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1. Introduction

Bolton and Harris (1999) consider a game of strategic experimentation. In this game,
each player divides her time in any given period between a ‘safe’ action and a ‘risky’
action. The underlying pay-off of the safe action is known. The underlying pay-off of
the risky action is unknown, and can be higher or lower than that of the safe action.
The actual pay-off received by any player from an action is the underlying pay-off
plus noise. Once players’ actions have been chosen and pay-offs realized all players
observe all choices and pay-offs. Through these observations they are able to learn about
the underlying pay-off of the risky action and thus revise their common beliefs and
optimal choice of action. In other words, players can learn from others’ current experi-
mentation as well as their own.

Bolton and Harris provide a complete characterization of the team solution of the
strategic-experimentation game, establish the existence of a unique symmetric stationary
Markov-perfect equilibrium, and show how equilibrium experimentation and pay-offs
vary with the number of players and the discount rate. In particular, they show that
there are two major effects at work in their model, a free-rider effect and an encour-
agement effect. The free-rider effect arises because experimentation is a public good.
The encouragement effect arises because the prospect of future experimentation by
others gives a player an incentive to increase her current experimentation in order to
bring forward the time at which the additional information obtained from the others’
experimentation becomes available. However, Bolton and Harris only obtain a partial
characterization of the unique symmetric equilibrium, and do not provide any char-
acterization of the set of asymmetric equilibria.

In this paper, we pursue further the analysis of strategic experimentation initiated
in Bolton and Harris. We begin by making an important change in the model: we add
background information in the form of an exogenous noisy signal of the underlying
pay-off of the risky action. This ensures that players’ preferences have a well-defined
limit as the discount rate converges to zero.

The undiscounted case is much easier to analyse than the discounted case. We are
therefore able to give a detailed characterization of all the equilibria of the model, both
symmetric and asymmetric. Using this characterization, we can show that the aggreg-
ate equilibrium pay-off of all players is maximized (subject to the incentive constraints)
if and only if aggregate experimentation is maximized (subject to the incentive con-

straints). Furthermore, we can characterize how maximum equilibrium experimentation
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two players, etc.

The maximal equilibria can be understood intuitively as follows, When the oppor.-
tunity cost of experimentation is high, even a small amount of experimentation by the
other players will deter the remaining player from experimenting. The best way of

By contrast, in the discounted case, players’ best responses do depend on their valye
functions. Hence, since closed-form solutions for the value functions cannot be

obtained in the discounted case, it is not possible to provide a complete characteriza-
tion of equilibrium experimentation.

Besides providing a much more detailed
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2. The Model

There are N identical players. At the outset of the game, they all believe that nw=I
with probability 1 — p, and y = k with probability p,. At time £, the players simultan-
eously and independently choose between two actions, action 0 (the safe action) and
action 1 (the risky action). If player i chooses action a;, then her pay-off is

sdt + odZ(r) f q,=0
dm(t) = .

pdt + GdZ(s) if a, =1

All players then observe all the actions chosen and all the resulting pay-offs. They also
observe a background signal

dmt) = J(xo)udt + adZy().

Here: 5 is fixed and known; / <s<h; x,> 0 is the quality of the background
signal; and the dZ,(r) are independently and normally distributed with mean 0 and
variance dt for 0 << N.

3. The Objective

The objective of player ¢ can be stated informally as follows: maximize the expecta-
tion of the undiscounted integral of the pay-offs dm(t). In order to arrive at a formal
statement that embodies this objective, one can proceed in one of two ways.

The first approach is to consider the limit of the expectation of the discounted in-
tegral of the pay-offs d,(z) as the discount rate goes to 0. Suppose that, at time r:
the players believe that & = 4 with probability £(#); and player ¢ chooses the action
x,(#) € {0, 1}. Define the full-information pay-off @ by the formula

a(g) = (1 — g)s + qh,

and define the expected risky pay-off m by the formula
m(q) = (1 — )l + ¢k

Then:

Proposition 1. We have

lim ! (E ( J wre“"dW,-(t)J - 77(1’0)]

= E[ f (@ = %()s + x(m(p(2)) — ﬁ(ﬁ(t)))dt]-
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IimE [
r—0+

f e, (t)] = (p,).
0

: (i) assigns probability o the
risky action when 2 = 0; (ii) assigns probability 1 to the risky action when ? =1;and
(iii) is continuous at both p = () ang » = 1." Hence, for » near to 0, player ;’s prefer-
e€nces over her reasonable Strategies are well represented by

Iim 1 ( E [ f” re~"dqr, (f)J - ﬂ(Po)]
0+ 0

wherever this limit exists, Finally,
sonable or not.

this limit exists for all strategies of player i, rea-

Proof. Let us denote the information available 3
m

t time ¢ by ¥ We have
Els()u) £] = Efx,) [ Z1E[p| 7]

P = E[x )| £1m(p(r)) = Elx,(m(p(1)| 7]
S (because x,(0) is conditionally independent of M given F) and
( Elodz ()| 7] = o,

Hence
Eldm(n} 5
=E[(1 - x,(D)(sdz + 0dZ (D) + x,(t)(udr +

= E[(1 - x@t))ar + ¥(udt + adz,1)| 7)
= El(1 = x(e))sar + % (Om(p(0))dt | 7).

Hence

E[]mre"’dm(f)] = EU@”*"EW’”} ®) 7;]]
0 0

0dZ,(1)| 7]

E [ f L = oyt + x.-(t)m(p(t»dzm]
0

A

] oon""((l ~ 4(D))sdr + 1, (t)"t(P(f))dt)]
0

! For the formal definition of a Markov strategy, see Definition 5 below.




Strategic Experimentation 57

= El:fore"((l — x())s + x,-(t)m(p(t)))dt}.
0

We also have

(o) = Efa(p(1))]

(because p(z) follows a martingale and # is linear). Hence

a(py) = E[f re"‘ﬁ(po)dtjl = El:f re""ﬁ(p(t))dtj,.
0 0

Overall, then,

l[E Uwre_"dﬂ,‘(t)} - ﬁ(ﬁo)J
r 0

= E[ f e (1 = x(0)s + x(Om(p()) — ﬁ(P(t)))dtJ-

0

But
(I = x()s + x,(m(p(5)) — a(p(r)) < 0.

Letting r — 0 and applying the monotone convergence theorem, we therefore obtain
the required conclusion. l

The second approach is to consider the limit of the expectation of the mean of the
pay-offs dm,(z) over the interval [0, 7] as T goes to +. On this approach:

4 Proposition 2. We have

TlierT[E[% J :dvr,-(t)J - ﬂ(po)J

= EU" (@ = x(D)s + x,()m(p(1)) — ﬁ(ﬁ(t)))dt}.

This proposition can be understood in much the same way as Proposition 1. For
any reasonable strategy of player 7,

lim E 1(7 ~
o Fjodwx(t) = ()

& '°nce, for T'near to +oo, player i’s preferences over her reasonable strategies are well
Presented by

o o8 A o 351 0 - g e 5 e 1
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TliTwT[E[%f:dWi(f)J - ﬁ(ﬁo)]»

wherever this limit exists. F inally, this limit exists for all strategies of player i, re,-
sonable or not. The proof, which is analogous to that of Proposition 1, is omitted,
Propositions 1 and 2 lead us to the following definition:

Definition 3. Player i’s objective is to maximize

EU (@ = x(@)s + x,(ym(p(e)) - ﬁ(ﬁ(t)))dt}-
0

4. The Dynamics of Beliefs

Suppose that, at the outset of period ¢, the players believe that = k with probabil-
ity p(2). Let xy(r) = x,, and suppose that the playersi € {1,... N + choose the actions

x,(t) € {0, 1}. Suppose further that, at the conclusion of period ¢, the players believe
that 4 = % with probability 2@t + di). Let

ap(s) = p(t + db) — p(r)

denote the change in beliefs concerning y; and define the information function ® by
the formula

o) = ( gl = g)(h — 1)} _
o
Then:

Proposition 4. We have

) = p()(1 - p(r»( = )2/(::;0»:12, o,
i=0

where

N 1
dz(s) = ;(/(x,-(t))(ﬂ = m(p()dt + 0dZ,(2)).
Moreover, conditional on the information available at time 1, the dZ (1) are independently
and identically distributed with mean 0 and variance dt.

In particular, conditional on the information available at time #, dp(f) has mean 0
and variance (LY, x,(1))®(p(¢))ds.

Proof. See Lemma 1 of Bolton and Harris (1999). B
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5. Definition of Equilibrium

Since the only pay-off relevant variable is the probability that p = &, and since a
player’s mixed action can be identified with the probability with which she chooses
action 1, both the state space and the mixed-action set for our model can be taken to

be the unit interval [0, 1]. Hence:

Definition 5. A Markov strategy for player 1 is a Borel measurable function £;: [0, 1]
— [0, 1].

It can be shown that, for all Markov-strategy profiles and all initial beliefs, there
is a unique solution to the dynamics. More precisely, put I=1{1,2,..., N}, put
£(q) = x, for all g € [0, 1], let ([0, +), [0, 1]) denote the space of continuous func-
tions from the time line [0, +) to the state space [0, 1], let P(C([0, +), [0, 1])) denote
the space of probability measures on ([0, +), [0, 1]), and let p denote the identity
mapping on C([0, +=), [0, 1]). Then:

Proposition 6. For all Markov-strategy profiles €= X, & and all initial beliefs
1o € 10, 11, there is a unique Mpo) € P(C([0, +), [0, 1]) such that, with A(py)-

probability one:

(1) p(0) = p; and
(ii) for all t € [0, +0), dp(t) has mean 0 and variance (T, E(p()P(p(D))dr.

Proof. This follows at once from the results of Engelbert and Schmidt (1985), as
described in Section 5.5 of Karatzas and Shreve (1988). W

Proposition 6 implies that, for all Markov-strategy profiles £ and all initial beliefs
o, player i's expected pay-off g.(& po) is well defined. Hence:

- Definition 7. The Markov strategy & is a perfect best response (0 the Markov-
strategy profile £, = Xep\w§ f, for all p, € [0, 11, & is a best response 1o & . in the
game in which player i has pay-off function 2::5 po)-

Definition 8. The Markov-strategy profile &€ = X,e/& ts an equilibrium §ff; for all
i€ {1,2,..., N}, & is a perfect best response to E.= Xenaé
6. Characterization of Best Responses

Suppose that the players j € I\{i} employ the Markov strategies &, and let .=
Leqoumué- Then:

Proposition 9. Player i’s value function u, : [0, 1] = (=, 0] satisfies

0= max]{a s+ am(p)— 0+ (@ + B @D AL } "

o,€[0,1
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Jorallp € (0,1) and
%,(0) = 0, u,(1) = 0. @)
Moreover the Markov strategy &, is a perfect best response for player i iff

&(p) € argemx {(l = a)s + am(p) — a(p) + (a; + E_i(p))P(p)—=+ u(2) } 3)
for all p € (0, 1) and
£0)=0, &) =L “@

Proof. Let H(p, a;, &£_;, ¢;) denote the expectation of player ¢’s current pay-off
when the current belief is p € [0, 1], player ¢ chooses the risky action with probability
a; € [0, 1], the profile of Markov strategies employed by the other players is £_; and
player i’s continuation pay-offs are given by the function ¢; : [0, 1] = (—%, 0]. Then
player i’s value function z; must satisfy the Bellman equation

u(p) = anelﬁ)),(l]{lfi(a“ P u, €2)} (%)

for all p € [0, 1]. Moreover the strategy £ is a perfect best response for player 1 iff

¢:(p) € argmax {H(a,, p, u;, £.))} (6)

o, E[0,1]

for all p € [0, 1].
Now suppose that the realized actions are {x;|1 <j< N}, and put X;=
Zcioum¥;- Then player #’s current pay-off is

(1 = x)s + x,;m(p) — a(p))ar

(by Definition 3) and her continuation pay-off is
I} 1 "

o+ dp) = ci(p) + cl(p)dp + i (p)ap?
(by 1t6’s Lemma), where dp has mean 0 and variance (x, + X)®P(p)dt (by Proposi-
tion 4). Hence the expectation of her current pay-off conditional on {x;|1 <j=< N}
is

_ _ v”(p)

ci(py + | (1~ x;)s + xm(p) — a(p) + (x; + X;)P(p)——
Hence

Hi(ai) P, Cis §~i) = C,(P)

((1 — a)s + am(p) — alp) + (@, + E_(p) @ (p) L) ) ™

(on taking expectations over the x).
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Next, combining (5) and (7), we obtain

u(p)

- :2&’21{”""’) ' (‘1 et am(p) )+ (o + B )d’}

=mm+(mn{a—mn+mmwr—mm+«n+Eﬁwwwm1%iﬂm

o, €[0,1)

Hence, subtracting #,(#) from both sides and dividing both sides by dt,

o, €[0,1])

°=mﬂ@—mwmmwwm+@+awmw$§}
for all p € [0, 1]. Similarly, combining (6) and (7), we obtain

ameMwm%hﬂm+mmm—am+@+Exm®mﬂg} ®)

«,€[0,1]

for all p € [0, 1].
Finally, using (8) and noting that ®(0) = ®(1) = 0, we obtain
£,(0) € argmax {(1 — a,))s + a;m(0) — #(0)} = argmax {—a(s — D}

a;€(0,1} a;E(0,1]

and

£(1) € argmax {(1 — a;)s + o;m(1) — (1)} = argmax Q1 — a)(h— 5}

a;€[0,1] o, €[0,11

Hence £(0) = 0 and £(1) = 1. Hence the flow pay-offs in states 0 and 1 are

(1 — £O)s + £Om(0) — a(0) = —£O)6 —H =0
and

A—£(1)s + EDm1) — a(l) = —(1 — &)~ 5)=0.
Hence #,(0) = 0 and #,(1) = 0. W

. The following lemma simplifies both the problem of finding player i’s value func-
tion and the problem of finding player i’s perfect best responses.

Lemma 10. Equation (1) holds iff

0= (1 — a)s + a;m(p) — @(p) u($)
gﬁi o + E_()(7) }+¢”)2 ' ®
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Moreover, if either (1) or (9) holds, then (3) holds iff

(1 — a)s + aym(p) — #()
&(p) € argmax — . 10
«E0,1] { a; + E_(p)(P) } (40
Proof. This follows at once from the fact that 0 < x, < a; + B Sx,tN<+o R
v
a Proposition 11. There is a unique u; satisfying equations (1 and 2).
Proof. In view of Lemma 10, we need only show that there is a unique %; such that
C
F —a)s + o — "
; NN (A TR L Bk 0] WP ) an
@, €[0,1) a; + 5_,(p) 2
T
for all p € (0, 1) and
1
¢ %,(0) = 0, 4,(1) = 0. (12)
Note first that, for any bounded f: [0, 1] = R,
(
! 0=+ L

for all p € (0, 1) iff
up) = J G(p, Df(g9)dg + (1 — p)v(0) + pu(1)

for all p € [0, 1], where

20%p .
P e
G =109 rehd
’ 2000 irpeiq 1l

(h — gl — g)*

(by standard considerations in the theory of differential equations). Hence equations
(11 and 12) hold iff

u(p) = j G(p, 9)/(9)dg,

where

f(g) = max
«,€[0,1]

{ﬂ—mh+mmm—ﬂﬂ}

a; + E—i(ﬂ)
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Noting that neither G nor finvolve u;, we conclude that there is a unique solution of

equations (11 and 12). |

Define the break-even probability & and the incentive to experiment B by the

formulae
b= s=t
h—1
and
ap—s g €10, b
B(p) = s — m(p) )
+co if p€ (b 1]
Then:

Proposition 12. The Markov strategy & is a perfect best response for player i iff

=0 if B(p) < E—i(p)
E(p)i€0, ] i Bp) = E_.(p)
=1 if B(p) > E_i(p)

for all p € [0, 11.

In other words, player i sh
the total experimentation by the other players
of experimentation effectively contributed by the background signal).

Proof. FElementary manipulation shows that

ould experiment iff the incentive to experiment exceeds
(including an allowance for the amount

(1= a;)s + am(p) — a(p) _ (s — m(p)) — @@(p) = 5) — Bi(p)s —m(2))
a, + E_(p) a; + E_ ()
Moreover: if p < b then s — m(p) > 0, and so
< - <
@)= 9 — Eo(p)s — mp)| = 0 iff S i= Lo
s — m(p)
> >

and if p = b then s — m(p) <0, and so

@(p) — 5) — E_(p)s — m(p)) = i(p) = s> 0. W
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7. Characterization of Equilibrium

Proposition 12 allows us to give a complete classification of the equilibria of our game.
For all mixed-action profiles & = X¥,a, let £, be the number of players who play the
safe action with probability one, let %, be the number of players who play the risky
action with probability one, and let £, be the number of players who play a strictly
mixed action. For all y € [0, +], let £(y) be the set of mixed-action profiles & such
that one of the following conditions is satisfied:

() kyy =0,k =0and y=< x,
() by =0, 1<k <N-landx, t by~ 1S ysx +Ek;
(it kyy =0,k =Nand y=x,+ N — |;
(iv) k4 =1,y = x, + k, and the player who mixes chooses the risky action with
any probability in (0, 1);
(v) ky= 2,0+ by <7y<ux,+ k + ky — 1 and the players who mix all choose
the risky action with probability (y — x, — k,)/(k, — 1).

In other words, either the incentive to experiment is so low that having no players
experiment is incentive-compatible; or it is sufficiently high that at least £, players can
be persuaded to experiment, but sufficiently low that at most #, players can be per-
suaded to experiment; or it is so high that all players can be persuaded to experiment;
or it takes on a knife-edge value at which a (¢, + 1)* player is indifferent between experi-
menting and not experimenting; or it lies in 2 range in which ,, players can be per-
suaded to mix when #, players experiment, provided that the probability with which
the mixing-players experiment is chosen appropriately. Then:

Proposition 13. The Markov-strategy profile & = XY\, is an equilibrium f, for all
? €10, 1}, &(») € E(B(p)).

In other words, £ is an equilibrium iff £(p) is a Nash equilibrium of the stage game
forall p € [0, 1].

Proof. Fix p € [0, 1}, put & = £(p) and put y = B(p). Note first that, if £y = 0and
k; = 1, then playing risky is incentive-compatible for those players who play risky iff
Yy = xy + by — 1. Similarly, if £,, = 0 and #, < N — 1, then playing safe is incentive-
compatible for those players who play safe iff ¥ < x, + &,. Secondly, if £,, = 1 then
mixing is incentive-compatible for the player who mixes iff y = x, + k,. Moreover:
playing safe is less attractive for the players who play risky than it is for the player who
mixes; and playing risky is less attractive for the players who play safe than it is for
the player who mixes. Thirdly, if £,, = 2, then mixing is incentive-compatible for player
iffy=158_ = (XX0€) — &. Hence mixing is incentive-compatible for those players
who mix iff they all mix with the same probability (y — x, — &,)/ (k4 — 1). Moreover:
(y—x— k) by —1DE (0, 1) iff xy + by < y<uxy+ by + by, — 1; playing safe is
less attractive for the players who play risky than it is for the players who mix; and
playing risky is less attractive for the players who play safe than it is for the players
who mix.
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Proposition 13 in turn allows us to identify those equilibria that maximize aggreg-
ate pay-offs. Let g(§, p,) denote the aggregate pay-off when the Markov-strategy profile
¢ is employed and the initial belief is p,, let E denote the set of equilibria, let

E(po) = argg;ax 2§ 10},

and define £ : [0, +%] — [0, N] by the formula

E(y) = argmax {Za,}.
il

aEE(y)

Then:

Proposition 14. For all p, € [0, 1], £ € E(p,) iff £(p) € E(B(p)) for all p € [0, 1].

In other words, for any given initial belief, an equilibrium maximizes the aggregate
pay-off iff it maximizes total experimentation in every state. In particular, if an equi-
librium maximizes the aggregate pay-off for some initial belief, then it maximizes the
aggregate pay-off for all initial beliefs.

Proof. Suppose that £ is an equilibrium. Then Proposition 9 and Lemma 10 mply
that

0= (1 = &:(p))s + &(p)m(p) — a(p)
£i(p) + E_i(p)

+ @(p)“‘g") (13)

for p € (0, 1) and
40) = u(1) = 0. (14)
Put v = ¥ c,u,. Then, summing (13) and (14) over 4, we obtain

—N(@@(p) ~ s) = (s — m(p)X,c,E(p) v"(p)
0= +® 15
Xy + zielfi(l)) (#) 2 (15

for p € (0, 1) and
v(0) = v(1) = 0. (16)
Moreover, rearranging (15), we obtain

N(@@(p) — s) — xp(s — m "
(#(p) = 5) — xo(s — m(p)) O(p) 28
%y + e () 2
As in the proof of Proposition 11, it follows that (15 and 16) hold iff

= (s = m(p)) —

up) = j G, /g, £(9)dg + (1 = p)yo(0) + po(1)

for p & |0, 1], where

S

v et st
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20%p .
—_—— ifp e |0,
N (e 2 e R .41
b4 20— p)
if 9 € [g, 1]

(h—11q(1 — g)?

and

N(a(g) ~ 5) — xls = m(g))

flgy @) = = = mig)) = P2
0 (=7 et

It follows at once that £ € E(p,) iff

OIS arg(la)x {f(q, @)}

for 4 € [0, 1]. Finally, £(¢) = 0 whenever B(g) < x,,
Na(g) — s) — xos — m(g)) > 0

whenever B(9) € [x,, x, + N — 1], and £{(¢) =1 whenever B(9) > x, + N — 1.
Hence

argmax {f(g, @)} = E(B(g))-

a&E(g)

This completes the proof. B

Figure 4.1 depicts the total-experimentation correspondence £ given by the
formula £(y) = {3,c,a;] @ € E(7)} in the case N = 3 and x, = 2. It suggests that, in
order to maximize total experimentation: there should initially be a single pioneer who

ir

2.5

/
/

Total experimentation

Ot 7= PSSP SR SIS T S S S S B

0 1 2 3 4 5 6
Incentive to experiment
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experiments alone; then two pioneers should share the burden of experimentation; then
three pioneers should share the burden of experimentation; and so on.
The following proposition gives an explicit characterization of E(7y).

Proposition 15. Foralll € {1,2,..., N — 1}
(i) for all v € [x+1—1, 5o+ =1+ 1), @ € E(y) iff kyy =0 and

by =1;
(i) for all ¥y € (o + -1+ L 0+ 1), @ € Ey) iff kpy=1+1 and
k=0

and, in the knife-edge case in which y = x, + | — 1 + 15, € E(y) iff either ky, = 0
and kb, =L orky =1+ 1and kb, = 0.

In particular: for y € [x,, x, + 1), exactly one player plays risky; for y € (x, + %,
%o + 1), exactly two players randomize; for vy € [x, + 1, % + 1 + §), exactly two
players play risky; for v € (x, + 1 + 1, x, + 2), exactly three players randomize; and
soconupto/=N — 1.

Proof. Note first that any a € E(%y) in which both £, > 0 and £,, > 0 is dominated
by the corresponding equilibrium & € E(%y) in which /51 =0andF w = & + k. Hence
we can confine attention to equilibria in which either £, = 0 or £, = 0. Secondly, any
a € E(vy) in which k£, = 0 and #,, = 3 is dominated by the corresponding equilibrium
& € E(y) in which £, = 0 and £,, = k,, — 1 if ¥ € (x,, %, + &, — 2). Hence equilibria
in which k£, = 0 and &,, = 2 are only relevant when y € (x, + b, — 2, x, + k,, — 1).
Thirdly, any a € E(7y) in which £, < N — 1 and k,, = 0 is dominated by the corres-
ponding equilibrium & € E(y) in which £, = k, + 1and /EM = Qif y = x, + &,. Hence
" equilibria in which £, =< N — 1 and k,, = 0 are only relevant when y € [x, + ¥, — 1,
xp+ k). Finally, forall / € {1,2,... , N—1}andall y E [x, + I — 1, 2, + ),
the equilibrium in which k£, =/ and #, = 0 dominates the equilibrium in which
ky=0and ky=I!+1if y € [x,+!— 1, 5+~ 1+ ], and vice versa if
YEW+I—-1+ L x,+/). R

1+

8. Conclusion

As we have seen, the characterization of perfect best responses becomes very simple
in the limit case where there is no discounting. As a result, it is possible to provide a
complete classification of equilibria for this limiting case. The analysis of this paper
therefore provides an illustration of the important simplifications that may be obtain-
able in the case of no discounting for the analysis of stochastic differential games. We
believe that this methodology can be applied to problems other than experimentation
and learning, and may provide a useful key to solve problems that have previously been
thought to be intractable.
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