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GUR HUBERMAN1 and WERNER STANZL2

1Columbia Business School; 2Ziff Brothers Investments, L.L.C.

Abstract. A liquidity trader wishes to trade a fixed number of shares within a certain time horizon
and to minimize the mean and variance of the costs of trading. Explicit formulas for the optimal
trading strategies show that risk-averse liquidity traders reduce their order sizes over time and execute
a higher fraction of their total trading volume in early periods when price volatility or liquidity
increases. In the presence of transaction fees, traders want to trade less often when either price
volatility or liquidity goes up or when the speed of price reversion declines. In the multi-asset case,
price effects across assets have a substantial impact on trading behavior.

1. Introduction

What is the optimal trading sequence of a person who wishes to buy (or sell) a
certain portfolio within a certain time, and knows how trades affect prices? Insti-
tutional investors usually transact portfolios of considerable size and thus incur
permanent and temporary price impacts. The temporary impact represents the
transitory cost of demanding liquidity and only affects an individual trade. On
the contrary, the permanent component of the price impact not only influences
the price of the first trade but also the prices of all subsequent trades of an agent.
Modelling this price dynamics explicitly enables us to derive cost-efficient execu-
tion strategies for multi-trade orders. We focus exclusively on linear price-impact
functions because Huberman and Stanzl (2004) show that in the absence of price
manipulation, price-impact functions are linear.

To minimize the price impact, an agent would choose to trade patiently and
split his order into many small pieces (e.g., see Bertsimas and Lo (1998)). Such
a strategy ignores the opportunity costs that arise from unfavorable price move-
ments during the execution of an order. The longer the trade duration the higher
the uncertainty of the realized prices. Hence, to balance price-impact costs against
opportunity costs, we assume that a liquidity trader not only cares about the expec-
ted value but also about the variance of his execution costs. Risk aversion in this
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context means that an investor is willing to trade lower opportunity costs for higher
price-impact costs.

ITG Inc., a trade execution firm which services institutional investment funds,
uses a similar classification for execution costs and groups managers according
to their sensitivity to opportunity costs. On page 4 of the ITG ACETM document
(2004) it says:

When executing an agency order the balance between price impact and op-
portunity cost is chosen on the basis of the motivation for the order, which
ultimately comes from the investment manager. Passive managers are primar-
ily concerned with price impact. Growth or momentum managers are more
worried about opportunity costs.

In our parlance, growth or momentum managers are more risk-averse than passive
ones.

Assuming that the trader wishes to minimize the mean and variance of the total
execution costs, we prove that a time-consistent solution exists and is unique when
price manipulation is ruled out. The most important features of the optimal execu-
tion strategy are that trade sizes decline over time if the price-impact function is
time-independent, and that orders are independent of past random shocks such as
the arrival of new information. The comparative statics show that higher aversion
to risk, higher price or trading volume volatility, lower speed of price reversion,
and higher liquidity of price changes to trade size all lead to more aggressive initial
trading.

These theoretical results give rise to two different sets of empirical tests. First,
for a given level of risk aversion, or equivalently, type of portfolio manager, how
do asset-specific characteristics such as liquidity, price volatility, or pace of price
reversion affect the optimal trading strategy? Second, for a fixed asset or portfolio,
what is the risk aversion implied by a portfolio manager’s trading sequence? Since
our price model can be estimated econometrically, the formulas we obtain for the
optimal execution can be used to tackle both questions.

In general, the dynamics of institutional trading has not been studied empiric-
ally. More specifically, the hypothesis that when institutions allocate their trades
over a few days, they trade more aggressively initially has not been examined em-
pirically, its intuitive appeal notwithstanding. In Section 2 we summarize evidence
assembled for Huberman, Jones and Lipson (2004). They document that when
institutions trade the same stock in the same direction over a few days, on aver-
age they trade 2% more during the first half of the period than during its second
half. This finding is consistent with the special case of our model in which the
price-impact function is constant over time.

Some institutions, like mutual funds, are prohibited from short selling. We prove
that an optimal execution strategy also exists for a buyer who faces short-sale
constraints. An incentive to short arises when early trading periods are relatively
illiquid compared to later ones. In this case, by shorting the trader pushes the
prices favorably down for future purchases. However, if short-sale constraints are
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in place, the trader refrains from trading in the less liquid periods and redistributes
his volume across the other more liquid periods.

Chan and Lakonishok (1995) study the effects of commission costs, market
capitalization, and managerial strategy on the price impact and execution costs of
institutional trades. Consistent with our results, they report that execution costs
are in general higher for less patient traders and low market-capitalization stocks.
In addition, they report that the manager’s type is the most important cost factor.
Thus, as investors’ risk aversion varies with type, price volatility would be expected
to be a significant determinant of the execution costs. This relation has not been
empirically tested yet, but our model predicts that price volatility increases costs
substantially for traders with high opportunity costs.

This paper explicitly analyzes how mean-reversion of prices following trades
affects the optimal trading strategy, and shows that trading costs are negatively
related to the speed of price reversion. Thereby this speed can be interpreted as
another dimension of liquidity. Foucault, Kandel and Kadan (2004) provide a the-
oretical model in which the speed at which spreads revert after a sequence of trades
is endogenous and is negatively correlated with trading costs. Empirically, Biais,
Hillion and Spatt (1995), Degryse et al. (2003) and Coppejans et al. (2003) have
documented that spreads and prices tend to revert following trades.

In the presence of fixed per-trade transaction fees, the trade duration becomes
endogenous. A higher price volatility or higher liquidity with respect to trade size
decreases the optimal number of trades. When the price volatility is high, the trader
lowers his risk exposure by shortening his trading horizon. When the price impact
is large, the investor reduces the overall impact by submitting many small orders.
Further, the trader favors a longer trade duration if prices revert more quickly to
their original levels after large trades. Keim and Madhavan (1995) provide evid-
ence that value managers exhibit the longest trade duration, followed by index and
technical managers. Our model explains this pattern.

In practice, multiple assets are traded simultaneously. In this case, the traded
volume of one asset presumably affects not only its own price but also the prices
of other assets. To account for cross-price impacts, we extend the analysis to allow
for trading a portfolio of securities and derive dynamic trading rules that describe
how to optimally rebalance a portfolio. Volume is deferred to later periods when
either cross-price impacts are high or asset prices are negatively correlated.

The solution to the liquidity trader’s problem derived here can also be used to
find the optimal “program trade” of a potential insider. A new SEC rule (FD Rule
25/1 and 25/2) on insider trading requires potential insiders to announce their trades
before they actually trade and that they commit to their announced trades. Hence,
potential insiders have to specify when they want to trade and how much they want
to trade. But this is exactly the liquidity trader’s problem.

The remainder of this paper is structured as follows. Section 2 looks at the daily
trading pattern of money managers in the Plexus data set. The liquidity trader’s
minimization problem is introduced in Section 3. Section 4 establishes the exist-
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ence and uniqueness of the sequence of optimal trades and discusses its properties.
Section 5 examines portfolio trading. Section 6 studies the optimal trading fre-
quency in the presence of fixed transaction costs. Section 7 explores the effects of
autocorrelated noise trades on the optimal trading strategy. Three papers that are
closely related to our work, namely, Bertsimas and Lo (1998), Almgren and Chriss
(2000) and Vayanos (2001), are discussed in Section 8. Section 9 concludes. All
proofs are in the Appendix.

2. Daily Trading

The analysis in this paper is normative, and considers the optimal strategy of a
trader, given his objective and market circumstances. One of the analysis’ key
insights is that a trader who allocates his trades over time should trade larger
quantities earlier on. Surprisingly, not much is known about the extent to which
traders actually follow this intuitively appealing prescription. This section reports
a summary statistic on the intertemporal allocation of trades by large US money
managers who trade the same stock in the same direction over a few days. Taken
from Huberman, Jones and Lipson (2004, in preparation), this statistic illustrates
the extent to which the size of these trades declines over the execution period.

The Plexus Group provided the data underlying the statistics reported in this
section. Plexus is a consulting firm that works with institutional investors to mon-
itor and reduce their equity transaction costs. Its clients manage over $1.5 trillion
and the firm has access to transactions covering about 25% of US trading volume.
The Plexus data have been studied in earlier work. (e.g., Keim and Madahvan,
1995, 1997, Jones and Lipson, 1999, 2001, Conrad et al., 2001.)

The statistics cover the behavior of 120 institutional investors over the period
1997–2001. The basic construct is a run, which is defined by its direction (buy or
sell), length k, first day t , the manager involved i, and the stock involved j .

A k-day buy (sell) run on stock j by manager i that begins on day t is a series
of purchases (sales) of stock j by manager i such that there is no purchase (sale)
on day t − 1, there are purchases (sales) on each of the days t , t + 1, ..., t + k − 1,
and no purchase on day t + k. Fix the length of the run k for k ≥ 2. Let the amount
manager i purchased (sold) of stock j on day τ be B(i, j, τ ) (S(i, j, τ )) and

b(i, j, τ ) = B(i, j, τ )
∑t+k−1

τ=t B(i, j, τ )
,

where b(i, j, τ ) is the fraction of the run executed on day τ . Define similarly
s(i, j, τ ).

Consider the regression equation

b(i, j, τ ) = αb + βb(τ − t)+ ε(i, j, t).

The slope coefficient βb depends on the run, and therefore is a function of i, j , and
t . It is an estimate of the difference of the fraction of purchases executed on two
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Table I. Institutional trading over time

Run length (days) Average difference between the fraction of run traded in

the first and second half of run

2 2.25%

3 1.88%

4 0.74%

5 2.38%

consecutive days. Similarly, one can estimate βs . The average of the βb’s and βs’s
and their dependence on k is the focus of this section.

Of the runs that take at least two days to complete, 95% are complete within
five days. Table I summarizes the average difference between the quantity traded
in the first half of the run and the second half of the run (across buys and sells). In
general, if the run is of length k, the slope coefficient of the regression translates
to a volume difference between the first and second half of the run of k2/4 when
k is even and (k − 1)(k + 1)/4 if k is odd. The table suggests that on average
institutional investors trade around 2% more in the first half of the run than in the
second half.

3. The Optimization Problem

Consider a market in which a single asset is traded over N periods. At each period,
traders submit their orders simultaneously, and the price change from one period
to the next depends on the aggregate excess demand. (Presumably, there is a mar-
ket maker outside the model who absorbs this excess demand.) Orders are placed
before the price change is known. Only market orders are considered.

From the perspective of an individual trader, the total trading volume at time n
is given by qn + ηn, where qn denotes the trader’s order size and ηn is a random
variable representing the unknown volume of the others. (Negative quantities are
sales.) We assume that {ηn}Nn=1 is an i.i.d. stochastic process with zero mean and
finite variance σ 2

η , defined on the probability space (�,F ,P).
The initial price of the asset at time n, p̂n, which is observed by each trader

before choosing his quantity qn, is the last price update computed after the trades
in the previous period n − 1. Given the initial price, an individual trader faces the
transaction price pn = p̂n + λn(qn + ηn), where the real number λn measures
the liquidity with respect to trading volume. Hence, a trader expects to pay (p̂n +
λnqn)qn if he wants to buy the quantity qn. After all trades have been executed at
time n, the new price update for the next period is calculated according to p̂n+1 =
αp̂n + (1 − α)pn + εn+1, where 0 ≤ α ≤ 1 and εn+1 incorporates news into the
price.
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The updating weight α determines the size of the price updates. It can also
be interpreted as the speed of price reversion. The lower the α, the stronger is
the permanent impact. If α = 0, expected price updates and transaction prices
coincide, and the price dynamics reduce to

pn = pn−1 + λn(qn + ηn)+ εn. (1)

Trade size has only a temporary price impact if α = 1. The stochastic process
{εn}Nn=1, defined on (�,F ,P), is i.i.d. with zero mean and variance σ 2

ε , and it is
independent of {ηn}Nn=1. The zero-mean assumptions are not made for conveni-
ence; if one of the two stochastic processes exhibited a nonzero mean, then price
manipulation as discussed in Huberman and Stanzl (2004) would arise.

To define the information set of an individual trader we introduce the vector
Hn ≡ ({p̂j}nj=1, {pj }n−1

j=1, {qj }nj=1, {ηj }n−1
j=1, {εj }nj=1) containing the variables known

to the trader before he submits his order in period n, and the sigma-algebra σ (Hn)

that it generates. Then, the setM(Hn) of all σ (Hn)-measurable functions comprises
all information available to the trader before his trade at time n. Unlike ηn, the
trader does know the news εn. Furthermore, the trader can only choose a trading
strategy qn that is an element ofM(Hn). This setup should best capture real trading
activity where the latest public news is known before submitting an order, while
others’ trades are not.

To make later references easier, the price dynamics are summarized by

p̂n = αp̂n−1 + (1 − α)pn−1 + εn
pn = p̂n + λn(qn + ηn),

(2)

for n ≥ 1 and initial price p0 = p̂0 > 0, with the special case (1) when α = 0.
The liquidity trader’s optimization problem can be formulated as

L(Q,N) ≡ inf
{qn∈M(Hn)}Nn=1

E

[
N∑

n=1

pnqn

]

+ R

2
Var

[
N∑

n=1

pnqn

]

subject to
N∑

n=1

qn = Q and (2),

(3)

where Q > 0 (Q < 0) denotes the number of shares he wants to buy (sell) and
R ≥ 0 is the risk-aversion coefficient. Expectation and variance are evaluated at
time zero before any of the random price elements are realized. The liquidity trader,
aware of the price impact of his trades summarized in (2), minimizes the mean and
variance of the total execution costs that must be incurred to enlarge (reduce) his
portfolio by Q shares. Note that the first line in (3) reads

− sup
{qn∈M(Hn)}Nn=1

E

[
N∑

n=1

pn(−qn)
]

− R

2
Var

[
N∑

n=1

pn(−qn)
]

(4)
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for the seller, i.e., he sells {−qn}Nn=1 shares in order to maximize revenues minus
its variance. Thus, if {qn}Nn=1 denote the optimal quantities traded by a buyer of
Q shares, the optimal quantities traded by a seller of −Q shares are {−qn}Nn=1. We
will refer to both L(Q,N) and E[∑N

n=1 pnqn]+ R
2 Var[∑N

n=1 pnqn] as cost function,
with (Q,N) and (q1, . . . , qN ) being the arguments, respectively.

REMARK 1. An efficient mean-variance frontier for the execution costs can be
constructed from (3). To see this, define the efficient frontier by

F(V ) ≡
{

inf
{qn∈M(Hn)}Nn=1

E

[
N∑

n=1

pnqn

]

: Var

[
N∑

n=1

pnqn

]

≤ V

}

. (5)

By solving (3) and varying the risk-aversion coefficient R one can trace out F
in the (mean,variance)-space. If the solutions to (3) are unique, then F is strictly
decreasing in the interval (0, V̄ ], where V̄ is the variance produced by the expected-
cost-minimizing strategy (R = 0). The trader’s optimal execution strategy is
implied by the tangency point between his utility function and the frontier F.

REMARK 2. The objective function in (3) can also be interpreted as minimizing
the mean and variance of the value-weighted average price,

∑N
n=1 pnqn/Q, paid for

execution (divide L(Q,N) by Q and reset the risk-aversion parameter to R/Q).

REMARK 3. Problem (3) can also be employed to study insider trading as in the
Kyle (1985) framework provided the total trading volume is fixed or announced
before trading (e.g., the FD Rule 25/1 and 25/2 on insider trading by the SEC
stipulates that potential insiders have to announce their trades before they actually
trade and that they are obliged to commit to their announced trades). An insider
knows that eventually the security will trade at a price v, and tries to profit from
the discrepancy between that eventual price and the prices at which he can trade
over the next N periods. Assume no updates on v are made during trading. Buying
qn at price pn hence yields a profit of E[(v − pn)qn] for a risk-neutral insider. The
objective is therefore

π(Q,N) ≡ sup
{qn∈M(Hn)}Nn=1

E

[
N∑

n=1

(v − pn)qn

]

subject to
N∑

n=1

qn = Q and (2).

(6)

As a consequence, π(Q,N) = sup E[∑N
n=1(v − pn)qn] subject to

∑N
n=1 qn = Q

is equivalent to L(Q,N) = inf E[∑N
n=1 pnqn] subject to

∑N
n=1 qn = Q, and

π(Q,N) = vQ − L(Q,N). But this is nothing but the liquidity trader’s min-
imization problem in (3) if R = 0. As a result, risk-neutral insiders who fix the
number of shares they trade are liquidity traders.
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4. Cost-efficient Trade Execution

This section formulates a recursive version of the problem in (3), provides sufficient
conditions for the existence and uniqueness of the solution, and presents explicit
formulas for the optimal trading policy. The optimal trading path is independent of
the resolution of uncertainty, and the traded amounts decline with time. The focus
is only on the buyer’s problem, because the seller’s problem is similar. Upfront we
state the most general result (the proof is in the Appendix). The following subsec-
tions discuss special cases of Theorem 1. In particular, Proposition 2 (Section 4.3)
assumes that the permanent price impact is constant through time, whereas Propos-
ition 3 (Section 4.3) allows λn to change over time. Both propositions restrict α to
be zero (no temporary price impact). Section 4.4 permits α �= 0 but considers only
constant λn’s.

THEOREM 1. Consider the backward difference equation

µn = αλn−1 + λn(1 + R

2
λnσ

2
η )− λ2

n(1 + α + Rαλnσ
2
η )

2

2[2µn+1 + R(α2λ2
nσ

2
η + σ 2

ε )]
, (7)

for 1 ≤ n ≤ N −1, with µN = αλN−1 +λN(1+ R
2 λNσ

2
η ). If 2µn +R(α2λ2

n−1σ
2
η +

σ 2
ε ) > 0 for 2 ≤ n ≤ N , then the liquidity trader’s problem (3) exhibits a unique,

time-consistent solution that can be obtained by solving the dynamic program in
(14). It is given by

qn = θnQn, (8)

for 1 ≤ n ≤ N , where

θn ≡ 1 − λn(1 + α + Rαλnσ
2
η )

2µn+1 + R(α2λ2
nσ

2
η + σ 2

ε )
(9)

1 ≤ n ≤ N − 1, and θN = 1. The minimal costs equal

Ln(p̃n−1,Qn−1,Qn) = [p̃n−1 − αλn−1(Qn−1 + ηn−1)]Qn + µnQ
2
n, (10)

1 ≤ n ≤ N , where Q0 = λ0 = η0 ≡ 0 and p̃n−1 ≡ pn−1 + εn.

Theorem 1 includes a sufficient condition for the existence of a solution to
problem (3). Proposition 1 (Section 4.2) offers two more sufficient conditions
that have a more appealing economic interpretation. Namely, if price-manipulation
opportunities as defined in Huberman and Stanzl (2004) are absent, then a
time-consistent solution to (3) exists.

To provide the basic intuition, we begin with a stripped-down version of (3),
with α = 0 and two periods.
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4.1. THE TWO-PERIOD PROBLEM

With the price process pn = pn−1 +λn(qn+ηn)+εn, n = 1, 2, the costs of trading
q1 in period 1 and q2 = Q− q1 in period 2 amount to

C2 = [p0 + λ1(q1 + η1)+ ε1]q1

+[p0 + λ1(q1 + η1)+ λ2(Q− q1 + η2)+ ε1 + ε2](Q− q1). (11)

The pair (q1, q2) that minimizes E[C2] + R
2 Var[C2] is

q1 = 2λ2 − λ1 + R(λ2
2σ

2
η + σ 2

ε )

2λ2 + R(λ2
2σ

2
η + σ 2

ε )
Q and q2 = λ1

2λ2 + R(λ2
2σ

2
η + σ 2

ε )
Q. (12)

The stochastic term ε1 is a sunk cost by the time the first (and only) decision is
made, and therefore does not affect the optimal trades in (12).

To understand how optimal trading is affected by risk aversion, set λ1 = λ2 = λ

for the moment. Then, q1 = q2 = Q/2 if R = 0, i.e., the risk-neutral trader
splits his total quantity evenly across the two periods. These amounts are not
optimal for a risk-averse trader, because the marginal cost at these quantities is
−R(λ2σ 2

η + σ 2
ε )Q/2 < 0. In other words, the risk-averse trader is willing to

incur higher expected expenses in return for a lower variance. In fact, he always
wants to equate the marginal change in the expected value of the execution costs,
λ(2q1 − Q), to the marginal change in its variance weighted with the coefficient
R, R(λ2σ 2

η + σ 2
ε )(Q− q1). Thus, optimality requires that q1 > q2 and that a buyer

purchases shares in each period. (Note that the trader chooses q1 = Q if he aims at
minimizing the variance only.)

The ratio q1/q2 = 2λ2/λ1 − 1 + R(λ2
2σ

2
η + σ 2

ε )/λ1 enables us to perform
comparative statics. The optimal trade size at time 1 increases when λ1 decreases,
or when λ2, R, σ 2

η , or σ 2
ε rises. Hence, the trader purchases less in price-sensitive

periods and shifts his trading volume in the first period when price volatility or the
level of risk aversion goes up.

If λ1 is sufficiently large (λ1 > 2λ2+R(λ2
2σ

2
η +σ 2

ε )), it is optimal to short-sell in
the first period, implying that the benefit from reducing the price overcompensates
the cost of trading more than Q shares in the second period. A short-sale constraint
would prohibit such a trading policy. Indeed, if q1 ≥ 0 were imposed, then q1 = 0
and q2 = Q, i.e., the trader buys all shares in the second period.

4.2. EXISTENCE AND UNIQUENESS OF OPTIMAL STRATEGY

To solve problem (3) we define a recursive version and apply dynamic program-
ming arguments to find a time-consistent solution. For simplicity, we consider here
only α = 0.

The state at time n consists of the price p̃n−1, which is to be paid for zero
quantity, and Qn, the number of shares that remain to be bought. The control
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variable at time n is qn, the number of shares purchased in period n. Randomness is
represented by the εk’s (n + 1 ≤ k ≤ N) and the ηk’s (n ≤ k ≤ N). The objective
is the weighted sum of the expectation and variance of the execution costs, and the
law of motion is governed by (1) and the following state equations which describe
the dynamics of the remaining number of shares to be traded:

Q1 = Q, Qn+1 = Qn − qn, 1 ≤ n ≤ N , and QN+1 = 0. (13)

The equations Q1 = Q and QN+1 = 0 represent the restriction that Q shares must
be traded within the next N periods.

Since the objective function in (3) is not additive-separable, it is not obvious
whether there exists an equivalent dynamic program for (3). The Appendix shows
that such a dynamic program indeed exists and is given by

Ln(p̃n−1,Qn) = inf
qn∈M(Hn)

En[pnqn + Ln+1(p̃n,Qn+1)]

+R
2

Varn[pnqn + Ln+1(p̃n,Qn+1)] (14)

subject to (1) and (13). En and Varn denote the conditional expectation and variance
in period n. Beginning at the end in period N and applying the recursive equation
above together with (1) and (13), the functional equation can be solved backwards
as a function of the state variables. The procedure ends when we reach the first
period in which we know the whole optimal trading sequence and the total costs.

The question of the existence of a solution to (3) and (14) is closely related to
whether price manipulation as studied in Huberman and Stanzl (2004) is possible.
In an environment like here, where prices are unknown when trades are submitted,
Huberman and Stanzl require expected expenditures, E[∑N

n=1 pnqn], to be nonneg-
ative when

∑N
n=1 qn = 0 to rule out (expected) profits from price manipulation.

They show that the price process (1) cannot be manipulated if and only if the
symmetric matrix defined by

[
N ]m,n ≡
{

2λn+1 if n = m

λm+1 if n > m
, 1 ≤ m,n ≤ N − 1, (15)

is positive semidefinite.
Now, the existence of a solution to (3) and (14) is guaranteed by (1) being

manipulation-free whenever traders are risk-averse. In the case of risk neutrality,
a slightly stronger condition is needed to ensure the existence of a solution. The
proposition below documents these facts. (See Theorem 2 in the Appendix for a
proof.)

PROPOSITION 1. Suppose one of the following conditions is met:
(i) R > 0 (trader is risk-averse) and the price process (1) is manipulation-free, or
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(ii) R = 0 (trader is risk-neutral) and the matrix 
N is positive definite.
Then, the liquidity trader’s problem (3) has a unique, time-consistent solution that
can be derived by solving the dynamic programming problem in (14).

Obviously, if the price-impact slopes are constant and positive, then the matrix

N is positive definite. Thus, according to Proposition 1, a solution to the liquidity
trader’s problem exists, regardless of the trader’s type. If the λn’s change over time,
then 
N has to be evaluated numerically to apply Proposition 1. Huberman and
Stanzl (2004) derive a recursive formula for the determinant of
N that can be used
for this computational evaluation. Empirical studies imply varying price-impact
slopes (for example, see Chordia et al. (2001)).

4.3. OPTIMAL TRADING BEHAVIOR

Having established the equivalence between (3) and the corresponding dynamic
program, we turn now to the optimal solution itself. If α = 0 and the price-impact
function is time-independent, i.e., the λn’s are constant, then the solution to (3) is
summarized as follows:

PROPOSITION 2. If the price-impact sequence is constant and positive, then a
solution to (3) exists and is unique. The optimal trading quantities of a risk-averse
trader are given by

qn = D
(
A+rN−2−n+ − A−rN−2−n−

)
Q for 1 ≤ n ≤ N − 1,

and qN = Dλ2 (r+ − r−)Q,
(16)

where

r± ≡ 1 + σ

2λ

[
Rσ ±

√
R(4λ+ Rσ 2)

]
,

A± ≡ [λ2 + 3λRσ 2 + R2σ 4]r± − λ(λ+ Rσ 2), (17)

D−1 ≡ rN−3
+ − 1

1 − r−
A+ − rN−3

− − 1

1 − r+
A− + (

3λ+ Rσ 2) (λ+ Rσ 2) (r+ − r−) > 0,

and σ 2 ≡ λ2σ 2
η + σ 2

ε . All quantities are positive and the sequence of trades is

strictly decreasing. If R = 0, then qn = Q

N
for 1 ≤ n ≤ N .

Therefore, it is optimal for a buyer to purchase shares in each period. The
intuition behind declining trade size is as in the two-period example. Due to the
price dynamics (1), the variance of the execution costs at time n depends only on
the remaining shares to be traded, Qn − qn, and is increasing in Qn − qn. Given
the risk-averse utility, the variance that is produced by distributing trades evenly
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across time is too high. Thus, the risk-averse trader wants to reduce the variance by
submitting a larger order in period n than in n+ 1.

Furthermore, the optimal strategy does not explicitly depend on the random
shocks induced by the ηn’s and εn’s. History only enters through Qn, the remaining
shares to be traded. This fact can be interpreted as follows. The total execution
cost of trading the remaining shares in periods n and n + 1 can be written as the
difference between pn+1Qn, the execution costs of buying the remaining shares in
period n+1, and (pn+1 −pn)qn, the “cost savings” of trading at time n (pn+1 ≥ pn
holds in expectation). From (1), however, it follows that the conditional expectation
and variance of the price differential, pn+1−pn, are not a function of εn and ηn, and
thatQnεn is the only term contained in En[pn+1Qn] that includes εn. Therefore, the
shocks εn and ηn have no impact on the optimal strategy.

To illustrate the shape of the solution to (3) given in Proposition 2, we conduct
some numerical analysis. Figures 1–3 show the form and the basic comparative-
static properties of the formulas. In the simulations we divide a trading day into
30-minute intervals to get 13 trading periods (the NYSE is open from 9:30am to
4:00pm). The amount to be traded is 100,000 shares and the initial price of the
financial asset is $20. A reasonable value for λ is 10−5 (see Hausman et al. (1992)
or Kempf and Korn (1999)); if 1,000 shares are traded, then the price moves by one
cent (provided that the price is measured in dollars). The range for the risk-aversion
coefficient, R, is assumed to be between zero and 10−4. Randomness is quantified
by the magnitudes of the variances of the news revelation and the residual trades,
which are set at 0.02 dollar2 and 1,000 shares2, respectively. The graphs below
show that the trajectory of the optimal trades is typically a geometrically decreasing
function of time.

Figure 1a computes the sequence of optimal trades for different values of the
risk-aversion factor. The horizontal line (at 7692 ≈ 100,000/13) shows the strategy
of a risk-neutral trader. As can be seen from this figure, higher risk aversion causes
the trades to be shifted to early periods. For example, if R = 2.5 ∗ 10−4, then
approximately 75% of the 100,000 shares are bought in the first two periods. The
smaller R becomes, the more closely it approaches the risk-neutral horizontal. The
sensitivity of trades to R is also reflected in the price changes. Figure 1b illustrates
that expected prices change significantly in the early periods for high levels of R.

Figures 2a and 2b look at the reaction of optimal trades to various levels of
the variance σ 2

ε . Like larger values of R, a higher σ 2
ε causes traders to redistribute

their trades from later to earlier periods (Figure 2a). Hence, the expected prices in
the first periods are very sensitive to the level of σ 2

ε (Figure 2b). Besides the direct
effect of the variance on the price dynamics, it also alters the trading behavior. This
further increases the change in price. Different levels of σ 2

η show the same effect;
a numerical illustration is therefore omitted here.

Figures 3a and 3b consider different values of λ. The higher the λ, the smaller
are the orders in the first periods (Figure 3a). When λ is big, large trades in the
beginning of trading would drive up prices too much, so that the succeeding pur-
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Figure 1a. Optimal trading volume and risk aversion. N = 13, p0 = 20, Q = 105, α = 0,
λ = 10−5, σ 2

ε = 0.02, and σ 2
η = 1000.

Figure 1b. Change in expected price and risk aversion. N = 13, p0 = 20, Q = 105, α = 0,
λ = 10−5, σ 2

ε = 0.02, and σ 2
η = 1000.

chases would take place at too high a price. Figure 3b demonstrates the sensitivity
of expected price changes to different levels of λ.

If the price slopes, λn, are time-dependent, then one cannot derive a closed-
form solution to (3), but at least a recursive solution can be obtained by solving the
dynamic program in (14) (see Theorem 1).
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Figure 2a. Optimal trading volume and price volatility. N = 13, p0 = 20, Q = 105, α = 0,
λ = 10−5, R = 5 ∗ 10−5, and σ 2

η = 1000.

Figure 2b. Change in expected price and price volatility. N = 13, p0 = 20, Q = 105, α = 0,
λ = 10−5, R = 5 ∗ 10−5, and σ 2

η = 1000.

PROPOSITION 3. Let 
N in (15) be positive semidefinite if R > 0 and positive
definite if R = 0. The optimal trading sequence of (3) is given by

qn =
[

1 − λn

2µn+1 + Rσ 2
ε

]

Qn for 1 ≤ n ≤ N − 1, and qN = QN, (18)

where

µn = λn

[

1 + R

2
λnσ

2
η − λn

2(2µn+1 + Rσ 2
ε )

]

(19)
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Figure 3a. Optimal trading volume and permanent price impact.N = 13, p0 = 20,Q = 105,
α = 0, R = 5 ∗ 10−5, σ 2

ε = 0.02, and σ 2
η = 1000.

Figure 3b. Change in expected price and permanent price impact. N = 13, p0 = 20,
Q = 105, α = 0, R = 5 ∗ 10−5, σ 2

ε = 0.02, and σ 2
η = 1000.

with boundary condition µN = λN(1 + R
2 λNσ

2
η ), and the Qn’s satisfy (13). The

minimal costs evolve according to

Ln(p̃n−1,Qn) = p̃n−1Qn + µnQ
2
n (20)

for 1 ≤ n ≤ N .

Previous papers, e.g., Chan, Chung and Johnson (1995), find that the spread of
NYSE stocks follows a U-shape pattern, with the spread widest after the open and
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Figure 4. Optimal trading volume and time-dependent λn’s. N = 13, p0 = 20, Q = 105,
α = 0, λ1 = λ2 = 1.05 ∗ 10−5, λn = 10−5 if n = 6, 7, 8, 9, = 1.025 ∗ 10−5 if
n = 3, 4, 5, 10, 11, 12, 13, σ 2

ε = 0.02, and σ 2
η = 1000.

prior to the close. Figure 4 assumes such a scenario by having the price-impact
slopes of the early and last periods higher than those of the middle periods. The
figure demonstrates that the optimal trades need no longer decline like in Propos-
ition 2. Only if the trader is sufficiently risk averse, his trade pattern exhibits a
geometrically decreasing shape. The risk-neutral trader always opts to shift more
volume to the more liquid periods.

After the asset-specific parameters in (1) have been estimated, our formulas
are useful to conduct two types of empirical tests. First, for a fixed level of risk
aversion, one can check whether observed trading patterns of portfolio managers
match our formulas. In particular, do liquidity, price or trade volume volatility
affect the observed execution strategies as we predict? Second, if we assume that an
agent follows Proposition 3, then his implied risk aversion can be derived from his
actual trading behavior. This would allow to estimate and compare the level of risk
aversion across different types of portfolio managers. Are growth or momentum
managers more concerned about opportunity costs than other managers?

4.4. PRICE RULE WITH CONVEX UPDATING

The focus of this subsection is on (3) with a positive updating weight α in (2). In
this case, the transaction price is higher than the price update after a trade, i.e.,
trades also have a temporary price impact. Moreover, the larger α the faster the
price reverts to its original level after a trade.
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Figure 5. Optimal trading volume and different price-updating weights. N = 13, p0 = 20,
Q = 105, R = 10−4, λ = 10−5, σ 2

ε = 0.02, and σ 2
η = 1000.

Consider the two-period problem with λ1 = λ2 = λ. Execution costs are given
by

C2 = [p0 + λ(q1 + η1)+ ε1]q1

+ [p1 + λ(Q− q1 + η2)− αλ(q1 + η1)+ ε2](Q− q1).

Minimizing the cost function yields the ratio of the unique optimal solution

q1

q2
= (1 + α)λ+ R(λ2σ 2

η + σ 2
ε − α(1 − α)λ2)

λ(1 + α + Rαλ)
. (21)

From (21) follows that the effect of α on the optimal trades is ambiguous. However,
for small values of λ and R, trading is postponed to the second period when α
increases, with the right-hand side of (21) decreasing in α. This is because the effect
of the trade q1 on the variance of the execution costs becomes more pronounced
when α rises. In addition, q1 ≥ q2 or q1 ≤ q2 may hold.

The previous analysis follows through. In particular, analogues of Propositions
1-3 can be derived, although with more complicated expressions (see Theorem 1
above and Theorem 2 in the Appendix). As in the case α = 0, the optimal trades
depend on the history only through the state variables Qn, and past random shocks
do not enter the formulas.

Numerical simulations show that including the updating weight α does not
change the qualitative properties of the sequence of optimal trades. When α > 0
the liquidity trader typically postpones trades to later periods, as can be seen from
Figure 5. The impact of a trade on the cost’s volatility increases in α, which induces
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trades to be less aggressive in the early periods. Thus, in real markets we expect
more uniform trading volume across time for assets with higher estimates of α.

4.5. SHORT-SALE CONSTRAINTS

Some financial institutions are prohibited from short selling, for instance, mutual
funds. It is hence of interest to re-examine the optimization problem in (3) for a
liquidity trader who faces a short-sale constraint.

Formally, a trader never shorts if and only if qn ≥ Qn − Q, or equivalently,
Qn ≤ Q, 1 ≤ n ≤ N . Our approach can accommodate such a restriction. In fact,
the absence of price manipulation again implies the existence of a deterministic,
time-consistent solution to (3) (see Lemma 3 in the Appendix). Formulas for the
optimal trading sequence cannot be derived explicitly. Yet, numerical optimization
can be applied efficiently for finding a minimum, as the solution is deterministic.

Evaluations of the formulas presented in Proposition 3 or Theorem 1 reveal
that the short-sale constraint becomes binding whenever the price-impact slopes in
the early periods are large relative to those in later periods. In such a situation, it
would pay to short in the early periods in order to push down the prices of future
purchases. Figure 6a illustrates how trading volume would be transferred to later
periods when the trader wants to but is not allowed to short.

If the temporary price impact becomes larger (α increases), then the trader is
less inclined to short: a higher α means that he can drive future prices and thus
costs down by less (not shown in Figure 6a).

It can be optimal for an investor to sell in some periods without violating
short sale constraints. As Figure 6b demonstrates, this occurs when a few periods
are more illiquid half-way through the execution of an order. Imposing qn ≥ 0,
1 ≤ n ≤ N , rules out such trading patterns. A sale constraint is more restrictive
than a short-sale constraint, nonetheless, it may be reasonable to forbid sales of
investors who ultimately must acquire a certain amount of shares. As Lemma 3
also holds for sale constraints, it is easy to find numerically the optimal execution
strategy for a trader who is not allowed to sell. The effect of a sale constraint is
that an investor abstains from trading in the less liquid periods and redistributes his
individual orders across the other more liquid periods (see Figure 6b).

5. Portfolio Trading

In most applications, portfolio managers trade whole portfolios. In fact, in many
cases they merely rebalance a portfolio and the aggregate value of their purchases
is approximately equal to the aggregate value of their sales. To examine optimal
portfolio trading we extend the setup in a straightforward manner. Individuals are
now allowed to trade a portfolio of at most K ≥ 1 securities. Prices, trades, and
the stochastic variables in (1)-(3) then become K-dimensional vectors. Although
the ηn’s are i.i.d., the components of ηn can be intratemporally correlated; the same
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Figure 6a. Trading with a short-sale constraint (SSC). N = 13, p0 = 20, Q = 105, α = 0,
λ1 = 1.5 ∗ 10−5, λn = 10−5 if n = 2, ..., 13, σ 2

ε = 0.01, and σ 2
η = 1000.

Figure 6b. Trading with a sale constraint (SC). N = 13, p0 = 20, Q = 105, α = 0.25,
λ5 = λ6 = 1.5 ∗ 10−5, λn = 10−5 if n �= 5, 6, σ 2

ε = 0.01, and σ 2
η = 1000.

applies to εn. We consider here only α = 0, i.e., the price process in (1), where
trades have only a permanent price impact. The price-impact slopes λn become
K × K positive definite matrices that incorporate not only all assets’ individual
price impacts but also cross-price impacts. The vector Q ∈ RK in (3) summarizes
the number of shares to be traded for each asset. It can include both purchases and
sales. The covariance matrices of εn and ηn are �ε and �η, respectively, and IK×K
is the K ×K identity matrix.
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Similar to the single-asset case, sufficient conditions for the existence of a time-
consistent solution can be found; if these conditions hold, the solution is unique and
can be obtained by solving the dynamic program in (14). For the risk-averse case,
the absence of price manipulation guarantees the existence of a solution, while a
more technical condition is required for the risk-neutral case, whose details are not
presented here.

PROPOSITION 4. The optimal trading sequence for the multi-asset version of (3)
(if a solution exists) is

qn = [
IK×K − (2�n+1 + R�ε)

−1λn
]
Qn for 1 ≤ n ≤ N − 1, and qN = QN,

(22)

where

�n = λn

[

IK×K + R

2
�ηλn − 1

2
(2�n+1 + R�ε)

−1λn

]

, (23)

1 ≤ n ≤ N − 1, with boundary condition �N = λN(IK×K + R
2�ηλN), and the

Qn’s satisfy (13). The minimal costs can be obtained from

Ln(p̃n−1,Qn) = p̃Tn−1Qn +QT
n�nQn (24)

for 1 ≤ n ≤ N .

Again, as for the single-asset case, the optimal trades are deterministic functions
of the history. Evidently, the optimal trading strategy for one security depends on
the parameters and state variables of all the other securities, unless the λn’s and the
covariance matrices are all diagonal. Diagonal λn’s mean that trading one asset has
no impact on the prices of the other assets, and diagonal covariance matrices imply
that the stochastic terms are uncorrelated.

The formulas (22)–(24) can be conveniently used for comparative statics to as-
sess how price uncertainty and cross-price impacts affect the optimal portfolios. In
particular, Figure 7 demonstrates the effect of price volatility on trading behavior
when two assets are held in the portfolio. As benchmark serves the case where
the variances are the same across assets, resulting in the same trading quantities
for both assets (shown as Case I in Figure 7). If, ceteris paribus, the volatility of
asset B increases, then more shares of B and fewer of A are traded than before
in early periods (Case II). Consequently, volume in the beginning of trading is
biased toward the more volatile asset, thanks to risk aversion. Case III shows that
a negative price correlation between the assets causes not as much of aggressive
trading early on. In this situation, each asset provides a hedge for the other and
therefore a risk-averse trader needs less to hurry up with his orders.
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Figure 7. Trading a portfolio of two assets – the effect of price volatility on volume. Case
I: N = 13, p0 = (20, 20), Q = (105, 105), R = 10−5, α = 0, λAA = λBB = 10−5,
λAB = λBA = 10−6, σ 2

η (A,A) = σ 2
η (B,B) = 1000, σ 2

η (A,B) = σ 2
η (B,A) = 10,

σ 2
ε (A,A) = σ 2

ε (B,B) = 0.05, σ 2
ε (A,B) = σ 2

ε (B,A) = 0.01; Case II: (only change)
σ 2
ε (B, B) = 0.15; Case III: (only change) σ 2

ε (A,B) = σ 2
ε (B,A) = −0.02.

The optimal trading quantities are sensitive to the levels of the cross-price im-
pacts. Trades are deferred to later periods when cross-price impacts rise. Moreover,
trading volume in early periods is always concentrated on those assets with the
lowest individual price-impacts in the portfolio.

6. Analysis of the Cost Function

If the price-impact sequence, λn, is constant, then a closed-form expression for the
cost function in (3) can be derived. To account for commission fees, we incorpor-
ate fixed transaction costs, denoted by k(N). For simplicity, we calculate the cost
function only for a single asset.

The difference equation in (7) is a Riccati equation when all λn’s are constant.
By solving (7), we obtain

L(Q,N) = p0Q+
{

λ+ R

2
(λ2σ 2

η + σ 2
ε )−

√
b

2

r2N−1 − r

r2N − 1

}

Q2 + k(N), (25)
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where

r =
(
a + c

2

)
/
√
b +

√(
a + c

2

)2
/b − 1,

a = λ

(

1 + α + R

2
λσ 2

η

)

,

b = λ2(1 + α + Rαλσ 2
η )

2,

c = R(α2λ2σ 2
η + σ 2

ε ).

(26)

Observe that L(Q,N) converges to the cost function for a risk-neutral trader when
R ↓ 0, namely,

L(Q,N) = p0Q+ λ

2

[

1 − α + 1 + α

N

]

Q2 + k(N). (27)

The fees k(N) are assumed to be increasing and convex in the number of trades.
As can be seen from the equations in (25)–(27), the cost function is increasing

in the total number of shares traded, the level of risk aversion, the price and volume
volatilities σ 2

ε and σ 2
η , and the magnitude of the permanent price impact, and de-

creasing in the price-updating weight α. These relationships hold for the whole
parameter space.

It would be interesting to gauge the empirical relation between these paramet-
ers and the execution costs and see whether our predictions apply. The function
L(Q,N) is difficult to measure empirically because it depends on the level of risk
aversion which cannot be observed directly. Therefore, it is more natural to employ
a measure like T C(Q,N) ≡ E[∑N

n=1(pn −p0)qn] to estimate the execution costs.
Since the optimal trading strategy is a function of the model parameters, so is
T C(Q,N).

The level of risk aversion is positively related with T C(Q,N). If R rises,
more volume is traded in the early periods which causes the expected price-impact
costs to go up. The permanent price-impact parameter has two opposite effects on
T C(Q,N). A higher λ, on the one hand, increases T C(Q,N) directly by ampli-
fying the price impact of each trade. On the other hand, it decreases T C(Q,N)
as it induces a more uniform trading pattern across time (recall Figures 3a and
3b). The first effect dominates and hence ∂T C/∂λ > 0, as long as R is not too
big. Chan and Lakonishok (1995) analyze the effects of commission costs, market
capitalization (as a proxy for market liquidity), and managerial strategy on the price
impact and execution costs of institutional trades. Consistent with our model, they
report that execution costs are higher for low market-capitalization stocks. Perhaps
surprisingly, they report that the type of the manager is the most important cost
factor. Since less patient managers incur a higher price impact and execution costs
than patient ones, this could be interpreted as ∂T C/∂R being relatively large.

To our knowledge, there exist no empirical studies on how price volatility, trade
volume volatility, or the speed of mean reversion influence execution costs. As long
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as a portfolio manager is risk averse, price (or trade volume) volatility should be
a significant determinant of the execution costs (∂T C/∂σ 2

ε > 0 and ∂T C/∂σ 2
η >

0 because of large early trades). In particular, one could test the impact of price
volatility across different types of managers and asset classes. As regards to mean
reversion, one could estimate how the price-updating weight affects the execution
costs across stocks. We predict that costs are lower for stocks with high price-
updating weights, because a higher α causes future prices to be less sensitive to
trades.

The cost function also determines the optimal number of trades, since with
fixed, positive transaction costs, the number of trades emerges endogenously. The
following subsections discuss two cases regarding the timing of trades. First, we
set the time between trades equal to a fixed number τ , which will enable us to de-
duce and examine the optimal trade duration τN . Then, we assume that all trading
occurs within the time interval [0, τ ] and investigate the optimal trade frequency.

6.1. CONSTANT TIME BETWEEN TRADES

Given a constant time between trades, τ , the liquidity trader aims at minimizing the
cost function with respect to N in order to find the optimal number of trades, N∗.
SinceL is strictly convex inN , the cost function always exhibits a global minimum.
The optimal trade duration, τN∗, is finite when k is an increasing and convex
function. For example, if k(N) = kN and R = 0, then N∗ = Q

√
(1 + α)λ/(2k),

provided we treat N as a continuous variable. As a consequence, the optimal num-
ber of trades increases in Q, α, and λ, and decreases in k. The more sensitive the
price reaction to trades (the higher the λ), or the larger the temporary price impact,
the more often the trader chooses to trade.

More generally, we obtain the following comparative statics (for the proof see
the Appendix).

PROPOSITION 5. Regardless of the trader’s type we have ∂N∗/∂Q > 0 and
∂N∗/∂α > 0. The sign of ∂N∗/∂λ is positive when either (i) R = 0 or (ii) R > 0
and λ2σ 2

η is sufficiently small relative to σ 2
ε . If the trader is risk-averse, then N∗

is always decreasing in σ 2
ε , while ∂N∗/∂σ 2

η < 0 and ∂N∗/∂R < 0 only if α is
sufficiently small. In case k(N) = kN , ∂N∗/∂k < 0 for all R ≥ 0.

Thus, it is optimal for a risk-averse trader to submit fewer orders when the price
volatility goes up. Intuitively, the trader compensates for the higher price volatility
by reducing the trade duration. Figure 8a illustrates the monotone relation between
N∗ and σ 2

ε for various levels of R. If the time between trades is 30 minutes, then
the range of the trade duration would be between 1.5 hours and 3 days, given the
parameter values in the figure.

Also the volatility of other traders’ volume, σ 2
η , has a negative effect on the

optimal number of trades, unless α is too large. If the trading activity of other mar-



188 GUR HUBERMAN AND WERNER STANZL

Figure 8a. Optimal number of trades for different levels of price volatility and risk aversion.
p0 = 20, Q = 105, λ = 10−5, α = 0.25, σ 2

η = 1000, and k(N) = 2N .

ket participants makes prices more uncertain, then the trader wishes to complete his
trades earlier. The situation is different when α is close to one, where the temporary
price impact is high and the permanent one is low. In this case, it pays to trade more
often, as the impact of others’ trades decays very fast.

Combining the effects of σ 2
ε and σ 2

η , the number of trades diminishes with the
level of risk aversion. Only if α is large enough, ∂N∗/∂R may flip sign and become
positive.

Both the permanent and the temporary price-impact parameters are positively
related with N∗. If λ increases, the trader attempts to reduce the total price impact
by submitting more but smaller orders. If α rises, the trader prefers a longer trade
duration in order to benefit from the improved price reversion. While ∂N∗/∂α >
0 throughout the parameter space, the sign of ∂N∗/∂λ can become negative if
λ2σ 2

η 
 σ 2
ε . A negative ∂N∗/∂λ arises when the marginal benefit of decreasing

the volatility of the execution costs by trading fewer times overcompensates the
marginal benefit of lowering the mean of the execution costs by trading more often.
The inequality λ2σ 2

η 
 σ 2
ε , though, is unlikely to hold in practice, as λ is typically

of order 10−5. Figure 8b shows the relation between N∗ and λ for a subset of the
parameter space.

Keim and Madhavan (1995) consider three different investment styles of insti-
tutional portfolio managers and present evidence that value managers exhibit the
longest trade duration, followed by index and technical managers (Table 2, p. 379).
An interesting exercise would be to estimate our model parameters conditional
on the investment style. Given the trade duration and the estimates of the stock-
specific parameters, one could deduce the level of risk aversion implied by the trade
duration for each style. Most likely, the variables Q and R are directly determined
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Figure 8b. Optimal number of trades for different levels of permanent price impact and risk
aversion. p0 = 20, Q = 105, α = 0.25, σ 2

η = 1000, σ 2
ε = 0.02, and k(N) = 75N .

by the investment style. But also stock-specific parameters may be affected by the
investment style, because some styles may be biased toward a particular subset
of the stock universe. For example, growth-oriented managers may tend to invest
in high-risk and low-liquidity stocks. In any case, if value managers are less risk-
averse than index managers and index managers less risk-averse than technical
managers, then Keim and Madhavan’s finding would be confirmed.

Keim and Madhavan (1995) also find that, contrary to theory, trade duration
increases with market capitalization even when order quantity is controlled for
(Table 4, p. 384, and Figures 1 and 2, pp. 386–387). A possible explanation is
that submission costs decline with market liquidity, making a trade break-up that
reduces the overall price impact more attractive. To investigate this hypothesis, we
could model the transaction-cost function k to depend on λ, and then ask what
parameter values would cause ∂N∗/∂λ to be negative.

6.2. VARIABLE TIME BETWEEN TRADES

Suppose that calendar time is a fixed interval [0, τ ] and that trades are equally
spaced in time. Hence, if the trader chooses to transact N times, the time between
trades is τ/N . The arrival of news and other people’s trades are both still i.i.d. pro-
cesses. Their per-unit-of-time variances over the whole trading interval are σ 2

ετ and
σ 2
ητ , respectively. Therefore, the per-interval variances, σ 2

η (N) and σ 2
ε (N), satisfy

σ 2
η (N) = τσ 2

ητ /N and σ 2
ε (N) = τσ 2

ετ /N .
The risk-aversion coefficient, however, is not assumed to change with the trad-

ing frequency. The trader’s dislike of price volatility is independent of how short the
time between trades is. This is a reasonable premise, since the declining variance



190 GUR HUBERMAN AND WERNER STANZL

per period already decreases the risk part of the trader’s utility function, taking
into account the desired effect that volatility matters less to the trader if the time
between trading becomes smaller.

Unfortunately, the literature provides little guidance on the possible relationship
between the permanent and temporary price impacts and the trading rate. A model
in which α, λ, and N∗ are determined simultaneously in equilibrium would be
required to address this question. As this is outside of the scope of this paper,
we assume that the permanent price-impact is independent of the speed at which
the investor trades, while the price-updating weight is nonincreasing in the trading
frequency. The slope λ reflects the degree of asymmetric information and does not
change when the liquidity trader transacts more frequently, because his trades are
per definition not motivated by private information about the asset’s value. In spite
of this, by raising the submission frequency the trader initially not only clears the
order book at the prevailing quotes, but also intensifies other market participants,
suspicion that an insider is trading. Both effects cause the bid-ask spread to widen.
Once the market reassesses the orders to be liquidity-initiated, the likelihood of
insider trading is updated downwards, which leads to a partial price reversion.
Typically, the more concentrated the liquidity trading, the longer it takes for the
price reversion to get underway, that is, α goes down with the number of trades.
Biais et al. (1995) provide empirical evidence of this phenomenon.

Albeit the cost function may no longer be convex when σ 2
η , σ 2

ε , and α are func-
tions of N , a global minimum still exists in the half-open interval [1,∞). This is
because the second term in (25) converges to a constant, whereas k is increasing
in N . As in the previous subsection, we are able to determine how the model
parameters affect the optimal number of trades. Here are the main findings. (Since
the proof follows the same steps as those presented in the proof of Proposition 5
and is rather lengthy, we omit it.)

PROPOSITION 6. Let σ 2
η (N) = τσ 2

ητ /N , σ 2
ε (N) = τσ 2

ετ /N , α(N) = ατ/N , and
N∗ > 2. Then, for all sufficiently small R, ∂N∗/∂Q and ∂N∗/∂λ are both positive,
while ∂N∗/∂ατ is negative. Furthermore, for small λ and ατ , the signs of ∂N∗/∂R,
∂N∗/∂σ 2

ετ , and ∂N∗/∂σ 2
ητ are all positive when R > 0.

The trader’s response to higher price or volume volatility or higher risk aversion
is to shorten the time between his trades. Smaller orders move the price less and
a higher trade frequency reduces the price volatility between trades. The optimal
trade frequency goes up when an asset is more illiquid, because splitting orders
into smaller pieces, which brings down the overall price impact, pays particularly
when liquidity is low. If ατ rises, liquidity traders decelerate the speed at which
they submit orders to benefit from the higher level of price reversion.

Using tick data, the parameters σ 2
ετ , λ, and ατ could be estimated for each stock

an institutional portfolio manager is trading. Then, after subtracting the orders
of the manager, one could infer σ 2

ητ . Equipped with these estimates, one could
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test whether the intraday trading pattern of the portfolio manager confirms our
predictions.

7. Autocorrelated Noise Trades

So far we assumed that noise trades, ηn, are independent across time. In contrast,
Choi, Salandro and Shastri (1988) provide empirical evidence that order flow is
positively serially correlated. To incorporate autocorrelation, we extend the price
dynamics in (2) by modelling the noise trades as an AR(1) process, i.e.,

ηn = ρηn−1 + νn, (28)

where ρ ∈ R and νn ∼ i.i.d(0, σ 2
ν ). The stochastic innovation νn is known to the

liquidity trader only after trades took place at time n.
The liquidity trader uses Equation (28) to forecast future noise trades and ad-

justs his optimal trading strategy accordingly. Unfortunately, the Bellman equation
in (14) cannot be employed to derive the optimal strategy for a risk-averse trader. If
R > 0, the equivalence between (14) and the original problem in (3) breaks down,
since the optimal trading volume typically will be a nonlinear function of the state
variables. Hence, we only discuss here the case R = 0.

For a risk-neutral trader, the optimal policy is described by

qn =
[

1 − (1 + α)λn

2µn+1

]

Qn + ρβn+1

2µn+1
ηn−1, 1 ≤ n ≤ N − 1,

qN = QN,

Ln(p̃n−1,Qn−1,Qn, ηn−1) = (p̃n−1 − αλn−1Qn−1)Qn

+ βnQnηn−1 + γnη
2
n−1 + µnQ

2
n + δn,

(29)

where

βn = ρ(1 + α)λn

2µn+1
βn+1 + ρλn − αλn−1,

γn = ρ2γn+1 − ρ2β2
n+1

4µn+1
,

µn = αλn−1 + λn − (1 + α)2λ2
n

4µn+1
,

δn = δn+1 + γn+1σ
2
ν ,

(30)

for 1 ≤ n ≤ N − 1, βN = ρλN − αλN−1, γN = δN = 0, and µN = αλN−1 + λN .
The existence of a solution is guaranteed by µn > 0, 2 ≤ n ≤ N .

By (29), the optimal trade size is no longer deterministic when noise trades are
autocorrelated but depends on the level of the noise trades. The relation between
the parameters α and ρ determines how ηn−1 affects the optimal trading volume.
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To simplify the analysis of the equations in (29) and (30) let λn be constant. If
ρ > α, then βn is positive and thus qn is increasing in ηn−1, implying that positive
realizations of ηn−1 cause the liquidity trader to buy more shares in period n, even
though the current execution price, pn, goes up when ηn−1 > 0. Since future prices
are expected to rise due to the positive autocorrelation of the noise trades, the higher
price-impact costs incurred at time n are more than offset by the cost savings of
trading less in the future.

Alternatively, if ρ < α, a positive ηn−1 decreases the optimal trade size in
period n. When the transitory price impact exceeds the effect stemming from the
serial correlation of the noise trades, it is beneficial to defer trading volume to later
periods, because prices are expected to revert. Finally, if ρ = α, then βn = γn =
δn = 0 and ηn−1 has no influence on the optimal trading sequence. In this situation,
any price movements induced by noise trades are expected to be counterbalanced
by the temporary price impact.

8. Extant Literature

Bertsimas and Lo (1998), using a simpler form of the price process (1), show that
to minimize expected execution costs of trading a fixed number of shares, a trader
should split his orders evenly over time. However, institutions typically trade more
up-front as we observed in Section 2. To accommodate this empirical regularity,
Bertsimas and Lo add an AR(1) news process (with a positive coefficient) to the
price equation (1) and demonstrate that the even-split trading strategy is no longer
optimal in this case.

If the trader is a buyer and the news is good, he will accelerate his trades in
anticipation of more good news which will drive the price higher. This modeling
approach raises a few issues such as, who is on the other side of the acceler-
ated trades? Shouldn’t the prices anticipate the future news? If the goal is to
explain institutional trading volume profiles over short time intervals, Bertsimas
and Lo presumably predict positively (negatively) sloped profiles for purchases
(sales) following bad news and negatively (positively) sloped profiles for purchases
(sales) following good news. In contrast to Bertsimas and Lo, we follow a classical
paradigm in finance which says that news have no persistence and occur surpris-
ingly. This prevents the sequence of optimal trades to be driven by the explicit
shape of the news process.

By assuming either risk-averse preferences or prices with time-dependent price
impact our model mimics actual trading strategies of large traders. This is the main
contribution of this paper.

Almgren and Chriss (2000) independently from Bertsimas and Lo’s and our
work extend the Bertsimas and Lo framework to allow risk aversion. In particular,
they construct an efficient frontier of optimal execution similar to that in Remark
1 of Section 3. The focus and analysis of Almgren and Chriss differ considerably
from ours. While they limit their attention to the shape of the efficient frontier, we
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study the underlying optimization problem and the properties of the optimal policy.
More important, their framework is more restrictive than ours.

First, Almgren and Chriss assume as Bertsimas and Lo (1998) that the price
impact is time-independent. Aware of this limitation, they mention in their con-
clusion the importance of extending their setting to permit time-dependent price
impacts. Intraday data show that the price impact of trade size varies during the
day (see Madhavan et al. (1997)). Hence, the optimal trading strategies should be
time-dependent. If the price impact is time-dependent, the existence of a solution to
(3) requires separate analysis. Another contribution of this paper is the finding that
the absence of price manipulation guarantees the existence and uniqueness of the
solution to (3). Second, both Almgren and Chriss and Bertsimas and Lo assume
away fixed transactions costs and short-sale constraints. Third, the existence of
an optimum in Almgren and Chriss’s model requires that trades have a tempor-
ary price impact. Finally, they include a drift term to their price process. But as
Huberman and Stanzl (2004) prove, this assumption is problematic, because price
manipulation and quasi-arbitrage opportunities could arise.

Vayanos (2001) studies a general equilibrium model of a large trader who
receives random shocks to his holding of a risky asset and interacts with com-
petitive market makers to share risk; it is another important antecedent to our
paper. Vayanos shows that the large trader who has received an unexpectedly large
endowment of the risky asset reduces his risk exposure by selling it at a decreasing
rate or by first selling it and then buying back some of the units sold. An increase
in the large trader’s aversion to risk is associated with more aggressive trading
initially, and average execution time increases with the level of noise trades.

Some of our model’s predictions overlap those of Vayanos (2001) although
the models themselves are very different. The overlap suggests robustness of the
results. Moreover, our model considers cases and makes predictions that Vayanos’
work does not. These include: (1) the effect of the speed of price mean reversion
on the optimal trading strategy and execution costs; (2) the optimal strategy of
executing a portfolio of assets that impounds cross-price impacts; (3) the impact
of short-sales constraints on the optimal execution (many large money managers
cannot sell short!); (4) the derivation of optimal trading frequency and its depend-
ence on asset- and trader-specific parameters; (5) the possibility of autocorrelated
noise trades; (6) non-normal random shocks. A result found in Vayanos, but which
is outside the scope of our paper is that the large trader’s holdings increase over
time when his aversion to risk is large relative to that of the market makers.

9. Concluding Remarks

This paper studies the optimal behavior of a trader who wishes to buy (or sell)
a given quantity of a security within a certain number of trading rounds. He is
constrained to submit only market orders and his trades affect current and future
prices of the security. He therefore breaks up his trades into a sequence of smaller



194 GUR HUBERMAN AND WERNER STANZL

orders. Risk neutrality implies that these smaller orders are equal. If the trader
is risk averse, though, the magnitude of his trades declines over time. We also
examine the optimal trade duration and how short-sale constraints affect the trading
behavior.

In case noise trades are autocorrelated, order flow can be decreasing over time
even when the trader is risk-neutral. A trader facing positively autocorrelated noise
trades expects a sequence of purchases by noise traders in the future after observing
them buying today. To mitigate the future price impacts of his trades, he lowers his
future trading volume by submitting a higher order today.

Our results are useful for conducting empirical tests. First, having estimated
the asset-specific model parameters, one can compare actual trading patterns with
those our formulas predict. In particular, how do price (or volume) volatility, li-
quidity, or speed of price reversion affect the trading profiles of money managers
compared to our findings? On the other hand, unobserved manager characteristics,
such as the level of risk aversion, can be inferred from observed trading patterns by
applying our formulas. Second, this paper implies that price volatility and the speed
of price reversion are significant determinants of the execution costs, a hypothesis
that has not been tested yet empirically. Third, how do cross-price impacts and
price correlations influence portfolio rebalancing in practice?

Finally, our model makes explicit predictions about the optimal trade duration
and the optimal trade frequency. If the time between trades is constant, investors
wish to trade more often when risk aversion, price volatility, or liquidity are low, or
speed of price reversion is high. If the time horizon of trading is fixed, higher risk
aversion or price volatility cause a higher trading frequency, as do lower liquidity
or speed of price reversion. Note that agents always trade more patiently when
price reversion is faster.

Several extensions to our analysis are desirable. On the theoretical level, this
paper does not study the optimal policy of a trader who can submit limit orders
in addition to market orders, nor does it study the circumstances under which the
intertrading intervals are chosen in a continuous-time setup.

Moreover, liquidity, which is measured by the price-impact slopes, may be
stochastic. One way to take into account the uncertainty of the market’s liquidity
is to model the price-impact slopes as a stochastic process and study the optimal
trading behavior in the same spirit as in this paper. Presumably, liquidity risk in-
duces investors to trade fewer times and submit larger quantities in early periods.
Nevertheless, if price-impact slopes are positively correlated, it may be advantage-
ous to postpone orders to see whether liquidity drifts upwards. One could model
the price-impact slopes as an autoregressive process and try to find an optimal
execution strategy.
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Appendix

Proof of Theorem 1. As first step, we derive the solution to (14) by backward
induction. In period N , the optimal cost function, as a function of the state variables
p̃N−1, QN−1, and QN , is given by

LN(p̃N−1,QN−1,QN) = EN [pNqN ] + R

2
VarN [pNqN ]

= [p̃N−1 − αλN−1(QN−1 + ηN−1)]QN

+
[

αλN−1 + λN

(

1 + R

2
λNσ

2
η

)]

Q2
N, (31)

since in the last period qN = QN must be traded. Let us define µN ≡ αλN−1 +
λN(1 + R

2 λNσ
2
η ).

We will show that if the formulas in (7)–(10) hold for n + 1, they are also true
for n, completing the induction argument. Employing the price dynamics in (2) and
the induction hypothesis, we have

Ln(p̃n−1,Qn−1,Qn) = infqn[p̃n−1 − αλn−1(Qn−1 + ηn−1)]Qn

+α(λn−1 − λn)Q
2
n + (1 + α)λnQnqn

+µn+1(Qn − qn)
2 + R

2

×{λ2
n[αqn + (1 − α)Qn]2σ 2

η + (Qn − qn)
2σ 2
ε }.(32)

Taking the first-order condition for this expression yields (8) to be the unique min-
imum, provided that the second-order condition 2µn+1 + R(α2λ2

nσ
2
η + σ 2

ε ) > 0 is
met. The minimal cost, Ln(p̃n−1,Qn−1,Qn), then can be computed to be

[p̃n−1 − αλn−1(Qn−1 + ηn−1)]Qn

+
[

αλn−1 + λn(1 + R

2
λnσ

2
η )− λ2

n(1 + α + Rαλnσ
2
η )

2

2[2µn+1 + R(α2λ2
nσ

2
η + σ 2

ε )]

]

Q2
n.

Consequently, all formulas in (7)–(10) hold for n, too.
As last step, we need to demonstrate that the solution given in (7)–(10) is the

only time-consistent solution. To this end, let {qn, Ln}Nn=1 be the unique solution
to (14) obtained above. Evidently, in the last period, qN = QN for all possible
values ofQN , and therefore {qN,LN } is the only solution to (3) for periodN . Next,
assume as induction hypothesis that {qk, Lk}Nk=n+1 is the unique, time-consistent
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solution to (3) for the periods n + 1 ≤ k ≤ N . In this case, simple calculations
reveal that

En




N∑

j=n
pjqj



+ R

2
Varn




N∑

j=n
pjqj





= En[pnqn + Ln+1] + R

2
Varn[pnqn + Ln+1], (33)

which implies that {qk, Lk}Nk=n, in turn, is the unique, time-consistent solution for
the periods n ≤ k ≤ N , completing the proof. �

LEMMA 1. Define symmetric matrices 
1,N , . . . ,
N−1,N by

[
k,N ]m,n ≡
{

2(αλk + λn+k) if n = m

2αλk + (1 − α)λm+k if n > m
, (34)

1 ≤ m,n ≤ N − k. If the matrix 
1,N is positive semidefinite (positive definite),
then so are the matrices 
k,N , 2 ≤ k ≤ N − 1.

Proof. Follows at once from the fact that xT 
k,Nx = yT 
k+1,Ny, where
∑N−k

j=1 xj = 0 and y = (x2, x3, . . . , xN−k). �

LEMMA 2. The price process (2) is manipulation-free if and only if 
1,N is
positive semidefinite.

Proof. If
∑N

j=n qj = 0, qj ∈ M(Hj), then En[∑N
j=n pjqj ] = E[qT 
n,Nq]/2,

where q = (qn+1, qn+2, . . . , qN ). Applying Lemma 1 proves this Lemma. �

THEOREM 2. Suppose one of the following conditions holds:
(i) R > 0 (trader is risk-averse) and the price process (2) is manipulation-free, or

(ii) R = 0 (trader is risk-neutral) and the matrix 
1,N is positive definite.
Then, the liquidity trader’s problem (3) has a unique, time-consistent solution given
by (7)–(10).

Proof. Each condition (i) or (ii) implies the second-order condition, 2µn +
R(α2λ2

n−1σ
2
η + σ 2

ε ) > 0 for 2 ≤ n ≤ N , as stated in Theorem 1. To see
this, let us again use backward induction. In period N − 1, the cost function,
EN−1[pN−1qN−1 + LN ] + R

2 VarN−1[pN−1qN−1 + LN ], equals

{

p̃N−2 +
[

λN−1 + R

2
(λ2
N−1σ

2
η + σ 2

ε )

]

QN−1

}

QN−1

+λN−1(1 + α + RαλN−1σ
2
η )QN−1(qN−1 −QN−1)

+1

2
(
N−1,N + RϒN−1,N )(qN−1 −QN−1)

2,
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where ϒN−1,N = (α2λ2
N−1 + λ2

N)σ
2
η + σ 2

ε > 0. This expression is strictly convex
in qN−1 if either condition (i) or (ii) hold (by Lemmas 1–2), in which case 2µN +
R(α2λ2

N−1σ
2
η + σ 2

ε ) > 0.
As induction hypothesis, suppose that 2µk+R(α2λ2

k−1σ
2
η +σ 2

ε ) > 0 for n+1 ≤
k ≤ N . It can be shown that the cost function at time n−1, En−1[pn−1qn−1 +Ln]+
R
2 Varn−1[pn−1qn−1 + Ln], amounts to

{

p̃n−2 +
[

λn−1 + R

2
(λ2
n−1σ

2
η + σ 2

ε )

]

Qn−1

}

Qn−1

−λn−1(1 + α + Rαλn−1σ
2
η )Qn−11TN−n+1xn−1(qn−1) (35)

+1

2
xn−1(qn−1)

T (
n−1,N + Rϒn−1,N )xn−1(qn−1),

where xn−1(qn−1) = (qn(qn−1), qn+1(qn−1), . . . , qN (qn−1)), each component being
an affine function of qn−1 and

∑N
j=n−1 qj = Qn−1, ϒn−1,N is a positive definite

matrix, and 1k is the k-dimensional vector containing only ones. If either condi-
tion (i) or (ii) holds, then the function in (35) is strictly convex in qn−1, thanks to
Lemmas 1–2. Hence 2µn + R(α2λ2

n−1σ
2
η + σ 2

ε ) > 0 and we are done. �

Proof of Proposition 2. Since 
1,N is positive definite, a time-consistent solution
exists and is unique by Theorem 2. Writing out the first-order conditions of (3) for
the price process (1) yields

λqn+2 − (2λ+ Rσ 2)qn+1 + λqn = 0 for 1 ≤ n ≤ N − 3 (36)

(λ2 + 3λRσ 2 + R2σ 4)qN−1 − λ(λ+ Rσ 2)qN−2 = 0 (37)

(3λ+ Rσ 2)qN−1 + λ

N−3∑

n=1

qn = λQ, (38)

where σ 2 ≡ λ2σ 2
η + σ 2

ε .
Solving the difference Equation (36) subject to the boundary conditions (37)

and (38) gives (16) and (17).
The proof that the optimal trades are positive and strictly decreasing if R > 0

can be easily verified by looking directly at the formulas in (16) and (17). �

LEMMA 3. If either condition (i) or (ii) in Theorem 2 is satisfied, then the liquid-
ity trader’s problem (3) has a deterministic, time-consistent solution even when a
short-sale constraint is imposed.

Proof. In the last period, the trader respects the short-sale constraint by default
because qN = QN . Then, suppose that {qk = gk(Qk)}Nk=n represents a time-
consistent solution to the subproblem regarding the periods n to N , where the gk’s
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are deterministic functions. At time n − 1, we need to minimize the cost function
Ln−1 = En−1[∑N

k=n−1 pkqk] + R
2 Varn−1[∑N

k=n−1 pkqk] subject to the constraints
∑N

k=n−1 qk = Qn−1 and {∑N
m=k qm ≤ Q}Nk=n (the inequalities imply that the trader

never shorts). A solution to this optimization problem exists, because (i) the cost
function, being equal to (35), is convex, quadratic, and bounded below, and (ii) the
constraints describe a polyhedral convex set. Furthermore, since Ln−1 can also be
written as

En−1

[

pn−1qn−1 + En

[
N∑

k=n
pkqk

]

+ R

2
Varn

[
N∑

k=n
pkqk

]]

+R
2

{λ2
n−1σ

2
η [αqn−1 + (1 − α)Qn−1]2 + σ 2

ε (Qn−1 − qn−1)
2},

we infer that {qk = gk(Qk)}Nk=n−1 is a time-consistent solution to the problem for
the periods n−1 toN . Continuing in this fashion we arrive at the first period, where
we conclude, due to q1 = g1(Q), that a deterministic, time-consistent solution
exists for the whole problem. �

Proof of Proposition 5. We can apply the Implicit Function Theorem to the first-
order condition ∂

∂N
L(Q,N∗, x) = 0 to analyze the dependence of N∗ on the

underlying parameters Q and x = (λ, α,R, σ 2
η , σ

2
ε ). As ∂N∗/∂xj = − ∂2L

∂N∂xj
/ ∂

2L

∂N2

and L is strictly convex in N , the sign of ∂N∗/∂xj will be equal to the opposite
sign of ∂2L/∂N∂xj .

By differentiating ∂L(Q,N∗, x)/∂N with respect to Q, we obtain

∂2L

∂N∂Q
=






−λ(1 + α)

N2
Q < 0 if R = 0

−2b̃ ln r
(r2 − 1)r2N−1

(r2N − 1)2
Q < 0 if R > 0

, (39)

where b̃ = √
b, b and r are given as in (26), implying that ∂N∗/∂Q > 0. To verify

the individual signs of ∂N∗/∂x, we first calculate the second-order cross-partial
derivatives for the case R = 0 and then for R > 0. If R = 0, then ∂2L/∂N∂α =
−λQ2/(2N2) < 0 and ∂2L/∂N∂λ = −(1 + α)Q2/(2N2) < 0, having ∂N∗/∂α >
0 and ∂N∗/∂λ > 0 as a consequence. If R > 0,

∂2L

∂N∂xj
= −k′(N∗)

(
1

b̃

∂b̃

∂xj
+W

∂r

∂xj

)

,

W = r − r−1 + 2r ln r

(r2 − 1) ln r
− (2N + 1)r2N + 2N − 1

r(r2N − 1)
< 0,

(40)

and thus we have to evaluate the derivatives ∂b̃/∂xj and ∂r/∂xj for each case.
The sign of ∂N∗/∂α is positive because ∂b̃/∂α > 0 and ∂r/∂α < 0. Regarding
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the permanent price-impact parameter, ∂r/∂λ is negative when λ2σ 2
η is sufficiently

small relative to σ 2
ε , whereas ∂b̃/∂λ is always positive. Hence ∂N∗/∂λ > 0 under

the maintained assumption. The remaining claims of this proposition can be proved
in exact the same fashion. �
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