Fangruo Chen

Optimal policies for multiechelon inventory problems with Markov-modulated demand

Coauthor(s): Jing-Sheng Song.


Adobe Acrobat PDF

This paper considers a multistage serial inventory system with Markov-modulated demand. Random demand arises at Stage 1, Stage 1 orders from Stage 2, etc., and Stage N orders from an outside supplier with unlimited stock. The demand distribution in each period is determiend by the current state of an exogenous Markov chain. Excess demand is backlogged. Lienar holding costs are incurred at every stage, and linear backorder costs are incurred at Stage 1. The ordering costs are also linear. The objective is to minimze the long-run average costs in the system. The paper shows that the optimal policy is an echelong base-stock policy with state-dependent order-up-to levels. An efficient algorithm is also provided for determining the optimal base-stock levels. The results can be extended to serial systems in which there is a fixed ordering cost at stage N and to assembly systems with linear ordering costs.

Source: Operations Research
Exact Citation:
Chen, Fangruo, and Jing-Sheng Song. "Optimal policies for multiechelon inventory problems with Markov-modulated demand." Operations Research 49, no. 2 (2001): 226-234.
Volume: 49
Number: 2
Pages: 226-234
Date: 2001