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This article develops precise connections among two general approaches to building inter-
est rate models: a general equilibrium approach using a pricing kernel and the Heath,
Jarrow, and Morton framework based on specifying forward rate volatilities and the mar-
ket price of risk. The connections exploit the observation that a pricing kernel is uniquely
determined by its drift. Through these connections we provide, for any arbitrage-free term
structure model, a representative-consumer real production economy supporting that term
structure model in equilibrium. We put particular emphasis on models in which interest
rates remain positive. By modeling the dynamics of the drift of the pricing kernel, we
construct a new family of Markovian-positive interest rate models.

This article develops precise connections among two general approaches to
term structure modeling, with particular emphasis on models in which inter-
est rates stay positive: an approach based on direct modeling of the pricing
kernel (the marginal utility of optimal consumption), and the Heath, Jarrow,
and Morton (1992; hereafter HIM) framework based on specifying forward -

_rate volatilities and the market price of risk. Starting from the primitive data

of either perspective, we show how to obtain the primitive data of the other.
Our treatment of pricing kernels builds on Rogers’ (1997) approach, and our
consideration of positive interest rate models includes links with the formu-
lation of Flesaker and Hughston (1996a). In the course of developing con-
fections among these frameworks and as a consequence of them we obtain
the following additional results:

o We give an economic interpretation to-the observation that a pricing ker-
nel is completely determined by its drift, under the reasonable require-
ment that the prices of discount bonds vanish as their maturity increases.
This observation also impliés that once this drift is specified the con-
struction of all other term structure quantities follows. .

 For an arbitrary term structure model formulated in either approach we
construct a representative-consuter production economy equilibrium
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supporting that term structure. In particular, we show explicitly that
every HIM arbitrage-free model is supported by a production economy
equilibrium of the type developed by Cox, Ingersoll, and Ross (1985a).

e We develop a criterion under which an HIM model generates positive
interest rates, based on a relation between the HIM framework and that
of Flesaker and Hughston (1996a).

o We introduce a general class of positive interest rate models based on
specifying the drift of the pricing kernel as a function of Markov pro-
cesses. The models can fit any initial term structure, provide reasonably
tractable expressions for bond prices and forward rates, and match ele-
ments of the*bond return covariance matrix.

We now briefly describe the modeling approaches and then outline the
rest of the article. Consider a representative consumer economy in which the
representative consumer maximizes expected discounted utility with constant

discount factor p,
E b TUA(c)d )
. (/’. e c)dt

where U(-), defined on R*, represents the consumer’s Von Neumann-
- Morgenstern preferences. and ¢, is the consumption rate at time 7. Let ¢}
denote the optimal consumption process. In equilibrium, the time ¢ price of
a contingént claim that pays X units of account at some future date T is
aX@) = E,(EZILX) for0 <t < T < oo, where

_ U
ac’

1

Z, =e

is the marginal utility of optimal consumption at time 7, also called the pric-
ing kernel or state-price density. It is well known that in substantial generality
le.g.. see Duffie (1996)]

daz, =2, (—r(r)dr - th_,‘(r)dwb,(t)) . (D

=1

where r(r) is the short rate in the economy and ¢j(t) is the market price
of risk associated with the jth random factor W, (1), a standard Brownian
motion. Therefore, if one directly models the pricing kernel Z, as

dZ, = p(dr + 5 Y (dW (1. (2)

i=t
one can recover the short rate r(r) = —u,(1)/Z, and the market price of risk
¢;(t) = —~Y,(1)/Z,. Assuming that the consumer’s utility function is strictly
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"A potential. denoted by Z,. is a right-confinuous nonnegative supermartingale satisfying lim,
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increasing (the consumer is nonsatiable), we get Z, > 0 for all ¢. It follows
that if —p (1) is taken to be positive for all 7, then r(¢) > 0.

Historically the term structure of interest rates was first modeled by speci-
fying the dynamics of the short rates and the market prices of risk. For exam-
ples of this type of work, see Vasicek (1977), Cox, Ingersoll, and Ross
(1985b), Hull and White (1990), Longstaff and Schwartz (1991). It is clear
from Equation (1) that this approach is equivalent to specifying the pricing
kernel. More recently, researchers have modeled pricing kernels directly in
the sense that they start with explicit expressions for the dynamics of Z,.
Constantinides (1992) develops such a model in which the pricing kernel
is driven by Ornstein—UhlenbecK processes. Flesaker and Hughston (1996a),
while not explicitly referring to a pricing kernel, develop a general framework
that has a natural interpretation from the pricing kernel, a point observed by
Rogers (1997). Rogers (1997) treats the modeling of pricing kernels in a
very general setting and observes that they can be modeled as potentials.'
He also proposes a general class of models in which pricing kernels are
obtained from Markov processes. Hagan and Woodward (1997) and Hunt,
Kennedy, and Pelsser (1997) construct models in which a numeraire asset is
constructed as a function of a Markov process; specifying the dynamics of a
numeraire ‘is similar to specifying the dynamics of a pricing kernel.

We will work with Equation (2), taking 1, as the most basic modeling ele-
ment. Once 1, is specified, the pricing kernel will be completely determined.
In contrast, specifying a process for Z (rather than p;) could lead to a term
structure in which the prices of discount bonds do not vanish as their matu-
rity increases. A further advantage of modeling p, is that the initial term
structure can be easily matched through a restriction on the unconditional
mean of u, [see Equation (8)].

Rogers (1997) discusses several routes by which a pricing kernel can be
constructed. One approach starts from a positive process — (1), sets

A, = —fol w(t)dr.
and defines

Z, =E(A) ~ A, (3)
as a pricing kernel; clearly, Z is thus determined by A. Justification for

calling this process® a pricing kernel is provided in Section 4, where we con-
struct a production economy equilibrium that indeed generates this process

o~ E(Z) =0,
See. for example. Karatzas and Shreve (1991 p. 18.) ~

* Readers familiar with the general theory of stochastic processes will notice that Equation (3) is the Doob-

Mevyer decomposition of a potential [see. e.g.. Karatzas and Shreve (1991, pp. 18-2%)].

189



The Review of Financial Studies /v 14 n 1 2001

as its marginal utility of optimal consumption. As a consequence, i, has
the meaning of instantaneous expected change in the marginal utility of
optimal consumption. We will show that Equation (3) is equivalent to the

identity
00 ZY
Z,=E,(/: = dB,).

T

where B, represents a money market account. We can interpret this equation
[hence also Equation (3)] as follows. The left side is the marginal utility
from consuming one additional unit of account at time ¢. The right side is
the expected marginal utility resulting from investing one unit of account in
the money market at time ¢, keeping the size of that investment fixed at one
unit in perpetuity, and at each time t > t consuming the dividend dB, /B,
paid at time 7. In equilibrium, a representative agent should be indifferent
between the additional utility at time ¢ on the left and the expected stream
of additional utility on the right. This is the economic interpretation of this
identity and hence also of Equation (3) and the statement that the pricing
kernel is determined by its drift.

In Section 1 we detail the construction of a term structure model starting
from p, and provide technical conditions under which the model admits an
equivalent martingale measure. In Section 2 we develop the relation between
the pricing kernel approach and that of Heath, Jarrow, and Morton (1992).
The HIM framework specifies the evolution of forward rates f(¢. T') through
a process of the form

df (. Ty =a(t. TYdt + Y o,(t. TYdW (1.

i=1

HIM showed that the absence of arbitrage then implies

m

.
at.TY=Y (¢j(t) +[ a0 f)df) o;(t.T).

i=1

The primitive data in this model are therefore the forward rate volatilities o,
and the risk prices ¢;. We show how these determine 11, and vice versa. '

In Section 3 we use a relation between the Flesaker and Hughston (1996a)
and Heath, Jarrow, and Morton (1992) frameworks to obtain a means of
verifying positivity of interest rates from the HIM primitive data. Section 4
develops an equilibrium justification for all of the formulations considered
in this article. In Section 5, based on the theory developed in previous sec-
tions, we build a family of positive interest rate models using nonnegative
Markov processes. These models can fit any initial forward rate curve, pro-
vide reasonably tractable expressions for bond prices and forward rates, and
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match elements of the bond return covariance matrix. As a specific exim.

ple, we present a positive interest rate model based on a reflected Brownisn
motion.

. A Pricing Kernel Approach to Modeling Positive Interest Rates

In this section we build on Rogers (1997) to construct an arbitrage-frec pos-
itive interest rate model from an arbitrary positive process —ft, which turns
out to be the drift of a pricing kernel. In an equilibrium setting, p, can he
interpreted as the instantaneous expected change in the marginal utility of
optimal consumption.

Let (22, F, P) be a complete probability space that characterizes all the
uncertainty in the economy, and W,(t), ..., W () be m independent stan-
dard Brownian motions representing underlymg random factors that drive the
economy. We choose {F,} to be the P- -augmentation of the natural filtration
generated by Wy(r), ..., W,(r), which represents the accumulated informa-
tion up to time 1.

We start with an 7, -adapted positive continuous process — i, (t) and set

!
A = —/0 uz(r)dr.

Assume the following technical condition holds:

Assumption 1. E(AY) < oo, where A, = lim,_,__ A,
and define [as in Equation (1.7) of Rogers (1997)]
Z,=E(A | F)— A, forevery0<r<oo )

Observe that Assumption 1 implies E(supy,.o, Z2(1)) < oo. Without loss
of generality, we normalize A, so that Z, = E(A_) = 1.

We proceed to define the time ¢ price of a zero coupon bond that pays
I unit of account at maturity T to be

1
p(t.T)=—Z—E(ZT1.7~‘,), for0<t<T < oo. (5)

Since Ay is strictly increasing, lim,_ _ p(r. T) = + hmT—soc E(A — A
F,) = 0. which is desirable. If one thinks of ZT/Z as the intertemporal
marginal rate of substitution between time T consumption and time ¢ con-
sumption, then it is clear that Equation (5) yields the price of a zero coupon
bond. The economic intuition of Equation (4) will be given shortly.
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It is standard that the instantaneous forward rate f(¢, T) is given by

dlog(p. T 1 E(Ar|F)
oD == SE(Z; %) oT
——'—E(aA’ f,).»‘ ' (6)
E(Z; 1 F) .

and the short rate is ‘
3A; 1 A, Mz(f) D
rin = fi.0= (BT ]:')Ir_, Z oz

This specializes to Equation (2.4) of Rogers (1997).
Since p(0. T) = E(Z;) = E(A,) — E(A;). we have

Ar\_ 0D _ o r ~(— T‘f(o.z)dr), ®)
e(57) = e =/ Dew(=[ e

which can be used to match a given initial forward rate curve.* As we will
show p,(t) = —”—;4 is the drift of Z,, from Equati(?n (8), we concluc!e. that
the initial term structure is equivalent to a constraint on the unconditional
mean of the drift of a pricing kernel. . ‘ '
By a positive interest rate model. we mean one m.whlch the bond prices
p(t. T) are strictly decreasing in T, which is equivalent .to the require-
ment that f(¢.T) is positive for al 0 < r < T < oo. since pt.T) =
exp(— f,r f(t. 1)d7). It follows from Equation (6) that the interest rate model

constructed above is a positive one.
To proceed, we introduce the following processes. Let B, be the money

market account induced by r(¢). that is,

B,:exp([0 r(r)dt) for0 <t < o0.

It follows from Fuhini's theorem that

4 AA, THA, r
[ E( - [ﬁ)m:e([ﬂ ,Irlr) E(A, | F).

Differentiating both sides of the above equation with respect to 7 yiclds

Mﬂ = E((’_A.’ ]r_) as.
AT ar ot

* This initialization is consistent with our normalization since

AA ~ DA, ~ Ap(0. 1) _ -1
7,.-5( mlrr) [ E(d )d =/ - = pro.o

o
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We denote by M, the martingale E(A,, | F,). By Assumption (1), M, is
square integrable for every + > 0. It follows from the martingale representa-
tion theorem {see, e.g., Karatzas and Shreve (1991, pp. 182-189)] that there
exist unique adapted processes Y,(t), ..., Y, (¢) such that E ( fo Yz(t)dt) <
oo(l<j<m)forevery 0 < T < oo, and

M,:E(A.,o)-f-Z/' Yi(r)dW(r); 0<rt<oo. )
j=1"0

As shown later in this section, =Y;(r)/Z, turns out to be the market price of
risk associated with the jth random factor W, (2).
Note that Z, = M, — A,, so by Equation (7)

dZ, = dM, — dA, = dM, - r,Z, d. a0

Because M, is almost surely continuous, Z, is too. Since Z, is strictly posi-
tive, Z, is bounded away from zero (almost surely) on any finite time horizon,
and hence r(t)(= —pu,(t)/Z,) remains finite.

Again by Equation (7) and noticing that dB, = r,B,dt, we can rewrite
Equation (4) as

Z, = E(— /'muz(r)dt x]—',) = E(foo Z.r. dt '.7-',)
=E</Im%d3,']-',). (an

We can interpret this equation [hence also Equation (4)] as follows. The left
side is the marginal utility from consuming one additional unit of account at
time ¢. The right side is the expected marginal utility resulting from investing
one unit of account in the money market at time ¢, keeping the size of that
investment fixed at one unit in perpetuity, and at each time 7 > ¢ consuring
the dividend dB, /B, paid at time 1. In equilibrium, a representative agent
should be mdlfferent between the additional utility at time 7 on the left and
the expected stream of additional utility on the right. This is the economic
interpretation of the equality in Equation (11) and hence also of the statement
that the pricing kernel is determined by its drift.

The following theorem identifies the equivalent martingale measure in this
model.

Theorem 1. For each fixed T € [0,00), assume Assumption (1) and
Assumption 2

e o S o
i=1
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hold.® Then there exists an equivalent probability measure P, given by the
likelihood ratio process % I5,= Z; By, under which the zero coupon bond
price can be expressed as

p(t.T) = BE (73': ']—') =B (exp (— L[’T r(t)dt) ‘f)

for 0 <t < T < oo. That is, p(t, T)/B, is a martingale under P.

Proof. See Appendix A. - ]

This equivalent martingale measure, P, is the so-called risk-neutral mea-
sure. It is well-known from Harrison and Pliska (1981) that the existence of
such a measure implies the absence of arbitrage in the class of self-financing
trading strategies. By Theorem 1. the market price of risk associated with the
Jth random factor. denoted by ¢,(1). is

Y, (1)
PN =——>— forl <j<m > (13)
K Z’
Furthermore, the time ¢ fair price of an attainable contingent claim that pays
X units of account at time T. denoted by 7* (1), is

7*(1) = B,E (i If) = ez, x 1 7).
B, Z,
where X is a nonnegative F,-measurable random variable with E(X?) <
0o. Hence, Z, indeed plays the role of pricing kernel under the probability
measure P.

To see the generality of this approach, consider any interest rate model
with a continuous pricing kemel Z, satisfying E (supy., .., ZX(1)) < o0
and a continuous short rate process r,. Since the time 1 price p(t,T) of
a zero coupon bond that pays 1 unit of account at maturity T is less than
1. E(Z; | F,) < Z,. namely. Z, is a supermartingale. It is reasonable to
require lim,_, . p(t, T) = 0, which implies that lim,_ . E(Z;) = 0. As first

- observed by Rogers. (1997), these two properties make Z, what is known as a
potential in the theory of stochastic processes. By the Doob—Meyer decompo-
sition theorem [see, e.g., Karatzas and Shreve (1991, pp. 18-28)], there exists
a unique (up to indistinguishability) adapted continuous increasing process
A, with E(AZ) < oo so that Z, = E(A | 7)) — A, for 0 <t < oo. This
shows the existence of a positive process —yt,(1) = ”7;‘,—'" that gives rise to
the pricing kernel we started with.

* A sufficiem condition for Assumption 2 to hold is that ("/—"” ..... L"/'—:"') is bounded in R" forall 0 <1 < T.

“ We can differentiate A, because its paths are increasing fanctions and an increasing function is differentiable
almost everywhere. The requirement that short rate process is confinuous guarantees;that 1¢, (1) is continuous
and thus that A, is the integral of its derivative.
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Differentiating Equation (4) and using Equations (9) and (10), we get

dZ, = pz(tydt + Y] Y;(1)dW (1)

i=1

=Z, (—r(t)dt — z¢j(z)dwj(z)) , (14)

j=t

wh.ere the second equality follows from Equations (7) and (13). By the
uniqueness of the stochasti; integral representation of M,, the volatilities V.,
1 500 J < m, of the pricing kernel are uniquely determined by A j=
.—_.fo pz(t)dt.” and hence by {u,(r) : 0 < ¢ < oo}, the drift of z It
is implicit in Rogers (1997) that Z, is determined by A,, at least if one takes
his Equation (1.7) as a starting point. We have similarly shown

Theorem 2. Consider an interest rate model in which the short rate pro-
cess is continuous and the pricing kernel Z, is an Ité process satisfving
E(supy.., .., Z2(1)) < 00. Suppose that the prices of discount bonds g;) t0
zero as their maturity approaches infinitv. Then the volatility of the pricing
kernel is completely determined by its drifi. o

‘ This theorem indicates that, to model a pricing kernel, all we need to spec-
ify is its drift. In Section 5 we will make use of this observation to construct a
family of positive interest rate models that are based on nonnegative Markov
processes.

~There is a common perception that making parameters time dependent
could resolve the problem of fitting initial term structure. Constantinides’
model (1992) shows that this does not always work because adding time
dependence to parameters will allow one to fit the current term structure, but
could result in losing the positivity of interest rates. Motivated by the general
construction outlined above, we provide a remedy to this conflict.

Constantinides takes

Z =exp|— % 3 ?
,=exp |- (g+ 7): + o Wo(r) + ; (0 — )},
where x;(¢) (I <i < N) are Ornstein—Uhlenbeck processes defined by
dx(t) = =k x;(O)dt + o,dW (1),

Wo(). W (1), . ... Wy (1) are independent standard Brownian motions, and
8.020,0,>0.0a;,and A, > 0 (1 <i < N) are constants. It follows from

7 . .
Morc‘ explicitly. applying the Clark formula [e.g.. see Ocone (1984)} to Equation (9). we get Y.(1) =
E(D/A_ | F). where D is the Malliavin-Fréchet functional derivative. ’
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1t’s rule that the drift of this pricing kernel is

N N
Il'Z(t) = Z,(—g + ZU,-Z — ZZA;X,'“)(X,'(’) - 0!,-)

i=l1 i=1

N
+ 220,—2()(;(1) - ai)2>‘

i=1

For Z, to be a potential, 11, < 0 is required; this is ensured by the restrictions
in equations (10) and (11) of Constantinides (1992), 07 < A, for1 <i <
N,and g — ¥V (07 + (ha2/201 - %))) > 0. The market prices of risk
associated with the Oth random factor and the ith random factor are —o,
and —20,(x;(t) — «;), respectively. By Equation (4), the short rate is r(t) =
—i,(1Y/Z,, which, after completing the square for x;(1), is Equation (19) in
Constantinides (1992).°

Since E(j1,(1)) = — (0, 1) exp (— f, f(0, T)dt) Z,, it is clear that, using
the Z, above, one can not match every initial forward rate curve f(0,1).
As argued by Constantinides {see Constantinides (1992, p. 537)], adding
a deterministic function or making parameters time dependent can result in
loosing the positivity of interest rates. Motivated by Equation (8), we redefine
the instantaneous expected changes in pricing kernel as

70 (_" )
) =~ g/ O-nexw (= [L710. 0 ).

and set A, = — [0' ji,(t)dt. Then, the new pricing kemnel is Z, = E(/Tﬂ0 ]
F,) — A,. It follows from the theory developed in this section that this model
has positive interest rates and can fit any initial forward rate curve. Since the
moments of x;(r) can be explicitly computed, analytical tractability remains
in the revised model. We omit the details of the derivation.
To incorporate interest rate models in which negative rates are allowed, we
drop the requirement that —pu,(¢) be positive and, instead, we take an adapted
~(alinost surely) continuous process u,(t) and define A, = — [; u,(v)dz.
Assume that M, = lim;_ E(A; | F,) exists and M, > A, as. for all 0 <
t < o00. Then Z, = M, — A, is a strictly positive continuous semimartingale.
As before. we define the time ¢ price of a zero coupon bond that pays 1 unit
of account at maturity 7 to be p(r.T) = %’E(ZT | F)for0<t<T <00
Then. using the same argument as given above, we can show that there exists
an equivalent martingale measure in the constructed model if M, is square
integrable and Assumption 2 is satisfied.

¥ Notice that here we use a different approach to obtain short rates. Constantinides obtained »(1) by first
computing bond yield v(z. 7) and then taking the limitof x(r. TYas 7 — 1.
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2. Relation to the HIM Framework

In this section we explore the relation between modeling pricing kernels
and modeling instantaneous forward rates as proposed by Heath, Jarrow,
and Morton (1992) [see also Babbs (1997)]. We show, starting from the
primitive data of one approach, how to obtain the primitive data of the other.
On one hand, this relation enables us to explicitly construct an equilibrium
supporting any HIM model (see Section 4); on the other -hand, it allows
us to take advantage of the HIM approach when we model pricing kernels
(see Section 5). For an equivalence between HIM and short-rate models, see
Baxter (1997).

To write down the dynamics of instantaneous forward rates [see Equa-
tion (6)] in the framework presented in Section I, we apply the martingale
representation theorem. Since E(A; | F,) is a square integrable martin-
gale, there exist unique adapted processes Y (. T) (1 < j < m) such that
E(fy Y?(r, T)dr) < 0o for every 0 < T < oo, and

E(A; | F) = E(A;) + }'_jfo Y,(t.T)W,(z): 0<t<oo.  (I5)
=1

It follows from the uniqueness of the martingale representation that lim,_,
Y,(e.T) = Y;(1) as. where Y;(¢) is defined in Equation (9). Observe th;lt
Y, TY=0fort>T>0and | <j<m’®

By Equations (4) and (15), we have

m

E(Z, | F) = p(0.T) + Zfo (Y1) = Y, (. D)) dW,(r).  (16)
=

and

Z,=p©.1+ E/O (Y,(0) = Y,(z, 1)) dW (1), a7

j=1

Hence, modeling a pricing kernel is equivalent to specifying a family of
adapted square integrable processes {Y,(+,T), | < j <m, 0 <t < T :
Yitt.t) = O.tim;_ V(1. T) < oo} that determines a supermartingale
through Equation (17).

5 .
To see this, we apply the Clark formula [see. e.g.. Ocone (1984)} 1o Equation (15) and get Y,.7) =
i . : .
E(D/A; | F,). where D is the Malliavin-Fréchet functional derivative. For 1 > T > 0. since A is adapted
to F,. D/ Ay = 0. that implies that ¥,(r. T) = 0.
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Lemma 1. In the framework developed in Section 1, the dynamics of the
instantaneous forward rate are given by

il ( T) -
Ty =Y. ;1. T)—-—— o +3

i=1 i=t

99,1, T)

— L T AW (1). 18
AW, (. (8)

where
Y () — Y, (t.T)

E(Z; 1 7)
4

Y1) - Y. T)

T O D+, (Y0 - Yi(z. T dW (1) “9)
Jor0<t<T <ooand 1 < j<m.
Proof. By Equations (15) and (16). we have

d (———GE(:’T' f’)> g 3—Y:T—T)dw (. (20)
and

E(Z; | F) = i (YD = Y, (r.T))dW ;(1).

i=|
! AE(A7IF))

The conclusion follows from applying Ito’'srule to f(+. T) = B AT

If we set o,(1,T) = m%ﬂ then the drift of the instantaneous forward
rate, denoted by o(1. T). can be rewritten as

"

;
a(t.Ty=73 (¢_,m +/ o1, r)dt) o,(t.T). (21)

i=1
~ which is HIM forward rate drift condition for the existence of an equivalent
martingale measure in an interest rate model. Through Theorem I, we have

provided another proof of this fact.
Now suppose we are given the dynamics of instantaneous forward rate as

df(t. TY =a(t. TYdt + Za_,—(t. T)de,.(t).
=1

where a(r. T) satisfies Equation (21). To obtain the pricing kernel in the
HIM framework, we define ¢,(r.T) = ¢,(1) + [ o;(t. 1) dt. The addi-
tional conditions HIM found for the existence of an equuvalent martingale
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measure are

1. [condition (12.b) in Heath Jarrow, -and Morton (1992)} @; (1) satisfies

Assumption 2 (in which —L is replaced by —¢;(?)), and
2. [condition (12.¢) in Heath Jarrow and Morton (1992)] the process

m pom . )
exp (;/ﬁl —¢;(z, T)dW,(7) — 3 Ej(; #;(t, T)dr)

is a martingale.

In Appendix B we show that this exponential mamngale is in fact the
likelihood ratio process l 7, relating the forward measure'® associated with
T to the physical measure P, and, in the framework presented in Section 1,
this likelihood ratio process can be written as

dP" |  E(Z;|F)
dP 15, p(0.T)

forO0<t<T.

Equating the two expressions for the likelihood ratio process, we find that

E(Z, | 7)) = p(O. T)e)tp(Zf0 ~¢;(r, TYdW (1)
j=t

~

| Ry 2
- = (. T . 22
2%4@« MO 22)

Tt follows that the pricing kernel is

m 7 1 m f
= p(0. —¢, (. HdW (1) — = (<, ,
Z, = p(0. exp (; /0 ¢,(r. AW () — = ’}; [) e t)dr) 23)

and the zero coupon bond price, under P, is given by"

p(t,T) = ——E(z, | F)
_rO.T) -
= Lo o (2 /0 (6;(z, T) — ¢, (z. t))dW_,-(t))

X exp (_% Zf' (#3(z. T) - ¢l(z, r))dr) T (24
j=1

" A forward measure is one associated with taking a bond maturing at 7 as numeraire. See EI Karout, Geman,
and Rochet (1995) and Jamshidian (1996).

' This bond price formula was also obrained through different methods in Carverhill (1995) and Flesaker and
Hughston (1996b).
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Moreover, by Equation (7), we obtain the drift of the pricing kernel expressed
i terms of ¢,(+.T) (1 < j <m):

m 7 1 t
uz(f)z—p(o.t)eXp<§/o —¢V,-(t,r)dw_i(f)—§§fo ¢,2-(t,t)dr)

7,1)
(f(O t)+Zf 210 i o )412['¢( dr). (25)

Summarizing the results in this section, we obtain

Theorem 3. The following provides the relation between the pricing kernel
approach and the Heath-Jarrow-Morton framework:'?

1. Given a pricing kernel Z,, there exists a unique family of adapted

square integrable processes {Y;(t.T), t < j <m, 0 <t < T}, with

Y@ 8) = 0 and bimy,  Y,(t,T) = Y, (), so that Z, = p(0.1) +

L Jo (Y () = Yi(1.0))dW,(2). For | < j < m, define ¢,(t,T) as

in Equatmn (19). Then the volatility 6;(t, T) of instantaneous forward

rate is _o,"_ and the market price of nsk associated with the jth ran-
dom factor is ¢;(t) = ¢;{t.1);

2. Given the volatility o(t, T) of instantaneous forward rate and the mar-
ket price of risk ¢ (1), define ¢;(t, T) = ¢;(1) +f'T o,(t, T)dz. Then the
pricing kernel Z, in the HIM framework is given by Equation (23). We
also have Y (1) = —¢,(NZ, and Y,(1. T) = Y, (N + ¢;(1. T)E(Z, | F,).
where E(ZT | F ) is given by Equatmn (22). Moreover if Z, is a strict
supermartingale, then the interest rates are positive.

3. Positive Interest Rates in HJM

Flesaker and Hughston (1996a) present a positive interest rate framework in
which zero coupon bond prices are modeled as

f;° h(t)M(t, T)YdT

5 forO0<t<T < o0, (26)
[T h()M@, vydr ‘

pt.T)=

where M (¢, T) is a family of strictly positive continuous martingales indexed
by T and h is a deterministic positive function. Clearly, these bond prices

"2 The requirement that fim,_. p(1. 7) = 0 is a standing assumption in all models treated in this paper.
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decrease with maturity and are thus consistent with positive interest rates. If
one models the pricing kermnel Z(z) as

zZ, = fw h(D)M(t, T)dr., @7

then it is easy to verify that bond prices are of the form of Equation (26)
and hence that interest rates remain positive. Musiela and Rutkowski (1997,
‘Rogers (1997, p. 159), and Rutkowski (1997) also make this observation.
The converse, however, has not previously been established: can the pricing
kernel associated with any positive interest rate model be put in the form
of Equation (27)? We will show that this is indeed the case and use this to
derive a criterion under which interest rates in an HIM model are guaranteed
to stay positive. .

As before, we take —uz(t) as an adapted positive (almost surely) continu-
ous process and set A, = — p,z(t)dr Suppose Assumptions 1 and 2 hold
and define Z, = E(A o) A, for every 0 < t < oo and normalize
A, so that Z0 =E(A, ) = 1. The key fact is that Z, can be represented as
fol]ows

Lemma 1. For any potential (pricing kernel) Z,, there exists a positive
deterministic function h(T) and a family of strictly positive continuous mar-
tingales M(t, T) indexed by T, for0 <t < T < oo, with M@, T) =1, such
that

Z, =/ h(t)M(t, T)dt  for every 0 <t < o0. (28)

Therefore, the Flesaker—Hughston framework consists of all arbitrage-free
positive interest rate models.

Proof. Define N(t,T) = E(Z; | F,). We have

ING.T) _ 3E(A[1F) (aA, If
aT aT -
Set
1 DA, ) '
Mt T)= ——— F 29
1) = £m ( ] 29)
then M(z, T) is a strictly positive martingale in ¢ with M(0, T) = 1. Writing
A

h = ke 4

T E( 3T ) (30)

"*'We thank Lane Hughston for discussions that helped motivate our formulation of this result.
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we get

Nt.T)= [ h(t)M(t. T)d.

T
Equation (28) follows from N(r.1) = Z,.
Since no-arbitrage is equivalent to the existence of a pricing; kernel, by
- Equations (5) and (28), we have shown that. in an arbitrage-free economy,
the time 7 price of a zero coupon bond that pays | unit of account at maturity
T can be always expressed as Equation (26). »

Note that, by Equations (8) and (30). one has

;
MTY = f(0.T)exp (— / f(O.t)dr). (31
0

which can be used to match any given initial forward rate curve f(0. T).

Now suppose we start with the Flesaker—Huston formulation, that is, a
strictly positive function i(T') given by Equation (31) and a family of positive
martingales expressed as

" ’ " i

M(1.T) = exp (Z/ n;(1. TVW(7) - 5 Z[ UHES T)dr). (32)

j=t =170

Then Z,. defined as in Equation (28). is a strictly positive continuous poten-
tial. Since

t

dZ, = Z (/ hio (1. TIYM(1. z')(lr) (IW‘,-(I) — hi(tyM(z.1)dr.

i=1

we get the positive process introduced in Section 1:
‘ DA,

The following theorem presents a deeper relation between the pricing kernel
approach and the Flesaker-Huston formulation:

Theorem 4. Using the notation of Section 2. we have
I. Givenapricingkemnel Z, = p(0.1)+3_7_, IN (Y(0) = Y, (z.0)) dW ;(2).

define
Y. .
nAt. Ty = W 0<t<T<oo. (33
' WT) + S, fy ZEdW (o)

for each 1 < j < m. Then M(t. T) defined bv . T) (1 < j <m
through Equation (32) is the familv of positive martingales used in the
Flesaker—Hughston framework:
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2. Given a family of positive martingales M(t. T) expressed as in
Equation (32). define

T
V,0.Ty= [ h(om,¢.OM@.Tdr 0<1<T <oo.  (3)
7
foreach 1 < j < m. Then {Y,(t. T)} is the family of square integrable

processes that vields the pricing kernel Z,.
Proof. See Appendix C. [ ]
To see the dynamics of instantaneous forward rates in the Flesaker-
Hughston framework, we apply Equations (19) and (34), and get
S hmmi. )Mt T)dT — fIT h(t)n;(t, M (t. t)dz
E(f7 h(OM(T.1)dt | F,)
J7 h(om(r, M, t)dt.
[7 (M, v)dT

JT

¢_,‘(t- T) =

forO <t < T and (1 < j <m). Att =T, this reduces to the representation
of the market price of risk in Flesaker and Hughston (1997). Together with
Equation (18), it puts the Flesaker—Hughston models into the HIM frame-
work. Flesaker and Hughston (1996b) make a similar connection via bond
prices. It is illuminating to find the converse of this relation because it pro-
vides a way of verifying positivity of interest rates directly from the HIM
primitive data and because it confirms that every HIM model with positive
“interest rates admits the Flesaker—Hughston formulation.

Theorem 5. In the HIM framework, suppose the instantaneous forward
rates evolve according to

m ur

7
dfr. Ty =73 (qb_,(r) +] a(t. r)dt) o;(t. TYdt + Y 6,(t. TYdW ;(1).
H j=1

=t

Define
o, t.T)
fa. 1y

Then, the zero coupon bond price p(t. T) is strictly decreasing in T if and
only if n;(t.T) (1 < j < m) define a family of exponential martingales
{M(t. T)} through Equation (32)."* Moreover, they are the martingales used
in the Flesaker—Hughston framework.

Proof. See Appendix C. =

T
0Ty =—,0) — [ o, 00d7 + (35)
it

" A sufficient condition for M(1. T 1o be a martingale in 7 is the Novikov condition [see. e.g.. Karatzas and
Shreve (1991, p. 199)] or simply that (o, (2. T). ... . n, (1. TH is bounded in R” forall O <1 < T.
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4. A Supporting Equilibrium

In this section, through explicit construction we demonstrate that every HIM
model (including the Flesaker-Hughston positive interest rate models) arises
as the equilibrium term structure in a Cox-Ingersoll-Ross production econ-
omy [Cox, Ingersoll, and Ross (1985a,b), and Longstaff and Schwartz (1991)].
Although this type of equivalence between equilibrium and arbitrage-free for-
mulations is widely understood in general terms and in a variety of specific
settings [see, e.g., Ross (1977), Dybvig and Ross (1989), and Duffie (1996)),
we know of no previous result specifically supporting term structure models
in the generality of the HIM framework.

Suppose we are given the primitive data of an HIM model, (e, T) (1 <
J < m), satisfying the technical conditions that guarantee the existence of
an equivalent martingale measure. We exogenously specify u,(t) through
Equation (25). Assume that all physical investment is performed through a
single stochastic constant-returns-to-scale technology that produces a good
that is either consumed or reinvested in production. The realized returns
on physical investment are governed by the following stochastic differential
equation:

40, | w0 & Y,-m)z _sro 3
_Q,__(' Z, +,Z|( z ) )L O

where Z, and Y,(t) are determined by Equations (4) and (9)," and W.(t)
(1 < j < m) are m independent standard Brownian motions. In other words,
we are taking p,(t) as a “shock™ process that affects the productivity of
investment.

Further assume that a representative consumer seeks to maximize

E (./:oe"” In (c,)dr),

subject to the budget constraint

d
dx, = x,—Q% ~cdr. and X, >0,

!

j=t “

'* More precisely. we have

Z = /"’ i, (tydr — E (/: (e !7-",)

and

Y0 =E (1); (_ [‘c u,(r)xlt) ]f)
Yo

where D is the Malliavin—Fréchet functional derivative. and 7, is the information set generated by independent
random factors W,(1) (} < j <m).
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where ¢, represents time ¢ consumption rate, p > 0 is the utility discount
factor, and X, denotes wealth at time ¢ with X, = L.

Theorem 6. The optimal consumption rate is c; = ™' zl which is uniquely
determined by the “shock” process pi,, and the optimal wealth process is
X = %c,". Therefore, Z, is the marginal utility of optimal consumption.

Proof. See Appendix D. a

Theorem 6 is an extension of Cox, Ingersoll, and Ross’ results in that
Cox, Ingersoll, and Ross (1985a,b) constructed a Markovian economy, which
allows them to utilize the Hamilton-Jacobi-Bellman equation for solving the
representative consumer’s maximization problem. In our case, the “shock”
process 1 ,(t) itself may not be Markovian. Therefore, we have to rely upon
convex duality and martingale techniques [see, e.g., Cvitani¢ and Karatzas
(1992)] to find the optimal consumption rate. Moreover, by Equation (8), we
see that the current term structure of interest rates imposes a condition on
the shock process through its unconditional mean. '

5. A General Class of Positive Interest Rate Models

We will use nonnegative Markov processes to model instantaneous expected
changes in pricing kernels.'® This yields a family of positive interest rate
models that can fit any given_ initial forward rate curve and have easy-to-
evaluate expressions for bond prices and forward rates. More specifically, we
are going to take the Markov process as a reflected Brownian motion and
show how to use the link between the pricing kernel approach and the HIM
framework to match elements of the bond return covariance matrix.

Let X, be a nonnegative Markov process, driven by m independent stan-
dard Brownian motions W,(r), ..., W, (¢), with E(X,) = l(z) > O for ali
t > 0. We set

—uz(ty = jO)X, + g,

where g(r) is a deterministic function that satisfies 0 < g(r) < —QL‘;}'—’,
p(0,1) (r > 0) are the initial bond prices and j(r) = (—"”’—;‘,‘,"L) —g() ;;'7)
Note that

ap(0.1)
at

E (1,(1) = = —f(0, fyexp(— /0 100, T)d1),

** Rogers (1997) also gives examples of pricing kemnels constructed from Markov processes, but the approach and
resulting models are different. Hunt. Kennedy. and Pelsser (1997) directly model the value of zero coupon
bonds or other assets as functions of a Markov process. Hagan and Woodward (1997) model an abstract
numeraire as a function of a Markov process.
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where { (0. 1)}, denotes the initial forward rate curve. We define

A, =fo —p,(t)dt =/‘; (jOX, +g(r))dr.

Assume that there exist two positive constants ¢, and ¢, so that ¢, <
[0, < ¢, for all 1 > 0. It is immediate that, if X, ;/ 1) and E(X?) are
at most of polynomial growth as ¢ goes to infinity, then A, =1lim,_ A,
exists, and E(A2)) < oo.

Let {F,} be the filtration representing the information available up to
time 1. As before, we set Z, = E(A,, | F,) - A, and define the time 7
price of a zero coupon bond that pays l unit of account at maturity 7 to be
p(t.T) = —E(ZTIJ-') Forx e Rand T > 1 > 0, we write

L. T:x)=E(X; | X, =x).

Then

t

E(z,17)=E ([r (j(X, +g(m))dr | x,)
=Lt. T:X)J(TY+ 1. T: X))+ G(T).
where J(T) = [ j(D)dt. 1(1.T: X,) = [° J(t)L(';;iix#)dt and G(T) =

I7 g(vydr .
Since L(1.t; X,) = X,, we have

Z, =XJ@)+1(t.1: X)) + G(1).

Proposition 1. The zero coupon bond price can be expressed as

La.T:X)J(T)+ 1. T; X,) + G(T)

Ty =
Pt 1) X IO+ 1.0 X) + G

Remark.  p(1.T) only depends on the current state of X,, independent of
the past, which makes the evaluation easy to carry out.

To obtain an expression for the instantaneous forward rate. we need

A
( Ay ,f)=E(j(T,XT+g(T) I X,) = j(DE(X; | X,) + &(T)
=j (DL, T: X,) + (7).
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By Equations (6) and (7), we get
Proposition 2. The instantaneous forward rate is

L@, T;X)j(T)+g(T)
L&, T; X)J(T)+ 14, T; X,) + G(T)’

f@.N=

and the short rate is
X, j(e)+ gty
XJ@O+1t,6X)+ G

We notice that, as far as computation is concerned, the key quantity in the
above modelis L(t, T; X,). To get more explicit formulas, from now on, we take

r(t) =

X, = W@,

where W(r) is a standard Brownian motion. First, the law of the iterated
logarithm implies that M};'ﬂ is at most of the order ./ZToglogz as ¢ goes to
infinity. Hence A, exists. Since E(|W()|?) = 12, E(A2) < 0o. Moreover,
for x e R and ¢ > 0, we have

L(t.T:x) =E(IWDI|W(t) = x)

/Z(T-—t)_ x
= - eﬂ_+x(2¢( '_T—t)_])’

where ®(-) denotes the cumulative standard normal distribution. It follows
that

oL, T, W(l)) 1 __zl:'?ir’))
aT 2n(T — 1) '

Applying 1t6’s rule, we obtain

dA; o W) \
dE (37 | W(:)) = j(T) (2<b (——m) 1) AW ().
By Equation (20),

Y, T —_—j(T)(2¢( w() )—l).
oT T -1t

Y, T)= /Tj(t) (ZCD (;97) — 1),1,
t T —
= sgn(W(1))J (¢) — J(T) (2¢( Yo ) - ,)

That is,

T —1
LAY f J(@)e 55 (x — -3 de.
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Recall that {Y (¢, T) : 0 <t < T} gives rise to the martingale representation
of E(Z; | F,) through Equation (16). Hence, we have

Y() = llm Y(t,T) = sgn(W(t)J(t) — -———] J(t)e™ Tf'_"(r - dr.

To see the representation of this model in the Heath-Jarrow—Morton frame-
work, we note that

Y1) —ve.T)
E(Z; 1 F)

—J(T) (2®( wm _ I) + wu) fr J(@)e 2 (t—1)" i dt

- (Wo) (20 (32) - 1)+ J—zi”_ﬁe_l”-") I+ 1. T Wity + G(T)

Since lim;_, 2 (}'ﬂ) 1 = sgn (W(r)), the market price of risk is

o(t.TY=—

¢() =1limo(. T)

wlin 3
s (W) S+ 2T J(x)e T (T — 1) gl

WO +10a.1 W)+ G@)

1t follows from Equations (18) and (24) that the volatilities of instantaneous
forward rates are

A, T)

t<T ’ (37
aT

ar;d the volatilities of zero coupon bond prices are
o) -0, T), t=<T. 38)

Therefore, one could use either Equation (37) to match estimated market
volatilities of forward rates or Equation (38) to match elements of the bond

return covariance tatrix. .
The fortulas above involve only deterministic integrals and are therefore

amenable to numerical evaluation. Also. this model could be easily general-
ized to a multifactor model by taking

g0 = GO W] + -+ ) [Wa (D] + (D),
where W,(1),.... W, (1) are independent standard Brownian motions and

jity (1 <i < m) and g(r) are positive deterministic. functions. ’
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6. Conclusion

In this article we develop relationships between interest rate models formu-
lated through pricing kernels and through the Heath, Jarrow, and Morton
(1992) framework. We demonstrate that HIM models can be supported by
Cox-Ingersoll-Ross production economies and show how to verify the pos-
itivity of interest rates directly from HIJM primitive data. By modeling the
dynamics of the drift of the pricing kernel, we generate a new class of posi-
tive interest rate models that can fit any type of initial yield curve, match ele-
ments of the bond return covariance matrix, and yet have reasonably tractable
expressions for bond prices and forward rates.

Appendix A: Proof of Theorem 1

Proof.  The key fact that needs to be shown is that Z, B, is an exponential martingale. For any
0 < T < oo, we set €(T) = min,,.r Z,. Then €(T) > 0 a.s. since Z, is strictly positive and
almost surely continuous. Since ¥,(¢) (I < j < m) are square integrable, we have

T YN 1T -
2 2 .
fn ( 2 ) dr =< e(T)’./o Yidr < oo as. forl<j<m.

Therefore, the expression in the expectation in Equation (12) is well defined.
Applying 1t6’s nile. we get
d(Z,B,) = BdZ, + Z,B,r(1)dt
= B, (dM, - dA, + Z,r(r)dr)
= B, (dM, — dA, +dA,))  [by Equation (7)}

=28 Z _Z_(_)dw (1) by Equation (9)].

=1
1t follows that Z,B, is an exponential local martingale. By Assumption 2, it is an exponential
martingale.'’

Now, we can define an equivalent probability measure P by the following Girsanov transfor-
mation

=2Z,B; for0<T <o0.

It folows from Bayes’ rule that

1 1 ~ 1 ~
=L -1 —sg(L
po-T = SE(Z 1 F) = 3 Z,B,E(ZTZTBT |f) B,E(B

"' This follows from the facts that a local martingale bounded from below is a supermartingale and a super-

ingale of ¢ ion is a mar

v &
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Appendix B: Forward Measure

Recall that one way to define the forward measure associated with time T > 0. denoted
by P7. is that it is the probability measure on (2. F. P), equivalent to P, under which the
instantaneous forward rate f(z. T) is a martingale for 0 < r < T [see El Karoui. Geman. and
Rochet (1995) and Jamshidian (1996)}.

Proposition 3. In the [framework presented in Section 1. the forward measure associated with
T > 0 is given by the following likelihood ratio process

dpP7

dFT | _E(Z,1F)
dP -

S O.T) for@<r<T. (39)

¥

Proof. Since E(Z, | F,)} is a strictly positive martingale and E(Z;) = p(0, T). Equation (39)
is well defined. By Equation (6).

) 1 3A;
=gt ()
fa.n Bz 1 7) (M

1 E(Z; | F)=, (04, EZp
S E@ g (4, E2n g
E(z, | F) EizZp aT E(Z, | F)

_ T L"’Al )__'r i3
-E (Zr o7 F)=E(r(DF). -

Proposition 4. In the Heath-Jarrow—Morton framework. the forward measure associated with
T > O is given by

dP’
dp

= exp (Z/’ —¢;(r. TdW (1) — 12/ d)f(r. T)dt) forO0<t <T.
5 pf) X 2 J |

j=t "

Proof. Using the notation of Section 2. we can write the dynamics of instantaneous forward
rates under the physical measure P as

3¢,01. T)
aT

" g, T)
dr + L aw ().
,.{:, T y

. TY=) 0,1 7)

j=
and under the forward measure P as

moAe Ty
o7y =3 —'”"a—r—~dw,'m»

j=t

Therefore,

Wi =W, + [‘ @, (z. T)dr.

Since condition (12.c) in Heath, Jarrow, and Morton (1992) guarantees that ¢(:. T) (} < j <m)
defihe an exponential martingale, the conclusion follows from the Girsanov theorem. =
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Appendix C: Proof of Results in Se¢tion 3
Proof of Theorem 4. By Equation (29), we have

1 24
dM(@. T) = ————d L
“PTEE E(ar If)
12T

Ty L a7 WD (by 20)

AT

=3 _a?(frlT)M(" TYdW (t).
== -

The first part of theorem follows from the fact that dM(r. T) can also be written as

dM(1. Ty =3 n,(, TYM(:, T)dW (1) [by Equation (32)).

i=1

(;onvcmely. suppose we are given the family of martingales M(r, T). Let { Y;(t. T)} be the
family of square integrable processes that yields the pricing kernel. Then we have

T avY.q,
re = [ #d,
T dE(A, 1 F)
=.[ 7,1 V—5—""dr [by Equation (33)]
Y
= [ hom, (. OM(@. 1)dx by Equations (29) and (30)). .

Proof of Theorem 5. The fact that the zero coupon bond price is strictly decreasing in T is
equivalent to f(s, T) > 0. By Lemma I, there exits a family of positive martingales M(r, 7)
(0 <t < T) so that the zero coupon bond price can be expressed as Equation (26). Theorem 4
tells us 9,(1.7) (1 < j < m) defined in Equation (33) give rise to M(:.T) through
Equation (32). .

On the other hand, in Lemma 1, we show that .Y (1<j< 'm) defined in Equation (19)
are the primitive data for the HIM framework. Differentiating Equation (19) with respect to T,

we get
' I 3¢, T)
A, TY= —¢. T ——L——.
T = =40 D+ 2o~
The conclusion follows. . |
Appendix D

Pm.of (.gf Theorem 6. 'We use the martingale method and the convex duality argument {see
Cvitani¢ and Karatzas (1992)} to show . =e" 7l is the optifnal consumption rate. We first
define the following convex decreasing function:

l7(_v) = max {in(x) - xy} = In (l) -1, 0<vy<oo. (40)
=reto v )
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Using Equation (36), the budget constraint reads

Lo YAO\? "
dX, = X, __Ilz(t)+}:(__ ](')) d’—zx,
Z Z =

Y. (1
]Z( )dwj(l) —c,dt

j=t '

=X, (r(l) + Z@(n?) di+ 3 X,;(NdW (1) — c,dr.

j=t j=!

where (1) and ¢,(r) are taken as two stochastic processes that are induced by p,(r). Set
B, = /"™t By 1t5's rule. we get

‘(%)

| R ¢ i
— A = L ldr+ — Y &, (dW (D)
(B 29 B,) B, =

r =1 1 j=
S g+ L g,0dW, 1)
BT B ST

r =

where ﬁ;,.(r) =W+ f,: @;(1)d7 is a standard Brownian motion under the equivalent proba-
bility measure P defined by 4£ | = Z,B,. (Note that the existence of an equivalent martingale
measure in the HIM model guarantees this change of measure is well defined.)
Therefore.
!¢ 2 ()
| g I___dwW (7). “n
f.\ BT Z.ﬁ g i

* B =1

Taking expectations. using the nonnegativity of wealth and letting 1 — co. we have

1 ~fr>ec 1 ~
0< ;—E(/" B—dr) = ;-E('[' C,Z,dr).

*

It follows that. for any x > 0.

E (/’C e ln(c,)dr)

A

i -1 ‘ " n
E(L e In(r,)dr) +x (; - E([ r,Z,dt))

+E ( [“ e (e xz,)) dr [by Equation (40)]
B

(e (o) )e)

Since the value of x that makes Equation (41) hold as an equality when ¢, is substituted by

2 s 1, we obtain
X7

1A

B I™X D x

E (/ﬂac e In (c,)dl) <E (/:O e In{c’) dt) .

Applying 1td’s rule to X; = -L-¢~' and making use of Equation (14). we get

’

- - 1
dx: = X; (rm + Zd»_,(r)z) dr+ 3 X ,(0NdW (1) — e E-dr

=1 j=t

Therefore X; = Lc; is the optimal wealth process. ]
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International Competition and Exchange
Rate Shocks: A Cross-Country Industry
Analysis of Stock Returns
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This article sy ically -examines the importance of exchange rate movements and
industry competition for stock returns. Common shocks to industries across countries
are more important than competitive shocks due to changes in exchange rates. Weekly
exchange rate shocks explain almost nothing of the relative performance of industries.
Using retuns measured over longer horizons, the importance of exchange rate shocks
increases slightly and the importance of industry common shocks increases more sub-
stantially. Both industry and exchange rate shocks are more important for industries that
produce internationally traded goods. but the importance of these shocks is economically
small for these industries as well.

Economists, journalists, and politicians around the world argue that some of
the industries in their country compete vigorously with the same industries in
other countries and that exchange rate shocks affect their competitiveness. In
the United States it is routinely stated that some U.S. industries compete with
Japanese industries and that a depreciation of the yen is bad for these U.S.
industries and good for the rival Japanese industries: “If the yen falls, trade
tensions could intensify between the U.S. and Japan as autos and machinery
from Japan gain a competitive edge.”' Further, the exchange rate literature
shows that exchange rate shocks lead to persistent deviations from purchasing
power parity.” Froot and Klemperer (1989) and Knetter (1989, 1993), among
others, demonstrate that deviations from purchasing power parity lead to
sharp changes in price markups and profit margins for exporters.
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* See Froot and Rogoff (1995) for a review of this literature.
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