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Abstract

We decompose the returns of five well-known anomalies into cash flow and discount

rate news. Common patterns emerge across the five factor portfolios and their mean-

variance efficient (MVE) combination. Whereas discount rate news predominates in

market returns, systematic cash flow news drives the returns of anomaly portfolios and

their MVE combination with the market portfolio. Anomaly cash flow and discount

rate shocks are largely uncorrelated with market cash flow and discount rate shocks and

business cycle fluctuations. These rich empirical patterns restrict the joint dynamics

of firm cash flows and the pricing kernel, thereby informing models of stocks’ expected

returns.
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1 Introduction

Researchers in the past 30 years have uncovered robust patterns in stock returns that contra-

dict classic asset pricing theories. A classic example is that value stocks outperform growth

stocks, even though these stocks are similarly exposed to fluctuations in the overall stock

market. To exploit such anomalies, investors can form long-short portfolios (e.g., long value

and short growth) with high average returns and near-zero market risk. These long-short

anomaly portfolios are an important part of the mean-variance efficient (MVE) portfolio and

thus the stochastic discount factor (SDF). In the five-factor Fama and French (2015) model,

non-market factors account for 85% of the variance in the model’s implied SDF.1

Researchers sharply disagree about the source of these non-market factors. Several dif-

ferent models, both risk-based and behavioral, can explain why long-short portfolios based

on valuation ratios and other characteristics earn high average returns.2 In this paper, we

introduce an efficient empirical technique for decomposing anomaly portfolio returns, as well

as their mean-variance efficient (MVE) combination, into cash flow (CF) and discount rate

(DR) shocks (news) as in Campbell (1991). These decompositions provide a wide array of

new facts that guide specifications of asset pricing theories.

To see how this CF-DR decomposition relates to theories, consider at one extreme the

model of noise trader risk proposed by De Long et al. (1990). In this model, firm cash flows

are constant, implying that all return variation arises from changes in discount rates. At the

other extreme, consider the simplest form of the Capital Asset Pricing Model (CAPM) in

which firm betas, the market risk premium, and the risk-free interest rate are constant. In

this setting, expected returns (discount rates) are constant, implying that all return variation

arises from changes in expected cash flows. More generally, models that explain how firm

characteristics like book-to-market (BM) or investment are related to expected firm returns

1Using data from 1963 to 2017, a regression of the mean-variance efficient combination of the five Fama-
French factors on the market factor yields an R2 of 15%.

2See, e.g., Barberis, Shleifer, and Vishny (1998), Berk, Green, and Naik (1999), Hong and Stein (1999),
Daniel, Hirshleifer, and Subrahmanyam (2001), Zhang (2005), Lettau and Wachter (2007), and Kogan and
Papanikolaou (2013).
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have implications for the joint distribution of firm cash flows and the pricing of these cash

flows. Applying our empirical methodology to simulated data from any such theory provides

a test of whether the model matches the empirical properties of CF and DR shocks to

anomaly portfolios and their MVE combination.

Our empirical work focuses on the annual returns of five well-known anomalies—value,

size, profitability, investment, and momentum—from 1929 to 2017. We uncover three sets

of novel findings for theories to explain. First, for all five anomalies, CF news explains

most (64% to 80%) of the variation in anomaly returns. This finding builds on studies by

Cohen, Polk, and Vuolteenaho (2003) and Campbell, Polk, and Vuolteenaho (2010; hereafter

CPV) that find cash flows explain most of the variance in the returns of the value anomaly.

It also builds on the study by Fama and French (1995) that shows that portfolios formed

on size and value experience systematic shocks to earnings. We find that such systematic

earnings shocks occur not only in size and value factor portfolios but also in profitability,

investment, and momentum portfolios. Moreover, unlike Fama and French (1995), we are

able to explicitly link systematic shocks to firms’ earnings to the returns of the anomaly

portfolios. To evaluate implications for the SDF, we combine all five anomalies into an MVE

anomaly portfolio and still find that CF shocks explain most (73%) of this MVE portfolio’s

return variance. This finding contrasts with the stylized fact that DR shocks explain most

of market return variance (see, e.g., Campbell (1991) and Cochrane (2011))—a fact that

we replicate. The CF shock to the anomaly MVE portfolio represents a large and common

source of variation in firms’ CF shocks that spans anomaly boundaries, as opposed to the

Vuolteenaho (2002; hereafter V02) conclusion that “cash-flow information is largely firm

specific” (page 259).

Our second main result is that the CF and DR components in anomaly returns exhibit

only weak correlations with the corresponding components in market returns. Conceptually,

there are four correlations of interest between anomaly and market CF and DR components,

all of which affect an anomaly’s market beta. The correlations between market cash flows

2



and the five anomaly cash flows range from −0.22 to 0.13. We can reject the hypothesis

that CF shocks to the MVE portfolio consisting of all five anomalies are positively correlated

(above 0.11) with market CF shocks, indicating that the anomaly MVE portfolio and the

market portfolio are exposed to distinct fundamental risks. In addition, we estimate that

the correlation between anomaly MVE DR news and market DR news is just 0.06 (SE =

0.12).

Our third finding is that, for most anomalies, CF and DR shocks are negatively correlated.

That is, firms with negative news about future cash flows tend to experience persistent

increases in discount rates. This association contributes significantly to return variance in

anomaly portfolios. A notable caveat is that this result applies to anomaly portfolios based

on stocks with market capitalizations that are not in the bottom quintile of New York Stock

Exchange (NYSE) stocks, which roughly corresponds to excluding stocks popularly known

as microcaps. In an alternative specification that includes microcaps, these stocks exert a

large influence on some findings because they are numerous and have volatile characteristics

and returns. Although our first two findings are essentially unchanged in this alternative

specification, the correlation between anomaly CF and DR news becomes positive.3

Our main findings cast doubt on three types of theories of anomalies. First, theories in

which DR news is the primary source of anomaly returns, such as De Long et al. (1990), are

inconsistent with the evidence that CF news predominates over returns. The main reason

that anomaly portfolios’ returns are volatile is that CF shocks are highly correlated across

firms with similar characteristics. For example, the long-short investment portfolio is volatile

mainly because the cash flows of a typical high-investment firm are more strongly correlated

with the cash flows of other high-investment firms than with those of low-investment firms.

The small variance of anomaly DR news does not imply small variance in the conditional

expected returns to anomaly portfolios. Indeed, we find substantial variation in anomalies’

3At the firm level, our results with and without microcaps are consistent with the finding in V02 that
the correlation between cash flows and discount rates is highest for the smallest firms and the finding in
Mendenhall (2004) that post-earnings-announcement drift is concentrated in the smallest firms.
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one-year expected returns, consistent with, e.g., Haddad, Kozak, and Santosh (2018). How-

ever, because this expected return variation is not highly persistent, it has a small impact

on stock prices and thus realized anomaly returns.

Second, theories that emphasize commonality in discount rates, such as theories of time-

varying risk aversion (e.g., Santos and Veronesi (2010)) and theories of common investor

sentiment (Baker and Wurgler (2006)), are difficult to reconcile with the low correlations

between anomaly and market discount rate shocks. Third, theories in which anomaly CF

news is strongly correlated with market CF news—i.e., cash flow beta stories such as Zhang

(2005)—are inconsistent with empirical correlations that are close to zero. To investigate

other sources of commonality predicted by these theories, we relate components of anomaly

returns to measures of macroeconomic activity, such as consumption growth, and proxies

for time-varying risk aversion, such as the default spread, and investor sentiment. We find

little evidence of a relation between anomaly return components (CF or DR) and measures

of macroeconomic activity and only weak relationships between anomaly DR shocks and

proxies for risk aversion and sentiment.

In contrast, some theories of firm-specific biases in information processing and theories of

firm-specific changes in risk are consistent with our three main findings. Such theories include

behavioral models in which investors overreact to news about firms’ long-run cash flows

(e.g., Daniel, Hirshleifer, and Subrahmanyam (2001)) and risk-based models in which firm

risk increases after negative news about long-run cash flows (e.g., Kogan and Papanikolaou

(2013)). In these theories, DR shocks amplify the effect of CF shocks on returns, consistent

with the negative empirical DR-CF correlation in our main specification. These theories are

also consistent with low correlations between anomaly return components and market return

components. As noted above, for microcaps we instead find that the CF and DR correlation

is positive. This suggests that for the smallest firms, underreaction to CF news or positive

correlation between firm risk and CF news is the dominant force, in contrast to the theories
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mentioned above. Thus, theories that aim to understand the cross-section of firms’ cash

flows and returns should clearly state how they apply to firms of different sizes.

Our approach builds on the log-linear approximation of stock returns in Campbell and

Shiller (1988). Campbell (1991) uses this approximation to decompose overall stock market

returns into CF and DR components, while V02 decomposes individual firms’ returns. We

directly estimate firms’ DR shocks using an unbalanced panel vector autoregression (VAR)

in which we impose the present-value relation to derive CF shocks. Unlike most prior work,

we analyze the implications of our firm-level estimates for priced (anomaly) factor portfolios

to investigate the fundamental drivers of these factors’ returns. The panel VAR, as opposed

to a time-series VAR for each anomaly portfolio, fully exploits information about the cross-

sectional relation between shocks to characteristics and returns. Our panel approach allows

us to consider more return predictors, substantially increases the precision of the return

decomposition, and mitigates small-sample issues.4 Motivated by Chen and Zhao’s (2009)

finding that VAR results can be sensitive to variable selection, we show that our return

decompositions are robust across many different specifications.

The V02 study finds that CF news is the main driver of firm-level returns, which we

confirm in our sample. V02 further argues that DR news is the main driver of market-

level returns, which we also confirm. Cohen, Polk, and Vuolteenaho (2003) and CPV use

various approaches to argue that CF news is the main driver of returns on the long-short

value-minus-growth portfolio, consistent with our findings for value. Our study is unique in

that we analyze multiple anomalies along with the market and most importantly the MVE

portfolio, enabling us to uncover robust patterns across anomalies and the MVE portfolio.

Lyle and Wang (2015) estimate the discount rate and cash flow components of firms’ BM

ratios by forecasting one-year returns using return on equity and BM ratios. They focus

4More subtly, inferring CF and DR shocks directly from a VAR estimated using returns and cash flows
of rebalanced anomaly portfolios (trading strategies) obfuscates the underlying sources of anomaly returns.
Firms’ weights in anomaly portfolios can change dramatically with the realizations of stock returns and firm
characteristics. In Internet Appendix A, we provide extreme examples in which, for example, firms’ expected
cash flows are constant but direct VAR estimation suggests that all return variation in the rebalanced anomaly
portfolio comes from CF shocks.

5



on stock return predictability at the firm level and do not analyze the sources of anomaly

returns. Our work is also related to studies that use the log-linear approximation of Campbell

and Shiller (1988) for price-dividend ratios, typically applied to the market portfolio (see,

e.g., Campbell (1991), Larrain and Yogo (2008), and van Binsbergen and Koijen (2010)).

The paper proceeds as follows. Section 2 discusses theories’ implications for anomaly cash

flows and discount rates and their relationship to our empirical model. Section 3 introduces

the data. Section 4 reports and discusses the baseline VAR estimation. Section 5 presents

and analyzes decompositions of firm- and portfolio-level returns into CF and DR news.

Section 6 shows robustness tests and discusses how and why our results differ from those

in earlier studies. Section 7 interprets the results and highlights insights into asset pricing

models. Section 8 concludes.

2 Theory

Empirical research identifies several asset pricing anomalies in which firm characteristics,

such as profitability and investment, predict firms’ stock returns even after controlling for

market beta. Modern empirical asset pricing models therefore postulate multiple factors

(e.g., Fama and French (1993, 2015) and Carhart (1997)), including non-market factors

defined as long-short portfolios sorted on firm characteristics.

In this paper, we decompose the returns to long-short anomaly portfolios and their MVE

combination into updates in expectations of future cash flows, CF news, and updates in

expectations of future returns, DR news. The MVE combination of pricing factors is of

interest as shocks to this portfolio’s return are proportional to shocks to the SDF Mt (e.g.,

Roll (1976) and Cochrane (2005)):

Mt − Et−1[Mt] = b(RMVE,t − Et−1[RMVE,t]), (1)
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where RMVE,t =
∑H

h=1 ωhRFh,t is the return to the MVE portfolio at time t, expressed as a

linear function of H factor returns (RFh,t), and where b < 0. In this interpretation, shocks

to the MVE portfolio reflect the risks most highly correlated with marginal utility of the

marginal investor, which is linear in Mt.
5 Understanding the properties of CF and DR shocks

to the MVE portfolio and its components is therefore informative for all asset pricing models.

2.1 The Return Decomposition

Recall from Campbell (1991) that we can decompose shocks to log stock returns into shocks

to expectations of cash flows and returns:6

ri,t+1 − Et [ri,t+1] ≈ CFi,t+1 −DRi,t+1, (2)

where

CFi,t+1 = (Et+1 − Et)
∞∑
j=1

κj−1∆di,t+j, (3)

DRi,t+1 = (Et+1 − Et)
∞∑
j=2

κj−1ri,t+j, (4)

and where ∆di,t+j (ri,t+j) is the log of dividend growth (log of gross return) of firm i from

time t + j − 1 to t + j, and κ is a log-linearization constant slightly less than 1.7 In words,

return innovations are due to updates in expectations of future cash flows or future expected

returns.

5The logic here assumes Mt is spanned by the set of traded assets. More generally, there exists a unique
minimum variance SDF that is the projection of investors’ SDF onto the space of traded asset payoffs.

6The operator (Et+1 − Et)x represents Et+1 [x]−Et [x]: the update in the expected value of x from time
t to t + 1. The equation relies on a log-linear approximation of the price-dividend ratio around its sample
average.

7One can derive a similar decomposition based on earnings instead of dividend growth under the assump-
tions that clean-surplus accounting holds and there is no net issuance (see Ohlson (1995) and V02). In this
case, the relevant cash flow is the log of gross return on equity. The DR shock takes the same form as in
Equation (4).
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We define anomaly returns as the value-weighted returns of stocks ranked in the highest

quintile of a given firm characteristic minus the value-weighted returns of stocks ranked

in the lowest quintile. We define anomaly CF news as the CF news for the top quintile

portfolio minus the CF news for the bottom quintile portfolio. We similarly define anomaly

DR news. In the empirical section, we describe our method in detail. Next we discuss the

implications of this decomposition of anomaly and MVE portfolio returns for specific models

of the cross-section of stock returns.

2.2 Relating the Decomposition to Anomalies

Theories of anomalies propose that investor beliefs and firm cash flows vary with firm char-

acteristics. The well-known value premium provides a useful illustration. De Long et al.

(1990) and Barberis, Shleifer and Vishny (1998) are examples of behavioral models that

could explain this anomaly, while Berk, Green, and Naik (1999), Zhang (2005), and Lettau

and Wachter (2007) are examples of risk-based explanations.8

First, consider a multiple-firm generalization of the De Long et al. (1990) model of noise

trader risk. In this model, firm cash flows are constant but stock prices fluctuate because of

random demand from noise traders, driving changes in firm BM ratios. Since expectations in

Equation (3) are rational, there are no CF shocks in this model. By Equation (2), all shocks

to returns are due to DR shocks. The constant cash flow assumption is clearly stylized.

However, if one in the spirit of this model assumes that value and growth firms have similar

cash flow exposures, the variance of net CF shocks to the long-short portfolio would be small

relative to the variance of DR shocks. Thus, an empirical finding that DR shocks explain

only a small fraction of return variance to the long-short value portfolio would be inconsistent

with this model.

8In these risk-based models, the stochastic discount factor is exogenous, potentially consistent with both
behavioral and rational investors. The models focus on the cross-section of firms’ cash flow dynamics, which
together with the exogenous pricing kernel account for the value premium.

8



Barberis, Shleifer, and Vishny (1998; hereafter BSV) develop a model in which investors

overextrapolate from long sequences of past firm earnings when forecasting future firm earn-

ings. A firm that repeatedly experiences low earnings will be underpriced (a value firm)

because investors are too pessimistic about its future earnings. The firm will have high ex-

pected returns as its average future earnings are better than investors expect. Growth firms

will have low expected returns for analogous reasons. In this model, CF and DR shocks are

closely linked. Negative CF shocks cause investors to expect low future cash flows. But these

irrationally low expectations manifest as positive DR shocks in Equations (3) and (4), which

are based on rational expectations. Thus, this theory predicts a strong negative correlation

between CF and DR shocks at the firm and anomaly levels.

Berk, Green, and Naik (1999) and Zhang (2005) provide risk-based explanations of the

value premium based on firms’ dynamic investment decisions. In Zhang’s model, persistent

idiosyncratic productivity (earnings) shocks by chance make firms into either value or growth

firms. Value firms, which have low productivity, have more capital than optimal because of

adjustment costs. These firms’ values are very sensitive to negative aggregate productivity

shocks as they have little ability to smooth such shocks through disinvesting. Growth firms,

on the other hand, have high productivity and suboptimally low capital stocks and therefore

are not as exposed to negative aggregate shocks. Value (growth) firms’ high (low) betas with

respect to aggregate shocks justify their high (low) expected returns. Similar to BSV, this

model predicts a negative relation between firm CF and DR shocks. Different from BSV, the

model predicts that the value anomaly portfolio has CF shocks that are positively related

to market CF shocks because value stocks are more sensitive to aggregate technology shocks

than growth stocks.

Lettau and Wachter (2007) propose a risk-based explanation of the value premium based

on the duration of firms’ cash flows. In their model, growth firms are, relative to value

firms, more exposed to shocks to market discount rates and long-run cash flows, which are

not priced, and less exposed to shocks to short-run market cash flows, which are priced.
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This model implies that long-run DR and CF shocks to the value portfolio are negatively

correlated with long-run DR and CF shocks to the market, respectively.

2.3 Relating the Decomposition to the Stochastic Discount Factor

Prior studies (e.g., Campbell (1991) and Cochrane (2011)) decompose market returns into

CF and DR news. They argue that the substantial variance of market DR news has deep

implications for the joint dynamics of investor preferences and aggregate cash flows in asset

pricing models. For instance, the Campbell and Cochrane (1999) model relies on strong

time-variation in investor risk aversion—i.e., the price of risk—which is consistent with the

high variance of market DR news.

The modern consensus is that the MVE portfolio and thus the SDF includes factors other

than the market. By the logic above, decomposing MVE portfolio returns into CF and DR

news also can inform specifications of asset pricing models. For example, large time-variation

in investor risk aversion, as in the Campbell and Cochrane (1999) model, suggests a strong

common component in DR shocks across the factor portfolios in the SDF.

All models that feature a cross-section of stocks have implications for the return de-

composition of anomaly portfolios and the MVE portfolio. As an example, Kogan and

Papanikolaou (2013) propose a model in which aggregate investment-specific shocks, uncor-

related with market productivity shocks that affect all capital, have a negative price of risk.

Value and growth firms have similar exposure to market productivity shocks, but growth

firms have higher exposure to the investment-specific shock. These two CF shocks are the

primary drivers of returns to the MVE portfolio in their economy. Since BM ratios increase

with discount rates, their model also implies a negative correlation between CF and DR

shocks.
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2.4 The Empirical Model

Most theories of anomalies, including those above, apply to individual firms. To test these

theories, one must analyze firm-level CF and DR news and then aggregate these shocks into

anomaly portfolio news. As we explain in Internet Appendix A, the CF and DR news of

rebalanced portfolios, such as the Fama-French value and growth portfolios, depend on the

rebalancing process and therefore garble the underlying firms’ CF and DR shocks.9

We assume that firm-level expected log returns are linear in observable variables (X):

Et[ri,t+1] = δ0 + δ′1X
ma
it + δ′2X

agg
t . (5)

Here Xma
it is a vector of market-adjusted characteristics, such as the BM ratio of firm i at time

t, where we demean each characteristic by its value-weighted average at time t; Xagg
t is a vec-

tor of aggregate characteristics, such as the value-weighted average BM ratio at time t. The

coefficient δ1 captures cross-sectional variation in expected return related to characteristics,

much like characteristic-based portfolio sorts and Fama-MacBeth regressions; δ2 captures

time-series variation in expected return that is common to all stocks. Following CPV and

V02, we allow the cross-sectional and time-series relationships between a characteristic and

expected return to be different.

To implement the return decompositions, we estimate two separate VAR(1) systems.

First, we estimate an aggregate VAR to model dynamics in expected market returns and

aggregate characteristics:

Zt+1 = µagg + AaggZt + εaggt+1, (6)

where Zt = [raggt ; Xagg
t ] is a Kagg×1 vector, εaggt+1 is a vector of conditionally mean-zero shocks,

and raggt denotes the value-weighted average log return at time t. We compute aggregate DR

9In Internet Appendix A, we provide an example of a value-based trading strategy. The underlying firms
only experience DR shocks, but the traded portfolio is driven solely by CF shocks as a result of rebalancing.
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shocks using the standard VAR formula from Campbell (1991):

DRagg
t+1 = Et+1

∞∑
j=2

κj−1raggt+j − Et
∞∑
j=2

κj−1raggt+j

= e′1κA
agg (IKagg − κAagg)−1 εaggt+1. (7)

Here e1 is a Kagg × 1 column vector with 1 as its first element and zeros elsewhere, IKagg is

the Kagg ×Kagg identity matrix, and κ = 0.95 as in CPV.

For the cross-section, we estimate a market-adjusted panel VAR:

Zi,t+1 = µma + AmaZi,t + εi,t+1, (8)

where Zit = [rmait ; Xma
it ] is a Kma × 1 vector, εi,t+1 is a vector of conditionally mean-zero

shocks, and rmait ≡ rit− raggt . Similar to Equation (7), firms’ market-adjusted DR shocks are:

DRma
i,t+1 = ι′1κA

ma (IKma − κAma)−1 εi,t+1, (9)

where ι1 is a Kma × 1 column vector with 1 as its first element and zeros elsewhere, and

IKma is the Kma ×Kma identity matrix.

We extract CF shocks from the VARs by combining the present-value Equation (2) for

returns and the VAR Equations (7) and (9) for DR shocks:

CF agg
t+1 = raggt+1 − Et

[
raggt+1

]
+DRagg

t+1

= e′1
(
IKagg + κAagg (IKagg − κAagg)−1

)
εaggt+1, (10)

CFma
i,t+1 = rmai,t+1 − Et

[
rmai,t+1

]
+DRma

i,t+1

= ι′1
(
IKma + κAma (IKma − κAma)−1

)
εi,t+1. (11)

Thus, we impose the present-value relation when estimating the joint dynamics of firm cash

flows and discount rates.
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We simply combine the aggregate and market-adjusted return components to obtain

firms’ total DR and CF shocks as:

DRit = DRagg
t +DRma

it , (12)

CFit = CF agg
t + CFma

it . (13)

This two-step approach allows the predictive coefficients in the VAR to be different in

the cross section (Ama) and the time series (Aagg), which V02 and CPV show is important

to match the data.

We analyze CF and DR shocks to five long-short anomaly portfolios. Each of these

portfolios takes long (short) positions in the top (bottom) quintile of stocks sorted by one

of the five anomaly characteristics. We construct the CF and DR shocks to the long and

short portfolios by value-weighting the CF and DR shocks to the firms in these portfolios.

We then compute the long-short portfolios’ CF and DR shocks as the difference between the

long and short legs. Value-weighting the components of log returns is not the same as value-

weighting the components of simple returns. We use this procedure to follow V02 and CPV

and simplify the interpretation of our results. In Internet Appendix D, we estimate the CF

and DR components of simple portfolio returns using a second-order Taylor approximation

of a simple return in terms of the corresponding log return’s CF and DR components. Table

D.1 shows that our main return decomposition results still hold with this approximation of

anomalies’ simple returns. In the paper, we use the parsimonious value-weighted aggregation

of log returns that is consistent with previous literature.

3 Data

We estimate the CF and DR components of returns using data on publicly traded United

States (US) stocks from Compustat and the Center for Research on Securities Prices (CRSP)

from 1926 through 2017. Our analysis requires panel data on firms’ returns, book values,
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market values, earnings, and other accounting information, as well as time-series data on

factor returns, risk-free rates, and price indexes. Because some variables require three years

of historical data, our VAR estimation focuses on the period from 1929 through 2017.

We obtain all accounting data from Compustat, except that we add book equity data

from Davis, Fama, and French (2000). We obtain data on stock prices, returns, and shares

outstanding from CRSP. We obtain one-month and one-year risk-free rate data from one-

month and one-year yields of US Treasury Bills, respectively, which are available on Kenneth

French’s website and the Fama Files in CRSP. We obtain inflation data from the Consumer

Price Index (CPI) series in CRSP.

We compute log stock returns in real terms (lnRealRet) by subtracting the log of in-

flation, the log change in the CPI, from the log nominal stock return. We compute annual

returns from the end of June to the next end of June to ensure that investors have access to

December accounting data prior to the ensuing June-to-June period over which we measure

returns.

When computing a firm’s BM ratio, we adopt the convention of dividing its book equity

by its market equity at the end of the June immediately after the calendar year of book

equity. This timing of market equity coincides with the beginning of the stock return period.

We compute book equity using Compustat data when available, supplementing it with hand-

collected data from Davis, Fama, and French (2000). We adopt the Fama and French (1992)

procedure for computing book equity. Market equity (ME) is equal to shares outstanding

times stock price per share. We sum market equity across all classes of common stock for

each firm. We define lnBM as the log of ratio of book equity to market equity.

We compute several firm characteristics that predict short-term stock returns in historical

samples. The size variable in our VAR is the five-year change in log market equity (d5.lnME)

following Gerakos and Linnainmaa (2018), rather than the level of log market equity, to

ensure stationarity. Following Fama and French (2015), profitability is annual revenues minus

costs of goods sold, interest expense, and selling, general, and administrative expenses, all
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divided by book equity from the same fiscal year.10 We use the log of one plus profitability

in the VAR (lnProf). Following Cooper, Gulen, and Schill (2008) and Fama and French

(2015), investment is proxied by growth in total assets. In the VAR, we use five-year log asset

growth as the investment characteristic (lnInv), to capture the long-horizon predictability

of the investment characteristic as documented by Cooper, Gulen, and Schill (2008). Annual

data presents a challenge for measuring the momentum anomaly. In Jegadeesh and Titman

(1993), the maximum momentum profits accrue when the formation and holding periods

sum to 18 months. Therefore, we construct a six-month momentum variable based on each

firm’s December to June return. The subsequent holding period implicit in the VAR is the

12 months from June to the following June. We transform each measure by adding one and

taking its log, resulting in the following variables: d5.lnME, lnProf , lnInv, and lnMom6.

When forming value-weighted portfolios, we compute value weights as a firm’s ME divided

by the total ME for all firms in the portfolio. In a robustness specification, we include the

log of one plus return on equity (ROE), lnROE = ln(1 + ROE), where ROE is earnings

divided by lagged book equity.

To compute variables as early as 1929 as in CPV, we use proxies for ROE, profitability,

and investment when these items are unavailable, which is common before 1962. To impute

missing ROE data, we assume earnings are equal to clean surplus earnings, which we define

as the change in book equity plus net payouts to stockholders. Net payout is dividends and

share repurchases minus issuance from Compustat. If any of these are missing, we set them

to zero. For missing profitability data, we assume profitability equals 0.2 + 0.5ROE, where

the intercept and slope coefficients are based on the approximate linear relationship from

the period in which both items are available.11 For missing investment data, we assume

investment equals the growth in book equity, which equals growth in assets if leverage is

constant.

10Novy-Marx (2013) defines profitability with a denominator of total assets, not book equity.
11Before 1962 when profitability data become available, we cannot distinguish between ROE and prof-

itability. Since we do not use ROE in our main analysis, this issue primarily affects our robustness analysis
based on accounting ROE (lnROE) in Section 6.
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If a firm goes bankrupt and its stock price is zero, its gross return is zero, which means its

log return is undefined. Therefore, following V02, we analyze pseudo-firms in each year that

are portfolios with a 10% weight in the real risk-free rate and a 90% position in the firms’

stocks. We adjust the pseudo-firms market-to-book, ROE, and other firm characteristics

accordingly. The results are not sensitive to small variation in the portfolio weight that

defines pseudo-firms.

We impose sample restrictions to ensure the availability of high-quality accounting and

stock price information. We exclude firms with negative book values and include only firms

with nonmissing market equity data at the end of the most recent calendar year. In our

main results, we also exclude firms in the bottom quintile of the prior year’s distribution

of NYSE market capitalization, which correspond to microcaps as defined by the SEC.12

We exclude microcaps in order to estimate VAR coefficients using the most economically

important stocks and those with high-quality data. Microcaps account for 1% to 2% of

US stocks’ total market capitalization. To compare our results with studies that include

microcaps, such as V02 and CPV, we report robustness tests with no restriction on size.

We impose all sample and data availability restrictions ex ante and compute subsequent

returns, earnings, BM ratios, and other characteristics as permitted by data availability in

the following year. We use CRSP delisting returns and replace missing delisting returns

with the average delisting return for the delisting event. To impute any missing data on

dependent variables in the VAR, as in V02 and CPV, we assume BM, size, and profitability

are constant, return is zero, dividends are zero, ROE satisfies clean surplus accounting, and

investment is equal to growth in book equity. Missing data are rare because our ex ante

sample does not contain microcaps. For any stock that becomes a microcap, we compute its

actual realized returns, earnings, valuation ratios, and other characteristics in its final year

of sample eligibility using the same procedures as for other stocks.

12The SEC (2013) defines a microcap stock as one “with a market capitalization of less than $250 or $300
million.” In 2013, the cutoff for the bottom NYSE size quintile was a market capitalization of $266M. Since
this cutoff of $266M is consistent with the size given in the SEC definition, we refer to stocks in the bottom
NYSE quintile as microcaps.
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Table 1 presents summary statistics for all firm-level variables. Panel A displays the

number of observations, means, and standard deviations for each variable. In the average

year from 1929 to 2017, the average firm has a log BM ratio of −0.24, which implies a

market-to-book ratio of e0.24 = 1.27. Valuation ratios range widely across firms, as shown

by the lnBM standard deviation of 0.63. The cross-sectional variation in real stock returns

is also substantial at 0.29 per year. Panel B shows cross-sectional correlations for the firm-

level variables. There are only three correlations above 0.4 in absolute value and two are

somewhat mechanical: the correlations between BM and five-year change in size (−0.44) and

between six-month momentum and one-year returns (0.69). In addition, firm profitability is

positively correlated with stock returns (0.56).

4 Baseline VAR Estimation

In our main estimation, we specify a VAR with panel regressions for firm-specific variables

and time-series regressions for aggregate variables. To avoid seasonality and maximize data

availability, we measure all variables at an annual frequency. As predictors of returns and

cash flows, we include characteristics that are proxies for firms’ risk exposures, stock mis-

pricing, and measures of lagged cash flows and returns. Following the literature, we specify

a VAR(1), which is a reasonable model of annual dynamics.

4.1 Specification

Following CPV, we adjust all firm-specific variables by subtracting the corresponding market-

level variables. The panel regressions include six market-adjusted variables: annual log

returns (lnRet) and the five anomaly characteristics, which are lnBM , lnProf , lnInv,

d5.lnME, and lnMom6. The aggregate (market) variables are the value-weighted averages

of the unadjusted versions of these six variables. In the panel regressions, we weight each

year equally following CPV by applying weights to each firm-year observation equal to the

inverse of the number of firms in the year.
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In our main specification, the CF shock is the residual from the present-value relation–

e.g., Equation (11) for the market-adjusted CF shock. In the robustness section (Section 6),

we estimate an alternative VAR to predict lnROE from firms’ accounting statements and

thereby obtain an alternative CF shock based on innovations in the discounted infinite sum

of accounting ROE.

The panel regressions allow us to estimate the long-run dynamics of (market-adjusted)

log returns and log earnings based on the short-run (one-year) properties of a broad cross

section of firms. We do not need to impose restrictions on which firms survive for multiple

years, thereby mitigating statistical noise and survivorship bias. Similarly, the aggregate

VAR provides estimates of the long-run dynamics of market-wide variables based on their

short-run properties. In Section 6, we show that the VAR’s key autoregressive assumption

provides a reasonable approximation of the long-run dynamics of returns and earnings.

Our VAR specification differs from specifications in prior studies, which could drive dif-

ferences in our CF-DR decomposition as discussed in Chen and Zhao (2009). To illustrate

how our CF-DR decomposition depends on specification choices, we replicate several prior

specifications and compute CF-DR compositions based on these alternative specifications.

We report these results in Section 6 after our main specification.

4.2 Panel Regressions

Table 2 reports weighted ordinary least squares (OLS) estimates of the predictive coefficients

(Ama) in the market-adjusted panel VAR, where the weighting ensures equal weight for each

year. In parentheses, we report standard errors of coefficients that account for correlations

between regression errors within years as described in Internet Appendix C.

The findings in the log return regressions are consistent with those of the large literature

on short-horizon forecasts of returns. Log BM, profitability, and six-month momentum are

positive predictors of firms’ one-year log returns, whereas log investment and size are negative

predictors of log returns. These coefficients are all statistically significant at the 1% level,
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except the BM coefficient which has a p-value slightly over 0.05. The fact that the BM ratio

is insignificant when we include investment and profitability is consistent with findings in

Fama and French (2015). The modest R2 of 2.1% is typical for forecasts of firm-level returns.

Many of the other coefficients in the VAR are significant. The coefficients on the diagonal

of Ama show the persistence of each predictor. The BM ratio has the highest persistence

coefficient at 0.905, while profitability, investment, size, and momentum have persistence

coefficients of 0.584, 0.720, 0.743, and 0.058, respectively. Since persistent predictors tend

to dominate in the DR and CF formulas in Equations (9) and (11), we infer that BM,

investment, and size are likely the most important characteristics for explaining realized

returns. In addition, cross predictions such as the fact that momentum predicts BM, which

is highly persistent, can have a material impact on return decompositions, in this case

particularly for returns of portfolios sorted on momentum.

Table 3 reports the predictive coefficients from the aggregate VAR (Aagg). The first

column shows the forecasting regression for aggregate log one-year returns. The R2 is high

at 17.3%, which implies the estimated annual equity risk premium varies a lot over time. In

our 89 year sample, expected log real returns on the market have a standard deviation of

0.085, range from −0.253 to 0.314, and are negative in 23 of 89 years. The p-value of the

F -test for the joint significance of the regression coefficients is 0.003 (not reported in table).

Due to relatively high correlations between the explanatory variables, however, only the five-

year aggregate change in market size is individually significant with a negative coefficient,

as expected. The signs of the other predictors are also as expected, with the BM ratio and

profitability predicting with a positive sign, and investment with a negative sign.

The remaining columns in Table 3 show the forecasting regressions for the aggregate

predictors. The most persistent predictor is aggregate log BM, which has a persistence coef-

ficient of 0.961. Further investigation reveals that the autocorrelation coefficient of aggregate

log BM is only 0.81, indicating that the presence of correlated regressors substantially in-

19



creases the persistence coefficient. Because of its high persistence, log BM is a primary driver

of long-run aggregate return predictability.

5 Decomposing Returns

5.1 Firm Return Decomposition

We now examine the implications of this VAR system for the DR and CF components of

returns. The DR and CF components of firms’ market-adjusted log returns come directly

from substituting the VAR estimates into Equations (9) and (11). Similarly, the DR and

CF components of log market returns come from Equations (7) and (10). We obtain the

components of total firm returns as the sums of the respective components of market-adjusted

returns and market returns as in Equations (12) and (13).

Table 4 reports the decomposition of log return variance into DR and CF components.

Standard errors appear in parentheses below the point estimates of each variance component.

The standard errors account for estimation uncertainty from both sampling variation and

that from estimating the VAR coefficients, as well as heteroskedasticity and contemporaneous

cross-correlation of residuals. Internet Appendix C provides further details.

The first row in Table 4 shows that DR news explains just 8% of variance in firms’

market-adjusted returns, whereas CF news explains 72% of variance. The importance of

CF news at the firm level confirms a key finding in V02. Interestingly, the third column

shows that negative covariance between DR and CF news tends to amplify return variance,

contributing a highly significant positive amount (20%) of variance. The last column shows

that the correlation between DR and CF news is significantly negative (−0.42). This negative

correlation means that low expected firm cash flows are associated with high firm discount

rates.

The last row in Table 4 shows the decomposition of log market returns. Consistent with

prior studies, such as Campbell (1991) and Cochrane (2011), DR news is the main driver
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of market returns, accounting for 74% of variance in our main specification. In contrast,

CF news accounts for just 15% of market return variance. The covariance between market

DR and CF components is slightly negative and accounts for the remaining 10% of return

variance. The market DR-CF correlation of −0.15 is not significantly different from zero,

which is broadly consistent with the literature.

The middle row in Table 4 reports the decomposition of total log firm returns. Because

the total return components come from combining the market-adjusted and market return

components, the middle row looks similar to an average of the top and bottom rows. Because

market-adjusted CF news is more volatile than market DR news, CF news accounts for the

majority, 55%, of total firm return variance. Variation in DR news accounts for 25%, and

negative DR-CF covariance accounts for the remaining 20% of total variance in firm returns.

Overall, the firm- and market-level results are consistent with earlier literature. The only

exception is the negative correlation between firm-level CF and DR shocks, which is different

from the positive correlation in V02. We show in Section 6 that this difference is due to our

exclusion of microcaps.

5.2 Anomaly Return Decompositions

We now analyze the returns of long-short anomaly portfolios to bring new facts to the debate

on the source of anomalies. We use the VAR to compute the DR and CF components of

anomaly portfolio returns. We form anomaly portfolios using cross-sectional sorts on value,

size, profitability, investment, and momentum. These sorts are based on characteristics used

in the VAR, except for firm size and investment. Whereas the VAR uses firms’ five-year

change in log size and five-year investment, we sort by the level of firm size and one-year

investment when forming portfolios to be consistent with empirical studies of anomalies.

As described earlier, we compute value-weighted averages of firm-level DR and CF esti-

mates to obtain portfolio-level DR and CF estimates. When aggregating firm-level shocks

to the portfolio level, only correlated shocks to firms remain. Thus, if cash flow shocks
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are largely uncorrelated but discount rate shocks are highly correlated, the portfolio return

variance decomposition can be very different from the firm return variance decomposition.

Panel A in Table 5 reports the decompositions of return variance for the five anomaly

portfolios. We compute standard errors for these decompositions using the same procedure

as described earlier and in Internet Appendix C. The striking result in Table 5 is that CF

news accounts for the vast majority of return variance for all five anomalies. As shown in

column two of Table 5, the contribution of CF news to variance ranges from 64% of variance

for the size anomaly to 80% of variance for the profitability anomaly. The high volatility

of anomaly CF news shows that CF shocks to firms with similar anomaly characteristics

exhibit a high degree of commonality. In contrast, DR news accounts for less than 15% of

variance for all five anomalies.

The correlation in anomaly DR and CF news is significantly negative for three of the

five anomalies—value, size, and momentum—with values ranging from −0.68 to −0.55. For

the profitability and investment anomalies, this covariance is statistically indistinguishable

from zero. However, as we will show in Table 10, if we exclude the first 10 years of our

sample—1929 to 1938 or the Great Depression—the correlations between DR and CF news

for profitability and investment are negative and significant, and the other three anomalies

still have significantly negative correlations. Thus, the negative correlation between DR and

CF news at the firm level generally drives a negative correlation at the anomaly level.

Figure 1 concisely summarizes the anomaly return decompositions for all five anomalies.

The blue bars show that CF news contributes most of anomaly return variance. The red

bars indicate the contributions from DR news are small. Lastly, the light green bars show

that negative covariance between DR and CF news is an important contributor to return

variance for the value, size, and momentum anomalies. Standard error bounds appear at the

top of each bar.

Panel B of Table 5 reports the CF and DR decompositions of the MVE and market

portfolios. The MVE portfolio applies weights to the factor portfolios that maximize the
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MVE portfolio’s in-sample Sharpe ratio. We compute two versions of the MVE portfolio:

“MVE ex market” optimally weights each of the five long-short anomaly portfolios; and

“MVE cum market” optimally weights the market and the five anomaly portfolios. The

weights of the MVE ex market (or anomaly MVE) portfolio on the five long-short anomalies

are: 0.06 for value, 0.66 for profitability, −1.55 for investment, −0.80 for size, and 1.44 for

momentum. The weights of the MVE cum market are 0.80 for market, −0.21 for value, 0.73

for profitability, −1.87 for investment, −0.35 for size, and 1.35 for momentum.

The key result in Panel B of Table 5 is that CF news is the main driver of returns for both

MVE portfolios, particularly the anomalies-only MVE portfolio. Thus, there is a common

component in CF news across all five anomalies that is not diversified away in the anomaly

MVE portfolio. The DR components of anomaly returns exhibit weaker commonality as

demonstrated by comparing var(DR) for the five individual anomalies, which ranges from

7% to 14%, to var(DR) for the anomaly MVE portfolio, which is just 7%.

The observed similarity of the anomaly and firm return decompositions is not mechani-

cal. Aggregating firms into long-short portfolios diversifies away firm-specific cash flow and

discount rate shocks, leaving only common cash flow and discount rate variation in anomaly

portfolios. The relative importance of CF and DR news for each anomaly depends on the

correlation of CF and DR shocks across the assets in anomaly portfolios, which in turn de-

pends on the commonality in shocks to assets’ characteristics. For example, common shocks

to small firms’ BM ratios relative to big firms’ BM ratios could drive variation in CF and

DR news for the long-short size portfolio. But neither firm-specific nor aggregate shocks to

BM ratios have any impact on CF and DR news of anomaly portfolios.

Figure 2 summarizes the return decompositions of the MVE portfolios and the market.

The MVE portfolio that combines the market and the anomalies inherits some properties

from both sets of portfolios and has an interesting new property: zero DR-CF news cor-

relation. But the main message from Figure 2 is that CF news is the primary source of

fluctuations in both MVE portfolios and thus the SDF. In contrast, if one considers the
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market portfolio as the MVE portfolio, one would conclude that DR news is the primary

driver of MVE returns. We next analyze the correlations across portfolios to improve our

understanding of variation in MVE portfolio returns.

5.3 Correlations Across Portfolios

In Table 6, we report correlations between components of market returns and components

of anomaly and MVE returns. For ease of interpretation, we multiply the long-short returns

of the investment and size portfolios by −1 before computing correlations, so that these

portfolios have positive premiums. The first column of Table 6 displays correlations between

anomaly CF news and market CF news. Strikingly, only one of the five anomaly CF shocks

(investment) exhibits a significant correlation with market CF news. All five correlations

between anomaly and market cash flows are economically small, ranging between −0.22 for

investment and 0.13 for value.

The fourth column in Table 6 reveals that market DR news is significantly positively

correlated with the DR news for the value and (negative) size anomalies. But market DR

shocks exhibit no statistically significant correlations with the other anomalies’ DR shocks.

In addition, we later show in Table 10 that the DR shocks to value and the market are not

strongly correlated if we exclude the Great Depression period. The middle two columns in

Table 6 show that there is little cross-correlation between market DR news and anomaly CF

news or between market CF news and anomaly DR news. All such correlations are smaller

in magnitude than 0.3.

The second to last row in Table 6 report the correlations between DR and CF components

of market returns and those of the MVE ex market portfolio. The main finding is that none

of the four correlations is economically large. Only the negative correlation (−0.24) between

market CF news and anomaly MVE DR news is marginally significant with a t-statistic of

2.0. Notably, CF shocks to the MVE portfolio consisting of all five anomalies are slightly

negatively correlated with market CF shocks: −0.17 correlation (standard error (SE) =

24



0.14). Thus, we can reject CF news correlations above 0.11. Similarly, the correlation

between anomaly MVE and market DR shocks is very close to zero at 0.06 (SE = 0.12).

This evidence suggests that distinct forces drive market and anomaly return components.

The bottom row of Table 6 shows the correlation between components of market returns

on those of the MVE portfolio that includes the market factor. The CF shocks to this total

MVE portfolio are uncorrelated with market CF shocks. Thus, non-market cash flow factors

dominate CF news in this total MVE portfolio—a remarkable finding that we discuss in

Section 7. On the other hand, market DR shocks account for nearly all of the DR shocks to

the total MVE portfolio, as shown by the huge DR correlation of 0.90%, which is driven by

the large DR component in market returns.

Figure 3 visually represents the weak correlation between the DR and CF components

of market and anomaly returns. All six red bars showing correlations between anomaly and

market CF news are quite small. None of these bars lies more than one standard error

above zero, as shown by the standard error bounds. The six blue bars represent correlations

between anomaly and market DR news. Although the correlations between market DR news

and DR news for the BM and size anomalies are significantly positive, none of the other four

correlations is more than one standard error above zero. Most importantly, the correlation

between market DR news and DR news for the anomaly MVE portfolio is close to zero.

While the observed correlations between the market and anomaly return components are

small on average, they could be significant during extreme crises. We examine this possibility

by plotting CF and DR news for the market and the anomaly MVE (i.e., MVE ex market)

portfolios in Figure 4. The top graph shows that anomaly and market CF shocks exhibit no

discernible relationship. During periods when market CF news is low, anomaly MVE CF

news tends to be slightly higher than average. But this tendency is weak and its direction

is counterintuitive for standard risk-based models. In the financial crisis, when the market

experienced negative CF news, the anomaly MVE portfolio experienced positive CF news,

meaning that short legs of anomalies had higher CF news than the long legs. The bottom
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plot in Figure 4 shows DR news for the market and the anomaly MVE portfolio. Again,

there is no clear correlation even if one focuses on periods in which market DR news is high.

The most notable features in Figure 4 are the high volatility of anomaly CF news relative to

anomaly DR news (blue lines), and the high volatility of market DR news relative to market

CF news (red lines).

5.4 Correlations with Aggregate Shocks

In Table 7, we report correlations of DR and CF shocks to the market and anomaly portfolios

with notable aggregate shocks. We estimate each aggregate shock as the residual from a

first-order autoregressive (AR(1)) model of the relevant time series. One group of aggregate

shocks reflects macroeconomic cash flow shocks: real per-capita consumption and GDP

growth, three-year forward-looking consumption growth, and the labor share. These are

constructed from annual June to June log growth rates based on quarterly data from 1947

to 2017. The other group represents shocks to aggregate risk aversion or discount rates:

one-year change in the default spread (Baa - Aaa corporate bonds; 1929 to 2017); one-year

change in the term spread (difference between the five- and one-year T-bond yields; 1954 to

2017); and the one-year change in investor sentiment (from Jeffrey Wurgler’s website, 1965

to 2010). For these series, annual shocks are based on a June year-end to correspond to the

timing of the VAR.

Consistent with intuition, market CF shocks are positively correlated with macroeco-

nomic cash flows, namely consumption and GDP growth. Positive shocks to the labor share

and thus negative shocks to the capital share are slightly negatively correlated with market

CF shocks. Market CF shocks are negatively correlated with shocks to the default spread,

which is a plausible measure of risk aversion or discount rates. Market DR shocks are signifi-

cantly negatively correlated with GDP and consumption growth, indicating market discount

rates increase in recessions. Market DR shocks are also strongly positively correlated with

shocks to the default spread, consistent with the latter being a measure of bad times when
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risk and/or risk aversion is high. Overall, the correlations between market return components

and the macroeconomic shocks are intuitive and consistent with earlier literature.

We observe several interesting patterns in the correlations between macroeconomic shocks

and anomaly return components. The most striking finding is the lack of any significantly

positive correlation between CF shocks to the anomaly MVE (ex market) portfolio and any

of the four conventional measures of macroeconomic activity: GDP growth, one- or three-

year consumption growth, and the labor share. There are also no significant correlations

between anomaly MVE CF news and the three proxies for risk aversion: the default spread,

the term spread, and investor sentiment. Furthermore, there are no significant correlations

between DR shocks to the anomaly MVE portfolio and the four macroeconomic measures of

cash flows. However, there is evidence that sentiment and the default spread, two measures

of aggregate discount rates, are correlated with DR shocks to the anomaly MVE portfolio

with the expected signs.

Some of the correlations between the components of individual anomaly returns and the

four macroeconomic cash flow measures are statistically significant. But even these correla-

tions have modest magnitudes, ranging from −0.35 to 0.33 and implying that macroeconomic

cash flows explain no more than 12% of the variance in any component of any anomaly’s

return. We find similarly low and insignificant correlations between anomaly return compo-

nents and the term spread, a variable that is associated with business cycle fluctuations. In

addition, none of the anomaly CF and DR correlations with sentiment are large. The largest

CF and DR correlations are between the BM anomaly and the default spread. But, since the

CF and DR correlations have roughly equal and opposite signs (−0.45 and 0.53), we infer

that the total return of the value anomaly is negatively correlated (roughly −0.5) with the

default spread, and there is no special relationship with either the CF or DR component.

In Table F.1 in the Internet Appendix, we report correlations between anomaly and

market return components for two subperiods: 1929 to 1962, representing early years with-

out direct data on profitability and investment; and 1963 to 2017, representing the modern
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sample used in most empirical studies. Most correlations are qualitatively similar and sta-

tistically indistinguishable across the two subperiods. One exception is the book-to-market

anomaly, which exhibits no significant correlations with market return components in the

early years but some strong correlations in the modern years. This finding is related to

the well-known positive market beta of value stocks in the early years—e.g., Campbell and

Vuolteenaho (2004). The other exception is the negative correlation between DR news for

the MVE cum market portfolio and market CF news that exists only in the modern sample.

Since this finding is driven by the negative correlation between market DR and market CF

news that exists only in the modern sample (0.05 early vs. −0.59 modern), it is not directly

relevant for anomalies.

We discuss in Section 7 how the evidence presented in this section relates to theoretical

models of anomaly returns. In the next section, we analyze the robustness of these results

by exploring several alternative specifications.

6 Robustness

6.1 Testing VAR Assumptions

To estimate anomaly CF and DR shocks, we directly estimate short-run (one-year) firm-

level dynamics of assets’ expected returns and extrapolate these dynamics to infer long-run

(infinite-horizon) expected returns of anomaly portfolios. We now evaluate whether our

short-run firm-level regressions make accurate predictions of short-run anomaly-level returns

and most importantly long-run anomaly returns, which form the basis of CF and DR shocks.

Table 8 compares realized anomaly returns to expected anomaly returns from the VAR.

Panel A shows regressions of realized one-year log anomaly returns on expected one-year log

anomaly returns, where the expected return comes from firm-level VAR predictions weighted

by anomaly portfolio weights. Panel B shows the results from a regression of each anomaly’s

realized (unrebalanced) 10-year return on the anomaly’s predicted long-run return from the
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VAR. Consistent with theory, we apply κi weights to each year i = 1, ..., 10 when computing

the 10-year realized return. We approximate the 10-year expected return using the infinite

horizon expected return with the same κi weights, which is the basis for DR news. We

adjust the regression standard errors for autocorrelation in the residuals using the Newey-

West method with 10 lags.

Panel A in Table 8 shows that our baseline VAR model accurately fits the unconditional

average of one-year log returns on all five anomaly portfolios. The differences in realized and

expected returns are statistically insignificant even at the 10% level. In addition, the model

successfully matches the premium on the MVE combination of anomalies (MVE ex market

portfolio): average return = 12.8% versus expected return = 11.8% (t-stat of 0.41 on the

difference).

From Panel A in Table 8, the model predicts 2% volatility in most anomalies’ expected

returns, implying that many anomalies exhibit negative expected returns in some years.

The size anomaly is an example of an anomaly that has a near-zero unconditional expected

return but exhibits conditional expected returns ranging from −5% to +5%, which is broadly

consistent with recent work by Haddad, Kozak, and Santosh (2018). In the anomaly MVE

portfolio, which combines all anomalies and is scaled to match market volatility, the volatility

of expected returns is 5.5%. Even though this volatility is substantial, the anomaly MVE

portfolio rarely has negative expected returns because its unconditional expected return is

highly positive. This result contrasts with the market portfolio, which has negative expected

returns in many years according to our VAR and others in the literature.

In Panel B of Table 8 we show that, for each of the five anomalies and two MVE portfo-

lios, we cannot reject the hypothesis that the coefficient on the VAR prediction of long-run

anomaly returns is 1.0. Notably, for all but one anomaly (BM), there is sufficient statistical

power to reject the hypothesis that the coefficient is 0.0. There is no apparent bias in these

coefficients judging by the anomaly MVE portfolio coefficient of 0.95, which is economically
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very close to 1.0. Thus, we conclude that the VAR does a decent job of capturing actual

long-run expected returns and thus cash flows, since we impose the present value constraint.

6.2 Reconciling Prior Empirical Findings

Our baseline VAR’s predictions are consistent with prior literature in that DR news explains

most variation in market return and CF news explains most variation in firm-level returns.

However, V02 and CPV find that the correlation between firm-level CF and DR news is

positive, while we find that this correlation is negative.

To investigate how changes in sample selection, sample years, and VAR specification

affect CF and DR news, we replicate and update the main findings in V02 and CPV. We

directly build on the methodology in these studies and reconcile their findings with ours by

making the following incremental changes:

1) Microcaps: Unlike V02 and CPV10, we exclude firms in the bottom NYSE quintile,

which correspond to microcaps as defined by the SEC.

2) Young firms: V02 excludes firms without multiple years of accounting data history—

i.e., young firms. For V02, this filter is necessary to avoid Compustat survivorship bias

in early data since V02 does not use Davis, Fama, and French (2000) book equity data,

as we and CPV do, or exclude small firms, as we do.

3) Market and anomaly portfolio weights: We consistently use value weights when aggre-

gating across firms. V02 always uses equal weights for aggregates. CPV uses value

weights for market-level variables; and CPV subtracts equal-weighted averages from

firm variables when computing market-adjusted variables.

4) Return predictors: Our VAR specification uses firm-level and aggregate characteristics

motivated by the Fama and French (2015) and Carhart (1997) models. V02 and CPV

focus on a smaller set of characteristics: earnings, book-to-market, and past returns.

For V02 firm-level and aggregate predictors, we use lnROE, lnBM , and lnRealRet.
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For CPV firm-level predictors, we use the 5-year average of clean-surplus earnings,

lnBM , and lnRealRet; and, for CPV aggregate predictors, we use term spread, small

stock value spread, and cyclically-adjusted price-to-earnings (CAPE) ratio as measured

in CPV.

5) Sample years: We examine all years from 1929 to 2017. CPV examines the years from

1929 to 2000, whereas V02 examines 1954 to 1996.

In Table 9, we report extensive VAR specifications to reconcile our findings with those of

V02 and CPV. This table also reports three variants of our main specification in which we

exclude the Great Depression years (1929-1938), include microcaps, and define CF shocks

based on accounting ROE instead of the present-value relation. Table 9 shows the variance

of the CF and DR components of firms’ market-adjusted log returns. The three panels focus

on three methodologies: V02, CPV, and ours (LT).

The most important result in Table 9 is that the correlation between DR and CF news

is much higher in samples that include microcaps, regardless of which panel one examines.

Excluding microcaps reduces the DR-CF correlation from 0.52 to −0.11, from 0.39 to −0.41,

or from 0.36 to −0.42 in the three panels. Although microcap observations account for 46%

of the number of firm-years, they represent less than 2% of total market value in most years.

The fact that the DR-CF correlation decreases with firm size is consistent with V02.

We also analyze how including microcaps affects results other than the firm-level CF-

DR correlation. In Table 10, we show that including microcaps substantially increases the

anomaly-level CF-DR correlations, which become positive in most cases like the firm-level

DR-CF correlation. There are two reasons for this increase. First, the inclusion of microcaps

changes some VAR coefficients, particularly the coefficient on profitability in predicting firms’

market-adjusted returns. Table F.2 compares the return predictability coefficients with and

without microcaps. Although the raw return predictability coefficient on profitability is only

41% larger in the microcap specification, the standardized coefficient on profitability is 114%

larger because microcaps have much more volatile profits than other firms. Since high past
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profits predict high returns and high future profits, the large profitability coefficient increases

the DR-CF correlation for microcaps. Our finding of greater predictability from past profits

in small firms is related to the finding that post-earnings announcement drift is larger in

small firms as shown in Mendenhall (2004).

The second reason is that the inclusion of microcaps has a big impact on the compo-

sition and characteristics of anomaly portfolios, which govern the CF and DR shocks to

these portfolios. Microcaps are numerous and have volatile characteristics. Since microcaps

constitute 46% of all observations, the top and bottom quintiles of firms ranked by each

anomaly characteristic (e.g., past profits) could consist entirely of microcaps. In addition,

because microcaps have volatile characteristics, the changes in the characteristics of stocks

in anomaly portfolios and thus the CF and DR shocks to these portfolios depend heavily on

microcaps when these stocks are in the sample.

Interestingly, despite these considerations, Tables F.3 and F.4 in the Internet Appendix

show that including microcaps does not have a large impact on how anomaly return com-

ponents are correlated with market return components and measures of macroeconomic

activity. Our key findings that anomaly CF shocks are uncorrelated with market CF shocks

and macroeconomic activity remain robust.

Returning to Table 9, two other methodological changes have a material impact on the

DR-CF correlation. First, using a broad set of predictors of returns and cash flow in the

VAR, as we do and CPV does, decreases the DR-CF correlation from −0.22 to −0.42 in Panel

A. The key is the inclusion of a persistent predictor of returns and cash flows beyond just

the present value measure, lnBM . CPV also includes five-year clean-surplus earnings and

we include five-year investment and change in size, whereas V02 has no additional persistent

predictors.

The second methodology change that matters is redefining the CF shock to be based

on accounting ROE rather than the present-value identity in Equation (11). Unless a firm

happens to have equal market and book values, accounting ROE does not properly measure
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the relevant cash flow for stockholders, which is potential dividends. A firm with a negative

lnBM value with high ROE will earn far less than a firm with a positive lnBM value

that has the same ROE value, meaning that the latter firm’s true cash flow to stockholders

is higher. In contrast, the CF shock from our VAR, which is based on the present-value

identity, appropriately accounts for stockholder payouts. We discuss this point and provide

a numerical illustration in Internet Appendix E.

Despite this important difference, our main results hold even when using accounting ROE

as the basis for CF shocks. Table 10 compares decompositions of anomaly return variance in

our “Baseline” results with CF to those in our alternative results with “CF from accounting

ROE,” denoted by aCF .13 The most important point is that CF news accounts for the

biggest component of return variance in all anomalies, regardless of whether one uses CF

or aCF . The correlation between CF and DR news does, however, depend on whether one

considers CF shocks based on accounting ROE or the residual method. Specifically, the DR-

CF correlation increases if one defines CF shocks based on accounting ROE, and it becomes

greater than zero (0.15) for the anomaly MVE portfolio. This difference arises because

accounting ROE ignores variation in net payouts to stockholders, such as repurchases and

issuance, which can be correlated with discount rates as well as accounting ROE.

Table F.5 in the Internet Appendix shows that the correlations between anomaly and

market CF news remain small even if one uses CF shocks based on accounting ROE. A

minor exception is the positive and statistically significant 0.33 correlation between market

and value anomaly CF shocks in the “Accounting ROE” column in Table F.5. This finding

is broadly consistent with the finding in Cohen, Polk, and Vuolteenaho (2009) that market

cash flow betas increase with firms’ BM ratios—a finding also based on accounting ROE.

Although the correlations between two anomalies’ (BM and size) CF shocks with market CF

shocks increase from roughly 0.1 to 0.3 when using accounting ROE, the remaining anomaly

13In the alternative VAR with accounting ROE, we predict aggregate and firm-level lnROE but restrict
the coefficients on lagged lnROE variables to be zero in the A matrix since lagged lnROE does not add
predictive power beyond the other variables in the VAR.
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and market CF correlations are close to zero. In addition, the correlation between CF shocks

to the anomaly MVE portfolio and the market changes from −0.17 to −0.10 when using the

accounting-based CF shock, demonstrating that there’s little impact on this key result.

The last important result in Tables 9 and 10 is that CF news always accounts for the

majority of firm- and anomaly-level return variance regardless of which methodology or

sample one uses. In addition, the contribution of DR news to return variance is always

small, accounting for less than 10% in most specifications. Table 10 shows that these results

hold for the “No Depression” and “Including microcaps” samples. Tables F.4 and F.6 in the

Internet Appendix show that the finding of weak correlations between anomaly CF and DR

news and measures of macroeconomic activity is robust in these two samples.

6.3 Overfitting and Misspecifying Expected Returns

Here we consider two possible sources of misspecification in the VAR: spurious return pre-

dictability and omitted predictors of returns. This section summarizes a detailed analysis

of these issues that appears in Internet Appendix G. Incorrectly specifying the predictors

of returns, including estimating predictability coefficients with noise, induces an error in

estimated DR news. Since we impose the present value relation (r−E(r) = CF −DR), any

error in estimated DR news affects estimated CF news.

Spurious return predictability resulting from decades of research on anomalies is our

foremost concern. By chance, some firm characteristics will be associated with future stock

returns in historical samples, so estimates of return predictability are likely overstated, as

argued in Harvey, Liu, and Zhu (2016) and Linnainmaa and Roberts (2018). Internet Ap-

pendix G shows that the use of data-mined characteristics in our VAR framework biases

estimates of DR news variance upward. More subtly, data mining also increases the esti-

mated covariance between CF and DR shocks because CF shocks must offset the impact

of overstated DR shocks in total returns, which we observe directly. Our findings indicate

that CF shocks are the dominant component of anomaly returns and that the correlation
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between DR and CF shocks is negative. Without data mining of VAR characteristics, these

two conclusions would likely be even more pronounced. However, if instead our VAR equa-

tion for returns improperly omits key predictors of returns, the opposite biases could occur,

as shown in Internet Appendix G. This analysis underscores the importance of correctly

specifying return predictability.

7 Interpreting the Results

The stylized facts from the main tables are:

1) Most variation in firm and anomaly returns comes from variation in CF news, which

has significant commonality across anomalies.

2) Anomaly DR and CF shocks are not significantly correlated with market DR and CF

news or standard measures of macroeconomic activity.

3) Firm- and anomaly-level DR and CF news are negatively correlated.

Fact 3 applies only if we exclude microcaps and only if CF shocks satisfy the present-value

relation. Otherwise the facts above are remarkably stable across methodologies and samples.

These findings can help guide asset pricing theories. For instance, the importance of CF

shocks in Fact 1 indicates that the 10% annual volatility in a typical long-short anomaly

portfolio returns comes mainly from shocks to a cash flow factor. Furthermore, anomaly

characteristics are proxies for firms’ different exposures to this cash flow factor. Fact 2

demonstrates that this cash flow factor is uncorrelated with market cash flows and standard

macroeconomic aggregates like GDP and consumption growth.

These two facts present a high hurdle for two types of theories. First, the data do not

support theories that rely on errors in firm valuations that are unrelated to actual cash

flows, such as the De Long et al. (1990) model in which random noise trading drives price

movement. To explain anomaly return decompositions, firms’ exposures to shocks to investor
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risk aversion or sentiment, if they exist, cannot explain too much variance in returns at the

firm or anomaly level. At the market level, on the other hand, risk aversion or sentiment

shocks could be quite important given that 71% of market variance comes from DR shocks.

Second, the weak link between anomaly and market CF shocks casts doubt on theories of

anomalies that rely on differences in how sensitive firms’ cash flows are to aggregate cash

flows (market or macroeconomic), such as the investment-based model of Zhang (2005).

In addition, the generally weak correlation between anomaly DR shocks and market DR

shocks in Fact 2 is inconsistent with theories that emphasize the role of common DR shocks

across priced factor portfolios. Such a common DR shock could arise from time-variation in

risk aversion as in Campbell and Cochrane (1999) or time-variation in investor sentiment as

in Baker and Wurgler (2006). The near-zero correlation between anomaly MVE and market

DR shocks is inconsistent with the idea that arbitrageurs who exploit anomalies are exposed

to the same shocks to risk aversion as investors who hold the market. Instead, the evidence

suggests distinct forces drive market and anomaly return components. Indeed, Figure 4

shows that there are no clear relationships between market and anomaly return components

even during crisis periods.

That said, the DR correlations in Table 7 provide modest support for some theories

of discount rate determination. First, DR shocks to the value-minus-growth portfolio are

positively correlated with macroeconomic shocks, implying that the discount rate of the value

factor portfolio increases during good macroeconomic times. For example, in the Internet

boom of the 1990s when consumption and income growth were high, the valuation spread

increased as growth firms’ valuations diverged markedly from value firms’ valuations, which

in turn increased expected returns to the value factor portfolio. Figure 4 also shows that

market discount rates declined during the Internet boom. This evidence is consistent with the

discount rate aspect of duration-based explanations of the value premium in which growth

firms are more sensitive to market DR shocks than value firms, as in Lettau and Wachter

(2007). However, Table 7 also shows that DR shocks to the anomaly MVE portfolio (MVE
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ex market) are only slightly and not significantly negatively correlated with macro shocks.

Thus, the duration-based theory is inconsistent with broader evidence on DR variation.

Anomaly MVE and market DR shocks are both positively correlated with shocks to

the default spread, a possible proxy for aggregate risk aversion. However, since the overall

correlation between anomaly MVE and market DR shocks is close to zero, as shown in

Table 6, these DR shocks must exhibit other large and distinct sources of variation. At the

individual anomaly level, the correlations with market DR shocks are generally small and the

pattern is inconsistent. Thus, while there is some evidence of a common component related

to the default spread, consistent with, e.g., Campbell and Cochrane (1999), this component

is small: most fluctuations in anomaly CF and DR news shocks are unrelated to fluctuations

in market CF and DR news.

Finally, the negative correlation in CF and DR shocks in Fact 3 could arise for behavioral

or risk-based reasons. Investor overreaction to positive firm-level CF shocks could lower firms’

effective discount rates. If anomaly characteristics are associated with firms’ exposures to

these CF shocks, CF and DR shocks would be negatively correlated at the anomaly level. For

example, a shock to the productivity of new vs. old technology could increase growth firms’

cash flows and decrease value firms’ cash flows. Investor overreaction to this technology

shock would reduce growth firms’ discount rates and increase value firms’ discount rates.14

Alternatively, a risk-based theory in which this technology shock decreases growth firms’

risks and increases value firms’ risks could be consistent with the evidence. Such cash flow

shocks cannot be market- or industry-level shocks, as they exhibit low correlations with

market CF and DR shocks and industry exposures do not appear to be priced. The Kogan

and Papanikolaou (2013) model is consistent with these facts.

14For the sample with microcaps, there is a positive DR-CF correlation, which is consistent with underre-
action to CF news perhaps because investors devote little attention to these firms.

37



8 Conclusion

Despite decades of research on predicting short-term stock returns, there is no widely ac-

cepted explanation for observed cross-sectional patterns in stock returns. We provide new

evidence on the sources of anomaly portfolio returns by aggregating firm-level CF and DR

news from a panel VAR system, producing new insights into the components of anomaly

returns. Any model that features stocks with heterogeneous cash flow dynamics has im-

plications for the variance decomposition of the MVE portfolio return and thus the SDF

that prices all assets. Forcing models to match these empirical moments restricts the shocks

that drive investors’ marginal utility and behavioral biases. The empirical patterns that we

document also hold broadly across individual long-short anomaly portfolios, thus providing

guidance for theories of individual anomalies.

Our empirical framework provides three new facts. First, CF shocks to the stocks un-

derlying the MVE portfolio of anomalies account for 73% of this portfolio’s return variance;

DR shocks account for only 7% of this portfolio’s variance. Even when including the market

portfolio in the MVE portfolio, we still find that 69% of the return variation comes from CF

news. These results contrast with the finding that 74% of the return variance in the market

portfolio alone is due to DR news. Second, CF and DR shocks to anomalies exhibit little

relation with market CF and DR shocks. In fact, DR shocks to the market are uncorrelated

with DR shocks to the MVE combination of anomaly portfolios, casting doubt on theories

that rely on common variation in the price of risk (or sentiment) as an important determinant

of these portfolios’ returns. Anomaly CF shocks are also largely uncorrelated with business

cycle variables such as GDP and consumption growth. Third, there is a negative correlation

between CF and DR shocks to the anomaly MVE portfolio. Based on this evidence, the

most promising theories of anomalies and the MVE portfolio are those that feature cash flow

factors with little relation to market returns or the business cycle, where firms’ exposure

to these factors are related to anomaly characteristics (e.g., investment or profitability) and

where the CF shocks drive changes in firm risk or errors in investors’ expectations.
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Table 1 - Summary Statistics

Panel A shows summary statistics for firms’ returns and characteristics. As stated in the text,
we define lnRealRet as one-year real return, lnROE as one-year return on equity, lnBM as
book equity divided by market equity, lnProf as revenues minus costs and expenses divided
by book equity, lnInv as five-year average of growth in assets, d5.lnME as five-year change
in market equity, and lnMom6 as six-month return. We measure all variables in logs, adding
one before taking the log except for book-to-market and change in size. See text for details.
The second column reports the average number of firm observations per year. The third
and fourth columns give the average mean and standard deviation of the variables per year.
Panel B provides the average yearly correlation matrix for these firm characteristics. The
sample spans the years 1929 through 2017.

Panel A: Avg. number of Avg. Mean Avg. St.Dev.
firms per year per year per year

lnRealRet 1, 399 0.030 0.293
lnROE 1, 399 0.065 0.176
lnBM 1, 399 −0.240 0.626
lnProf 1, 399 0.197 0.143
lnInv 1, 399 0.094 0.109
d5.lnME 1, 399 0.389 0.693
lnMom6 1, 399 0.035 0.204

Panel B: 1 2 3 4 5 6

lnRealRet (1) 1.00
lnROE (2) 0.22 1.00
lnBM (3) −0.34 −0.11 1.00
lnProf (4) 0.14 0.56 −0.12 1.00
lnInv (5) −0.05 0.11 −0.11 0.06 1.00
d5.lnME (6) 0.38 0.24 −0.44 0.17 0.27 1.00
lnMom6 (7) 0.69 0.11 −0.23 0.07 −0.05 0.24
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Table 2 - Market-adjusted Panel VAR

The table gives the results from estimating the panel VAR using market-adjusted firm returns
and characteristics. The variables are: log one-year real returns (lnRealRet), log book-to-
market ratio (lnBM), log profitability (lnProf), log five-year asset growth (lnInv), five-
year change in log market equity (d5.lnME), and log six-month return (lnMom6). We also
include log return on equity (lnROE) as a dependent variable in the VAR, but restrict all
coefficients on this variable’s lag to equal zero, as explained in the main text. The sample
spans the years 1929 through 2017. Standard errors clustered by year and firm appear in
parenthesis. N denotes the number of observations. The marks * and ** indicate significance
at the 5 and 1 percent levels, respectively.

Dependent Variables
Regressors lnRealRett lnBMt lnProft lnInvt d5.lnMEt lnMom6t lnROEt

lnRealRett−1 0.016 0.068∗ 0.034∗∗ 0.007∗∗ 0.244∗∗ −0.012 0.095∗∗

(0.033) (0.029) (0.005) (0.002) (0.036) (0.021) (0.011)

lnBMt−1 0.033 0.905∗∗ −0.017∗∗ −0.008∗∗ −0.008 0.025∗ −0.043∗∗

(0.017) (0.004) (0.003) (0.001) (0.020) (0.012) (0.019)

lnProft−1 0.157∗∗ −0.029 0.584∗∗ 0.013∗∗ 0.190∗∗ 0.085∗∗ 0.269∗∗

(0.030) (0.025) (0.020) (0.003) (0.040) (0.018) (0.023)

lnInvt−1 −0.145∗∗ 0.105∗∗ −0.091∗∗ 0.720∗∗ −0.048 −0.061∗∗ −0.137∗∗

(0.023) (0.022) (0.008) (0.007) (0.028) (0.019) (0.013)

d5.lnMEt−1 −0.016∗∗ 0.032∗∗ 0.000 0.019∗∗ 0.743∗∗ −0.017∗∗ 0.013∗∗

(0.006) (0.006) (0.001) (0.001) (0.013) (0.004) (0.002)

lnMom6t−1 0.095∗∗ −0.093∗∗ 0.009 −0.008∗∗ 0.071∗ 0.058∗∗ −0.023
(0.033) (0.030) (0.006) (0.002) (0.035) (0.018) (0.012)

R2 0.021 0.747 0.373 0.797 0.632 0.017 0.126
N 124, 535 124, 535 124, 535 124, 535 124, 535 124, 535 124, 535
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Table 3 - Aggregate VAR

This table gives the results from estimating the aggregate VAR. The variable are all value-
weighted averages of the firm-level variables used in the panel VAR in Table 2. The vari-
ables are: log real one-year returns (lnRealRet), log book-to-market (lnBM), log prof-
itability (lnProf), log five-year asset growth (lnInv), five-year change in log market equity
(d5.lnME), and log six-month momentum (lnMom6). We also include log return on equity
(lnROE) in the VAR, but restrict all coefficients on this variable’s lag to equal zero, as ex-
plained in the main text. The sample spans the years 1929 through 2017. Heteroskedasticity
adjusted (White) standard errors appear in parenthesis. N denotes the number of observa-
tions. The marks * and ** indicate significance at the 5 and 1 percent levels, respectively.

Dependent Variables
Regressors lnRealRett lnBMt lnProft lnInvt d5.lnMEt lnMom6t lnROEt

lnRealRett−1 −0.131 0.126 0.041∗ 0.006 0.061 −0.085 0.013
(0.120) (0.132) (0.018) (0.012) (0.269) (0.092) (0.025)

lnBMt−1 0.073 0.961∗∗ −0.005 −0.002 −0.150 0.051 −0.073∗∗

(0.120) (0.128) (0.008) (0.006) (0.132) (0.068) (0.013)

lnProft−1 1.195 −1.265 0.883∗∗ 0.101∗ 2.961 0.789 0.698∗∗

(1.196) (1.347) (0.075) (0.048) (1.522) (0.703) (0.129)

lnInvt−1 −0.351 0.774 0.059 0.826∗∗ −1.621 −0.310 0.073
(1.017) (1.144) (0.102) (0.048) (2.237) (0.589) (0.159)

d5.lnMEt−1 −0.128∗ 0.145∗ −0.016∗ 0.007∗ 0.512∗∗ −0.028 −0.018
(0.059) (0.062) (0.007) (0.003) (0.156) (0.035) (0.011)

lnMom6t−1 0.011 0.048 −0.044 −0.011 −0.043 0.025 −0.009
(0.220) (0.236) (0.026) (0.013) (0.436) (0.159) (0.040)

R2 0.173 0.686 0.793 0.916 0.470 0.115 0.599
N 89 89 89 89 89 89 89
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Table 4 - Firm-level and Market Return Variance Decompositions

The table displays variance decomposition of firm- and market-level real returns. We de-
compose each log return into CF and DR news based on the panel VAR in Table 2 and the
aggregate VAR in Table 3. “Firm market-adjusted return” refers to the decomposition of
market-adjusted log firm returns from the panel VAR. “Market return” refers to the decom-
position of log market returns from the aggregate VAR. “Firm return” refers to the decom-
position of total firm returns, obtained by combining components of firm market-adjusted
returns and market returns. The sample spans the years 1929 through 2017. Standard errors
appear in parentheses.

var (DR) var (CF ) −2cov (DR,CF ) corr (DR,CF )

Firm market-adjusted return 8% 72% 20% −0.42
(4%) (10%) (4.9%) (0.06)

Firm return 25% 55% 20% −0.27
(10%) (7.6%) (7.2%) (0.11)

Market return 74% 15% 10% −0.15
(34%) (7.6%) (25%) (0.38)
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Table 5 - Anomaly Variance Decompositions

Panel A shows decompositions of the variance of log anomaly returns into cash flow (CF)
and discount rate (DR) components, as described in the main text. The long-short anomaly
return is the difference between the log return of the top quintile portfolio and the log
return of the bottom quintile portfolio, where the quintiles are based on sorts of stocks
by each anomaly characteristic. We apply value weights to stocks’ log returns within each
quintile portfolio. The anomaly characteristics are firm book-to-market ratio, profitability,
size (market equity), momentum (six-month return), and investment (one-year asset growth)
as defined in the text. Panel B shows variance decompositions of log returns to two in-
sample mean-variance efficient (MVE) portfolios: MVE ex market combines only the five
long-short anomaly portfolios; and MVE cum market comprises the five anomalies and the
market portfolio. The sample spans the years 1929 through 2017. Standard errors appear
in parentheses.

Fraction of Portfolio Return Variance
var (DR) var (CF ) −2cov (DR,CF ) corr (DR,CF )

Panel A: Individual Anomalies

Book-to-market 7% 68% 25% −0.56
(5%) (19%) (10%) (0.10)

Profitability 14% 80% 6% −0.10
(8%) (27%) (16%) (0.14)

Size 7% 64% 29% −0.68
(5%) (17%) (10%) (0.09)

Momentum 7% 70% 23% −0.55
(4%) (21%) (11%) (0.11)

Investment 14% 78% 7% −0.10
(9%) (19%) (13%) (0.14)

Panel B: MVE portfolios

MVE ex market 7% 73% 20% −0.43
(4%) (16%) (10%) (0.12)

MVE cum market 36% 69% −5% 0.05
(14%) (18%) (21%) (0.19)
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Table 6 - Correlations between Anomaly and Market Return Components

The table shows correlations of market cash flow and discount rate shocks with anomaly cash
flow and discount rate shocks and with cash flow and discount rate shocks to mean-variance
efficient (MVE) combinations of these portfolios. “MVE ex market” is the in-sample MVE
combination of the five long-short anomaly portfolios. “MVE cum market” is the in-sample
MVE combination of the five anomalies and the market portfolio. The sample spans the
years 1929 through 2017. Standard errors appear in parentheses. The marks * and **
indicate significance at the 5 and 1 percent levels, respectively.

Market CF Market DR
Anomaly CF Anomaly DR Anomaly CF Anomaly DR

Book-to-market 0.13 −0.23 −0.26 0.42∗∗

(0.15) (0.17) (0.13) (0.12)

Profitability −0.11 −0.03 0.02 0.04
(0.11) (0.13) (0.11) (0.12)

(−) Investment −0.22∗ −0.01 0.05 0.09
(0.11) (0.13) (0.12) (0.13)

(−) Size 0.09 −0.24 −0.29∗ 0.31∗∗

(0.17) (0.15) (0.13) (0.11)

Momentum −0.05 −0.12 0.28∗ −0.21
(0.18) (0.16) (0.14) (0.12)

MVE ex market −0.17 −0.24∗ 0.16 0.06
(0.14) (0.12) (0.11) (0.12)

MVE cum market 0.05 −0.20 0.23 0.90∗∗

(0.17) (0.34) (0.15) (0.07)
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Table 7 - Correlations of CF and DR News with Aggregate Metrics

The table shows correlations of the market and anomaly portfolios’ cash flow and discount
rate shocks with shocks to several aggregate metrics: one-year log real per capita consump-
tion growth, one-year real per capita GDP growth, the one-year difference in the log labor
share, three-year consumption growth (current and future two years), one-year log difference
in Baker and Wurgler’s (2006) sentiment index, the one-year change in the difference between
Baa-rated and Aaa-rated corporate bond yields (default spread), and the one-year change
in the difference between five-year and one-year zero-coupon Treasury bond yields (term
spread). The shocks to the aggregate metrics are the residuals in a first-order autoregressive
univariate model of the shock. The sample spans the years 1929 through 2017 but differs
across variables because of data availability as described in the text. Standard errors that
appear in parenthesis account for time-series variation in the shocks but do not account for
estimation error in the VAR coefficients. The marks * and ** indicate significance at the 5
and 1 percent levels, respectively.

1yr GDP 1yr Cons. Labor 3yr Cons. Investor Default Term

Growth Growth Share Growth Sentiment Spread Spread

CF Correlations

Market 0.37∗∗ 0.43∗∗ −0.10 0.35∗∗ 0.14 −0.26∗∗ −0.15

Book-to-market 0.21 0.12 −0.01 0.01 0.33∗ −0.45∗∗ −0.05

(−) Investment −0.20 −0.28∗ 0.03 −0.20 0.33∗ −0.09 0.13

Profitability −0.26 −0.31∗ −0.07 −0.18 0.06 0.06 0.19

(−) Size −0.02 0.08 −0.21 0.11 −0.02 −0.33∗∗ 0.00

Momentum −0.10 −0.09 0.14 0.08 −0.15 0.26∗ 0.00

MVE ex market −0.27∗ −0.30∗ 0.04 −0.15 0.08 0.04 0.14

MVE cum market −0.26∗ −0.29∗ 0.05 −0.09 0.11 0.11 0.14

DR Correlations

Market −0.29∗ −0.37∗∗ 0.14 −0.18 −0.10 0.66∗∗ −0.15

Book-to-market 0.27∗ 0.15 0.33∗∗ 0.33∗∗ 0.17 0.53∗∗ −0.26∗

(−) Investment 0.15 0.11 0.07 0.29∗ −0.06 0.26∗∗ −0.19

Profitability −0.18 0.00 −0.09 −0.04 −0.18 0.03 −0.05

(−) Size −0.09 −0.13 0.30∗∗ 0.07 −0.16 0.32∗∗ −0.08

Momentum −0.19 −0.13 −0.32∗∗ −0.35∗∗ −0.16 −0.12 0.24

MVE ex market −0.19 −0.11 −0.15 −0.15 −0.31∗ 0.29∗∗ 0.06

MVE cum market −0.38∗∗ −0.39∗∗ 0.00 −0.26 −0.26 0.69∗∗ −0.09
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Table 8 - Realized versus VAR-implied Expected Anomaly Returns

The first row in Panel A displays the mean realized log returns of the long-short anomaly
portfolios, the market portfolio, and the mean-variance efficient (MVE) combinations of
these portfolios. The second row shows the expected log return of each of the portfolios from
the baseline VAR in Tables 2 and 3. The third row shows a t-test of whether the return
difference is significantly different from zero. The fourth row in Panel A reports the standard
deviation of the conditional expected (annual) log return for each of the portfolios from the
baseline VAR. Panel B shows the slope coefficients from regressions of future 10-year log
returns on each of the portfolios on the VAR-implied long-run return estimate. Coefficient
standard errors account for autocorrelation in the residuals up to 10 lags using the Newey-
West method. The sample spans the years 1929 through 2017. The marks * and ** indicate
significance at the 5 and 1 percent levels, respectively.

MVE MVE
Mkt. B/M Prof. Inv. Size Mom. ex mkt. cum mkt.

Panel A: Mean log returns
Anomaly mean return 3.4% 2.1% 3.3% −3.2% 1.3% 4.6% 12.8% 16.2%
VAR expected return 3.4% 4.7% 2.6% −2.7% −0.8% 3.5% 11.8% 13.7%
t-stat for difference 0.00 −1.40 0.61 −0.52 1.51 0.71 0.41 1.03

St. dev. of
expected return 8.5% 1.9% 2.2% 2.1% 2.4% 2.5% 5.5% 7.6%

Panel B: Long-run return prediction
Slope coefficient 0.85 0.82 0.91 1.11 1.15 0.64 0.95 0.83
(standard error) (0.11) (0.75) (0.20) (0.46) (0.29) (0.19) (0.31) (0.19)
t-stat vs. 1 −1.42 −0.24 −0.46 0.25 0.51 −1.92 −0.17 −0.89
t-stat vs. 0 7.90∗∗ 1.09 4.59∗∗ 2.45∗ 4.01∗∗ 3.39∗∗ 3.08∗∗ 4.37∗∗
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Table 9 - Decompositions of Firm Return Variance from Alternative Specifications

The table displays variance decompositions of firm-level market-adjusted returns into CF
and DR components for different specifications. Firms’ market-adjusted returns are log firm
returns minus market returns, where market returns are equal-weighted or value-weighted
averages of log firm returns. Panel A reconciles Vuolteenaho (2002; V02) with the base-
line results in this study (LT). Panel B reconciles Campbell, Polk, and Vuolteenaho (2010;
CPV10) with LT. Panel C shows alternative specifications of LT. The first column is an
explanatory note for the specification. In Panels A and B, we apply the explanatory notes
sequentially. The ‘Years’ column shows the sample years; the ‘Micro’ column shows whether
the sample includes firms in the bottom NYSE size quintile (microcaps); the ‘Young’ column
shows whether the sample includes firms with brief accounting histories that V02 excludes;
the column “Market weights” indicates whether market returns are equal-weighted or value-
weighted averages of log firm returns. In Panel C, the “Baseline” specification repeats the
results from Table 4; “No Depression” is a sample that excludes the Great Depression (1929-
1938); “Accounting ROE” refers to computing cash flow news using expected accounting
ROE rather than using the residual obtained from the present value restriction.

Firms Market Variance Decomposition
Years Micro Young weights var(DR) var(CF) −2cov(DR,CF) corr(DR,CF)

Panel A: V02 Specifications

V02: Replication 1954-1996 Yes No EW 15% 118% −33% 0.39
V02: All years 1929-2017 Yes No EW 7% 124% −31% 0.52
V02: No microcaps 1929-2017 No No EW 4% 92% 4% −0.11
V02: Young firms 1929-2017 No Yes EW 4% 89% 7% −0.19
V02: Value-weight 1929-2017 No Yes VW 6% 84% 10% −0.22
V02: LT predictors 1929-2017 No Yes VW 8% 72% 20% −0.42

Panel B: CPV10 Specifications

CPV10: Replication 1929-2000 Yes Yes EW 5% 105% −10% 0.21
CPV10: All years 1929-2017 Yes Yes EW 5% 114% −19% 0.39
CPV10: No microcaps 1929-2017 No Yes EW 4% 81% 15% −0.41
CPV10: Value-weight 1929-2017 No Yes VW 6% 74% 20% −0.48
CPV10: LT predictors 1929-2017 No Yes VW 8% 72% 20% −0.42

Panel C: LT Specifications

LT: Baseline 1929-2000 No Yes VW 8% 72% 20% −0.42
LT: No Depression 1939-2017 No Yes VW 11% 71% 19% −0.34
LT: Incl. microcaps 1929-2017 Yes Yes VW 14% 115% −29% 0.36
LT: Accounting ROE 1929-2017 No Yes VW 8% 58% 3% −0.06
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Table 10 - Anomaly Variance Decompositions: Alternative Specifications

The table displays the variance decomposition of anomaly returns into CF and DR compo-
nents for alternative specifications relative to Table 5. The “Baseline” specification repeats
the results in Table 5. “No Depression” refers to a sample that excludes the Great Depression
(1929-1938). “CF from accounting ROE” computes cash flow news based on expected return
on equity from accounting statements instead of using the residual method that imposes the
present value constraint. “Including microcaps” refers to a sample that includes firms in
the bottom NYSE size quintile. Unless otherwise specified, the sample spans the years 1929
through 2017.

Fraction of Portfolio Return Variance
Anomaly Specification var (DR) var (CF ) −2cov (DR,CF ) corr (DR,CF )

Book-to-market

Baseline: 1929-2017 7% 68% 25% −0.56
No Depression: 1939-2017 9% 77% 14% −0.28
CF from accounting ROE 7% 60% 10% −0.24
Including microcaps 7% 97% −4% 0.08

Profitability

Baseline: 1929-2017 14% 80% 6% −0.10
No Depression: 1939-2017 11% 63% 26% −0.50
CF from accounting ROE 14% 119% −27% 0.33
Including microcaps 29% 125% −52% 0.45

Size

Baseline: 1929-2017 7% 64% 29% −0.68
No Depression: 1939-2017 9% 63% 28% −0.61
CF from accounting ROE 7% 32% 11% −0.36
Including microcaps 5% 89% 6% −0.14

Momentum

Baseline: 1929-2017 7% 70% 23% −0.55
No Depression: 1939-2017 10% 70% 20% −0.39
CF from accounting ROE 7% 41% 4% −0.13
Including microcaps 7% 102% −9% 0.17

Investment

Baseline: 1929-2017 14% 78% 7% −0.10
No Depression: 1939-2017 8% 68% 24% −0.50
CF from accounting ROE 14% 79% −26% 0.38
Including microcaps 60% 184% −143% 0.68

MVE ex market

Baseline: 1929-2017 7% 73% 20% −0.43
No Depression: 1939-2017 8% 70% 22% −0.45
CF from accounting ROE 7% 61% −6% 0.15
Including microcaps 13% 105% −19% 0.25

MVE cum market

Baseline: 1929-2017 36% 69% −5% 0.05
No Depression: 1939-2017 60% 74% −34% 0.26
CF from accounting ROE 36% 85% −17% 0.16
Including microcaps 51% 98% −49% 0.35
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Figure 1 - Anomaly Return Variance Decompositions

This figure visually represents the return variance decomposition of the five individual long-
short anomaly portfolios shown in Table 5. ‘DR’ stands for discount rate news, and ‘CF’
stands for cash flow news. The sample is 1929 to 2017.
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Figure 2 - Market and MVE Return Decompositions

This figure visually represents the return variance decomposition of the market portfolio and
two version of the MVE portfolio, with and without the market as explained in the text, as
shown in Tables 4 and 5. ‘DR’ stands for discount rate news, and ‘CF’ stands for cash flow
news. The sample is 1929 to 2017.
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Figure 3 - Anomaly vs. Market CF and DR Correlations

This figure visually represents the correlations between anomaly and market cash flow (CF)
and discount rate (DR) news shown in Table 6. The sample is from 1929 to 2017.
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Figure 4 - Market CF and DR News vs. Anomaly MVE CF and DR News

The top plot shows the cash flow (CF) news from the market and the anomaly mean-variance
efficient (MVE) portfolio, which combines only the long-short anomaly portfolios and uses
in-sample MVE weights. The bottom plot shows analogous discount rate (DR) news. The
sample is annual from 1929 through 2017.
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A Cash Flows vs. Discount Rates of Trading Strate-

gies

Here we show that the cash flows and discount rates of rebalanced portfolios, such as anomaly

portfolios, can differ substantially from those of the underlying firms in the portfolios. We

provide examples below in which firms have constant cash flows, but all variation in returns

to the rebalanced portfolio comes from cash flow shocks.

We first consider a stylized behavioral model of stock returns and cash flows. Assume

that all firms pay constant dividends:

Di,t = d̄. (A.1)

Assume that investors in each period erroneously believe that any given firm’s dividend

is permanently either dL < d̄ or dH > d̄. We define the firms associated with low (high)

dividend beliefs to be value (growth) firms. The pricing of these firms satisfies:

P value =
dL

R− 1
, (A.2)

P growth =
dH

R− 1
, (A.3)

where R is the gross risk-free rate. Each period, with probability q, investors switch their

beliefs about each stock’s dividends either from dL to dH or from dH to dL. Investors believe

their beliefs will last forever, whereas in reality they will switch with probability q in each

period.

Now consider a value fund that invests only in stocks that investors currently believe

will pay dividends of dL. Further assume that there are only two firms in the economy—a

firm that currently is a growth firm and a firm that currently is a value firm. When beliefs

switch, the growth firm becomes a value firm and vice versa. This switch therefore induces

trading in the value fund as the fund has to sell firms that become growth firms and buy

the new value firms.
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Such trading has a significant impact on the fund’s dividends. Suppose that the fund

initially holds one share of the value stock, which implies that its initial wealth is W0 = P value.

Assume investors do not switch beliefs in the next period. In this case, the fund’s gross return

is:

Rvalue
1 =

P value + d̄

P value

= 1 +
d̄

P value
. (A.4)

Period 1 cum-dividend wealth is

W cum
1 = P value + d̄, (A.5)

where ex-dividend wealth is P value and dividend is d1 = d̄. Assume that beliefs switch in

period 2. Then:

Rvalue
2 =

(R− 1)
(
dH
R−1 + d̄

)
dL

=
dH + (R− 1) d̄

dL

=
dH
dL

+
d̄

P value
. (A.6)

So fund wealth becomes:

W cum
2 = P valuedH

dL
+ d̄.

Ex-dividend wealth is W ex
2 = P value dH

dL
, and the dividend is d2 = d̄ once again. The dividend

price ratio of the strategy is now:

W ex
2

d2
=
P value

d̄

dH
dL

>
P value

d̄
. (A.7)

The higher price-dividend ratio reflects high expected dividend growth next period.
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Importantly, the fund now reinvests its capital gain into the current value stock and is

able to purchase more than one share. Assuming beliefs do not switch in period 3, the fund’s

wealth increases to:

W cum
3 = P valuedH

dL

(
1 +

d̄

P value

)
= P valuedH

dL
+
dH
dL
d̄. (A.8)

Now ex-dividend wealth is W ex
3 = P value dH

dL
and d3 = d̄ × dH/dL, implying that dividend

growth during this period is high as d3/d2 = dH/dL > d2/d1 = 1. The price-dividend ratio

of the strategy is now:

W ex
3

d3
=

P value dH
dL

d̄× dH/dL
=
P value

d̄
, (A.9)

meaning that the price-dividend ratio returns to its original value.

In summary, dividend growth of the dynamic value strategy varies over time, but expected

returns to the strategy are constant and given by:

E(Rvalue) = 1− q + q
dH
dL

+
d̄

P value

= 1− q + q
dH
dL

+
d̄

dL
(R− 1). (A.10)

A symmetric argument applies to the analogous growth strategy, which also has time-varying

dividend growth and constant expected returns. We conclude that return variation in the

dynamic trading strategies arises solely because of cash flow shocks even though all firms

in the economy incur only discount rate shocks. Firm-level return variation is driven by

changes in firms’ expected returns, not their dividends—which are constant.

There are no discount rate shocks to the returns of these dynamic strategies when viewed

from the perspective of an investor who invests in the value or growth funds. However, unex-

pected returns to such funds are in fact, under the objective measure of the econometrician,
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due to discount rate shocks to the underlying firms. The firms’ actual expected returns vary,

whereas their dividend growth does not.

This feature of rebalanced portfolios is not limited to the case of time-varying mispricing.

Consider a risk-based model in which value firms have riskier cash flows than growth firms.

If time variation in a firm’s cash flow risk causes it to switch between being a value firm

and a growth firm, the risk-based model delivers the same insights as the behavioral model

discussed above.

In this example, we assume firms’ log dividend growth is:

∆di,t+1 = −1

2
σ2 + σ

(
ρsi,tεm,t+1 +

√
1− ρ2si,tεi,t+1

)
, (A.11)

where εm,t+1 and {εi,t+1}i are uncorrelated standard normally distributed shocks represent-

ing aggregate and firm-specific dividend shocks, respectively. Firm exposure to aggregate

dividend shocks is:

ρsi,t =

 ρH

ρL

if si,t = 1

if si,t = 0
, (A.12)

where si,t follows a two-state Markov process where Pr {si,t+1 = 1|si,t = 0} = Pr {si,t+1 = 0|si,t = 1} =

π. For ease of exposition, set ρL = 0 and ρH = 1. Initially, half of firms are in state 1, while

the other half are in state 0. If a regime change occurs, all firms currently in state 1 switch

to state 0, and vice versa.

The log stochastic discount factor is:

mt+1 = −1

2
γ2σ2 − γσεm,t+1, (A.13)

where we implicitly assume a zero risk-free rate and where γ > 0 represents risk aversion.

These assumptions imply that the conditional mean and volatility of cash flow growth is

constant. However, firm risk varies with si,t, which determines the covariance of cash flows

with the pricing kernel, causing time-varying firm risk premiums.
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Solving for the price-dividend ratio as a function of the state yields:

PD (si,t) = Et

[
e
− 1

2
γ2σ2−γσεm,t+1− 1

2
σ2+σ

(
ρsi,tεm,t+1+

√
1−ρ2si,tεi,t+1

)
(1 + PD (si,t+1))

]
= e−γσ

2ρsi,t (1 + πPD (si,t+1 6= si,t) + (1− π)PD (si,t+1 = si,t)) . (A.14)

Denote the price-dividend ratio in state j as PDj. The price-dividend relation above is a

system with two equations and two unknowns with the solution:

PD1 =
1

eγσ2 − 1
(A.15)

PD0 = 1/π +
1

eγσ2 − 1
(A.16)

These equations show that price-dividend ratios are higher in state 0 when dividend risk

is low than in state 1 when dividend risk is high, implying that expected returns are higher

in state 0 as expected dividend growth is constant across states. Firms’ expected net returns

are:

Et [Ri,t+1|si,t = 0]− 1 = 0, (A.17)

Et [Ri,t+1|si,t = 1]− 1 = 2(eγσ
2 − 1). (A.18)

Since PD0 > PD1, we see that Et [Ri,t+1|si,t = 1] > Et [Ri,t+1|si,t = 0]. Thus, firms’ price-

dividend ratios fluctuate because of shocks to discount rates, not cash flows. Although

there are cash flow shocks in returns arising from the contemporaneous dividend shock

(σ
(
ρsi,tεm,t+1 +

√
1− ρ2si,tεi,t+1

)
), dividends are unpredictable and therefore do not induce

time-variation in the price-dividend ratio.

Now consider a value mutual fund that in each period buys firms that are currently in

the low valuation state 1. With probability π, value firms held by the fund will switch to

the high valuation state 0, meaning that they become growth firms. The fund sells all firms

in each period and reinvests the proceeds in firms that are in the low valuation state 1.
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The fund pays out all firm dividends as they occur. The expected return to this strategy is

constant and equal to Et [Ri,t+1|si,t = 1] − 1 = 2(eγσ
2 − 1), even though all firms’ expected

returns vary over time.

We now analyze the growth of the value fund’s dividends in each period. The first source

of fund dividend growth is growth in the underlying firms’ dividends, which satisfy:

Di,t+1

Di,t

= e−
1
2
σ2+σεm,t+1 . (A.19)

The second source of fund dividend growth is growth in the number of shares of value firms

held by the fund. If value firms switch to growth firms, the fund will reap a capital gain

and be able to buy more shares of the new value firms in the following period. Define the

indicator variable 1si,t 6=si,t−1
as equal to 1 if there was a regime shift from period t − 1 to

period t and 0 otherwise. Accounting for both sources of growth, fund dividend growth is:

DFund
t+1

DFund
t

= 1si,t 6=si,t−1

PD0

PD1

e−
1
2
σ2+σεm,t+1 +

(
1− 1si,t 6=si,t−1

)
e−

1
2
σ2+σεm,t+1 , (A.20)

where the term PD0

PD1
= 1+ eγσ

2−1
π

represents the capital gain from the prior period. Dividends

are predictably high after high capital gains and low after low capital gains. The predictabil-

ity in dividend growth leads to a time-varying price-dividend ratio for the mutual fund, even

though its expected return is constant. Thus, discount rate shocks to the underlying value

firms are cash flow shocks for the mutual fund implementing a value trading strategy.
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B Relation to Equilibrium Models

The VAR offers a parsimonious, reduced-form model of the cross-section of expected cash

flows and discount rates at all horizons. Here we demonstrate that the VAR specification

is related to standard asset pricing models. In well-known models such as Campbell and

Cochrane’s (1999) habit formation model and Bansal and Yaron’s (2004) long-run risk model,

the log stochastic discount factor is conditionally normally distributed and satisfies:

mt+1 = −rf,t −
1

2
‖λt‖2 + λ′tηt+1, (B.1)

where λt is a K × 1 vector of conditional risk prices, ηt+1 is a K × 1 vector of standard

normal shocks, and rf,t is the risk-free rate. With conditionally normal log returns, applying

the Law of One Price yields the following expression for the conditional expected log return

of firm i:

Et [ri,t+1] = rf,t −
1

2
vi,t + covt (mt+1, ri,t+1)

= rf,t −
1

2
vi,t + β′i,tλt, (B.2)

where vi,t ≡ vart (ri,t+1) is firm return variance, and β
(k)
i,t =

covt
(
λ
(k)
t η

(k)
t+1,ri,t+1

)
vart

(
λ
(k)
t η

(k)
t+1

) and βi,t =[
β
(1)
i,t β

(2)
i,t ... β

(K)
i,t

]′
represent firm betas.

We make simplifying assumptions to relate this setup to the VAR specification. Define

firm risk premiums as z
(k)
i,t ≡ β

(k)
i,t λ

(k)
t and zi,t =

[
z
(1)
i,t z

(2)
i,t ... z

(K)
i,t

]′
. Suppose that risk

premiums, variances, and the risk-free rate evolve according to:

zi,t+1 = z̄ + Az (zi,t − z̄) + Σz,tε
z
i,t+1, (B.3)

vi,t+1 = v̄ + Av (vi,t − v̄) + σv,tε
v
i,t+1, (B.4)

rf,t+1 = r̄f + Arf (rf,t − r̄f ) + σr,tε
rf
t+1, (B.5)

8



for all firms i. Assume firm log return on equity is also conditionally normal:

ei,t+1 = µ+ xi,t + σe,tε
e
i,t+1, (B.6)

xi,t+1 = Axxi,t + Σx,tε
x
i,t+1, (B.7)

where xi,t is an L× 1 vector of latent state variables determining expected return on equity.

All shocks can be correlated.

Assuming the clean-surplus model described earlier, firm book-to-market ratios are given

by:

bmi,t = a0 + a′1rf,t + a′2zi,t + a′3xi,t + a4vi,t. (B.8)

Define the (2K + L+ 1)× 1 vector si,t =
[
r′f,t z′i,t vi,t...x

′
i,t

]′
to consist of the stacked state

variables. We assume there exist (2K + L+ 1) observed characteristics, ξi,t, that span si,t:

ξi,t = A1 + A2si,t, (B.9)

where A2 is invertible. With the characteristic spanning assumption, firms’ book-to-market

become a function of the observed characteristics, resulting in a VAR representation of the

present-value relation. In sum, the VAR specification concisely summarizes the dynamics

of expected cash flows and discount rates, even when both consist of multiple components

fluctuating at different frequencies. The VAR yields consistent estimates even though there

is heteroskedasticity across firms and time.

When analyzing long-short portfolios, we obtain the anomaly cash flow (discount rate)

shock as the difference in the cash flow (discount rate) shocks between the long and short

portfolios. Taking the value anomaly as an example, suppose the long value portfolio and

short growth portfolio have the same betas with respect to all risk factors except the value

factor (say, λ
(2)
t ). According to Equation (B.2), discount rate shocks to this long-short

portfolio can only arise from three sources: 1) shocks to the spread in the factor exposure

between value and growth firms (β
(2)
value,t−β

(2)
growth,t); 2) shocks to the price of risk of the value

9



factor (λ
(2)
t ); or 3) shocks to the difference in return variance between the two portfolios. The

third possibility arises because we analyze log returns. Similarly, cash flow shocks to this

long-short portfolio only reflect these portfolios’ differential exposure to cash flow factors.

10



C VAR and Return Decomposition Standard Errors

Each statistic, s, that we estimate, such as the correlation between cash flow and discount

rate shocks, is a function of our VAR coefficient matrix (A), which we also estimate. We

account for two sources of estimation uncertainty in s(A). First, since we observe a finite

sample of T years of aggregate shocks, there is sampling variation in s conditional on A,

which we write as V ar(s|A). Second, to the extent that values of s depend on the values

of A, uncertainty in A estimates induces uncertainty in s(A), which we write as V ar(s(A)).

We compute V ar(s|A) using standard formulas for uncertainty in the appropriate statistic,

depending on whether s is a mean, variance, covariance, or correlation, under the assumption

that shocks to s are independent over time. We compute V ar(s(A)) by applying the delta

method to s and the covariance matrix of estimated VAR coefficients V ar(A). Lastly, we

combine the two sources of estimation uncertainty to get the standard error of s from the

relationship:

SE(s) =
√
V ar(s) =

√
V ar(s|A) + V ar(s(A)), (C.1)

where the second variance term satisfies the delta method equation:

V ar(s(A)) =

(
∂s

∂A

)′
V ar(A)

∂s

∂A
, (C.2)

where ∂s
∂A

is a gradient vector representing the sensitivity of s to each coefficient in the A

matrix and V ar(A) is the covariance matrix for all VAR coefficients across all equations.

We compute the sensitivity of s to each element in A using numerical derivatives. The next

section explains how we compute the covariance matrix of VAR coefficients.

C.1 VAR Standard Errors

We estimate the covariance matrix of VAR coefficients, V ar(A), using standard regression

methods. To obtain unbiased point estimates of each row of A coefficients, we separately

11



estimate regressions for each firm-level and aggregate variable in the VAR. Denote the vari-

ables in an arbitrary row representing a firm-level regression by the subscript m, so we can

express the regression as ym = Xmβm + εm. The point estimates of the A coefficients in this

row satisfy the standard ordinary least squares (OLS) formulas:

bma = (X ′mXm)
−1
X ′mym (C.3)

= βm + (X ′mXm)
−1
X ′mεm. (C.4)

The panel of firm-level observations is unbalanced with Nt firms at each time t. There

are K regressors including an intercept. Let x
(m)
it denote the K×1 vector with the regressors

for firm i at time t for row m in the VAR. Let Xm be the set of all regressors for all firms

and times in equation m:

Xm
(τ×K)

=
[
x
(m)
11 · · · x

(m)
N11

x
(m)
12 · · · x

(m)
N22

· · · x
(m)
1T · · · x

(m)
NTT

]′
,

where τ = ΣT
t=1Nt.

The covariance matrix of the estimated row m in the A matrix, bm, is then:

V ar (bm) = E
[
(X ′mXm)

−1
X ′mεmε

′
mX

′
m (X ′mXm)

−1
]
. (C.5)

We compute the covariance between estimates of two rows, bm and bn, of the A matrix,

where rows m and n both represent firm-level regressions, using:

Cov (bm, bn) = E
[
(X ′mXm)

−1
X ′mεmε

′
nX
′
n (X ′nXn)

−1
]
. (C.6)

The A matrix also contains rows based on regressions with aggregate variables as the

independent and the dependent variables. There can be different numbers of regressors in

these aggregate regressions than in the firm-level regressions. Consider the coefficients, ba,

from an arbitrary row a in the A matrix representing an aggregate regression in the VAR,

ya = Xaβa + εa, where Xa is a T ×KA matrix of aggregate regressors and εa is the T × 1

12



vector of aggregate residuals. Then the K ×KA covariance matrix of firm-level coefficients,

bm, and aggregate coefficients, ba, is:

Cov (bm, ba) = E
[
(X ′mXm)

−1
X ′mεmε

′
aX
′
a (X ′aXa)

−1
]
. (C.7)

The covariance between two rows of aggregate coefficients, a and j, is:

Cov (bj, ba) = E
[(
X ′jXj

)−1
X ′jεjε

′
aX
′
a (X ′aXa)

−1
]
. (C.8)

C.2 Equal-weighting the VAR Across Time

Since the panel is unbalanced, we assign weights to the firm-level observations so that the

sum of weights across firms is equal at each time t. Let W be a τ × τ diagonal matrix with

diagonal vector, w, defined as:

w =
[

1N1

N1

1N2

N2
· · · 1NT

NT

]
,

where 1z is a 1× z vector of ones. We compute weighted versions of the firm-level estimates

and standard errors by modifying the formulas with appropriate insertions of the W matrix.

Specifically, we replace all X ′mXm terms with X ′mWXm and all X ′mεm terms with X ′mWεm.

The resulting weighted estimates of firm-level VAR coefficients are:

bm = (X ′mWXm)
−1
X ′mWym (C.9)

= βm + (X ′mWXm)
−1
X ′mWεm. (C.10)

The weighted standard errors for firm-level coefficients are:

V ar (bm) = E
[
(X ′mWXm)

−1
X ′mWεmε

′
mWX ′m (X ′mWXm)

−1
]
, (C.11)

Cov (bm, bn) = E
[
(X ′mWXm)

−1
X ′mWεmε

′
nWX ′n (X ′nWXn)

−1
]
. (C.12)
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The weighted covariance between firm-level estimates, bm, and aggregate estimates, ba, is:

Cov (bm, ba) = E
[
(X ′mWXm)

−1
X ′mWεmε

′
aX
′
a (X ′aXa)

−1
]
. (C.13)

The firm-level weighting does not affect covariance terms involving just aggregate coefficients.
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D Portfolio Aggregation

In the main paper, we aggregate from firm-level to various portfolios (the market and anomaly

portfolios) by value-weighting log return components to be consistent with prior literature

and to simplify the analysis. In reality, of course, a portfolio return is a weighted average of

simple (not log) returns. In this section, we construct an aggregation method that works for

simple returns and show that this alternative anomaly return decomposition produces the

same conclusions as the simpler approach in the main paper.

In particular, we approximate each firm’s simple return using a second-order Taylor

expansion around its current expected log return and then aggregate shocks to firms’ simple

returns using portfolio weights in the usual way.

The first step in this process is to express simple (gross) returns in terms of the compo-

nents of log returns using:

Ri,t+1 ≡ exp (ri,t+1)

= exp (Etri,t+1) exp
(
CF shock

i,t+1 −DRshock
i,t+1

)
, (D.1)

where Etri,t+1 is the predicted log return and CF shock
i,t and DRshock

i,t are estimated shocks from

firm-level VAR regressions in which we impose the present-value relation. A second-order

expansion around zero for both shocks yields:

Ri,t+1 ≈ exp (Etri,t+1)

{
1 + CF shock

i,t+1 +
1

2

(
CF shock

i,t+1

)2 −DRshock
i,t+1 +

1

2

(
DRshock

i,t+1

)2
+ CF shock

i,t+1 DR
shock
i,t+1

}
.

(D.2)
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Later we show that this approximation works well in practice. Next we define the cash flow

and discount rate shocks to simple firm returns as:

CF simple shock
i,t+1 ≡ exp (Etri,t+1)

{
CF shock

i,t+1 +
1

2

(
CF shock

i,t+1

)2}
, (D.3)

DRsimple shock
i,t+1 ≡ exp (Etri,t+1)

{
DRshock

i,t+1 −
1

2

(
DRshock

i,t+1

)2}
, (D.4)

CFDRcross
i,t+1 ≡ exp (Etri,t+1)CF

shock
i,t+1 DR

shock
i,t+1 . (D.5)

For a portfolio with weights ωpi,t on firms, we can approximate the simple portfolio return

using:

Rp,t+1 −
n∑
i=1

ωpi,t exp (Etri,t+1) ≈ CF simple shock
p,t+1 −DRsimple shock

p,t+1 + CFDRcross
p,t+1, (D.6)

where

CF simple shock
p,t+1 =

n∑
i=1

ωpi,tCF
simple shock
i,t+1 , (D.7)

DRsimple shock
p,t+1 =

n∑
i=1

ωpi,tDR
simple shock
i,t+1 , (D.8)

CFDRcross
p,t+1 =

n∑
i=1

ωpi,tCFDR
cross
i,t+1 . (D.9)

Since they are sums over individual firms’ simple cash flow and discount rate shocks, the

portfolio cash flow and discount rate shocks account for the conditional covariance structure

of the shocks. We decompose the variance of portfolio returns using

var
(
R̃p,t+1

)
≈ var

(
CF simple shock

p,t+1

)
+ var

(
DRsimple shock

p,t+1

)
−2cov

(
CF simple shock

p,t+1 , DRsimple shock
p,t+1

)
+var

(
CFDRcross

p,t+1

)
, (D.10)
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where R̃p,t+1 ≡ Rp,t+1−
∑n

i=1 ω
p
i,t exp (Etri,t+1). We ignore covariance terms involving CFDRcross

p,t+1

as these are very small in practice. When analyzing cash flow and discount rate shocks to

long-short portfolios, we obtain the anomaly cash flow (discount rate) shock as the difference

in the cash flow (discount rate) shocks to the long and short portfolios.

Table D.1 shows that the resulting return variance decompositions are close to those in

Table 5 in the main paper. Furthermore, the second-order approximation above is accurate

in the sense that the correlation between predicted anomaly returns from this second-order

approximation (r = E[r] +CF −DR) is highly correlated with the actual anomaly portfolio

return. In sum, we conclude that value-weighting log returns instead of simple returns does

not materially affect our conclusions.
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Table D.1 - Anomaly Variance Decompositions: Simple Returns

This table shows decompositions of the variance of simple anomaly returns into cash flow
(CF) and discount rate (DR) components from the baseline panel VAR of Table 2. As
described in Internet Appendix D, we apply a second-order Taylor approximation to estimate
the CF and DR components of firms’ simple returns from the CF and DR components of
firms’ log returns. We weight firms’ simple CF and DR news to obtain simple anomaly CF
and DR news. The anomaly return is the difference between the return of the top quintile
portfolio and the return of the bottom quintile portfolio, where the quintile sort is based on
the relevant characteristic. The main columns show the variance decomposition of anomalies’
approximate simple returns. The last column shows correlations between our approximations
of simple anomaly returns and actual simple anomaly returns. We also show the variance
decomposition of simple returns to the in-sample MVE portfolio based on the quintile long-
short anomaly portfolios. The sample spans the years 1929 through 2017. Standard errors
appear in parentheses.

Fraction of Portfolio Return Variance

var (DR) var (CF ) −2cov (DR,CF ) corr (DR,CF ) Corr(Pred,Act)

Book-to-market 6% 46% 25% −0.77 0.99

(4%) (21%) (15%) (0.08) (0.02)

Profitability 11% 60% 8% −0.08 0.99

(4%) (19%) (13%) (0.14) (0.01)

Size 5% 48% 25% −0.82 0.99

(4%) (23%) (14%) (0.08) (0.02)

Momentum 4% 50% 19% −0.69 1.00

(2%) (23%) (11%) (0.15) (0.01)

Investment 8% 60% 8% −0.19 0.99

(4%) (19%) (13%) (0.15) (0.01)

MVE ex market 9% 72% 26% −0.51 0.99

(5%) (16%) (9%) (0.13) (0.02)
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E Alternative Measure of Cash Flow News

Here we compare our main cash flow measure, CF , based on the present-value identity in

Equations (10) and (11) to an alternative cash flow shock, aCF , equal to the discounted

infinite sum of expected accounting ROE (lnROE). With this latter measure, one cannot

precisely decompose log returns into cash flow and discount rate components because aCF 6=

CF implies that aCF −DR 6= r. However, by defining iCF ≡ CF − aCF , we can write a

new return decomposition:

r = aCF + iCF −DR. (E.1)

A simple numerical example illustrates why CF is the natural measure of payouts to

stockholders, why aCF is inappropriate, and how to interpret iCF . Consider two firms, A

and B, that have the same initial book values of equity of 100. Both firms also have the same

expected accounting ROE (lnROE) and the same expected log returns (r) on their stocks

in all future periods. Specifically, investors expect ROE to be 0% in year 1, year 3, and all

periods thereafter, but in year 2 they expect to ROE to be 40%, implying lnROE = ln(1.4).

For simplicity, assume investor expectations are rational, clean-surplus accounting holds, the

risk-free rate is 0%, and future ROE and payout policies are known in advance. Since there

is no uncertainty, expected returns on both firms equal the risk-free rate of 0%.

The only difference between the firms is that investors rationally expect firm A to issue

900 in new equity in year 1 and pay 1300 in dividends in year 2, whereas firm B will not

issue any equity and will pay only 40 in dividends (D) in year 2. This difference will cause

firm A to have much more capital in year 2 when the two firms have high expected ROE

of 40%. Tables E.1 and E.2 summarize the two firms’ financial conditions in years 0 to 3.

Firms’ market equity—i.e., their valuations—are simply the sum of their expected future

dividends because expected returns are 0%.

The key point is that firm A’s valuation of 500 is much higher than firm B’s valuation

of 140 because its expected future net payouts to stockholders are higher: 1300− 900 = 400
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Table E.1 - Firm A Valuation

Year 0 1 2 3

Book Equity 100 1000 100 100
Earnings 0 400 0
Dividends 0 1300 0
Net Issuance 900 0 0
Net Payouts −900 1300 0

ROE 0% 40% 0%
Return 0% 0% 0%

lnROE 0 0.336 0
r 0 0 0

Market Equity 500 1400 100 100
lnBM -1.609 -0.336 0 0

Table E.2 - Firm B Valuation

Year 0 1 2 3

Book Equity 100 100 100 100
Earnings 0 40 0
Dividends 0 40 0
Net Issuance 0 0 0
Net Payouts 0 40 0

ROE 0% 40% 0%
Return 0% 0% 0%

lnROE 0 0.336 0
r 0 0 0

Market Equity 140 140 100 100
lnBM -0.336 -0.336 0 0

for firm A versus just 40 for firm B. This difference in dividends arises despite no difference

in the firms’ accounting ROE measures in any future period.

Now we will decompose firm B’s return under the assumption that it unexpectedly an-

nounces in year 0 that it will pursue firm A’s issuance and payout policies. Firm B’s stock

price will immediately jump to 500 from 140, giving it a return of 257% or a log return of

r = ln(5/1.4) = 1.273. Firm B’s expected returns will remain the same, so DR = 0. The

firm’s expected ROE will also remain the same, so aCF = 0. But the cash flow shock for

firm B based on the present-value formula will be CF = r+DR = 1.273. This large positive

CF news correctly reflects the fact that firm B’s future net payouts to stockholders increase
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by 360 when it changes its issuance and payout policy. Intuitively, the reason is that the

firms’ management is increasing value by scaling up the operation of the business when it is

most profitable.

Firm issuance and thus investment policies can create or destroy value, which has a real

impact on firm cash flows and payouts to stockholders. The aCF shock based accounting

ROE is insensitive to the scale of the firm’s operations, whereas the CF shock based on the

present-value formula properly takes this scale into consideration. We therefore interpret

the difference between aCF and CF , which is iCF , as a measure of shocks to future net

payouts (or equivalently net issuance) holding future accounting ROE constant.
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F Additional Robustness Tests

In this section, we present additional robustness analyses. Table F.1 shows subperiod cor-

relations between anomaly and market return components estimated from the full-sample

baseline VAR. The remaining tables report findings from other VAR specifications. Table F.2

compares the VAR coefficients from the baseline and microcap samples. Table F.3 compares

the correlations between anomaly and market return components in the baseline specifica-

tion to those in three alternative specifications. Tables F.4 to F.6 report correlations of CF

and DR news with aggregate metrics, where the CF and DR news come from three different

VARs: Table F.4 includes microcaps; Table F.5 estimates the CF shock from accounting

return on equity; and Table F.6 excludes the Great Depression.
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Table F.1 - Correlations between Anomaly and Market Return Components:
Early vs. Modern Years

The table shows correlations of market cash flow and discount rate shocks with anomaly cash
flow and discount rate shocks and with cash flow and discount rate shocks to mean-variance
efficient (MVE) combinations of these portfolios. “MVE ex market” is the in-sample MVE
combination of the five long-short anomaly portfolios. “MVE cum market” is the in-sample
MVE combination of the five anomalies and the market portfolio. The first entry in each
cell is the correlation from 1929 to 1962 (early years), and the second entry is the correlation
from 1963 to 2017 (modern years).

Market CF Market DR
Subperiod Anomaly CF Anomaly DR Anomaly CF Anomaly DR

Book-to-market
1929–1962 0.18 −0.43 −0.58 0.61
1963–2017 0.06 0.19 0.20 0.00

Profitability
1929–1962 0.06 −0.09 0.06 0.14
1963–2017 −0.33 0.05 0.04 −0.09

(−) Investment
1929–1962 −0.12 −0.07 −0.22 0.10
1963–2017 −0.35 0.21 0.36 −0.05

(−) Size
1929–1962 0.20 −0.27 −0.60 0.43
1963–2017 −0.05 −0.20 0.13 0.09

Momentum
1929–1962 0.00 −0.06 0.42 −0.26
1963–2017 −0.13 −0.22 0.16 −0.13

MVE ex market
1929–1962 0.06 −0.30 −0.03 0.18
1963–2017 −0.42 −0.16 0.41 −0.15

MVE cum market
1929–1962 0.41 −0.01 0.28 0.94
1963–2017 −0.28 −0.59 0.27 0.82
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Table F.3 - Correlations between Anomaly and Market Return Components:
Alternative samples

The table displays the correlations of anomaly CF news with market CF news and anomaly
DR news with market DR news for different specifications relative to Table 6. The “Baseline”
specification repeats the results in Table 6. “No Depression” refers to a sample that excludes
the Great Depression (1929-1938). “Accounting ROE” computes cash flow news based on
expected return on equity from accounting statements instead of using the residual method
that imposes the present value constraint. “Including microcaps” refers to a sample that
includes firms in the bottom NYSE size quintile. Unless otherwise specified, the sample
spans the years 1929 through 2017.

Specification
Anomaly Statistic Baseline No Depression Accounting ROE Microcaps

Book-to-market
Corr(CFmkt, CFb/m) 0.13 −0.06 0.33 0.13
Corr(DRmkt, DRb/m) 0.42 0.18 0.42 0.27

Profitability
Corr(CFmkt, CFprof ) −0.11 −0.05 −0.04 −0.12
Corr(DRmkt, DRprof ) 0.04 −0.06 0.04 0.05

(−) Investment
Corr(CFmkt, CFinv) −0.22 −0.17 −0.04 −0.12
Corr(DRmkt, DRinv) 0.09 −0.25 0.09 0.16

(−) Size
Corr(CFmkt, CFsize) 0.09 0.03 0.28 0.06
Corr(DRmkt, DRsize) 0.31 0.28 0.31 0.24

Momentum
Corr(CFmkt, CFmom) −0.05 −0.06 −0.21 −0.03
Corr(DRmkt, DRmom) −0.21 0.04 −0.21 −0.09

MVE ex market
Corr(CFmkt, CFmve ex mkt) −0.17 −0.15 −0.10 −0.11
Corr(DRmkt, DRmve ex mkt) 0.06 0.01 0.06 0.23

MVE cum market
Corr(CFmkt, CFmve cum mkt) 0.05 0.26 0.24 0.08
Corr(DRmkt, DRmve cum mkt) 0.90 0.94 0.90 0.82

25



Table F.4 - Correlations of CF and DR News with Aggregate Metrics:
VAR Estimated Including Microcaps

This table shows the same correlations as in Table 7, except that the cash flow (CF) and
discount rate (DR) shocks here come from a VAR based on a sample that includes stocks in
the bottom NYSE size quintile (microcaps) whereas the Table 7 analysis excludes microcaps.
This table shows correlations of the market and anomaly portfolios’ CF and DR shocks with
shocks to several aggregate metrics: one-year log real per capita consumption growth, one-
year real per capita GDP growth, the one-year difference in the log labor share, three-year
consumption growth (current and future two years), one-year log difference in Baker and
Wurgler’s (2006) investor sentiment index, the one-year change in the difference between
Baa-rated and Aaa-rated corporate bond yields (default spread), and the one-year change
in the difference between five-year and one-year zero-coupon Treasury bond yields (term
spread). The shocks to the aggregate metrics are the residuals in a first-order autoregressive
univariate model of the shock. The sample spans the years 1929 through 2017 but differs
across variables because of data availability as described in the text. Standard errors that
appear in parenthesis account for time-series variation in the shocks but do not account for
estimation error in the VAR coefficients. The marks * and ** indicate significance at the 5
and 1 percent levels, respectively.

1yr GDP 1yr Cons. Labor 3yr Cons. Investor Default Term

Growth Growth Share Growth Sentiment Spread Spread

CF correlations

Market 0.38∗∗ 0.44∗∗ −0.10 0.35∗∗ 0.15 −0.26∗∗ −0.15

Book-to-market 0.26∗ 0.16 −0.02 0.01 0.36∗∗ −0.45∗∗ −0.05

(−) Investment −0.17 −0.27∗ 0.04 −0.16 0.36∗∗ −0.03 0.11

Profitability −0.26 −0.33∗ −0.04 −0.14 0.09 −0.03 0.17

(−) Size 0.00 0.08 −0.24∗ −0.12 −0.12 −0.34∗∗ −0.03

Momentum −0.12 −0.08 0.11 0.08 −0.21 0.22∗ 0.03

MVE ex market −0.22 −0.26∗ 0.06 −0.07 0.10 −0.01 0.12

MVE cum market −0.20 −0.25 0.09 0.00 0.14 0.06 0.12

DR Correlations

Market −0.30∗ −0.38∗∗ 0.15 −0.19 −0.10 0.66∗∗ −0.14

Book-to-market 0.41∗∗ 0.24 0.28∗ 0.27∗ 0.35∗∗ 0.27∗∗ −0.24∗

(−) Investment 0.01 −0.18 0.08 0.20∗ 0.20 0.23∗ −0.04

Profitability −0.43∗ −0.26 −0.10 −0.19 −0.13 0.03 0.10

(−) Size −0.19 −0.19 0.25∗ 0.04 −0.29∗ 0.20 −0.05

Momentum −0.25 −0.18 −0.27∗ −0.27 −0.28∗ 0.25∗∗ −0.36∗∗

MVE ex market −0.32∗ −0.31∗ −0.15 −0.17 −0.20 0.34∗∗ 0.20

MVE cum market −0.41∗∗ −0.46∗∗ 0.01 −0.25 −0.18 0.64∗∗ 0.02

26



Table F.5 - Correlations of CF and DR News with Aggregate Metrics:
Cash Flow News from Accounting ROE

This table shows the same correlations as in Table 7, except that the cash flow (CF) shocks
here are based on expected accounting return on equity (ROE) instead of the present-value
relation with log returns and discount rate (DR) shocks. This table shows correlations of the
market and anomaly portfolios’ CF and DR shocks with shocks to several aggregate metrics:
one-year log real per capita consumption growth, one-year real per capita GDP growth, the
one-year difference in the log labor share, three-year consumption growth (current and future
two years), one-year log difference in Baker and Wurgler’s (2006) investor sentiment index,
the one-year change in the difference between Baa-rated and Aaa-rated corporate bond yields
(default spread), and the one-year change in the difference between five-year and one-year
zero-coupon Treasury bond yields (term spread). The shocks to the aggregate metrics are the
residuals in a first-order autoregressive univariate model of the shock. The sample spans the
years 1929 through 2017 but differs across variables because of data availability as described
in the text. Standard errors that appear in parenthesis account for time-series variation in
the shocks but do not account for estimation error in the VAR coefficients. The marks * and
** indicate significance at the 5 and 1 percent levels, respectively.

1yr GDP 1yr Cons. Labor 3yr Cons. Investor Default Term

Growth Growth Share Growth Sentiment Spread Spread

CF Correlations

Market 0.13 0.17 0.00 0.35∗∗ 0.02 −0.52∗∗ −0.28∗∗

Book-to-market 0.40∗∗ 0.39∗∗ 0.08 0.27∗ 0.26 −0.46∗∗ −0.18

(−) Investment −0.19 −0.32∗ 0.02 −0.12 0.23 0.06 0.13

Profitability −0.47∗∗ −0.48∗∗ −0.11 −0.32∗ 0.03 −0.02 0.27∗∗

(−) Size 0.35 0.22 −0.07 0.12 −0.03 −0.35∗∗ −0.16

Momentum −0.35∗∗ −0.32∗ 0.09 −0.07 −0.11 0.34∗∗ 0.07

MVE ex market −0.44∗∗ −0.45∗∗ 0.02 −0.22 −0.01 0.16 0.15

MVE cum market −0.45∗∗ −0.47∗∗ 0.01 −0.13 −0.02 0.04 0.12

DR Correlations

Market −0.29∗ −0.37∗∗ 0.14 −0.18 −0.10 0.66∗∗ −0.15

Book-to-market 0.27∗ 0.15 0.33∗∗ 0.33∗∗ 0.17 0.53∗∗ −0.26∗∗

(−) Investment 0.15 0.11 0.07 0.29∗ −0.06 0.26∗∗ −0.19

Profitability −0.18 0.00 −0.09 −0.04 −0.18 0.03 −0.05

(−) Size −0.09 −0.13 0.30∗∗ 0.07 −0.16 0.32∗∗ −0.08

Momentum −0.19 −0.13 −0.32∗∗ −0.35∗∗ −0.16 −0.12 0.24∗

MVE ex market −0.19 −0.11 −0.15 −0.15 −0.31∗ 0.29∗∗ 0.06

MVE cum market −0.38∗∗ −0.39∗∗ 0.00 −0.26 −0.26 0.69∗∗ −0.09
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Table F.6 - Correlations of CF and DR News with Aggregate Metrics:
VAR Estimated 1939 - 2017 (No Depression)

This table shows the same correlations as in Table 7, except that the sample here excludes
the Great Depression period (1929-1938). This table shows correlations of the market and
anomaly portfolios’ cash flow (CF) and discount rate (DR) shocks with shocks to several
aggregate metrics: one-year log real per capita consumption growth, one-year real per capita
GDP growth, the one-year difference in the log labor share, three-year consumption growth
(current and future two years), one-year log difference in Baker and Wurgler’s (2006) investor
sentiment index, the one-year change in the difference between Baa-rated and Aaa-rated
corporate bond yields (default spread), and the one-year change in the difference between
five-year and one-year zero-coupon Treasury bond yields (term spread). The shocks to the
aggregate metrics are the residuals in a first-order autoregressive univariate model of the
shock. The sample spans the years 1939 through 2017 but differs across variables because
of data availability as described in the text. Standard errors that appear in parenthesis
account for time-series variation in the shocks but do not account for estimation error in the
VAR coefficients. The marks * and ** indicate significance at the 5 and 1 percent levels,
respectively.

1yr GDP 1yr Cons. Labor 3yr Cons. Investor Default Term

Growth Growth Share Growth Sentiment Spread Spread

CF Correlations

Market 0.15 0.29∗ −0.13 0.18 0.05 −0.12 −0.03

Book-to-market 0.22 0.13 0.01 0.02 0.35∗∗ −0.23∗ −0.06

(−) Investment −0.18 −0.28∗ 0.04 −0.19 0.34∗∗ 0.12 0.12

Profitability −0.27∗ −0.32∗ −0.08 −0.18 0.06 0.14 0.19

(−) Size −0.04 0.06 −0.20 −0.11 −0.03 −0.04 −0.01

Momentum −0.10 −0.09 0.06 0.07 −0.16 0.19 0.01

MVE ex market −0.25 −0.30∗ 0.06 −0.12 0.11 0.22∗ 0.13

MVE cum market −0.27∗ −0.31∗ 0.03 −0.12 0.17 0.22∗ 0.16

DR Correlations

Market −0.27∗ −0.37∗∗ 0.16 −0.21∗ 0.01 0.36∗∗ −0.06

Book-to-market 0.27∗ 0.14 0.33∗ 0.32∗ 0.18 0.13 −0.26∗∗

(−) Investment 0.16 0.12 0.08 0.30∗ 0.05 0.04 −0.19

Profitability −0.18 0.01 −0.09 −0.04 −0.18 0.02 −0.05

(−) Size −0.09 −0.14 0.31∗∗ 0.07 −0.17 0.12 −0.08

Momentum −0.17 −0.11 −0.31 −0.35∗ −0.17 0.12 0.25∗∗

MVE ex market −0.17 −0.07 −0.19 −0.16 −0.29∗ 0.17 0.07

MVE cum market −0.32∗∗ −0.38∗∗ 0.08 −0.25 −0.10 0.39∗∗ −0.05
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G The Effect of Misspecification on the Return Vari-

ance Decomposition

Here we consider two possible sources of misspecification in the VAR: omitted predictors of

returns and spurious return predictability, which could come from data mining. Since we

impose the present value relation in the VAR, any error in the estimated DR component of

returns affects the estimated CF component.

Decompose estimated DR news (DR) into true DR (DRtrue) news and an orthogonal

error term (εDR):

DRt = aDRtrue
t + εDR,t, (G.1)

where a = 1 and V ar (εDR,t) = 0 if estimated DR shocks are correct. Omitting return

predictors decreases the value of a with no effect on the error variance, while spurious

predictability tends to increase or have no effect on a and increases the variance in the error

term. We can evaluate the impact of misspecification on estimated CF news by using the

present value restriction:

CFt = CF true
t −DRtrue

t +DRt

= CF true
t − (1− a)DRtrue

t + εDR,t. (G.2)

Now we can examine the bias in the covariance between estimated CF and DR, which

equals:

Cov (CFt, DRt) = aCov
(
CF true

t , DRtrue
t

)
− (1− a) aV ar

(
DRtrue

t

)
+aCov

(
CF true

t , εDR,t
)

+ V ar (εDR,t) . (G.3)

As a useful benchmark, assume the true covariance between CF and DR is zero. The impact

of misspecification on the estimated covariance is then:

ErrorCov = − (1− a) aV ar
(
DRtrue

t

)
+ aCov

(
CF true

t , εDR,t
)

+ V ar (εDR,t) . (G.4)
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Data mining is likely to impart a positive bias on the estimated covariance. In particular,

consider the effect of data-mining as a ≥ 1 and V ar (εDR,t) > 0. The first and last terms

are then positive. In addition, spurious prediction of future cash flows suggests that the

middle term—covariance of cash flows with spurious discount rate errors—is also positive,

or at least not negative and large enough to undo the effect of the other two terms. So data

mining induces a positive bias in the covariance of CF and DR news.

Now consider omitted return predictors, which manifest as a < 1 and V ar (εDR,t) = 0.

Since the first term in ErrorCov will be negative, omitted return predictors can induce a

negative bias in the CF and DR covariance.

In summary, VAR misspecification can lead to both a positive and negative bias in the

estimated covariance of CF and DR shocks. However, if data mining is the main concern,

the bias is likely positive, which strengthens the finding that most empirical estimates of this

covariance are negative.
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