvent the difficulty of the high-dimensional integration required to
find the unconditional transform as follows: rather than carry out an approximate integration
of the exact conditional transform (as one would in the traditional approaches of numerical
integration or Monte Carlo simulation), we do an exact integration of an approximation to
the conditional transform. This method results in a fast, closed-form approximation to theD
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QUADRATIC TRANSFORM APPROXIMATION 139

unconditional Laplace transform, which can then be used in a Laplace inversion procedure to
obtain the loss distribution in multifactor models.

We provide a rigorous analysis of the convergence property of the method. We bound
the error in our approximation in terms of a norm ‖A‖ of the factor loading matrix A in
the multifactor Gaussian copula framework. The loading matrix determines the strength
of the correlations between names in the portfolio; the off-diagonal entries of AA� are the
correlations between distinct pairs of names in the portfolios. We show that our method
calculates tranche prices and loss probabilities with an error that is O(‖A‖4); remarkably,
this can be improved to O(‖A‖6) with a simple, strategic choice of parameters that eliminates
the leading order error term.

As these results suggest, the method is most accurate when the loading coefficients (and
thus the correlations) are not too large, but it becomes coarse when correlations are high.
However, the method can be easily refined to handle the realistic case of strong correlation.
Typically, stronger correlations arise primarily through one of the factors, which is then in-
terpreted as a “market” factor. For correlations of this form, we can either condition on
the market factor or segment it and integrate each segment separately. These extra steps
require computing time that is similar to that in the single-factor case; in other words, our
procedure offers a way to handle multifactor models at a computational cost comparable to
single-factor models. Our numerical examples show that the method is quite accurate, even
in the environment of strong correlation.

It should be noted that the QTA method is applicable to a range of models that have
Gaussian factors, which include models that extend the standard Gaussian copula to allow
randomness in the recovery rates and factor loadings (see Andersen and Sidenius [5]). Al-
though the single-factor versions of these models are already known to have desirable traits
such as fat tails and skew-generating property, their multifactor counterparts, as shown in
our numerical examples, offer more flexibility when one attempts to fit real market data that
exhibit strong correlation and pronounced skew. The numerical examples also demonstrate
the accuracy of the QTA method as it is applied to this class of models.

The organization of this paper is as follows. In section 2, we review the normal copula
model and the method of Laplace inversion in risk measurement and derivative pricing. Sec-
tion 3 is devoted to describing and analyzing our approximation method. Section 4 explains
the extension to strong correlations among obligors and provides numerical examples. Proofs
of our main results are deferred to the appendices.

2. Background.

2.1. Normal copula model for credit risk. The valuation of CDOs relies on the modeling
of the reference portfolio’s loss process, whose value at each time represents the accumulation
of default losses of credit instruments in the portfolio. This section provides a description
of, and explains the model incentive for, the multifactor version of the normal copula model
(Li [16]). Extensions to more elaborated models in the Gaussian family will be discussed in
section 5.

Suppose that the reference portfolio comprises N obligors. For j = 1, . . . , N , let τj denote
the time that the jth obligor defaults, and let Yj denote loss that results from the default ofD
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140 PAUL GLASSERMAN AND SIRA SUCHINTABANDID

the jth obligor. Let L(t) denote the aggregated default losses at time t. Thus

(2.1) L(t) =
N∑
j=1

Yj 1{τj ≤ t}.

We assume that τj is a random variable whose marginal distribution function, Fj(t) = P(τj ≤
t), is known (e.g., from the quotes of credit default swap spreads at different maturities).
The loss-given-default Yj represents the part of the notional principle of obligor j that cannot
be recovered. To reflect uncertainty in the recovery rate, Yj is allowed to be random, with
the distribution that may depend on time. Let us assume for the time being that Yj ’s are
independent both of each other and of the default times τj. (We will relax this assumption in
section 5.)

To sample a correlated set of default times τ1, . . . , τN with marginal distributions F1, . . . , FN ,
the normal copula model specifies the default times as

(2.2) τj = F−1
j (Φ(Xj)), j = 1, 2, . . . , N,

where Φ denotes the cumulative normal distribution function, and Xj (j = 1, . . . , N) are
correlated N (0, 1) random variables. In the multifactor Gaussian copula model, correlation
among Xj is introduced through a d×1 vector Z = [Z1 Z2 . . . Zd ]

� of independent standard
normal random variables:

(2.3) Xj = a�jZ + bj εj, i = 1, . . . , N.

Here, aj = [ aj1 aj2 . . . ajd ]
� is a d × 1 vector of real constants satisfying a�jaj < 1, and εj

are N (0, 1) random variables, independent of each other and independent of Z. The constant
bj is chosen so that Xj has unit variance.

The incentive for considering the multifactor version of the normal copula model becomes
clear when one rewrites (2.3) in matrix form:

(2.4)

⎡⎢⎢⎢⎢⎢⎢⎣
X1

X2

...

XN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
a11

a21
...

aN1

⎤⎥⎥⎥⎥⎥⎥⎦Z1 +

⎡⎢⎢⎢⎢⎢⎢⎣
a12

a22
...

aN2

⎤⎥⎥⎥⎥⎥⎥⎦Z2 + · · · +

⎡⎢⎢⎢⎢⎢⎢⎣
a1d

a2d
...

aNd

⎤⎥⎥⎥⎥⎥⎥⎦Zd +

⎡⎢⎢⎢⎢⎢⎢⎣
b1 ε1

b2 ε2
...

bM εN

⎤⎥⎥⎥⎥⎥⎥⎦ .

While each εj represents the idiosyncratic factor affecting only the jth obligor, each Zj (j =
1, . . . , d) can affect all (or a certain group of) obligors. Although the factors Zj are sometimes
given economic interpretations (as industry or regional risk factors, for example), the key
role of the factors Zj is that they allow us to model complicated correlation structure in a
nonhomogeneous portfolio.

For example, suppose that obligors are classified into two groups: the high-loss group
D ⊂ {1, . . . , N}, consisting of obligors with low recovery rates, and the low-loss group Dc,
consisting of obligors with high recovery rates. Suppose that, for the high-loss group D, weD
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designate Zk as the D-specific factor, with its loading given by ajk =
√
� for all j ∈ D and

ajk = 0 for all j /∈ D. The effect of the intragroup correlation � on the prices of CDO
tranches is highly nonlinear and varies across different tranches. This is advantageous in
producing correlation skew observed in the market (as one will see in the numerical examples
in sections 3.3, 4.3, and 5.3). In richer models with more than two groups, intra- and intergroup
correlations can be modeled simply by including more factors.

The matrix A := [aij ]N×d is referred to as the loading matrix. For the time being, we
assume that A is constant. (The following analysis holds even when A is a deterministic
function of time.) In section 5, we will discuss the case when A is stochastic.

2.2. Pricing through Laplace transforms. Given the model for L(t), the pricing problem
reduces to computing the distribution of L(t) at a set of fixed times t, as we now explain.
(The following paragraph contains an argument that is explained in more detail in Hull and
White [13].)

The cash flow of a CDO can be decomposed as follows. Coupon payments (seller to buyer)
are made periodically based on the remaining notional principal at coupon dates. Default
payments (buyer to seller), which reduce the notional principal, occur whenever reference
entities default. Accrual payments (seller to buyer) are based on the reduction in the notional
principal that takes place in between coupon dates. Suppose that we discretize time as
t0, t1, t2, . . . . Consider a CDO tranche whose lower and upper attachment points are A and
B. The expected loss absorbed by this tranche during the period (tk, tk+1] is

(2.5)
(
E[B ∧ L(tk+1)]− E[A ∧ L(tk+1)]

)
−
(
E[B ∧ L(tk)]− E[A ∧ L(tk)]

)
.

If we can compute this quantity for every period (tk, tk+1] during the life of the CDO, then
the expectation of all cash flows will be determined. Therefore, the problem of valuing a CDO
reduces to the problem of computing expectation of the form E[y ∧ L(t)] at fixed points t in
time. So, from now on, we will consider the loss at fixed t and simply write L(t) as L.

Let i =
√−1 denote the imaginary unit, so that every complex number s can be decom-

posed as s = Re s+ i Im s. Let C+ denote the set of all complex number s with Re s � 0. The
Laplace transform of the portfolio loss is the mapping

φ(s) := E
[
e−sL

]
, s ∈ C

+.

The distribution of L can be obtained from φ(s) through the process of Laplace inversion
(for background, see, for example, Abate and Whitt [2]). In particular, the expectation of the
form (2.5) can be obtained from either one of the following inversion integrals:

E(L ∧ y) =
1

iπ

∫ a+i∞

a−i∞
Re( esy ) Re

(
1− φ(s)

s2

)
ds(2.6)

=
1

iπ

∫ a+i∞

a−i∞
Re( esy − eay ) Re

(
1− φ(s)

s2

)
ds,(2.7)

where integration is on the contour Re s = a > 0 in the complex plane. While these two
integrals can be easily shown to be equivalent, the integral (2.7) has an advantage in that,D
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when a = 0, its integrand is more continuous around the point s = 0. (For this reason, we will
use (2.7) for Laplace inversion in all our subsequent numerical examples.) Note that similar
forms of inversion integrals arise frequently in option pricing; see, for example, Carr and Madan
[8] and Lord and Kahl [17]. Such integrals are also used for saddlepoint approximations, as
in Martin, Thompson, and Browne [18] and Gordy [9].

In practice, Laplace inversion is carried out numerically. For example, Abate and Whitt
[2] apply a trapezoidal rule with stepsize h = π/2y to the integral (2.6), using a = A/y as
the integrating contour (A is a positive real number that is used to control the discretization
error). The result is a fast-converging, nearly alternating series:

E(L ∧ y) ≈ eAy

2

∞∑
k=−∞

(−1)k Re
1− φ

(
A/y + iπk/y

)
(A+ iπk)2

.

Other examples of inversion methods involve the characteristic function, which is defined as
the mapping ω 	→ φ(−iω), where ω ∈ R. We refer the reader to Abate and Whitt [1] for
background on inverting characteristic functions.

Numerical inversion techniques reduce the problem of computing the distribution of the
tranche losses to the problem of evaluating the Laplace transform φ(s). We now explain the
typical procedure for calculating the Laplace transform.

Using the factor structure (2.3), obligors become independent conditional on Z. Using
(2.2) and (2.3) to invert the relationship between τj and the standard Gaussian random
variable εj, one obtains the conditional probability of default within some fixed time t:

(2.8) P(τj ≤ t |Z) = Φ

(
xj − a�jZ

bj

)
, where xj = Φ−1(Fj(t)).

Let ψj(s) = E
[
e−s Yj

]
be the Laplace transform of Yj, which is assumed to be known explicitly

for all s ∈ C
+. Using conditional independence,

E
[
e−sL

∣∣Z ] = N∏
j=1

E

[
e−sYj1{τj≤t}

∣∣∣Z ]

=

N∏
j=1

(
P(τj > t|Z)E[e−s·0]+ P(τj ≤ t|Z)E[e−sYj

])

=

N∏
j=1

(
1 + (ψj(s)−1)Φ

(
xj − a�jZ√
1−a�j aj

))
.(2.9)

(Here, we assume that Yj is independent of τj. We will relax this assumption in section 5.)
This conditional Laplace transform depends on time through the definition of xj (see

(2.8)). Dependence on time may also enter through ψj and aj if the loss Yj and the loading
matrix A are specified as time-varying. However, we choose not to make the dependence on
time explicit in our notation, for the sake of simplicity.

From (2.9), the Laplace transform φ(s) = E
[
e−sL

]
is obtained by integrating over the

factors Z. In principle, unconditioning can be achieved by, say, numerical integration orD
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quasi-Monte Carlo simulation. These methods, however, are inappropriate for the multifactor
setting (2.3), because computing time grows exponentially with the number of factors. This
prompts the need for a faster method for computing φ(s), particularly seeing as Laplace
inversion requires multiple evaluation of φ(s) at many values of s.

Our main contribution, and the focus of the rest of the paper, is the development of
an efficient, analytical method for approximating φ(s). The key idea in our approach is to
approximate the conditional transform (2.9) in a way that facilitates integration in arbitrarily
high dimensions. To put it another way, rather than attempt an approximate integration of
the exact conditional transform, we carry out an exact integration of an approximation to the
conditional transform.

3. Approximating the Laplace transform. In this section, we propose and analyze our
quadratic transform approximation (QTA) for the Laplace transform φ(s). The description
of the method is given in section 3.1 (for a preview, see Steps 1–3 at the end of section 3.1).
In section 3.2, we state some convergence properties of the approximation.

3.1. Description of the approximation. We begin by stating a proposition that underlies
our approximation. The relevance of the proposition is that it identifies a class of functions
of normal random vectors whose expectations can be evaluated in closed form, regardless of
the dimension of the problem.

Proposition 1. Let Z be a d× 1 vector of independent standard normal variables. For any
scalar c ∈ C, vector g ∈ C

d, and matrix H ∈ C
d×d for which ReH is negative-semidefinite,

(3.1) E

[
e c + g�Z + Z�HZ

]
=

1√
det(I−2H)

e c + g�(I−2H)−1g/2.

This proposition forms the basis for our approach to approximate the Laplace transform
φ(s) = E[e−sL]. The main idea is to approximate the conditional Laplace transform (2.9) by
an exponential of a quadratic function of Z and then use Proposition 1 to uncondition the
risk factors.

In describing our approximation scheme, the following notations are useful. For a fixed
s ∈ C, define the mappings v 	→ gj(v) (j = 1, . . . , N) as

(3.2) gj(v) := 1 + (ψj(s)−1)Φ

(
xj + v

√
a�j aj

bj

)
, v ∈ R,

where ψj(s) is the Laplace transform of the loss-given-default Yj. With this notation, we
rewrite (2.9) as

(3.3) E
[
e−sL

∣∣Z ] =
N∏
j=1

gj(Vj) = e
∑N

j=1ln gj(Vj), where Vj := − a�jZ√
a�j aj

.

(In this paper, lnx, where x ∈ C, denotes the unique complex number that satisfies exp(ln x) =
x and −π

2 ≤ Im(lnx) ≤ π
2 .)

The Laplace transform φ(s) = E
[
e−sL

]
is obtained by unconditioning (3.3), which usually

requires multidimensional integration with respect to Z. If, however, we can approximateD
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the exponent
∑N

j=1 ln gj(Vj) by a quadratic function of Z, then we can use Proposition 1 to
uncondition (3.3) and thus obtain a closed-form approximant to φ(s). We propose that each
ln gj(Vj) in the exponent be approximated by

(3.4) ln gj(Vj) ≈ αj + βj Vj + ηj V
2
j ,

where the scalars αj , βj , and ηj are complex-valued. Using this approximation,

(3.5) φ(s) = E

[
e
∑N

j=1 ln gj(Vj)
]
≈ E

[
e
∑N

j=1(αj + βjVj + ηjV
2
j )
]
= E

[
e c+ g�Z+ Z�HZ

]
,

where the last equality follows from the fact that Vj ’s are linear in Z (see (3.3)). The scalar
b, the vector g, and the matrix H are given explicitly by

(3.6) c =

N∑
j=1

αj, g = −
N∑
j=1

βj aj√
a�j aj

, and H =

N∑
j=1

ηj
aja

�
j

a�j aj
.

The last expectation in (3.5) provides an approximant for the Laplace transform φ(s).
Proposition 1 is used to evaluate the expectation in closed form.

To complete the description of our method, it is left only to explain how to obtain the
coefficients (αj , βj , ηj) in the approximation (3.4). We use the weighted least-squares method
to fit the quadratic function (3.4); that is to say, we choose αj , βj , and ηj that solve the
minimization problem

(3.7) min
∑
λ∈Λ

f(λ)
∣∣ ln gj(λ) − αj − βj λ − ηj λ

2
∣∣2 .

The summands represent the approximation errors at certain gridpoints λ ∈ Λ, where f(λ)
represents the penalty weight for the errors. We assume that Λ and f are the same for
all j and that

∑
λ∈Λ f(λ) = 1. As the rationale behind (3.7) is to minimize the expected

error of the approximation (3.4) over possible realizations of Vj , the set of gridpoints Λ and
the weight f should be chosen to reflect the fact that Vj is standard Gaussian. For our
numerical example, we arrange the gridpoints evenly between −3 and 3, and specify f(λ)
as exponentially decreasing in |λ|2, in accordance with the normal distribution. While the
alternative of using the unweighted (i.e., equally weighted) least-squares scheme also produces
acceptable approximation φ̂(s) in our numerical experiment, we find that the weighted scheme
yields a noticeably better result. Indeed, the convergence result in section 3.2 confirms the
appropriateness of specifying the weighting function f(λ) to comply with the normal density
function (in the sense that the first six moments are matched; see Theorem 1).

The advantage of using the least-squares method to determine αj , βj , and ηj is that the
optimization problem (3.7) has a unique, closed-form solution. To characterize the solution,
define λn :=

∑
λ∈Λ λ

nf(λ). Then, the solution to (3.7) is given by

(3.8)

⎡⎢⎣ αj

βj
ηj

⎤⎥⎦ =

⎡⎢⎣ 1 λ λ2

λ λ2 λ3

λ2 λ3 λ4

⎤⎥⎦
−1∑

λ∈Λ

⎡⎢⎣ f(λ) ln gj(λ)

λ f(λ) ln gj(λ)

λ2f(λ) ln gj(λ)

⎤⎥⎦ .
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At this point we have given the full description of the method of approximating the Laplace
transform φ(s). We now summarize the steps in the procedure.

Summary. The QTA method to approximate the Laplace transform φ(s) at a fixed value of
s is as follows:
Step 1 For each j = 1, . . . , N , compute αj , βj, and ηj from (3.8).
Step 2 Compute c, g, and H from (3.6).
Step 3 The approximant for φ(s) is

φ̂(s) := E

[
e c + g�Z + Z�HZ

]
=

1√
det(I−2H)

e c + g�(I−2H)−1g/2.

This procedure provides a fast, analytical way of approximating the Laplace transform
φ(s), since all steps are in closed form and no numerical integration is required. The approx-
imant φ̂(s) can then be used in place of φ(s) in the inversion integrals (from section 2.2) to
compute an approximation for the tranche price E(L−y)+ or other quantities of interest.

To end this section, we note that the validity of the formula (3.5) is guaranteed when ReH
is negative-semidefinite. A convenient way to ensure negative-semidefiniteness of ReH is to
impose that Re ηj ≤ 0 for all j (see (3.6)). If, for some j, Step 1 returns ηj with Re ηj > 0,
then we reset Re ηj to zero and refit the real part of ln gj(Vj) in (3.4) by a linear (instead
of quadratic) function of Vj. When applied to the market data, however, Step 1 hardly ever
returns ηj that violates Re ηj ≤ 0. For example, if the marginal default probability of name j
is less than 20%, then xj = Φ̄−1(0.2) > 0.84 and Re(ln gj(v)) can be shown to be concave for
all v > −(xj−0.84)/

√
a�jaj . This implies that ηj in (3.4) satisfies Re ηj ≤ 0.

3.2. Convergence theorem. The accuracy of φ̂(s) depends on the goodness of the ap-
proximation (3.4). The goodness of fit depends primarily on the magnitude of the loadings in
A. If

√
a�jaj is small, then it can be seen from (3.2) that ln gj(Vj) will be almost linear in Vj ,

and therefore (3.4) will fit better. (In the extreme case where
√

a�jaj = 0, ln gj(Vj) becomes
constant for all Vj and the approximation (3.4) becomes exact.) Therefore, it can be said that

the approximation error |φ(s) − φ̂(s)| decreases along with the norm of A. In fact, if we let
‖A‖ denote the ∞-norm of A (defined as ‖A‖ = maxj

∑
k |ajk|), then it is easy to show that

|φ(s) − φ̂(s)| → 0 as ‖A‖ → 0. In other words, the approximation φ̂(s) becomes exact when
‖A‖ → 0.

This section poses the following question: How fast does φ̂(s) converge to φ(s)? Theorem 1
answers this question by giving the rate of convergence. The proof is given in Appendix B.

Theorem 1. Assume that the marginal default probabilities of obligors are less than 1/2:
(i) Suppose that the gridpoints λ ∈ Λ are arranged symmetrically around zero (so that

λm = 0 whenever m is odd). Then, there exist real constants δ and C such that for all loading
matrices A with ‖A‖ < δ,

(3.9)
∣∣∣φ(s)− φ̂(s)

∣∣∣ < C ‖A‖4 ∀ s ∈ C
+.

In other words, φ̂(s) converges to φ(s) at the rate of ‖A‖4.
(ii) Suppose, in addition, that λ2, λ4, and λ6 match the second, fourth, and sixth moments,

respectively, of the standard normal random distribution; that is to say, λ2 = 1, λ4 = 3, andD
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λ6 = 15. Then, there exist real constants δ′ and C ′ such that for all loading matrices A with
‖A‖ < δ′,

(3.10)
∣∣∣φ(s)− φ̂(s)

∣∣∣ < C ′ ‖A‖6 ∀ s ∈ C
+.

In other words, φ̂(s) converges to φ(s) at the rate of ‖A‖6.
Next, we will show that the convergence rates in Theorem 1 are preserved in the process

of Laplace transform inversion. Let F (y) be the approximant of E(L∧y) obtained by replacing
φ(s) in (2.7) with φ̂(s); that is,

F (y) :=
1

iπ

∫ a+i∞

a−i∞
Re(esy−eay ) Re

(
1−φ̂(s)
s2

)
ds.

Corollary 1. Under the assumptions of Theorem 1, F (y) converges to E(L−y)+ at the rate
of ‖A‖4 for all real y. If, in addition, λ2 = 1, λ4 = 3, and λ6 = 15, then F (y) converges to
E(L−y)+ at the rate of ‖A‖6 for all real y.

Proof. Assume the premise of Theorem 1. From the definition of F (y) and from (2.7),

|F (y)− E(L∧y) | =
∣∣∣∣ 1

iπ

∫ a+i∞

a−i∞
Re(esy−eay ) Re

(
φ(s)− φ̂(s)

s2

)
ds

∣∣∣∣
<

1

π

∫ ∞

−∞
eay (1− cosωy)

C ‖A‖4
a2 + ω2

dω

= C ‖A‖4 eay − 1

a
.

In the second line, we have used the fact that for all complex numbers x and y, |Re(x/y)| �
|x|/|y|. Thus, we have proved the ‖A‖4 rate of convergence. The convergence rate of ‖A‖6
can be shown in the same manner.

3.3. Numerical example I. Our first example aims at illustrating the QTA procedure and
demonstrating its accuracy in computing the loss distribution. In this example, we consider
a hypothetical case where the correlation among obligors is moderate (‖A‖ is small). For the
more realistic case of strong correlation, and for the issue of market calibration, we defer to
the next section, where we discuss extensions to the QTA method.

Consider a CDO structure with 125 names. We assume that the marginal default probabil-
ity of each obligor is 2%, and the recovery rates range from 0% to 60%. Assume that obligors
are arranged in ascending order according to their recovery rates (so that the first obligor
has the highest loss given default and the last has the lowest). The correlation structure isD
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QUADRATIC TRANSFORM APPROXIMATION 147

specified by the following 3-factor loading matrix:

(3.11) A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a

b

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This factor structure is used to create inter- and intragroup correlations. For example, the
parameter b represents the correlation between the high-loss group and the midloss group; it
can be calibrated without affecting the low-loss obligors. (Similarly, calibrating c affects only
correlation within the high-loss obligors.) This structure can be used to produce the base
correlation skew observed in the market. For example, the base correlation curve for a = .2,
b = .5, c = .5 is shown in Figure 1. (To plot this curve, we first use the 3-factor structure to
price a hypothetical equity tranche whose attachment points are 0%–x%. The base correlation
is then formally defined as the correlation parameter that the standard single-factor normal
copula model requires to produce the same price. Figure 1 plots the base correlation against
the upper attachment point x of the hypothetical equity tranche.)

B
as
e
C
or
re
la
ti
on

(%
)

0 5 10 15 20
4

6

8

10

12

14

16

18

Attachment Point (%)

Figure 1. Skew produced by the 3-factor structure.

Let us now turn to the central issue of model computation. To obtain the loss distribu-
tion, we first compute the Laplace transform. The Laplace transform obtained by the QTA
procedure, as compared to the “true” value (computed by Monte Carlo simulation), is shown
in Figure 2.

The approximated Laplace transform can be used in the inversion formula to obtain the
loss distribution and related expectations. For example, the expectation of the form (2.5) is
shown in Figure 3.D
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−3 −2 −1 0 1 2 3

0

0.5

1
——— Reφ(iω)

× QTA procedure.

ω

Figure 2. Characteristic function.

0 5 10 15 20
0

2

4

6

8

——— E(L∧y)
× Approximation

y

Figure 3. Inverting the approximated transform.

One can see that, when ‖A‖ is moderate, the approximation shows remarkable accuracy.
For the case of stronger correlation, which can be observed in real market data, we must first
discuss some methods for improving the accuracy. This will be the focus of the next section.

4. Improving the accuracy. When A carries heavy loadings, the QTA method should be
used in concurrence with either one of the methods described below. In the following sections,
we assume without loss of generality that A is structured so that its first column carries most
of the loadings. The corresponding factor Z1 thus affects most obligors, and so it will be
referred to as the market factor.

4.1. Conditioning on the market factor. The d-factor normal copula model (2.3), once
conditioned on the event {Z1= z}, becomes a normal copula model with d−1 factors whose
loading matrix is lighter compared to that of the original d-factor model. Therefore, the QTA
method of section 3 can be used to compute φz(s) := E

[
e−sL

∣∣Z1=z
]
for a given z. To obtainD
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the Laplace transform, we use one-dimensional numerical integration to evaluate the integral:

(4.1) φ(s) =

∫ ∞

−∞
φz(s) ϕ(z) dz,

where ϕ(z) = e−z2/2
/√

2π is the standard normal density. In view of (4.1), the effort of
computing the transform of a d-factor model is comparable to that of a single-factor model.

4.2. Segmenting the market factor. The QTA method relies on fitting gj(Vj) with a
quadratic function (3.4). Goodness of fit can be improved by limiting the variation of the
random variable Vj (defined in (3.3)). The method in this section reduces the variation of Vj
by partitioning the market factor Z1 into several segments. This approach, in contrast to that
of the previous section, does not require the potentially time-consuming step of numerical
integration.

Suppose that we segment Z1 using the partition −∞ = u0 < u1 < · · · < um = ∞.
Using (3.3), we write

(4.2) φ(s) = E

[
e
∑N

j=1 ln gj(Vj)
]
=

m∑
�=1

E

[
e
∑N

j=1 ln gj(Vj) 1{ u�−1 < Z1 � u� }
]
.

By approximating the expectation for each segment separately, one obtains an estimate of
φ(s). To approximate the expectation in a given segment, we posit an approximation of the
form

(4.3) E

[
e
∑N

j=1 ln gj(Vj) 1{u < Z1 � v }
]

≈ E

[
e c + g�Z + Z�HZ 1{u < Z1 � v }

]
,

where u < v are real. As in section 3, this approximation is achieved by replacing gj(Vj) with
a quadratic function αj +βjVj +ηjV

2
j (see (3.4)), so that the exponent

∑
gj(Vj) gets replaced

by a quadratic function of Z (see (3.5)). The resulting expectation (4.3) can ultimately be
computed using a closed-form formula. (See Proposition 2.)

Segmenting Z1 helps improve the approximation of gj(Vj) by making the distribution of
Vj more concentrated. In particular, one can derive that

E
[
Vj
∣∣u < Z1 � v

]
=

aj1√
a�jaj

ϕ(v)− ϕ(u)

Φ(v)− Φ(u)
,(4.4)

Var
(
Vj
∣∣ u < Z1 � v

)
= 1− a2j1

a�jaj

[(
ϕ(v) − ϕ(u)

Φ(v)− Φ(u)

)2

− ϕ′(v) − ϕ′(u)
Φ(v)− Φ(u)

]
,(4.5)

where ϕ′(x) = −xϕ(x). Of course, one can still use the least-squares method (3.7)–(3.8) to
solve for coefficients in the approximation gj(Vj) ≈ αj +βjVj +ηjV

2
j , but the set of gridpoints

Λ and the penalty function f used in the least-squares method should be chosen to reflect
the conditional mean and variance (4.4)–(4.5). (That is, assuming that the segment (u, v] is
narrow so that Vj remains approximately normal, Λ should at least cover the range of ±2
standard deviations around the mean, and f(λ) should be exponentially decreasing in the
square distance of λ from the mean.)

We now summarize the steps in the approximation (4.3):D
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1. For j = 1, . . . , N , compute [αj βj ηj ] from (3.8), with Λ and f chosen to reflect the
conditional mean and variance (4.4)–(4.5).

2. Compute c, g, and H from [αj βj ηj ] using (3.6).
3. Compute the expectation on the right-hand side of (4.3) using the following proposi-

tion.
Proposition 2. The expectation (4.3) simplifies to

e c + g�(I−2H)−1g/2√
det(I−2H)

[
Φ

(
v − ν

ς

)
− Φ

(
u− ν

ς

)]
,

where ν is the first element of the vector (I−2H)−1g, and ς2 is the top-left element of the
square matrix (I−2H)−1.

Note that the proposition involves computing the function Φ of complex numbers. We
follow the definition in Abramowitz and Stegun [3, pp. 297, 932]:

(4.6) Φ(x) =
1

2
+

x√
2π

∞∑
k=0

(−x2/2)k
k! (2k+1)

.

Computing Φ(x) for complex x is easy, since the series (4.6) converges rapidly.

4.3. Numerical example II. This example aims at demonstrating the accuracy of the two
extended methods described in sections 4.1 and 4.2. We also investigate the issue of computing
time for both methods.

With the methods of conditioning (section 4.1) or segmenting (section 4.2) the market
factor, one can now handle the more realistic case of strong correlation between obligors. As
a case study, let us consider the real market quotes at two different times: in September
2008 (when Lehman Brothers collapsed) and one year previously. The monthly fixings for
the 5-year iTraxx Europe index in September 2007 and 2008 are shown in Table 1. (Source:
Reuters.) The point is to contrast the shape of the base correlation curves implied by the
quotes on these two days.

Table 1
Quoted tranche prices. Levels for the 0%–3% tranche are upfronts with a fixed 500bps spread and are

quoted in terms of percentage of the notional principal. Levels for all other tranches are in basis points, with
no fixed running spread.

Tranches

0%–3% 3%–6% 6%–9% 9%–12% 12%–22% Index

September 28, 2007 19% 92 37 24 15 36
September 28, 2008 42% 595 320 170 75 117

The base correlation curves implied from these quotes are shown in Figure 4.
Contrast, between the two days, the rate at which the base correlation increases from

tranche to tranche. In September 2007 (the left plot), the base correlation increases at a
progressively slower rate in senior tranches. In such cases, we find that a multifactor structure,
like the one described in the example of section 3.3, can provide sufficient fit. On the other
hand, in September 2008 (the right plot), the base correlation increases rapidly in the seniorD
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Figure 4. Comparing the skew in September 2007 (left) and September 2008 (right).

tranches. This type of skew requires multifactor models that are extensions to the standard
Gaussian copula model. We will fit the skew of September 2008 in section 5, where we develop
approximation methods for multifactor models with stochastic loadings and factor-dependent
recovery rates. For now, let us apply the methods of sections 4.1–4.2 to fit the data on
September 28th, 2007.

We extend the 3-factor structure in the previous example (section 3.3) and use a 5-factor
structure to fit the market data. (The idea is to calibrate the five factors in order to match
the five tranches of the iTraxx index. We note that the number of factors does not adversely
affect the computing time, since the QTA method bypasses the process of multidimensional
numerical integration.) The 5-factor structure is shown below:

(4.7) A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The first factor is the market factor, the second and third factors control the correlation
among the high-loss obligors, and the fourth and fifth factors control the correlation among
the low-loss obligors. As before, we assume that each factor is homogeneous (in the sense that
all nonzero elements in each column have the same value), so that there are five correlation
parameters to calibrate.

The effect of each factor on the shape of the base correlation curve is consistent with our
finding in the previous example: the market factor controls the level of the base correlations
across all tranches, while the other factors control the skew of the curve. For example, we
found, by manually calibrating the loadings, that the rough shape of the base correlation
curve observed in September 2007 can be reproduced by letting the loading of the first factorD
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be 0.4 and the loading of the second factor be 0.9. We then use this as the initial starting
point in an optimization procedure to minimize the sum square error between the market and
model-implied base correlations.

The result of the fitted model is shown in Figure 5. We also show, in the same figure,
the model-implied base correlation computed via Monte Carlo (MC) simulation. (Although
this requires longer computing time compared to the QTA methods, the high number of
replications allows us to obtain an almost-exact distribution of the loss in the 5-factor model.
The corresponding 95% confidence interval lies within ±1% of the plotted value.)
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Figure 5. Result on September 28th, 2007.

As seen in Figure 5, the 5-factor structure succeeds in generating the general shape of
the base correlation curve observed in the market, and the methods of sections 4.1 and 4.2
approximate the true 5-factor model quite well. Both methods also show remarkable speed
compared to the traditional approach of computing the Laplace transform via multidimen-
sional numerical integration, as shown in Table 2.

Table 2
Reduction in computing time, compared to the standard approach of numerical integration.

Reduction in computing time

Conditioning 99.0%
Segmenting 99.3%

We end this example by emphasizing the issue of computing time. To compute the loss
distribution via Laplace inversion formulae, one needs to compute φ(s) at several values of
s. Furthermore, the calibration process requires recomputing the loss distribution at many
different sets of parameters. This routine renders the standard approach of numerical integra-D
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tion infeasible for multifactor models. Similarly, Monte Carlo simulation is not appropriate
for the process of calibration because of the large number of replications it requires to control
the variance. Therefore, the reduction in computing time in Table 2 is crucial in the practical
implementation of multifactor models.

5. Application to other models. The QTA method we have presented relies crucially on
the assumption that the factors are normally distributed (so that Proposition 1 applies). So
far we have worked under the standard normal copula model, in which the factor loadings A
are nonrandom and the losses-given-default Yj are independent of the factors. The standard
model, however, is incapable of modeling many important traits, such as dependence between
recovery rate and defaults, and tail risks—a shortcoming that has led many researchers to
consider factors with heavier tail distributions. Here, to stay within the class of normally
distributed factor models, and thereby maintain the applicability of the QTA method, we
consider some extensions of the normal copula model that address the weaknesses of the stan-
dard version (most of these extensions are proposed and analyzed in Andersen and Sidenius
[5]). We also explain how the QTA method can be modified to deal with these extended
models.

5.1. Correlation between defaults and recovery rates. Let the default times τj be spec-
ified, as usual, by (2.2)–(2.3). In the random recovery (RR) model considered in Andersen
and Sidenius [5], dependence between defaults and recovery rates is introduced by letting the
loss-given-default Yj depend on the factors Z:

(5.1) Yj = Y max
j × [1−Rj(ξj + Uj)

]
, where Uj := w�

j Z.

Here, Rj : R → [0, 1] is a given increasing function, interpreted as the recoverable portion of the
notional principal Y max

j . The ξj (1 ≤ j ≤ N) are independent random variables of prespecified
distributions. The vector constant wj characterizes the dependence of Yj on the economy-wide
and/or group-specific factors Z. Throughwj, one can model intra- and intergroup correlations
among recovery rates, just as one models the correlations among defaults through the loading
matrix A. Note that, in this setting, τj and Yj remain independent conditional on Z. This
allows us to apply the same idea in earlier sections to approximate the Laplace transform.

As before, we first compute the conditional transform E
[
e−sL

∣∣Z]. Then we let ψj(s, u) :=
E
[
e−sYj

∣∣Uj=u
]
be the Laplace transform of Yj conditioned on Uj . Mimicking the steps in

(2.9) of section 2.2, we now yield

E
[
e−sL

∣∣Z ] = N∏
j=1

(
1 + (ψj(s, Uj)−1)Φ

(
xj − a�j Z√
1−a�j aj

))
.

Thus, similar to (3.3), we now have

(5.2) E
[
e−sL

∣∣Z ] = N∏
j=1

e gj(Vj ,Uj) = e
∑N

j=1 gj(Vj ,Uj),

where gj follows the old definition (3.2), but with ψj(s) replaced by ψj(s, Uj). The next step
is to approximate gj by a quadratic function. Instead of approximating gj as a function of VjD
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alone (as we did in (3.4) of section 3.1), we now fit

(5.3) gj(Vj , Uj) ≈ αj + βjVj + κjUj + ηjV
2
j + ζjUjVj + νjU

2
j ,

where the coefficients (αj , βj , κj , ηj , ζj, νj) are obtained by the least-squares method described
in section 3.1. Because Vj and Uj are linear in Z, the approximant (5.3) simplifies to a
quadratic function of Z. Consequently,

(5.4) φ(s) = E

[
E
[
e−sL

∣∣Z ] ] = E

[
e
∑N

j=1 gj(Vj ,Uj)
]

≈ E

[
e c + g�Z + Z�HZ

]
,

where the scalar c, the vector g, and the matrix H are derived from the coefficients of (5.3).
Proposition 1 can then be evoked to evaluate the expectation.

5.2. QTA on multifactor models with stochastic factor loadings. The QTA method can
accommodate certain types of multifactor models with stochastic factor loadings. Two such
models are discussed here, each with the instruction on how to apply the QTA method.

Schloegl [20], as well as Burtschell, Gregory, and Laurent [7, 6], randomize the factor
loadings by “mixing copulae.” The simplest version of such an approach is described in its
multifactor form as follows. Let the default times be given, as before, by τj = F−1

j (Φ(Xj))
(see (2.2)). But instead of specifying Xj as in (2.3), we now let

(5.5) Xj = Bj

(
a�jZ +

√
1−a�jai εi

)
+ (1−Bj)

(
ã�jZ +

√
1−ã�j ãi εi

)
,

where aj, ãj are constants vectors, and Bj are independent Bernoulli random variables. While
the Xj in (5.5) remains standard normal, it is now a “mixture” of two copulae: if Bj = 1,
then the copula aj prevails; if Bj = 0, then ãj prevails.

To apply the QTA method, we begin, as usual, by computing the conditional transform
E
[
e−sL

∣∣Z]. Define

(5.6) Vj := − a�jZ√
a�j aj

and Ṽj := − ã�jZ√
ã�j ãj

.

By following the same line of arguments that leads to (3.3), one now obtains

E
[
e−sL

∣∣Z ] =
N∏
j=1

[
rj gj(Vj) + (1−rj)g̃j(Ṽj)

]
= e

∑N
j=1ln[ rj gj(Vj) + (1−rj )g̃j(Ṽj) ],

where g̃j is defined similarly to gj (see (3.2)), only with ãj replacing aj, and rj = P (Bj = 1).
Note the similarity between the above equation and (3.3); the gj in (3.3) is now replaced by a
mixture of gj and g̃j . The remaining steps are similar to (5.3)–(5.4). Using the least-squares
method, we approximate

(5.7) ln
[
rj gj(Vj) + (1−rj)g̃j(Ṽj)

]
≈ degree-2 polynomial in Vj and Ṽj .

This polynomial simplifies to a quadratic function of Z. Consequently,

φ(s) = E

[
e
∑N

j=1ln[rj gj(Vj)+ (1−rj)g̃j(Ṽj)]
]

≈ E

[
e c + g�Z + Z�HZ

]
.D
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Proposition 1 can then be evoked to evaluate this expectation. Note that the above method
is also applicable to the “three-stage” model considered in Burtschell, Gregory, and Laurent
[7], which can be viewed as a variation of the mixed copula model.

As another method of randomizing the factor loadings, the random factor loading (RFL)
model, proposed and analyzed in Andersen and Sidenius [5], specifies A as a function of Z. Let
us consider a multifactor case where the factor loadings depend only on the market factor Z1:

(5.8) Xj = a�jZ + bjεj + ξj, aj =

⎧⎨⎩ a
(high)
j if Z1 ≤ μ,

a
(low)
j if Z1 > μ,

where a
(high)
j and a

(low)
j are constant vectors. The constants bj and ξj are chosen such that

Xj has mean 0 and variance 1. The intuition of the model is that the loadings depend on the
market condition (Z1), allowing for stronger correlation in a bear market. Note that, here,
Xj is no longer Gaussian. Therefore, (2.2) should be changed to τj = F−1

j (Θj(Xj)), where Θj

is the cumulative distribution function (cdf) of Xj. (The expression (2.8) for the conditional
default probability should likewise be adjusted to reflect the distribution of Xj. In particular,
the definition of xj in (2.8) should be changed to xj = Θ−1

j (Fj(t))− ξj.)
To compute the Laplace transform in this setting, we apply the idea of segmenting the

market factor from section 4.2. More specifically, the approximation takes the form

(5.9) φ(s) ≈
m∑
�=1

E

[
e c� + g��Z + Z�H�Z 1{u�−1 < Z1 � u� }

]
.

For each segment, b�, g�, and H� are computed using the analytical method described in
section 4.2; we use the loading a(high)j for the segments that belong to the region {Z1 ≤ μ}
and a(low)

j for those belonging to {Z1 > μ}. Since each expectation in (5.9) is taken over the
Gaussian factors Z, Proposition 2 still applies to evaluate them in closed form.

5.3. Numerical example III. We now test the QTA method on the extended Gaussian
copula models with either stochastic recovery rates or stochastic factor loadings. With these
extensions of the standard Gaussian copula model, we are now able to consider the data
on September 28th, 2008 (shown in the example of section 4.3), in which correlation among
reference entities is high, and the base correlation curve exhibits a very pronounced skew (see
Figure 4). Andersen and Sidenius [5] have already examined the suitability of the RR model
and the RFL model in fitting such a skew. The main objective of this example is to examine
the benefit of including more factors in these models. More importantly, we will demonstrate
the accuracy of our approximation method as it applies to the multifactor version of these
models.

We first consider the RR model in section 5.1. Again, we use the 5-factor structure with
group-specific factors similar to that of section 4.3, but now we introduce dependence between
defaults and recovery rates using (5.1), with Rj chosen to be the standard Gaussian cdf Φ
(see, for example, Andersen and Sidenius [5]). The notional principle of each obligor Y max

j is
assumed to be one for all j. For simplicity, we assume that the recovery rates depend on the
factors only through the market factor Z1, i.e., Uj = wZ1 for all j (so that, conditioned on
Z1, the model becomes a 4-factor standard Gaussian copula model).D
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The guideline for calibrating the factor loadings is similar to the example in section 4.3;
here, we find that the added correlation between defaults and recovery rates (i.e., the param-
eter w) helps lift the base correlation in the senior tranche. By trial and error, we find that
the rough shape of the base correlation curve can be generated by letting the loading of the
first factor be 0.4, letting the loading of the second factor be 0.7, and letting w = 0.9. We use
this set of parameters as the starting point in an optimization procedure to minimize the sum
square error between the market and model-implied base correlations. The base correlation
of the fitted model is shown in Figure 6.
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Figure 6. Model with correlated defaults and recovery rates.

Evidently, the 5-factor RR model fits the market almost perfectly. To understand the
inherent multifactor nature of the market on this day, we perform principal component anal-
ysis (PCA) on the correlation structure among defaults and recovery rates, so as to extract
the closest single-factor structure from the 5-factor structure. The single-factor structure
extracted from the PCA procedure is shown in the same plot. As seen in Figure 6, the single-
factor RR model is capable of producing a very steep base correlation curve, but allowing
a multifactor structure serves as a way of fine tuning the model to match, almost exactly,
the market quotes. With the QTA method, the 5-factor model can be handled at almost the
same computational cost as the single-factor model, since the QTA method does not involve
multidimensional numerical integration.

As the last case study, let us use a multifactor RFL model (5.8) to fit the same data and
use the QTA method to compute the model output.

The correlation structure in the multifactor RFL model is as follows. We assume that the
5-factor structure (4.7) prevails in the region Z1 > μ. For Z1 ≤ μ, we assume, for simplicity,
that a single-factor structure (which loads only on Z1) prevails. As before, we assume that
each factor is homogeneous, in the sense that it carries the same loading for every obligor that
it affects. For comparison, we will also consider a homogeneous, single-factor RFL model.D
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In the single-factor RFL model, there are three correlation parameters to calibrate: μ,
a(high), and a(low). (For a comprehensive discussion of the effect these parameters have on
the correlation skew, we refer the reader to Andersen and Sidenius [5].) Figure 7 shows the
base correlation skew when μ = −1.7, a(low) = .6, and a(high) = .99. We find that this
set of parameters produces the base correlation curve that has the steepest upward trend.
Nevertheless, it cannot match the steepness of the market-implied base correlation curve.
Readjusting the parameters in the single-factor model will not solve the problem; doing so
will, at best, result in a parallel shift of the base correlation curve.
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Figure 7. Stochastic factor loading.

The multifactor structure (4.7) provides a way to control nonparallel shifting of the base
correlation curve. The second factor, for example, is specific to the high-loss obligors and can
be calibrated without affecting the rest of the obligors in the portfolio. In our calibration,
we find that the second factor, which carries the loading of 0.8 in our fitted model, plays an
important role in steepening the base correlation curve, so that it matches the overall shape
of the market-implied curve (see Figure 7). As for the central issue of the QTA method’s
accuracy, one can see that the method approximates the 5-factor RFL model quite well.

6. Conclusion. The multifactor version of the Gaussian copula models, as compared to
its single-factor counterpart, offers more richness in modeling the correlation structure of de-
faults and is useful in generating the base correlation skew observed in the market. Indeed,
even models that are extensions of the standard Gaussian copula model, such as those with
stochastic recovery rates and stochastic factor loadings, are shown in our examples to benefit
from the inclusion of more factors. However, computing the loss distribution in multifactor
models becomes more challenging as the number of factors increases. This paper proposes
an analytical method for approximating the loss distribution through a closed-form approx-
imation of its Laplace transform. The relevance of the approach is that it solves the curse
of dimensionality that is usually associated with multifactor models. The method is fast,D

ow
nl

oa
de

d 
12

/1
8/

14
 to

 1
28

.5
9.

83
.8

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

158 PAUL GLASSERMAN AND SIRA SUCHINTABANDID

accurate, and applicable to a range of models with Gaussian factors. Our numerical examples
provide a case study of the viability of the method.

Appendices: Proofs.

Appendix A. Proof of Propositions 1 and 2. The following is the proof of Proposition 2.
The proof of Proposition 1 follows the same line of argument.

First, assume that c, g, and H have no imaginary parts. Let V := I− 2H, and let
h := V−1g:

E

[
e c + g�Z + Z�HZ 1{u < Z1 � v }

]
=

∫
. . .

∫
1√
(2π)d

1{u < Z1 � v } e c + g�Z + Z�HZ e−Z�Z/2 dZ1 . . . dZd

=

∫
. . .

∫
ec+g�h/2√

(2π)d
1{u < Z1 � v } e− 1

2
(Z−h)�V (Z−h) dZ1 . . . dZd

=
e c + g�h/2

√
detV

[
Φ

(
v − ν

ς

)
− Φ

(
u− ν

ς

)]
,

where ν is the first element of the vector h, and ς2 is the top-left element of the matrix V−1.
The last equation follows from the fact that the last integral is taken with respect to the
multidimensional Gaussian distribution with mean h and covariance matrix V−1. The above
derivation is still valid when c, g, and H are complex, provided that the Gaussian cdf Φ is
interpreted as the power series (4.6).

Appendix B. Proof of Theorem 1. The following notations are useful:

hj(ε, λ,A) :=
xj + λ

√
a�jaj√

1− ε2a�jaj
,

where a�j is the jth row of A. Define

(B.1) Gj(s, x) := 1 + (ψj(s)−1)Φ(x), G
(k)
j (s, x) :=

∂k

∂xk
Gj(s, x).

Suppose that Λ = {λ1, . . . , λr}. Define

L(k) :=

⎡⎢⎣ 1 λ1 λ21 . . . λk1
...

...
1 λr λ2r . . . λkr

⎤⎥⎦ , Γ
(k)
j (ε, s,A) :=

∂k

∂εk

⎡⎢⎣ lnGj

(
s, h(ε, ελ1,A)

)
...

lnGj

(
s, h(ε, ελr ,A)

)
⎤⎥⎦ .

Lemma 1. There exist a positive number ε∗ < 1 and a finite number C such that for all
j = 1, . . . , N and for all k = 1, . . . , 8,

(B.2)

∣∣∣∣ ∂k∂εk lnGj

(
s, hj(ε, ελ,A)

) ∣∣∣∣ < C whenever |ε| < ε∗, s ∈ C
+, λ ∈ Λ, ‖A‖ ≤ 1.
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Furthermore, for fixed s and A, there exist γjk� ∈ C such that for all λ ∈ R,

(B.3)
∂k

∂εk

∣∣∣∣
ε=0

lnGj

(
s, hj(ε, ελ,A)

)
=

k∑
�=0

λ� γjk�,

where γjk� = 0 when k−� is odd. In particular, Γ
(k)
j (0, s) = L(k) [ γjk0 γjk1 . . . γjkk ]

�.
Proof. It can be shown that |Φ(k)(x)| < 15 for all x ∈ R and k ≤ 8. Note also that

|ψj(s)| � 1. Pick a negative number x∗ > maxj xj. From the definition of Gj , one has
(B.4)

1−2Φ(x∗) < |Gj(s, x)| ≤ 1 and
∣∣G(k)

j (s, x)
∣∣ < 31 ∀x < x∗, s ∈ C

+, k = 0, 1, . . . , 8.

Pick ε∗ < 1 such that hj(ε, ελ,A) < x∗ whenever |ε| < ε∗, λ ∈ Λ, ‖A‖ ≤ 1. It can be shown
that

(B.5)

∣∣∣∣ ∂k∂εk hj(ε, ελ,A)

∣∣∣∣ < (2k)!(|xj |+2|λ|)
(1−ε∗2)k+1/2

∀ε < ε∗, ‖A‖ ≤ 1.

Property (B.2) follows from (B.4) and (B.5).
Equation (B.3) is a result of the following observation. Given any mapping (ε, x) 	→ h(ε, x),

the derivative (∂k/∂εk)|ε=0 h(ε, ελ), if it exists, can be shown to take the form of a degree-k
polynomial in λ, with the coefficient of λ� (� ≤ k) identified as

(B.6)
1

�!

∂k+�

∂εk ∂λ�

∣∣∣∣
λ=0
ε=0

h(ε, ελ) =
1

�!

∂k+�

∂εk ∂λ�

∣∣∣∣
λ=0
ε=0

ε� h(ε, λ) =

(
k

�

)
∂k

∂λ� ∂εk−�

∣∣∣∣
λ=0
ε=0

h(ε, λ).

Furthermore, if h(ε, λ) = h(−ε, λ) (even function), then the derivative in (B.6) is zero when-
ever k−� is odd. (This implies that γjk� in (B.3) is zero whenever k−� is odd.)

Let W = diag(f(λ1), . . . , f(λr)). Let b0, b1, and b2 be the first, second, and third rows

of the 3× r matrix
(
L(2)�WL(2)

)−1
L(2)�W. Define

S
(k)
A (ε, s,Z) :=

N∑
j=1

∂k

∂εk
lnGj

(
s, h(ε, εVj ,A)

)
,(B.7)

Ŝ
(k)
A (ε, s,Z) :=

N∑
j=1

(
b0 + Vjb1 + V 2

j b2

)
Γ
(k)
j (ε, s,A) =

∂k

∂εk
Ŝ
(0)
A (ε, s,Z).(B.8)

It follows that

(B.9) φ εA(s) = E

[
eS

(0)
A (ε,s,Z)

]
, φ̂ εA(s) = E

[
e Ŝ

(0)
A (ε,s,Z)

]
.

This equation is best understood when ε = 1. When ε = 1, S
(0)
A (ε, s,Z) is the same as∑

j ln gj(Vj) in (3.3); thus the first part of (B.9) follows. To see the second part, note that (3.8)
is equivalent to αj = b0Γj(ε, s,A), βj = b1Γj(ε, s,A), and ηj = b2Γj(ε, s,A). Therefore,

Ŝ
(0)
A (ε, s,Z) =

∑
j

(
αj + βjVj + ηjV

2
j

)
. Thus the second part of (B.9) follows.D
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Proposition 3. There exist ε0 > 0 and integrable functions g(Z), ĝ(Z) such that

(B.10)

∣∣∣∣ ∂k∂εk eS(0)
A (ε,s,Z)

∣∣∣∣ < g(Z) and

∣∣∣∣ ∂k∂εk e Ŝ(0)
A (ε,s,Z)

∣∣∣∣ < ĝ(Z)

for all |ε| < ε0, s ∈ C
+, k ≤ 8 and for all A such that ‖A‖ ≤ 1.

Proof. From (B.7),

∂k

∂εk
eS

(0)
A (ε,s,Z) =

∂k

∂εk

N∏
j=1

Gj

(
s, h(ε, εVj ,A)

)
.

Using (B.4) and (B.5), the above expression can be bounded by a polynomial in |Vj |; thus the
first part of (B.10) follows.

For any G(ε) twice continuously differentiable, there exists ε′ ∈ (0, ε) such that G(ε) =
G(0) + εG(1)(0) + 1

2 ε
2G(2)(ε′) (mean value theorem). Similarly, Lemma 1 implies that for

every ε < ε∗, there exists ε′ ∈ (0, ε) such that

(B.11) lnGj

(
s, h(ε, ελ,A)

)
= γj00 + ε γj11λ+

1

2
ε2

∂2

∂ε2

∣∣∣∣
ε=ε′
lnGj

(
s, h(ε, ελ,A)

)
.

Note that the second derivative in the last term is bounded by the constant C in (B.2). In

vector form, Γ
(0)
j (ε, s,A) = L(1)[ γj00 εγj11 ]

� + 1
2 ε

2 Ξj for some column vector Ξj with

‖Ξj‖ < C. Substituting Γ
(0)
j (ε, s,A) into (B.8), noting that b2 L

(1) = 0, one yields

(B.12)
∣∣∣Ŝ(0)

A (ε, s,Z)
∣∣∣ ≤ N∑

j=1

∣∣∣∣∣ (b0 + Vjb1)Γj(ε, s,A) +
ε2 b2 Ξj V

2
j

2

∣∣∣∣∣ ∀ε < ε∗.

Let ‖b0‖, ‖b1‖, and ‖b2‖ be bounded by B. Noting that |Vj | �
√
Z�Z (see (3.3)), and

|Γj( · )| < C, it follows from (B.12) that

(B.13)
∣∣∣ e Ŝ(0)

A (ε,s,Z)
∣∣∣ � e

∣∣∣Ŝ(0)
A (ε,s,Z)

∣∣∣
< eNBC(1+

√
Z�Z+ε2 Z�Z/2)

for all ε < ε∗ and s ∈ C
+. Similarly, we can bound (B.8) by

(B.14)
∣∣∣ Ŝ(k)

A (ε, s,Z)
∣∣∣ � NBC

(
1 +

√
Z�Z+ Z�Z

)
.

Choose ε0 < min{ε∗, 1/√NBC}. The second part of (B.10) then follows from (B.14) and
(B.13) (chain rule).

Lemma 2. Suppose that ‖A‖ ≤ 1. If λ1 = λ3 = λ5 = 0, then for n = 0, 1, 2, 3,

(B.15)
∂n

∂εn

∣∣∣∣
ε=0

φ εA(s)− φ̂ εA(s)

φ0(s)
= E

[
∂n

∂εn

∣∣∣∣
ε=0

eS
(0)
A (ε,s,Z)− e Ŝ

(0)
A (ε,s,Z)

φ0(s)

]
= 0.

If, in addition, λ2 = 1, λ4 = 3, and λ6 = 15, then (B.15) holds for n = 4, 5 as well.D
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Proof. If λ1 = λ3 = λ5 = 0, then b0L
(3) = [ 1 0 0 0 ], b1L

(3) = [ 0 1 0 λ4/λ2 ], and

b2L
(3)= [ 0 0 1 0 ]. Let rk := S

(k)
A (0, s,Z) and r̂k := Ŝ

(k)
A (0, s,Z). Using Lemma 1, one yields

r1 = r̂1 =
N∑
j=1

γj11Vj, r2 = r̂2 =
N∑
j=1

(
γj22V

2
j + γj20

)
, r3 − r̂3 =

N∑
j=1

γj33

(
V 3
j − Vj

λ4

λ2

)
.

Note that E[r3 − r̂3] = 0. The derivative inside the expectation (B.15), once written in terms
of rk and r̂k (k ≤ n) using the chain rule, simplifies to zero for n = 0, 1, 2 and to r3 − r̂3 for
n = 3. Obviously, (B.15) holds for n = 0, 1, 2, 3.

If, in addition, λ2 = 1, λ4 = 3, and λ6 = 15, then b0L
(5) = [ 1 0 0 0 − 3 0 ],

b1L
(5)= [ 0 1 0 3 0 15 ], and b2L

(5)= [ 0 0 1 0 6 0 ]. Using Lemma 1, one obtains

r4 − r̂4 =
N∑
j=1

γj44
(
V 4
j −6V 2

j +3
)
, r5 − r̂5 =

N∑
j=1

[
γj55(V

5
j −15Vj) + γj53(V

3
j −3Vj)

]
.

For n = 4, the inside of (B.15) simplifies to r4 − r̂4 + 4r1(r3− r̂3). Using the fact that
E[VjV

3
k ] = 3E[VjVk] for all j, k (property of N (0, 1) random variables), one can show that

E[r4− r̂4] = 0 and E[r1(r3− r̂3)] = 0. Consequently, (B.15) holds for n = 4. For n = 5, the
expectation (B.15) simplifies to E[r5−r̂5]+ 5E[r1(r4−r̂4)]+10E[(r3−r̂3)(r2−r21)]. These three
expectations can be easily shown to be zero. Thus, (B.15) holds for n = 5.

We are now ready to prove Theorem 1 in section 3.2. From the mean value theorem,

φεA(s)− φ̂εA(s) =

n−1∑
k=0

εk

k!

∂k

∂εk

∣∣∣∣
ε=0

[
φεA(s)− φ̂εA(s)

]
+

εn

n!

∂n

∂εn

∣∣∣∣
ε=ε′

[
φεA(s)− φ̂εA(s)

]
.

Proposition 3 implies that the derivative in the last term is bounded by E[g(Z)+ĝ(Z)] for all
ε < ε0, n ≤ 6 and for all A with ‖A‖ ≤ 1. If n = 4 and λ1 = λ3 = λ5 = 0, then the first
three terms vanish (Lemma 2); the bound (3.9) then follows by replacing A with A/‖A‖ and
letting ε = ‖A‖. The bound (3.10) can be established in a similar manner.
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