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Abstract

This paper shows that it may be desirable to deter crime by
imposing the largest feasible penalties on offenders even though
it is possible that an innocent person may be convicted. Thus
the fear of punishing an innocent does not by itself explain why
penalties are limited in size. It is shown, however, that the
combination of conviction errors and the impossibility of commit-
ting oneself to an investigation policy produces optimal penalties
of limited size.
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I. Introduction

In his seminal paper "Crime and Punishment" Becker (1962) asked about
the optimal system of law enforcement when apprehension of offenders is
costly. What punishments should society specify and what resources should
it spend in order to deter crime optimally? One of the main ideas emerging

from his analysis is the Principle of Maximum Deterrence: In order to save

on the cost of discovering and convicting offenders, the optimal procedure
is often to set the strongest possible penalties available. In
contemplating committing a crime, a risk-neutral individual compares the
expected cost of committing the offense (given by P , the probability of
being apprehended, times F , the penalty imposed if discovered) with the
benefit. By increasing F , society can reduce P (keeping the expected
cost constant) and thereby save what it would otherwise spend on deterrence
and detection.

When individuals are risk-neutral, the principle of maximum deterrence
holds in two separate cases: First, cases in which it is optimal to deter
everybody from committing an offense, and, second, cases in which society
may not want systematically to deter all individuals from committing
certain offenses (for example, it may be welfare-improving to allow some
people occasionally to double-park).

However, Polinsky and Shavell (1979) have shown that when agents are
risk-averse, then in the second case it is not optimal to have infinitely

(1)

large penalties. They explain that the lower the probability of
detection and the higher the fine, the more risky it is for those who have
a positive net social value to commit the offense. As a result, those

individuals may be overdeterred. On the other hand, when it is optimal to



prevent everybody from committing certain offenses (such as theft, rape or
murder) then risk-aversion will not affect Becker's general conclusion.

The principle of maximum deterrence also figures prominently in the

literature on incentives. If in a Principal/Agent relationship the
principal can pay a cost and inspect ex-post the agent's choice of actionm,
then it is optimal for him to impose the highest psosible penalty on agents
found shirking. The Principal would thereby minimize inspection costs.(z)
Economists are generally unhappy with this result. First, the
principle of maximum deterrence has been embodied only in a very limited
way in most western legal systems, in which the counterthrusting principle
that a punishment should fit the crime is the rule instead. The historical
and social realities of western legal practice suggest that some important
elements are missing in the analyses mentioned above. Second, in incentive
theory, if the principle of maximum deterrence was taken seriously, then
some of the most important incentive problems studied over the past twenty
years could be solved trivially by allowing ex-post random inspection and
imposing unbounded penalties on agents found shirking. The first-best
outcome can then be approximated arbitrarily closely. To avoid .this
awkward conclusion, some authors have simply assumed that penalties are
bounded (the size of the penalty cannot exceed some number, 0 <k < » ,
and the agent's utility U(k) 4is bounded below). This assumption has
usually been justified by appealing to some form of limited liability (see
Baiman-Demski (1980, a,b); Baron and Besanko (1984)). The first-best is
then no longer attainable but hotwithstanding the principle of maximum
deterrence still holds, for these models usually give an optimal solution
in which the optimal penalty is equal to thg exogenously specified bound on

penalties.



It has been argued (most notably by Stigler (1970) and Harris (1970))
that the risk of punishing an innocent individual may account for the
apparent fact that maximum deterrence is not the most efficient policy of
law enforcement. We propose to analyze this argument in greater detail, in
the context of a Principal/Agent model. Our main and rather surprising
conclusion is that even when the agent is risk-averse, an optimal contract
may still impose maximum penalties on agents found shirking, despite the
risk of punishing innocent agents. The point is, with maximum penalties
the savings on inspection costs may actually outweigh the wage costs the
Principal faces in offering a riskier wage contract to the agent.

We also address the issue of commitment to an inspection policy. Most
existing studies assume that the Principal can commit to a given
probability of inspection. Although this may be a reasonable assumption
when considering law enforcement, it may not be adequate in considering
other environments. Our results are summarized in the table below as a
function of the commitment possibilities of the Principal as well as the

risks of making inspection errors, for that case in which penalties are

unbounded.(3)
Commitment No Commitment
) Second-best Second-best
Inspection errors
Possibly maximum bounded penalties

deterrence (see Prop. 4)

First-best Second-best
No inspection errors
Maximum deterrence Maximum deterrence




II. Random Inspection With No Observation Errors

Consider the following contracting problem between two individuals.
The Principal hires an Agent to perform a certain task. For any action,

a , chosen by the Agent from his action set, A , there are n possible
profit (or output) outcomes, (ql,...,qn) that occur with probability
(nl(a),...,wn(a)) ; where ni(a) >0 , for all i and

n

Z wi(a) =1 . Usually one assumes that the principal does not observe
:_1, but that 1 is publicly known. Thus, he can make the payment to the
agent contingent on the observation of output. Let £ be the monetary
transfer to the agent when the principal observes 9y

The Agent's preferences are represented by a von Neumann-Morgenstern
utility function U(t,a) , which is assumed to be separable in income and
actions: U(t,a) = V(t) - a .(A) He is willing to work for the principal
only if he gets a reservation utility, U .

The principal is assumed to be risk-neutral for simplicity.
Furthermore, it is assumed that the Agent's ucilitj function, his action
set and the function =w: A > S (where S = {x ¢ Rn/xi 2 0 and
(5)

n
J x, =1}) are common knowledge.
i=1 i

Thus the Principal solves the standard program:



n
Max 121 ni(a) (qi_ti)
t, e [t,t]
Taea
P1 subject to:
n -
(IR) ] m@) v(t,) -azT
=1t *
n n R R
(1IC) 'z ni(a) V(ti) -az 'Z wi(a) V(ti) - a
i=1 i=1
for all ; in A .

We follow Grossman and Hart in assuming:

A.1: V(.) 1is continuous, concave and strictly increasing on the open
interval (t, +=) , where t > -= , but lim V(t) = -»
t>t
A.2: Let M = {v/v = V(t) for some ¢t ¢ (t, +»)} . Then (T-a) e M ,
for all a in A
The interpretation behind 1lim V(t) = -» is that the agent suffers an
t+t .
infinite loss, in utility, when all his wealth is taken away from him.

We shall modify the program P slightly, by allowing the principal

1
to inspect the agent's action, ex-post. We shall begin by assuming that he
can observe the Agent's action exactly by paying an inspection cost C > 0.
In the contract, the Principal must now specify a transfer to the agent

when he inspects, which will be a function of his observation, s(a) 3 a
transfer when he does not inspect, ti ; and an inspection rule. This rule

will in general be a function of the principal's output observation: for

every outcome qi the principal must specify a probability of inspection



p; € [0,1] . We assume, for the moment, that the principal can precommit

(6)

himself to a given inspection policy.

He now faces the following program:

n
[ Max I mi(@ {(aq-t)(1-p,) + p (-C-s(a))}
i=1
(), s(a) e (t +=)
i t
a € A
p; € [0,1]
P
2 J subject to:
n -
(IR) ) m (@) {A-p V(e + pV(s(a)} - a2
i=1
n ~ ~ ~ -
(10) I {(1-p V() + p,V(s(a} -as T ,
i=1 - -
for all a in A, a = a

It is immediate from the IC-constraint what the form of the optimal
contract will be. Define a* to be the first-best action and consider the
worst case for the principal, where in the optimal contract all p; are
strictly positive. Then the principal can implement a* and make all Py
arbitrarily small by letting s(a) tend to t for all a =z a* and
setting s(a*) = t, = V-1(6+a*) - Such a contract is incentive-compatible
and satisfies the IR-constraint.

Moreover, this contract approximates the first-best outcome since the
agent chooses a* , is perfectly insured, and the expected inspection
costs of the principal, .El ni(a*) pi-C s are negligible.

i=

(The above contract is optimal, a forteriori; when the principal can

set some P, equal to zero.) Of course, if the agent's utility function



was bounded below, the first—best would

not be approximated but the principle of maximum deterrence would still hold.
How is the optimal contract modified if we do not allow the principal to precommit
to a given inspection policy? In the absence of commitment, the principal and the agent

play a sequential game, where the timing of moves is illustrated below:

| | I I

(1) contract (2) agent (3) occurrence (4) principal
signed: chooses of 9; chooses
e={s(a)(1)) aeA 50,1

Clearly, inspection by the principal will only be credible when 9 is observed, if he
(weakly) prefers to inspect ex—post rather than not inspect. This is the case, for example,

if
t.2 C+ s(a) (1)

where a is the action implemented by the contract. One immediate observation is that, if
inspection takes place for some realizations of profit, 9i» then again the principle of
maximum deterrence applies: to best induce the agent to choose action, a, an optimal
contract sets s(/:;) arbitrarily close to £, for all 2# a. On the other hand, the first best
outcome may no longer be approximated in general. For example, suppose that whenever

the principal is indifferent between inspecting and not inspecting he inspects with



probability one, then the first—best outcome will not be approximated (unless there exists
an outcome which occurs with an arbitrarily small probability, w(a)). Of course, the
principal could inspect with a smaller probability whenever he is indifferent. If he chooses
a positive but arbitrarily small probability of inspection whenever he is indifferent then in
fact the first—best might be approximated.

The first—best is approximated by setting s(/;) arbitrarily close to ¢ for ;.# a*,

letting the agent pay the cost of inspection (so that s(¢*)=1t,—C), and paying a

non—inspection wage ¢ = vl (U+a*)+e. Where £>0, but € can be made
arbitrarily small by reducing the probability of inspection to an arbitrarily small number.
However, there is no reason that the principal will pick the correct probability of
inspection, ex—post, so that the first—best is by no means the only solution to this problem.
To summarize, the main point of this section is that the principle of maximum deterrence
holds whenever there is perfect monitoring, whether the principal can commit to an

inspection policy or not.



III. RANDOM INSPECTION WITH TYPE-ONE AND TYPE-TWO ERRORS
In this section we investigate the case where the principal may only imperfectly
observe the agent’s action when he inspects. We shall proceed as follows: first we solve for
the optimal contract in the simplest possible example. Then, whenever possible, we shall

explain how our results are modified when the example is generalized.



In the simple example the agent's action set is given by A = {ao,al} ,
where a, < a; - That is, the agent can either work hard or slack.
Furthermore, it is assumed that the principal cannot make the contract
contingent on the output observation, 4 - The only information the
principal obtains about the agent's action choice is the signal he observes
when he inspects the agent. The second assumption is verified in
situations where the principal must pay the agent before he observes 4y -
For example, when the agent is a building constructor, the principal often
finds out only 10 or 20 years after the completion of the building, what
the quality of the construction is, but while construction is underway, he
may randomly inspect the agent. This is the relevant example to
consider if one is interested in law~enforcement issues.

Suppose now ;hat the agent has chosen action a; (i = 0,1) ; then

the probability that the principal will observe action a; when he

inspects is strictly less than one:

Pr(a = ai/ai) <1 ,

where a is the signal observed by the principal. We. define:

B = Pr(a

1 a /ap

BO = Pr(; = aO/ao) .

We assume that the principal can precommit to a given inspection policy,

P e [0,1] and that BI’BO are common knowledge. Also, for the contract

to be enforceable by a court we must assume that the signal a observed by
the principal when he inspects is public knowledge.

Now when the principal offers a contract c = {t, s(a), P} to the

agent, the expected payoff of the agent when he chooses action a, and a,



respectively is given by:

EU(c,a;) = (1-P)V(t) + P(BlV(S(al)) * (l-Bl)V(S(ao))) -3

(2)
EU(c,a) = (1-P)V(t) + P(ByV(s(ay)) + (1-8)V(s(a ) - a,
For notational convenience, let s(ao) = So and s(al) H s, -
We can restrict the analysis, without loss of generality to the case
(€))
where Bl + BO >1 .

The incentive problem is real only if the principal optimally wants to
implement a . We shall assume that for any optimal contract it is best

for the principal to implement a Now, the principal's problem is to

1

choose t , s1 s 8g s and P to solve the program:

min (1-P)t + P(Blsl+(l—81)so+C)
t’so’sle(s’w)

Pef0,1]

subject to:

(IR) (1-P)V(t) + P[B,V(s)) + (1-B,)V(sy) 2 U + a;
3173, '
(1€) P{V(s,) - V(sy)] 2
1 0 Bl+80-l

We shall solve P4 in two stages. First we fix P and solve for the
optimal transfers as functions of P : {t*(P); sl*(P); so*(P)} . Then we

will determine the optimal probability of inspection, P

.

When P 1is fixed we have a program that is equivalent to the

cost-minimisation problem in Grossman and Hart (1983). As they noted P4

is not a convex program; however, assumptions Al and A2 permit us to

= V(so) as the control variables of the

regard v = V(t); v, E V(Sl); Yo

10
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principal. P, is then rewritten as:

4
min (1-P)h(v) + p(Blh(v1)+(1-81)h(vO)+C)
{v,vo,vleM}
PS |} subject to:
(IR) (1-P)v + P(B v, +(1-B,)v,) 2 F
(1IC) P(vl—vo) E
where h = V—l(-) s k = E?%%ZgT s F=1T+ a;

P5 involves the minimisation of a convex function (h(*) is convex
since V(+) is concave) subject to two linear constraints and from
Proposition 1 in Grossman-Hart (1983) we know that an optimal solution to
P5 exists. A solution must satisfy the first-order conditions and is such
that (IR) and (IC) are binding. From the first-order conditions we obtain

the following equation:

(3) h'(v) = Blh'(vl) + (l-ﬁl)h'(vo) .
And from the (IC) and (IR) constraints and (3) we can solve for v , v0 ,
v1 to obtain:

F - v(1-P) + k(l-Bl)
S Y17 3

F - v(1-P) - Blk
) Yo T P

F—v(I—P)+k(1—Bl) F-Blk-(l—P)v

(6) h'(v) = Blh' { S T— 1+ (l—Bl)h‘ [ —_— ]

Proposition 1: For any given P ¢ (0,1] a unique solution Vv exists to

(6).



Proof: The LHS of (6) is strictly increasing in v and the RHS is
strictly decreasing in v . Furthermore, for any P ¢ (0,1] , for values
of v close to (F - Blk) the RHS of (6) is strictly greater than the
LHS. Similarly, for v close to F + (l—tl)k s the LHS is strictly
greater than the RHS. It follows by the continuity of h'(+) , that there
must be a value v* that satisfies (6) for any given P € (0,1] .. This
value is unique since the LHS is strictly increasing in v and the RHS
strictly decreasing in v , for any P ¢ (0,1] .

Thus equation (6) defines an implicit function v = v(P) , so that we
can write the solutions to P5 as functions of P: vl(P) H VO(P) and
v(P) .

For all P € (0,1] we have

a) F + k(l-Bl) >v(P) >F - Blk



This establishes a).

F + k(l—gl) - (1-P)v(P)
1im h'( P )
P>0

= 4+ o

unless, lim v(P) = F + k(1-B,)
1
P>0

(from a) we know that v(P) cannot be greater than F + k(l‘Bl)) .
F - Blk - (1-P)v(P)

Similarly, lim P = - o
P>0

Now h(.) is strictly convex increasing; thus h'(-w) > 0 and h'(+x) =
+eo ., It follows that (6) can only be satisfied for all values of
P ¢ (0,1] if we have:

lim v(P) = F + k(l—Bl)
P>0

This establishes b).

It follows from proposition 2, that the first-best outcome cannot be
approximated here, unless B, = 1 , which we have ruled out. The reason
is that

lim h(v(P)) > h(F) = v"‘(ﬁ+al)
P>0

In other words, in the second-best contract wage costs-are higher for the
principal. This is not surprising in view of the fact that the agent must
be compensated here for the risk of being punished when he is inspected.
Nalebuff and Scharfstein (1985) have obtained an equivalent result in a
model of self-selection. They show that if the tests to which agents are
submitted are not perfectly accurate, then the first-best cannot be

approximated.

13



The second important conclusion to be drawn from proposition 2 is that
as P tends to zero the transfer h(v(p)) , to the agent when the
principal does not inspect, does not become very large. Any optimal

contract c* = {v*(P); vT(P); va(P)} must satisfy the equation:
h' (v*(P)) = Blh'(vf(P)) + (I-Bl)h'(VS(P))

And proposition 2 tells us that

lim k' (v*(P)) = lim {Blh'(vf(P)) + (1-Bl)h'(v3(P))}
P+0 P+0

h'(F+k(l-Bl)) <+ @

In other words, the expected wage, when inspection takes place,
{Bl-h(vl(P)) + (l_Bl)h(VO(P))} , is bounded above as P tends to zero.
We are now ready to move to the second stage of the principal's

minimisation problem:
min  (1-P)h(v(P)) + P{8 h(v,(P)) + (1-B,)h(v,(P))} + P-C
Pe(0,1] 1 L ! 0

This can be rewritten as:

(8) min $(P) + P-C
Pe(0,1]

And from (8) the following proposition follows:

Proposition 3: If the optimal probability of inspection is different from

one, then it is a strictly decreasing function of the costs of inspection,
. % *C < * *
Proof: (9) ¢(P2) + PZCZ < ¢(P1) + P1C2

(10) ¢(Pf) + PXC, 5 ¢(P%) + PAC,

Adding (9) to (10) we obtain:

[
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(PT-P?) (CZ-CI) 20

- * < Pk
but (C2 Cl) < 0 , hence P1 < P2

Next, ¢(+) is differentiable and if there is an interior solution

P* to (8) (i.e., P#*=zl) , such a solution must satisfy:
¢"(P*) = - C .

It follows that if PT and PE are interior solutions, then PT < P;

Proposition 3 tells us that the higher the inspection costs, the lower
will be the probability of inspection. Thus one may wonder whether the
optimal probability of inspection will be arbitrarily close to zero for
some sufficiently high inspection cost. If this turns out to be indeed the
case, then it follows that the principle of maximum deterrence would still
hold (see the (IC) constraint in P4). This would however be an
uninteresting conclusion if it turns out that P is arbitrarily close to

zero only if C = +=

Proposition 4: If t > -» , there exists C < +» , such that if C > C

a solution to min ¢(P) + PC does not exist.
Pe(0,1]

Proof: From proposition 2, we know that

lim ¢(P) = h(F+k(1-81))
P>0

Next, by the envelope theorem we have:
$'(®) = B (v (®)) + (1-8)h(v () = h(v(P))

so that 1lim ¢'(P) > -~
P>0

Given the above information about ¢(P) , we obtain the following

figure:
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PUT FIGURE ABOUT HERE

We know that h(.) > t and by assumption t > -o , it follows that
$'(P) > -» for all P ¢ (0,11 .

Now define C such that:

inf ¢'(P) = -C , then C < +o .

Pe(0,1]
Also from proposition 3, if C > C , we must have

$'(P) = -C < dinf ¢"(P) = ~C .

Pe(0,1]
This is clearly not possible, so that if C > C > a solution to
min  ¢(P) + PC does not exist.

Pe(0,1] _

In fact, for C > C we have an open-set problem similar to the one in
section II. If the principal faces high fixed inspection costs, it may be
optimal for him to inspect with probability P , arbitrarily close to
zero,

There is a trade-off for the principal between facing high inspection
costs, PC , or facing high expected wage costs, ¢(P) . 1If hé lowers
the probability of inspection, he must offer the agent a more risky
inspection wage {Blh(vl(p)) + (l-sl)h(vo(p)} » and since the agent is
risk-averse this implies that he will have to pay the agent a higher
expected wage. On the other hand, by lowering P , he lowers his expected
inspection costs PC

Now, as the variance of the inspection wage increases, the expected
wage does not shoot off to infinity (this was established in proposition
2). The reason is that there are two counter-balancing effects, one of

them dominating the other as P becomes small: on the one hand, the



$(P)

ﬁlh(F’k“’ﬁl)) +
(1-B)h(F-kB)
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increased risk due to a more variable inspection wage increases the
expected inspection wage, but on the other hand, there is a reduction in
risk due to a smaller probability of inspection. The latter effect
dominates the former as P tends to zero.

Observe that our result would no longer be true if t =-= , for then
we have

lim ¢'(P) = -=
P+0

and it would not be optimal for the principal to impose arbitrarily high
penalties on the agent, unless C = +o . This point was also noticed by
Nalebuff and Scharfstein (1985).(8)

So far we have not said anything about the type-one and type-two
errors nor have we put restrictions on the degree of risk aversion
(relative or absolute) of the agent. 1In this respect, proposition 4 is
very general,

One may wonder how robust proposition 4 is to changes in the model.
Note first that it does not depend on the size of the type-one and type-two
errors. The form of the utility function of the agent, however, is
important. For example, utility functions of the HARA-family, ébnsidered
in Baiman-Demski (1980) will not do, mainly because they do not satisfy the
condition that V(E) = - , for some t> - .(9)

Next, the restriction to two actions, A = {ao,al) » does not appear
to be important. This is a conjecture since we have not generalised
proposition 4 to the case of n actions. A priori, there is no reason,
however, for this result to break down when the agent has access to more
than two actions.

More importantly, the assumption that the principal can precommit to a

given inspection policy seems to be crucial to obtain proposition 4. Thus,



in the example considered here, when the principal wants to implement a;
and cannot precommit himself to a given inspection policy, the principle of

maximum deterrence breaks down: With no commitment, we must have

t 2 Bls1 + (1-81)50 + C

for inspection to take place, at all. At best, we have t = Blsl +
(1—81)30 + C . Hence, no matter what probability of inspection the
principal chooses, he will not be able to save on his inspection cost, C .
But the main reason for increasing the size of the penalty was to save on
expected inspection costs, P.C . Now, the principal will not be able to
save on costs and he will increase the expected wage he has to pay to the
agent, by raising the penalty for shirking. Thus, in this case the
principle of maximum deterrence breaks down.

To conclude this section we want to point out another interpretation
of the model considered here. Suppose that by paying a sufficiently high
inspection cost the principal can observe the agent's action choice
perfectly accurately, when he inspects, but that the agent "trembles"
slightly in his choice of action. Then (1—81) would be the agent's
choice-error when he wanted to choose action a1 s and. (1-80) his
choice-error when he wanted to choose action a, - Formally, this problem
is identical to the one considered in this section, so that the conclusion

would be that when the agent "trembles" this does not necessarily imply

that penalties will be bounded in an optimal contract.

IV. Conclusion
The main purpose of this paper was to examine the claim that the
principle of maximum deterrence would be violated when there is a positive

probability of punishing someone who is innocent. The conclusion reached

18
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is that this is not necessarily true. Proposition 4 demonstrates that in
some cases it may be optimal to punish an agent who shirks as severely as
possible, even if there is a risk of punishing someone who is innocent. To
reach this conclusion it was important to assume that the principal could
precommit himself ex-ante to a given investigation policy. We explain that
the combination of inspection errors and no-commitment possibilities for
the principal is necessary in our model to obtain an outcome where
penalties are bounded.

Proposition 4 is surprising and somewhat disappointing. It suggests
that additional elements have to be taken into account if one wants to
explain the structure of punishments in western legal systems. It seems
clear that cultural and historical factors cannot be ignored. In
particular, one potentially important explanation for the limited use of
large penalties as a deterrence device is the reluctance of society as a
whole to accept the possibility of severely punishing an innocent person.
Society as a whole may prefer to spend more resources on law enforcement
and thereby reduce both the likelihood of such an évent and the size of the
punishment imposed on an innocent person. This is no doubt only a partial
explanation and there are probably deeper religious and cultural’factors.

However, the analysis of such factors is beyond the scope of this paper.



Footnotes

See also Townsend (1979); Polinsky and Shavell (1979); Gale and
Hellwig (1985).

A number of authors have dealt with this problem in the context of
adverse-selection models: See, for example, Stiglitz (1975); Townsend
(1979); Guasch and Weiss (1980, 1981, 1983); Gale and Hellwig (1985);
and Nalebuff and Scharfstein (1985).

The results can be extended in a straightforward fashion to the case
where an exogenous bound on penalties is specified.

The results obtained here can be generalised to utility functions of a
more general form: U(t,a) = G(a) + K(a)V(I) (see Grossman and Hart
(1983)).

It is now well known that the first-order approach to the Principal-
Agent problem is unsatisfactory unless one is prepared to make severe
assumptions about the distribution function over output (see Mirrlees
(1974, 1975, 1979)). We did not wanﬁ to restrict ourselves, at the
outset, to special distribution functions, so we follow the approach
by Grossman-Hart (1983). '

One may ask what it means that the principal can precommit himself to
a given probability of inspection P, - The principal has a randomi-
zation device, which can be formalised as follows: Consider the
interval [a,b] ¢ R , where a <b . Every time the device ig
activated it produces an outcome 6 € [a,b] . Assume that 8 is
uniformly distributed on [a,b} . The principal determines a

sub-interval [a,b'] , (where b' ¢ [a,b]) when he chooses Pi

20



That is, Pi is defined by:
b'-a

Py = %a

What is necessary for the principal to be able to commit himself to
Pi , is that the randomisation device described above be public
knowledge and that 6 be publicly observable.

If Bl + BO <1 we can reiabel our variables as (1—61) = él ‘and

(1-80) = 80 and we obtain gl + EO >1 .

Nalebuff and Scharfstein (1985) also show that if as C + +» , the
accuracy of the test becomes perfect (i.e., B1 + 1 ) then the
first-best outcome can be approximated. This is also true in our
model, since as C + +» and Bl + 1 , we have P* - 0 and

{¢(P) + BC} » h(F) = V—l(ﬁ+a1) (provided, of course, that P<C + 0 ).
Moral-hazard models are quite different from self-selection models,
and it is remarkable that, as far as optimal inspection (or testing)

contracts are concerned, they yield identical conclusionms.

V(x) 1is a utility function belonging to the HARA family if:

¥
V(x) = Slill ifY + n]

where vy #1 ,8 >0 ; n=1 if y = 4
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