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Abstract

Correlations between U.S. stocks and the aggregate U.S. market are much greater for
downside moves, especidly for extreme downside moves, than for upside moves. We
develop a new statistic for measuring, comparing, and testing asymmetries in conditional
correlations. Conditional on the downside, correlations in the data differ from the conditional
correlations implied by a normal distribution by 11.6%. We find that conditional asymmetric
correlations are fundamentally different from other measures of asymmetries, such as skewness
and co-skewness. We find that small stocks, value stocks, and past loser stocks have
more asymmetric movements. Controlling for size, we find that stocks with lower betas
exhibit greater correlation asymmetries, and we find no relationship between leverage and
correlation asymmetries. Correlation asymmetries in the data reject the null hypothesis of
multivariate normal distributions at daily, weekly, and monthly frequencies. However, several
empirical models with greater flexibility, particularly regime-switching models, perform better
at capturing correlation asymmetries.



1. Introduction

Correlations conditional on “downside” movements, which occur when both a U.S. equity
portfolio and the U.S. market fall, are, on average, 11.6% higher than correlations implied
by a normal distribution. In contrast, correlations conditional on “upside’” movements, which
occur when both an equity portfolio and the market rise, cannot be statistically distinguished
from those implied by anormal distribution. Asymmetric correlations are important for several
applications. For example, in optimal portfolio alocation, if all stocks tend to fall together as
the market falls, the value of diversification may be overstated by those not taking the increase
in downside correlations into account. Asymmetric correlations have similar implications in
risk management. In this paper, we examine this correlation asymmetry in several ways.

We begin by formally defining downside correlations as correlations for which both the
equity portfolio and the market return are below a pre-specified level. Similarly, upside
correlations occur when both the equity portfolio and the market return are above a pre-specified
level. Downside correlationsin U.S. markets are much larger than upside correlations as shown
by the plots of downside and upside correlations presented in Longin and Solnik (2001). These
graphs demonstrate that, on the downside, portfolios are much more likely to move together
with the market.

Second, we measure this asymmetry by developing a summary statistic, H. The H
statistic quantifies the degree of asymmetry in correlations across downside and upside markets
relative to a particular model or distribution. This measurement of asymmetry is different
from other measurements established in the literature. Covariance asymmetry has usually
been interpreted within a particular Generalized A utoregressive Conditional Heteroskedasticity
(GARCH) model, where covariance asymmetry is defined to be an increase in conditional
covariance resulting from past negative shocks in returns.® In contrast, our statistic measures
correlation asymmetry by looking at behavior in the tails of the distribution. Our statistic is not
specific to any model. Hence, we can apply the statistic to evaluate several different models.
We show that conditional correlations differ from other measures of higher moments, such as
skewness and co-skewness, and from risk measured by beta.

The H statistic corrects for conditioning biases. Boyer, Gibson, and L oretan (1999), Forbes
and Rigobon (1999), and Stambaugh (1995) note that calculating correlations conditional on
high or low returns, or high or low volatility, induces a conditioning bias in the correlation
estimates. For example, for a bivariate normal distribution with a given unconditional
correlation, the conditional correlations calculated on joint upside or downside moves are
different from the unconditional correlation. Ignoring these conditioning biases may lead to

! Authors such as Cho and Engle (2000), Bekaert and Wu (2000), Kroner and Ng (1998), and Conrad, Gultekin,
and Kaul (1991) document the covariance asymmetry of domestic stock portfolios using multivariate asymmetric
GARCH models.



spurious findings of correlation asymmetry.

Third, we establish several empirical facts about asymmetric correlations in the U.S.
equity market. We find the level of asymmetry, measured at the daily, weekly, and monthly
frequencies, produces sufficient evidence to reject the null hypothesis of a normal distribution.
To investigate the nature of these asymmetric movements, we examine the magnitudes of
correlation asymmetries using portfolios sorted on various characteristics. Returns on portfolios
of either small firms, valuefirms, or low past return firms exhibit greater correlation asymmetry.
We find significant correlation asymmetry in traditional defensive sectors, such as petroleum
and utilities. We also find that riskier stocks, as reflected in higher beta, have lower correlation
asymmetry than lower beta stocks. After controlling for size, the magnitude of correlation
asymmetry is unrelated to the leverage of a firm. Previous work focuses on asymmetric
movements of leverage-sorted portfolios of Japanese stocks (Bekaert and Wu, 2000), and size-
sorted portfoliosof U.S. stocks (Kroner and Ng, 1998; Conrad, Gultekin, and Kaul, 1991) using
asymmetric GARCH models.

Finally, we analyze asymmetric correlations by asking if several reduced-form empirical
models of stock returns can reproduce the asymmetric correlations found in the data. These
candidate model s are used by various authorsto capture the increase in covariances on downside
movements. We discuss four models that allow asymmetric movements between upside
and downside movements in returns. These models are an asymmetric GARCH-in-Mean
(GARCH-M) model, a Poisson Jump model, for which jumps are layered on a bivariate normal
distribution, a regime-switching normal distribution model, and a regime-switching GARCH
model. We find the most successful modelsin replicating the empirical correlation asymmetry
are regime-switching models. However, none of these models completely explain the extent of
asymmetriesin correlations.

Our study of asymmetric correlations is related to several areas of finance. There is a
long literature documenting the negative correlation between a stock’s return and its volatility
of returns? Other studies analyze patterns of asymmetries in the covariances of stock
returns in domestic equity portfolios.® This literature concentrates on documenting covariance
asymmetry within a GARCH framework. Our approach uses a different methodology to
document asymmetric correlations, interpreting asymmetries more broadly than smply within
the class of GARCH models. We examine a much wider range of portfolio groups previously

2 For example see, among others, French, Schwert, and Stambaugh (1987), Schwert (1989), Cheung and
Ng (1992), Campbell and Hentschel (1992), Glosten, Jagannathan, and Runkle (1993), Engle and Ng (1993),
Hentschel (1995), and Duffee (1995). Bekaert and Wu (2000) provide a summary of recent GARCH model

applications with asymmetric volatility.
3 Some papers documenting asymmetric betas are Ball and Kothari (1989), Braun, Nelson, and Sunier (1995),

and Cho and Engle (2000). Conrad, Gultekin, and Kaul (1991), Kroner and Ng (1998), and Bekaert and Wu (2000)
document asymmetric covariancesin multivariate GARCH models.



used in the literature, and investigate if other classes of empirical models can replicate the
correlation asymmetry found in data.

Our approach of creating portfolios sorted by firm characteristics creates a very different
view of the determinants of conditional correlations than previously obtained in the literature.
The H dtatistic uses the full sample of observations measured over time to calculate the
correlation at the extreme tails of the joint distribution. By employing time-series data, we
use as many observations as possible to calculate correlations for events for which there are
relatively few observations. We also focus on the cross-sectiona determinants of correlation
asymmetry in stock returns, whereas Erb, Harvey, and Viskanta (1994) and Dumas, Harvey,
and Ruiz (2000) use conditioning on instrumental variables such as business cycle indicators,
rather than on the observations, to determine the characteristics of time-varying correlations.

Work in international markets has found that the correlations of international stock markets
tend to increase conditional on large negative, or “bear market”, returns.* Longin and Solnik
(2001) use extreme value theory to show that the correlation of large negative returns is much
larger than the correlation of positivereturns. However, in their work, Longin and Solnik do not
provide distribution-specific characterizations of downside and upside correlations. Our paper
uncovers strong correlation asymmetriesthat exist in domestic markets and emphasize that such
asymmetries are more than an international phenomenon in aggregate markets. In our domestic
focus we examine which indivdiual firm characteristics are most related to the magnitude of
correlation asymmetry.

Other related studies by Campbell, Lettau, Malkiel, and Xu (2001), Bekaert and Harvey
(2000), and Duffee (1995) examine cross-sectional dispersion of individual stocks, which
has increased in recent periods. Duffee (2000) and Stivers (2000) document an asymmetric
component in the cross-sectional dispersion. Chen, Hong, and Stein (2001) and Harvey and
Siddique (2000) analyze cross-sectional differences in conditional skewness of stock returns.
However, these authors have not examined the relationships between firm characteristics and
asymmetric correlations. We find that stocks which are smaller, have higher book-to-market
ratios, or have low past returns exhibit greater asymmetric correlations. Stocks with higher beta
risk show fewer correlation asymmetries. We also show that correlation asymmetry is different
from skewness and co-skewness measures of higher moments.

The remainder of this paper is organized as follows. Section 2 demonstrates the economic
significance of asymmetries in correlations within a portfolio allocation framework. Section
3 shows that correlation asymmetries exist in domestic U.S. equity data. We define and
characterize conditional upside and downside correlations and betas of a bivariate normal
distributionin closed-form, and discuss how to correct for conditioning bias. Section 4 measures

4 See Erb, Harvey, and Viskanta (1994), Lin, Engle, and 1to (1994), Longin and Solnik (1995, 2001), Karolyi
and Stulz (1996), De Santis, Gerard, and Hillion (1999), Forbes and Rigobon (1999), Boyer, Gibson, and L oretan
(1999), Starica (1999), Ang and Bekaert (2000), Bae, Karolyi, and Stulz (2000), and Das and Uppal (2001).
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the correlation asymmetries, and analyzes their cross-sectional determinants. In Section 4,
we develop the H statistic measure of correlation asymmetry, and demonstrate asymmetric
correlations in equity portfolios using the normal distribution as the benchmark. In Section
5, we ask if several models incorporating asymmetry into the conditional covariance structure
can replicate the asymmetry found empirically in the data. Section 6 contains our conclusions.
Proofs are reserved for the Appendices.

2. Economic significance of asymmetric correlations

In this section, we demonstrate the economic significance of asymmetric correlations using a
simple asset allocation problem. Appendix A details the solution and the calibration method
used in this example. Suppose an investor can hold amounts «; and a, of two assets with
continuously compounded returns x and y, respectively. The remainder of her wealthisheld in
ariskless asset. Let 7 and ¢ denote the standardized transformations of « and vy, respectively.®
The agent maximizes her expected end-of-period Constant Relative Risk Aversion (CRRA)
utility asfollows:

max E [

1,002

le]

- ®

In Eq. (1), the end-of-period wealth is given by W = e™f + a;(e* — €"f) + ag(e?¥ — e'r),
ry = 0.05 isaconstant continuously compounded risk-free rate, and -y is the agent’s coefficient
of risk aversion. We set v equal to 4.

To abstract from the effects of means and variances on portfolio weights, suppose both
assets have the same mean and volatility. We denote the expected continously compounded
excess return of both = and y as 1 = 0.07, and the volatility of the continuously compounded
excessreturn aso = 0.15. For illustration, we set the unconditional correlation of = and y to be
p = 0.50.

Suppose that the agent believes = and y are normally distributed. Since each asset has the
same mean and volatility, the investor holds equal amounts of either asset. Let of denote this
portfolio position. With normal distributions, lower unconditional correlations imply greater
benefits from diversification.

We examine the joint behavior of the two assets conditional on downside moves, which can
also be called bear-market moves. We define this bear-market move to be a draw that is below
each asset’s mean by more than one standard deviation. If = and y are normally distributed with

5 To standardize avariable x, we perform the transformation # = (z — ) /o, where . is the unconditional mean
of 2 and o isthe unconditional standard deviation of x. Throughout the paper, we use tildes to denote standardized
returns. Variables without tildes are not standardized.



unconditional correlation p = 0.5, the correlation conditionalonz < y —ocandy < u— o is.
p=corr(z,yle <p—o,y<p—o)=corr(z,ylz < —1,7<—1)=0.1789. 2

Note that the downside correlation for a normal distribution is less than the unconditional
correlation. This difference arises from the conditioning bias of viewing returns based on
contemporaneous events of both x and y being below a fixed level. Appendix B demonstrates
how to calculate this conditional correlation in closed-form.

Suppose the actual distribution of = and y is a Regime-Switching (RS) Model, athough the
agent erroneously believes that « and y are normally distributed. Under the RS Model, returns
X = (z, y) aregiven by:

X ~ N(ps,, Bs,), s € {1,2}. ©)

For regime s; = ¢ , we denote p; as the mean returns and X; as the covariance matrix. The
transitions between the regimes s; = 1 and s, = 2 are given by a Markov chain with transition

probabilities:
P 1-P
(701) @

INEqQ. (4), P = Pr(s; = 1ls;1 = 1) and Q = Pr(s; = 2|s;_1 = 2). We calibrate the RS
Model to have the same unconditional mean, p, the same unconditiona volatility, o, and the
same unconditional correlation, p, as the normal distribution.

Instead of the downside correlation p being 0.1789, suppose that the true downside
correlation p is H percent higher. That is,

corr(z,y|z < —1, y < —1) = 0.1789 + H. (5)

This magnitude, represented by H, reflects the statistic we develop in Section 4. Thisincrease
is an effect which cannot be captured by using the normal distribution, which is determined
only by itsfirst two moments. However, the increase in correlation on downside movesrelative
to the normal distribution can be captured by the RS Model.

Let the RS Model have parameters i1y = po = (0.14, 0.14)', P = 2/3,and Q = 2/3. This
specification implies that the stable probabilities of the Markov Chain m = Pr(s; = 1) = %
We express the covariance matrices ¥; as.

1 p
%, = o PrY =1, (6)
i p; 1

In Eq. (6), p; isthe correlation of returnsin regimei. We set o; = 0, = 0.15 to focus on the
effect of regime-dependent correlations. The correlations p; and p, are chosen so that the RS
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Model has the same unconditional correlation p as the normal distribution. We choose p; > po
such that %(pl +po) = p. Theresulting RS Model has the same first two unconditional moments
asthe normal distribution, but its correlation conditional on downside movesis higher than that
implied by the normal distribution.

The asset alocations from the RS Model can be shown to be dependent on the regime.
Since z and y have the same moments, the optimal holdingsin each asset are the same, but the
proportion held in x and y differ across the regimes. We denote the optimal portfolio holdings
in each asset as o}, for regime s;. In regime 1, with p, greater than p, the investor, who holds
o' based on her belief that = and y are normally distributed, holds much more equity as a
proportion of her investment compared to the optimal weight o.5. In regime 2, with p, less than
p the investor holds too little equity compared to the optimal «3. The higher p; in the first
regime causes downside correlations to increase relative to the normal distribution. Since the
normal distribution cannot incorporate the asymmetriesin conditional correlations, the investor
over estimates the benefits of diversification on the downside in regime 1, and over-invests
in risky assets. Similarly, she under estimates the benefits of diversification in regime 2, and
under-investsin risky assets.

We calculate the utility loss, which represents the monetary compensation required for an
investor to use the non-optimal normal weights . instead of the optimal RS Model weights % .
This loss is the advance compensation, in cents per dollar of wealth, that the investor should
have received in order to hold o' instead of %,. Thisestimateis given by w = 100 x (v — 1),
where:

1

(&)

In Eq. (7), Q;, isthe indirect CRRA utility under the RS Model, with optimal weights o,
conditional on being in regime s;, and Q] is the indirect CRRA utility under the RS Model
distribution, with sub-optimal weights o' conditional on being in regime s,. That is,

Qi =E((W) s and QL =E[(W)' s, (8)

forwhich Wy = e + af (e® —e™7) + o, (eV — ™), Wi = e +alf(e” —e™7) + al(eV —e'7),
and both expectations are taken under the RS Model.

Fig. 1 graphs the advance monetary compensation the investor should have received to
compensate for choosing the sub-optimal normal distribution weights instead of the optimal
RS Model weights. The compensation required per dollar of wealth isnot small. In Regime 1,
for H = 0.10 the investor requires more than 120 basis points in compensation. In Regime 2,
the investor requires around 100 basis pointsin compensation. This simple example shows that
potential utility lossesare economically largeif correlationsincrease on the downsiderelative to
astandard normal distribution. In Fig. 1, H measures the difference between the true downside
correlation and the downside correlation implied by a normal distribution.
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3. Calculating upside and downside moments

We now formally develop the H statistic, show and correct for abiasin measuring it, and use it
to characterize the nature of asymmetric correlations in stock portfolios.

3.1. Upsideand downside correlations

Conditioning on upside or downside movesand cal culating correlationsinduces a“conditioning
bias’. For a bivariate normal with unconditional correlation p, the correlation calculated
conditioning on a subset of observations (for example taking observations above or below a
certain level) differs from the unconditional correlation. Appendix B calculates this bias in
closed-form for a bivariate normal distribution.® In this section, we show that the conditioning
bias for a bivariate normal distribution exists, and that ignoring this bias can lead to incorrect
inferences from tests of correlation asymmetry.

We consider pairs of standardized returns (z, ) ~ N (0, ), where ¥ hasunit variancesand
unconditional correlation p. We define:

ﬁ(hl, hg, k’l, ]{32) = COfr(i‘,?ﬂhl <T < hg, ki < g < ]{32,[)) (9)

as the correlation between = and g, conditional on observations for which h; < & < hsy and
k1 < § < ko. Thevariable, p(hy, ho, k1, k2), represents the correlation of a doubly truncated
bivariate normal. In Eg. (9), £ and ¢ have unconditional correlation p.

There are several specia cases of this specification. When h, and k, are infinite, we
obtain the one-sided truncation case specified in Rosenbaum (1961). Another special case is
the Longin and Solnik (2001) exceedance correlation. A correlation at an exceedance level o
is defined as the correlation between two variables when both variables register increases or
decreases of more than ¢ standard deviations away from their means, such that:

> 9,9 > p)if >0

H(v, 00,19, 00 = corr(z,
o) = ! : ( i > 9:0)! (10
<P, g<tp)if <0

e
p(—00,9, —00,9) = corr(z,y|z
For a bivariate normal distribution, these variables are the same, by symmetry. Longin and
Solnik discuss the limiting behavior of exceedance correlations using extreme val ue theory, but
do not give distribution-specific characterizations of exceedance correlations.

For an exceedance level ), we calculate the empirical exceedance correlation p(d) as

follows. For pairs of standardized observations {(z, 7)}, we select a subset of observations

6 Related work by Forbes and Rigobon (1999) looks at the correlation of returns conditioning on different
volatilities. Boyer, Gibson, and Loretan (1999) derive correlations for a bivariate normal conditioning on events
for one variable. In a discussion of Karolyi and Stulz (1996), Stambaugh (1995) demonstrates the conditioning
bias by simulation.



suchthat {(z, )|z > Yandy > ¥} for ¥ > 0, and {(z, §)|z < Jandy < ¥} for J < 0. The
correlation of the observations in this subset is the empirical exceedance correlation at . For
¥ = 0, we calculate both corr(z, y|z > 0,y > 0) and corr(z, |z < 0,7 < 0). In theory, these
correlations are the same for a symmetric distribution, but may differ in the data. In calculating
the exceedance correlation, ¥ determines the cutoff points for the conditioning sample, which
are expressed in multiples or fractions of standard deviations from the observed mean values.
For 9 = —1, the exceedance correlation between an equity portfolio and the market return is
calculated on a subset of observations for which both the equity portfolio and the market return
are more than 1 standard deviation below their empirical means.

Panel A of Fig. 2 showsgraphs of conditional correlations of abivariate normal distribution,
conditional on returns above or below a certain level. Panel A shows exceedance correlations
p(19) for various unconditional p. These correlations are calculated using Egs. (B-11), (B-12),
and (B-13) shown in Appendix B. For a given p, the exceedance correlations are tent-shaped.
Intuitively, the exceedance correlations tend to zero as ¢ approaches infinity, either positive
or negative, because the tails of the bivariate normal are flat. The exceedance correlations are
calculated assuming a quadrant of  and g, with origin at point (¢, ¢). As ¢ increases, the
guadrant is pushed further into the tails of the bivariate normal, where the distribution becomes
flatter. Oneway to determineif correlationsare different for upside (¢ > 0) or downside (¢ < 0)
moves isto compare positive or negative exceedance correlationsin the data with those implied
from a particular distribution, such as the normal distribution. Fig. 2 shows that comparing
correlations conditional on high or low absolute returns cannot be done without taking into
account the conditioning bias.

We can aso construct correlationsthat are conditional on levelsof asinglevariable, . Panel
B of in Fig. 2 shows conditional correlations s(h1, hy, —00, +00) = COrf(Z, ylh1 < & < ha; p)
over different intervals (hy, hy). The truncation points h; and h, are chosen to correspond to
abscissae from an inverse cumulative normal, which we denote by ®~(-). In Fig. 2, h; and
hs correspond to the abscissae intervals of probabilities [0.0 0.2 0.4 0.6 0.8 1.0]. That is, the
intervals (hy, hsy) correspond to:

(@71(0.0), ®7(0.2)) = (—o0, —0.8146)
(@71(0.2), @7(0.4)) = (—0.8146, —0.2533)

(@71(0.8), ®7(1.0)) = (0.8146, +00). (12)

The conditional correlations j(h1, he, —00, +00) are plotted at the inverse cumulative normal
abscissae corresponding to the midpoints [0.1 0.3 0.5 0.7 0.9]. The conditional correlations
produced this way lie in a U-shape.” Hence, comparing conditional correlations constructed

" A similar exercise in showing conditional correlation bias over different intervals is done by Boyer, Gibson,
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from samples where one variable has large absolute returns to conditional correlations
constructed from samples where the same variable has small absol ute returns must also be done
taking into account the conditioning bias. In particular, calculating conditional correlations
when the conditioning information set consists of exogenous instrumental variables, such as
macroeconomic variables, may aso induce a bias, if these conditioning variables are correlated
with returns.

In our empirical work, we take z to be standardized returns of a stock portfolio and 3 to
be standardized market returns. We can look at movements in z and ¢ conditional on large
movementsin both the market and the stock portfolio as analyzed in Longin and Solnik (2001),
or look at movementsin z and y conditional only on large market moves (Butler and Joaquin,
2000). In both cases, we cannot simply compare conditional correlations of high or low return
periods. We concentrate on the analysis based on the exceedance correlations of Longin and
Solnik (2001). This characterization has the advantage of succinctly describing the conditional
correlations with one parameter, the exceedance level 1, rather than a series of truncation
intervals, asis done in Panel B of Fig. 2. The exceedance conditioning of both £ and 7 also
focuses attention on joint “downside” and “upside” moves. This demonstration is particularly
relevant given past episodes of market crashes when stocks have made simultaneous extreme
moves on the downside.

3.2. Asymmetric correlationsin thereturnsdata

We focus on portfolio returns of stocks sorted by industry classifications, size, value, and
momentum. We use market capitalizations to represent size, book-to-market ratios to represent
value, and past returns to represent momentum. Stocks are sorted on market capitalization,
book-to-market ratios, and lagged past 6-month returns and grouped into quintilesto form size,
book-to-market, and momentum portfolios (smallest to largest, growth to value, and losers to
winners, respectively).

We focus on these portfolio groups for the following reasons. Industries have varyings
exposures to economic factors (see Ferson and Harvey, 1991). The Fama and French
(1993) model, using size and value-based factors is very popular. The momentum effect has
received recent attention, largely because it cannot be explained by the Fama and French
model (see Fama and French, 1996). We also study portfolios formed by other cross-
sectional characteristics, such as beta and co-skewness, and portfolios formed by other firm
characteristics, such as leverage. These portfolios are also divided into quintiles. To control

and Loretan (1999). A plot of conditiona correlations corr(z,y|h1 < x < hg; p) Where hy and hy values are
chosen with equal intervals, would show a picture very similar to the plots of Panel A, which has atent shape. This
relation also appliesif we show correlations conditioning only on x, such as corr(z, y|x > ¥; p). Inthis case, we
produce atent similar to the top plot of Fig. 2.



for possible interaction between market capitalization (size) and other characteristics, we aso
construct two sets of doubly sorted portfolios. one on size and beta, and another on size and
leverage.

For our empirical analysis, we use data from the Center for Research in Security Prices
(CRSP) and Standard & Poor’s COMPUSTAT to construct portfolios based on various firm and
distributional characteristics. We use both daily and monthly returns from CRSP for the period
covering July 1st, 1963 to December 31st, 1998. We use COMPUSTAT s annual filesto obtain
information about book values and financial leverage. We follow standard conventions, and
restrict our universe to common stocks listed on NY SE, AMEX, or NASDAQ of companies
incorporated in the United States. For the risk-free rate, we use the one-month Treasury Bill
rate provided by Ibbotson Associates. We take CRSP's value-weighted return of all stocks to
be used as the market portfolio.

We first construct a set of value-weighted industry portfolios grouped by their two-digit
Standard Industrial Classification (SIC) codes. The classification of these industries follow that
of the SIC grouping used in Ferson and Harvey (1991). In addition, we group all stocks that
do not fall into this classification scheme into a miscellaneous industry category. The industries
analyzed are miscellaneous, petroleum, finance, durables, basic industries, food and tobacco,
construction, capital goods, transportation, utilities, textile and trade, service, and leisure.

Within each month, for each portfolio, we calculate daily returns of abuy-and-hold strategy
using the CRSP daily file. At the beginning of every month, each portfolio is re-balanced
and re-formed according to the strategy. The returns are aggregated into weekly frequency by
calculating the total buy-and-hold return of each strategy from the end of every Wednesday
to the end of the following Wednesday. At a weekly frequency, this action yields 1,852
observations. The monthly returns are calculated directly from the CRSP monthly file, and are
also rebalanced and reformed at the beginning of every month. Finally, all returns are converted
into continuously compounded yields and expressed as returnsin excess of the one-month T-bill
rate.

The second set of portfolios we construct are value-weighted, size-sorted portfolios. At the
beginning of every month, we determine the breakpoints on market capitalization for our stocks
based on the quintile breakpoints of stocks listed on the NY SE. Hence, our first size-sorted
portfolio contains al the stocks listed on the combined NY SE/AMEX/NASDAQ listings that
are smaller than the 20™ percentile NY SE stock.

The third set of portfolios we construct are value-weighted book-to-market portfolios.
At the beginning of every month, our universe of stocks is once again sorted based on
quintile breakpoints of stocks listed on the NYSE. The sorting variable is the book-to-
market ratio calculated using the most recently available fiscal year-end balance sheet data
on COMPUSTAT. Following Fama and French (1993), we define “book value” as the value of

10



common stockholders' equity, plus deferred taxes and investment tax credit, minus the book
value of preferred stock. The book value is then divided by the market value on the day of the
firm'sfiscal year-end.

The next set of portfolios consists of the “6-6" momentum strategy portfolios of Jegadeesh
and Titman (1993). For this set, we sort our stocks based upon the past six-monthsreturns of al
stocksin our universe, rather than just on NY SE stocks. To avoid market microstructure effects,
we reguire a one-month lag between when the returns are realized and when the portfolios are
formed. Hence, each month, an equal-weighted portfolio isformed based on six-monthsreturns
ending one month prior. Similarly, equal-weighted portfolios are formed based on past returns
that ended two months prior, three months prior, and so on, up to six months prior. We then
take the ssmple average of six such portfolios. Hence, our first momentum portfolio consists of
1/6 of the returns of the worst performers one month ago, plus 1/6 of the returns of the worst
performers two months ago, etc.

The next two sets of portfolios are based on distributional characteristics of past returns.
The betawith respect to the market is estimated as the regression coefficient of monthly excess
portfolio returns on monthly excess market returns over the past 60 months. Standardized co-
skewness s estimated for every stock using past one-year daily stock returns. Aswith size and
book-to-market portfolios, value-weighted portfolios based on NY SE quintile breakpoints are
formed over the following month.

The final set of portfolios are formed according to firm leverage. Leverage is calculated
annually astotal assets divided by book value, where book value is defined as above. Leverage
for agiven month is defined as the mostly recently reported value at the beginning of the month.
As with size and book-to-market portfolios, we compute quintile breakpoints based on stocks
listed on NY SE and value-weighted portfolios are formed.

In addition, we create two sets of doubly sorted portfolios. one sorted on size and beta,
and another sorted on size and leverage. For both sets, we first sort every stock in our universe
by size into quintiles using NY SE breakpoints. Then, within each size quintile, we further
sort stocks into quintiles based on beta. The breakpoints for beta within each size quintile are
also calculated using only NY SE stocks. We then form value-weighted portfolios according to
the 5x5 groupings. Size and leverage portfolios are formed the same way, except that we use
leverage rather than beta.

Table 1 presents the summary statistics of the market, industry, size, book-to-market, and
momentum portfolios at the weekly frequency.® The mean and standard deviation of the excess
portfolio returns are annualized by multiplying the mean by 52 and the standard deviation by
v/52. The size effect, value effect, and momentum effect are clearly depicted by the mean

8 For brevity, we do not report the statistics of other portfolios. Additional summary statistics of the other
portfolios and other frequencies are avail able from the authors.
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returns of these portfolios across quintiles.

Non-synchronous trading can cause a bias in the estimation of covariance, and hence
correlation.  Our portfolio constructions rebalance portfolios at the end of every month,
minimizing micro-structure bid-ask bounce effects. We focus on the weekly frequency since
this frequency represents the best trade-off to avoid the market microstructure biases at daily
frequencies, yet provide a large number of observations. We also focus on value-weighted
portfolios for the industry, size, and book-to-market portfolios to avoid putting too much
weight on small illiquid stocks. As a check, the last two columns of Table 1 list the
sample unconditional correlation with the market portfolio at both the weekly and the monthly
frequencies. The unconditional correlations calculated using weekly data and monthly data are
very similar. This evidence suggests our results are not plagued by errors in the estimation of
correlations induced by non-synchronous trading.

Table 2 lists the ten largest positive and negative excess weekly returns of the market
portfolio. The information in Table 2 is not annualized. The table shows that, aside from a
large negative return attributable to the October 1987 crash, the top ten largest weekly moves
in absolute magnitude of the market are approximately the same for both positive and negative
moves. This finding suggests that our results on asymmetric correlations are not due to under-
sampling of either the downside or upside movements relative to each other at the weekly
frequency. Our results of asymmetric correlations are also robust to excluding the October
1987 crash.

If equity and market returns are normally distributed, their exceedance correlations would
exhibit the tent-shaped distributions shown in Fig. 2. To construct plots of empirical exceedance
correlations, we take  to be the standardized excess return of an equity portfolio, and  to be
the standardized excess return of the market. Fig. 3 shows the exceedance correlations for the
equity portfolios at the weekly frequency.® The figure provides clear pictorial representations
of the asymmetric movements between the equity portfolios and the market. There are two
main features of the plots. First, we observe that, far from being symmetric, the exceedance
correlations for negative exceedance levels are always greater than the exceedance correlations
for positive exceedances. There is a sharp break evident at ¥ = 0, where the conditioning
changes from calculating corr(z, |z > 0,7 > 0) using the positive quadrant to corr(z, |z <
0,y < 0) using the negative quadrant. Second, instead of tapering off to zero, as in the case
of a bivariate normal distribution, the negative exceedances are either flat, or tend to increase
as 1 becomes more negative. The positive exceedance correlations are more variable than the
negative ones, but thereis some evidencethat, as v increases, these correlations taper off to zero
for some portfolios.

9 Plots for daily and monthly frequencies and for equal-weighted market returns are available on request. Both
the daily and the monthly frequencies exhibit the same highly asymmetric patterns as documented here for the
weekly frequency. The H statistic in the legend is the measure of this asymmetry we develop in Section 4.
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Fig. 4 shows the exceedance correlations of two representative equity portfolios. It plots
the exceedance correlations of the first and fifth quintiles of the size portfolios with the
market. The implied exceedance correlations from a bivariate normal distribution with the
same unconditional correlation as the equity portfolio and market pairs appear on the same
plot. Fig. 4 demonstrates that the negative exceedance correlations for both portfolios do
not tend towards zero, and are substantially greater than the exceedance correlations of the
bivariate normal distributions. This pattern indicates that correlations between the market and
the portfolios are significantly higher in falling markets than a normal distribution would imply.
The correlationsimplied by abivariate normal distribution presents a good approximation of the
positive exceedances for the fifth size quintile, while the empirical exceedances lie above those
implied by the bivariate normal for the first size quintile. Fig. 4 suggests that, while a bivariate
normal distribution cannot match the negative exceedances from the data, it may approximate
positive exceedances for some portfolios.

The exceedance plots in Fig. 3 and Fig. 4 provide a graphical representation of the
asymmetric movements in equity portfolios. They show that correlation asymmetries exist in
the data.

3.3. Upsideand downside betas

Analogous to the upside and downside exceedance correlations, we can define upside and
downside beta coefficients.’® For simplicity, we measure upside and downside betas relative
to the means 1., and 1, of the portfolio excessreturn z and market excess return y, respectively.
We define an upside beta, 57, as:

cov > g, Y > . 7 il7 M
g+ = (@, ylz > payy > py) _ 07 corr(z, gz > 0,7 > 0), (12)

var(y|e > g,y > fy) of

such that o7 = /var(z|z > p,,y > p,) and o) = Vvar(ylz > pe,y > p,). Similarly, we
can define adownside beta, 3, as:

cov(x, y|z < pre,y < o 5 ali i
P (2, Y|z < payy < py) _ %= corr(i, @ < 0,4 < 0), (13)
var(yle < pa,y < py) o,

for whicho, = /var(z|z < p,,y < p,) and o, = VVar(ylz < pg, y < piy).
Denoting k* = o, /o and k= = o, /o, we can write 5 and 5~ as.
BT =k" x p0)",
and§~ =k~ x p(0)", (14)

10 We thank an anonymous referee for suggesting this analysis.
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where 5(0)* = corr(z,g|z > 0,7 > 0) is the positive exceedance correlation at ¥ = 0, and
p(0)~ = corr(z,g|lz < 0,7 < 0) isthe negative exceedance correlation at ) = 0. The term
k* istheratio of upside portfolio volatility to market volatility, and the term k&~ is the ratio of
downside portfolio volatility to market volatility.

For a bivariate normal distibution, 5™ must equal 3~ by symmetry. The Proposition in
Appendix B can be used to calculate 5 and 3~ in closed-form. Note that for a bivariate
normal distribution, &k~ equals k. Betas increase on the downside if the downside exceedance
correlation increases, or if portfolios become more volatile on the downside relative to the
market. In order for the latter condition to hold, the conditional var(z|z < 0,5 < 0) must
increase relative to var(y|z < 0,7 < 0), when compared to their upside counterparts.

The upside and downside betas examined here are related to, but different from, the
asymmetric betas defined by Ball and Kothari (1989), Braun, Nelson, and Sunier (1995), and
Cho and Engle (2000). The asymmetric betas previously defined in this literature depend
on the sign of unanticipated shocks realized at a given time. Our upside and downside
betas are calculated conditional on the tails of the distribution, analogous to the upside and
downside exceedance correlations. Forbes and Rigobon (1999) study the relationship described
in Eqg. (14) and note that if betas are constant, asymmetric covariances may be driven by
asymmetries in volatility. Bawa and Lindenberg (1977) use upside and downside betas,
calculated conditional only on the market return, while we calculate betas conditional on
guadrants, analogous to the exceedance correlations.

3.4. Asymmetric betasin thereturnsdata

We investigate whether empirically different upside and downside betas are the result of
asymmetries either in volatility or of correlations. Under the normal distribution, upside and
downside betas are equal. Table 3 reports 5~ and G for industry, size, and book-to-market
portfolios. The first column of Table 3 lists the unconditional beta of each portfolio. The
second column givesthetheoretical value of 5~ = 31 assuming the null hypothesisof anormal
distribution. In al portfolios, 3~ > 3 > ', where (3 is the unconditional beta. In all cases
except one, we rgject the hypothesisthat 5~ isequal to itstheoretical value implied by anormal
distribution. However, on the upside, we usually fail to reject the hypothesisthat 5 isequal to
itstheoretically implied value.

Volatility is well-known to be asymmetric and increasing on the downside. For the market,
the downside volatility, o, equals 0.0148, and the upside volatiliy, o, equals 0.0129. The
theoretical value implied by a normal distribution is o, = o, = 0.0122. We reject the
hypothesisthat the observed o, equals this value at a 1% confidence interval, but fail to reject
the hypohesis that o, equals this value at a 5% confidence interval. However, the ratio of the
downside portfolio volatility to the market k= = o, /o, is roughly the same as the ratio of
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upside portfolio volatility to the market £ = o7 /o,. The last three columns of Table 3 show
k~, k™ and ap-vaue of the test that £~ and k™ are equal. The table shows that, in most cases,
we cannot reject that the upside and downside volatilities are equal. Hence, the statistically
significant increase in downside betasis largely driven by the increase in downside correlations
relative to upside correlations, as shown in Eq. (14).

4. A formal characterization of asymmetric correlations

We develop a summary H statistic of correlation asymmetries which quantitatively measures
asymmetric correlations. Previously, we have concentrated on asymmetric correlations relative
to a normal distribution as the null distribution, but our analysis can handle more general
distributions. The H datistic has several advantages over graphical approaches. First,
the statistic formally summarizes the magnitudes of correlation asymmetries by providing a
succinct numerical measure. That is, the degree of asymmetry can be measured and compared
across different portfolios and different frequencies. The H statistic can be used to rank
portfolios, allowing us to examine whether various characteristics of equity portfolios are
related to the degree of correlation asymmetry. Second, we can numerically compare empirical
exceedance correlations with those implied by a null distribution. By doing so, we account for
the conditioning biasin the exceedance correlations. Finally, we can formally test if exceedance
correlations in the data can be produced by candidate null distributions.

4.1. Description of the H statistic

As in Eg. (10), we denote the exceedance correlation for a given exceedance level ¢, as
p(9;) for standardized data (z, 7). We choose N exceedance levels 6 = (01, ¥, ... 0n).
These exceedance levels are set exogenously. Suppose we wish to test if a distribution £(¢),
characterized by parameters ¢, can produce the empirical exceedances p(¥;) in the data. We
denote the exceedance correlations implied by distribution £(¢) as p(19;, ¢).

If £(¢) were to perfectly explain the degree of correlation asymmetry in the data, then, on
average, we would have p(9;) — p(9;, ¢) = 0. We create a quadratic statistic based on this
difference. The statistic H = H (¢) is defined as:

H=|> w@)- (3, ¢) — p(¥:)*| | (15)
for which the weights w(v;) > 0 satisfy:
Zw(ﬁi) =1 (16)



This statistic measures a weighted average of the squared differences of the exceedance
correlations implied by a model and those given by data. For example, an H = 0.116
means that, on average, the exceedance correlations in the data lie 11.6 percentage points
away from the exceedance correlations implied by the model. To briefly preview our
results, while a normal distribution would imply a conditiona downside correlation of
around 76% on average, the conditiona downside correlation in the data is around 87.6%.
Note that H is a non-linear function of parameteres ¢ for a fixed set of 9. To look at
correlations jointly over upside and downside movements, we set the exceedance levels § =
[—-1.5, —1.0, —0.5, 0.0, 0.0, 0.5, 1.0, 1.5]. The repeated zero is necessary because we
cal cul ate exceedance correlations corr(z, y|z < 0,7 < 0) and corr(z,y|z > 0,5 > 0). We use
a set of positive exceedances ™ = [0.0, 0.5, 1.0, 1.5] to look at correlations on the upside
and a set of negative exceedances ¢~ = [—1.5, —1.0, —0.5, 0.0] to assess correlations on the
downside. We denote the H statistics calculated from 6~ and 6™ as H~ and H, respectively.
Notethat H* = (H")? + (H~)?, so H represents anon-linear average of H+ and H~.

In addition to a quadratic distance, we also consider the weighted sum of the differences
between the exceedance correlations in the data and those implied by the model.** We define

the statistic AH as:
N

AH = w(dy) - (A0, 9) — p(:)). (17)

=1
The AH statistic may be zero or even negativeif some of the exceedance correlationsin the data
are less than the exceedance correlations implied by the model. In contrast, by construction the
H satisticis strictly positive.

The weights w(v;) are exogenously set, and are related to the level of sampling error
associated with a particular exceedance correlation. The more accurately estimated the
exceedance correlation for exceedance level ¥;, the higher we set w(v;). Below, we discuss
various choices for the weights w(4; ).

The H dtatistic can be written in matrix notation. We denote p(6) as the N vector of
exceedances from data, and p(6, ¢) as the N vector of exceedances implied by distribution

§(0):

p(01) p(91,9)
po)= || ad pe.)= | P | (19
H(0x) 50, 0)
Following Eq. (18), H can be expressed as.
H=+/(p—p(9))2 (5~ p(9)), (19)

1 We thank an anonymous referee for suggesting this analysis.
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in which we suppress the dependence on 0. In Eq. (19), ©2 = Q(6) isafixed diagonal weighting
matrix dependent only on 6, which takes the form:

W(ﬁl)_l 0 0
0 w(ﬂg)_l 0
Q= : ) | : (20)
0 0 w(ﬁN)_l

If ¢ is normally distributed, the implied exceedance correlations (6, ¢) can be calculated
in closed-form using the Proposition in Appendix B. We detail the calculation of the standard
errorsfor H in Appendix C.

4.2. Choices of weights

The H statistic can be interpreted as the square root of a quadratic statistic. For the quadratic
statistic J, if we suppress ), J can be written as.

J=(p—p(¢))Q (0 — p(9)). (21)

In thisform, the efficient choice for €2, Qp, IS

Qi = var(p) — 2c0v(p, 5(6)) + var(5(6)), (22)

for the casethat IV isless than the number of parametersin ¢. We choose not to use the efficient
weighting matrix for two reasons.

Firgt, if the data are fixed, or we estimate p(#) without error, then Qz = var(p(6, ¢)) and
J would have a conventional y3 distribution. For a normal distribution, there is only one
degree of freedom, ¢ = p, in the parameters of the bivariate normal, which determines the
exceedance correlation. Hence, this approach would mean only one exceedance correlation
can be incorporated in J. In the case of a normal distribution with N > 1, Qg = D'TD,
where D = %ﬁ(@, ¢) is singular because there are more restrictions imposed by exceedance
correlations than degrees of freedom allowed by the parameters. However, we can capture the
notion of using weights inversely proportional to the sample variance of 5(0, ¢), o2(p(9;, ¢))
by using a standardized measure of the inverse of o%(j3(1;, ¢)):

(S o259, 0)))

The larger the sampling variance of p(v;, ¢), the smaller the weight placed on that exceedance.
We calculate o2 (p(¥;, ¢)) using the §-method:

o*(p(0;, ¢)) = Dy, T Dai (24)
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for which D; is:

Y 0
D; = 8—¢5(19i; ). (29)

The difference between this choice of {2 and the efficient Generalized Method of Moments
(GMM) choiceisthat 2 isdiagonal, to avoid singularities, and is normalized to unity.

The second reason we choose not to use the efficient weighting matrix is that each different
model or distribution ¢ impliesadifferent weighting matrix. Thefirst choice of weightsaboveis
not immuneto thiscritique. Since each model impliesadifferent set of weights, the H statistics
are not directly comparable across models. Like the constant weighting matrix of Hansen and
Jagannathan (1997) used to compare different pricing kernels with the same data, we would like
to use a constant weighting matrix to compare different models with the same data. The next
two choices of weights do not depend on any particular distribution, and therefore can be used
to compare different models regarding their estimates of correlation asymmetry.

The second set of weightsisheld constant across models, and takesinto account some notion
of sampling error. We note that increasing the number of observationsincreases the accuracy of
the estimate. For the normal distribution, covariance sampling error isof the order 1/+/T, where
T isthe sample size. One way to account for sampling error is to set the weights proportional
to the number of observations used to calculate the exceedance correlations. Hence, a second
choice for w(4;) uses weights

w(ds) = —— (26)

(=5m)

such that T; is the number of observations used in calculating p(¥;), the sample exceedance
correlation at the exceedance level ;. This choice of weights places more emphasis on
exceedance correlations for which more data are available.

Finally, equal weights may be used:

This choice places greater weight on observations in the extreme tails of the distribution than
the previous choice of weights.

Our preferred form of the H statistic uses the weights presented in Eq. (26). However, we
show all of our resultsto be robust to different choices of weights.

4.3. Magnitudes and tests of asymmetric correlations

For various pairs of standardized excess returns of the market and stock portfolios (z, ), we
estimate the unconditional correlation p and calculate H under the null hypothesis of a bivariate
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standard normal distribution with unconditional correlation p. We estimate the standard errors
of H,H-, H",and AH by GMM using six Newey-West lags as described in Newey and West
(1987).

The H statistics capture the same features as the exceedance plots. H statistics are reported
in the legends of Fig. 3 corresponding to the various portfolios. The larger the difference in
positive and negative exceedance correlations, the larger the H statistic. With the H statistic, a
numerical measure of the correlation asymmetry can now be assigned to each portfolio.

4.3.1. Impact of weightsand frequencies

Table 4 presents H statistics using the three choices of weightsfor the five size-sorted portfolios
at daily, weekly, and monthly frequencies. The size portfolios are representative of the results
obtained for all the portfolios. Columns 1 and 2 of Table 4 present the H statistics weighted by
the variances in the normal distribution using Eqg. (23). Columns 3 and 4 are weighted by the
number of observations used to construct the sample exceedances using Eq. (26). The last two
columns present equal-weighted H statisticsusing Eq. (27).

There are two major results of Table 4 which we present as Empirical Facts.

Empirical Fact 1. Asymmetric correlations in the data lead us to regject the null hypothesis of
anormal distribution.

Empirical Fact 2. The magnitude of the correlation asymmetriesis unrelated to the horizon.

In Table 4 the p-values of the H statistics are all less than 2.5%, across all choices of weights
and frequencies, and therefore are not reported. There is also no discernable pattern across the
sampling frequencies. For the smallest and the largest size portfolios, correlation asymmetries
with the market portfolio are the greatest at the monthly frequency with all three weight choices.

The equally weighted H statistic is always larger than the other two choices of weights.
Thisresult occurs because the largest sampling error in the normal distribution and the smallest
number of observations occur at the largest absolute value exceedance levelsat v = +1.0, 1.5.
At these exceedances, in particular for the negative exceedances, the largest discrepancies
between the normal distribution and the sample exceedance correlations arise (see Fig. 3 and
Fig. 4). These discrepancies are given more weight in the equally weighted H statistic.

These results extend to other portfolios. Since the rejection of the normal distribution
and the patterns of asymmetries are robust to the weighting choice and the frequency of
observations, we concentrate on using weights proportional to the number of observationsin
each sample exceedance as suggested in Eqg. (26) and analyze the weekly frequency for the rest
of the paper.
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4.3.2. Characterizing asymmetric correlations

In order to further characterize the asymmetric correlations in equity portfolios, we examine
the relationship between different portfolio sortings and their H statistics. To estimate extreme
correlations requires us to focus on the observations lying in the tails where there are rel atively
few datapoints. The H statistic usesthefull time series sample of returnsto measure correlation
asymmetries. To maintain the use of the full sample, we sort portfolios of stocks by various
cross-sectional characteristics and examine their correlation asymmetries.

Table 5 presents the H statistics across a wide selection of portfolios, assuming the null
hypothesis of a bivariate normal distribution. Panels A and B examine the properties of
portfolios formed by industry classifications, size, book-to-market and momentum. Panels E
through G investigate the asymmetry properties of portfoliosformed by past beta, co-skewness,
and leverage. For al panels, the first four columns of Table 5 show the H, H~, H™*, and
AH datistics. The H statistics for all portfolios have p-values smaller than the 2.5% level of
significance, just as Table 4 show for the size portfolios. The AH statistics aso have p-values
smaller than 2.5%. The average H ~ statistic across al portfoliosis 0.1161, while the average
H™ statisticis only 0.0300. We therefore observe the following:

Empirical Fact 3. Correlation asymmetries are greater for extreme downward moves.

Further, only nine portfolios out of 43 portfolios reject at the 5% significance level that the
upside correlations can be reproduced by atheoretical bivariate normal distribution. In contrast,
al H~ satisticsreject thishypothesis at the 1% level of significance. In calculating the average
H dstatistics across portfoliosin Table 5, we observe:

Empirical Fact 4. Conditional on downside and upside moves, on average the observed
correlations between a portfolio and the market differ fromthe correlationsimplied by a normal
distribution by 8.48%. Conditional on just downside moves, the average difference is 11.61%.

The sixth and seventh columns of Table 5 report standardized measures of skewness and
co-skewness, and their standard errors. In Table 5, skewness and co-skewness are defined as.

E[23]
skewness = W; (28)
and co-skewness = M (29)
Bl#?]E[y?]

In Egs. (28) and (29), & isthe de-meaned excess return of the portfolio z, ¢ = = — E(x) and g
isthe de-meaned excess return of the market y, y = y — E(y). All standard errors are calcul ated
by GMM using 6 Newey-West lags.
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Table 5 also shows that, at the weekly frequency, each of the portfolios are both negatively
skewed and are negatively co-skewed with the market. This finding may indicate that there
IS some common component among all three asymmetry statistics. To ensure that we are not
capturing the same information in H as skewness and co-skewness, we present the correlation
among these statistics across the 43 portfoliosin Table 6. The correlation of H with skewness
is 0.243, and with co-skewness is only 0.150. We also find similar correlation results using
AH instead of H. Thisfinding indicates that H is capturing something that is fundamentally
different from skewness or co-skewness. Skewness and co-skewness are much more highly
correlated at 0.951, asare H and AH (correlation of 0.964).

The final column of Table 5 reports the betas of the portfolios with respects the market.
The correlations between the H statistics, skewness, co-skewness, and beta are also reported
in Table 6. All measures of return asymmetries appear to have little positive relation with
systematic risk. In particular, the H statistics are negatively correlated (-0.274) with the beta.

Table 5 reveals that certain portfolios exhibit greater asymmetric correlations than others,
leading to:

Empirical Fact 5. Petroleum and utility industries have the most asymmetric correlations,
while financial firms and basic industries exhibit the lowest asymmetric correlations.

Among industries, petroleum (H = 0.180) and utilities (H = 0.145) are the most
asymmetric, while financials and basic industries exhibit the least asymmetric correlations.
Petroleum and utilities have low betas (0.839 and 0.630 respectively), suggesting that investing
in these traditional defensive sectors may be less beneficial than popularly believed. Note that
these industries have the least negative skewness and co-skewness, and would appear, by these
measures, to be the most normal.

Among size-sorted stock portfolios, we observe the following:

Empirical Fact 6. Decreasing size increases the correlation asymmetry.

This pattern has been previously documented in a GARCH specification by Kroner and
Ng (1998) and Conrad, Gultekin, and Kaul (1991). The book-to-market portfolios also display
an increasing pattern of H statistics going from growth to value stocks, leading to the following:

Empirical Fact 7. Value stocks are more asymmetric than growth stocks.

While Fama and French (1993) observe size and value premia, portfolios formed on these
characteristics may be more risky by their greater correlation asymmetry than by measuring
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risk only by second moments. In both the size and book-to-market portfolio sortings, the H
statistics are monotonic, unlike the point statistics of the skewness and co-skewness measures.
Moreover, the latter two measures do not display any discernable pattern.

Turning to the momentum quintiles, we observe:

Empirical Fact 8. The past loser portfolio has greater correlation asymmetry than the past
winner quintile.

In the momentum strategy postulated by Jegadeesh and Titman (1993), investors sell
short past loser stocks and invest in past winner stocks. In periods of extreme downside
moves, the loser portfolio is more likely to lose more money than estimated under constant
correlations, thus affording momentum players even greater rewards in down markets. This
effect exacerbates the puzzle posed by the momentum effect. Like Chen, Hong, and Stein
(2001) and Harvey and Siddique (2000), we find that the past winner portfolio is more
negatively skewed than the past loser portfolio, which is consistent with a premium associated
with skewness. However, the relationship between H and skewness or co-skewness goesin the
opposite direction, such that the past |osers are the least skewed or co-skewed, and are the most
asymmetric.

In Panels E through G of Table 5, we search for additional determinants of asymmetries.*?
We first characterize the correlation asymmetries of portfolios sorted by systematic risk,
measured by the beta. The portfolio of lowest beta stocks is the portfolio that exhibits the
greatest correlation asymmetry. Lower risk firms exhibit more correlation asymmetries than
higher risk firms. Note that co-skewness monotonically increases with beta, while skewness
has no discernable pattern.’3

The relationship between beta and correlation asymmetry is robust to size controls. In
Table 7, we sort the stocks twice, to examine the interaction between size, systematic risk,
and correlation asymmetries. For each month, we first sort stocks in our universe into quintiles
by size. Then within each size quintile, we perform a second sort of stocks into quintiles by
past estimates of beta. We construct value-weighted portfolios within this 5x5 grouping. We
find that by controlling for size, riskier firms have fewer correlation asymmetries than lessrisky
firms. In Table 7, we observe that H statistics decrease going down the rows, where we sort
by size. Going across the columns, where we control for size and sort by beta, the lowest
beta stocks, which appear in the first column of data, have the highest H statistics. Thus, we
conclude that:

12 \We also calculated H statistics for portfolios sorted by volatility (no relationship), skewness (results similar to

co-skewness), turnover (lower H for low turnover stocks), and earningsyield (results similar to book-to-market).
13 We also sorted on Scholes and Williams (1977) betas to alleviate potential concerns over non-synchronous

trading. We found dlightly lower H statistics, but the qualitative results were unchanged.

22



Empirical Fact 9. Increasing beta decreases correlation asymmetry.

When the sorting criteriaisindividual stock’s past co-skewnessin Panel B of Table 5, we do
not find any pattern between past co-skewness and correl ation asymmetry. This results obtained
from sorting stocks by co-skewness suggest that co-skewness measure presented in by Harvey
and Siddigue (2000) is not related to the degree of correlation asymmetry in the data. There
is also no pattern in the skewness or co-skewness of portfolios formed by past conditional co-
skewness. The risk measured by beta of stocks sorted by past co-skewness is near market risk
acrossall quintiles.

Finally, we observe that the most leveraged stocks have the greatest correlation asymmetry.
This effect is weakly monotonic, and not reflected in either the skewness or the co-skewness
measures. Bekaert and Wu (2000) find that the leverage effect accounts for only a small
proportion of asymmetric covariance. In Table 8 we examine the effect of leverage on
correlation asymmetry when controlling for size. We observe, as expected from Empirical
Fact 6, that H statistics decrease as stocks become larger. This pattern is most noticeable when
making comparisons going down rows. However, when size is held constant, we observe the
following:

Empirical Fact 10. There is no relation between leverage and correlation asymmetries
controlling for size.

The lack of a pattern between leverage and correlation asymmetry within size groups may
account for the weak support Bekaert and Wu (2000) uncover for the leverage effect as an
explanation for covariance asymmetry.

4.3.3. Summary of empirical facts

We find that correlation asymmetries in equity portfolios are not fully explained by traditional
skewness and co-skewness measures. These correlation asymmetries persist across daily,
weekly, and monthly frequencies, and are greatest for downside moves. Correlation asym-
metries are larger for small size, high book-to-market ratios, and low past return portfolios.
This observation suggests that size and value strategies are exposed to more contemporaneous
downside moves with the market, which is not reflected in measures that solely capture second
moments, such as volatility. Momentum strategies are more profitable than they first appear,
because in times of market distress, loser stocks, are more likely to fall with the market than
past winners. High beta portfolios are less asymmetric than low beta portfolios. Once we have
controlled for size, there is no discernable pattern between correlation asymmetries and the
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leverage of firms.

5. Empirical models of asymmetric correlations

The previous section examines the characteristics of asymmetric correlations relative to a
normal distribution. We now seek to explain the correlation asymmetries in the data by using
richer models of stock returns which can potentially capture the asymmetric movements. We
evaluate several empirical reduced-form models by using the H metric, which measures how
closely each model can match the correlation asymmetriesin the data. Section 5.1 describesthe
models, Section 5.2 presents the empirical results of the H statistics using these models as the
null distribution, and Section 5.3 provides some intuition behind the rejection patterns.

5.1. Description of models

Our choice of models is motivated by examining several popular models used to capture
asymmetries between upside and downside movements in stock returns. We use weekly data,
and following Braun, Nelson, and Sunier (1995), Cho and Engle (2000), and others, we work
with independent pairs of stock portfolio and aggregate market observations.

The first model is the GARCH-M Model with asymmetry. The GARCH-M Model uses a
time-varying expected returns model, in which volatility risk is priced in the expected return,
with the conditional covariances set according to a GARCH process. The GARCH process
incorporates asymmetry which allows covariances to increase on the downside. The second
model is the Jump Model. This model layers negative jumps, which are perfectly correlated
in time for both returns, on top of a bivariate normal distribution to produce larger downside
correlations. The last two models are regime-switching (RS) models. The RS Normal Model
mixes two different bivariate normal distributions. This process allows returns to switch to a
regime with lower conditional means, higher volatility, and higher correlations. Transitioning
into this regime increases downside correlations. The RSSGARCH Model combines elements
of the switching behavior of pure RS Norma Modelswith the volatility persistence of GARCH
processes.

We note that other empirical models capable of producing asymmetric correlations are
available. One large class of models that we do not pursue here are continuous-time stochastic
volatility models, in which shocksto conditional mean and conditional volatility factors may be
correlated, with jumpsin either pricesor volatility. This class of modelsisvery hard to estimate
(see e.g., Pan, 2001) particularly on multivariate series, and it is not clear that these models
would produce markedly different results from the discrete-time weekly data. Our Jump Model
captures jumps in returns, but without stochastic volatility. The regime-switching models we
estimate can both capture stochastic volatility and jump effects through regime switches.
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Other models we do not investigate involve residuals drawn from distributions that reflect
higher moments. One such model is Harvey and Siddique (1999), which draws from a non-
central t-distribution to capture skewness and kurtosis. In a multivariate application, this model
is computationally intensive because maximum likelihood methods cannot be used. However,
the mixture of normal distributions we employ can aso match any degree of conditional
skewness and kurtosis, as noted by Bekaert, Erb, Harvey, and Viskanta (1998).

5.1.1. Anasymmetric GARCH-M mode

As before, we denote the excess returns of the equity portfolio by z, and the excess market
returns by y. We model the pair (z;, v;) as:

Ty = 0 COVy—1 (T4, Yr) + €14, (30)
and Yy = (5vart,1(yt) + €24. (31)

We take ¢; as a bivariate normal distribution with zero means and variances equal to H;. The
coefficient ¢ is the price of risk and is positive in the Capital Asset Pricing Model (CAPM).
We can model the conditional covariances H, of (x;, y;) a a GARCH model, and introduce
asymmetry using a multivariate version of Glosten, Jagannathan, and Runkle (1993):

Ht = CIC + AIHtflA + B'et,leile + Dlmfﬂ]é,lD, (32)
for which

M-1= €O ]-{et_1<0}- (33)

The symbol ® is a Hadamard product representing element by element multiplication, and
14, , <0y is avector of individual indicator functions for the sign of the errors for » and y.
The matrices A, B, C, and D are symmetric to ensure that H; is positive definite. Shocks
on the downside increase the variance, as well as the covariance through the asymmetric term
in H;, but they also increase the conditional mean, by allowing H; to enter the conditional
mean shown in Egs. (30) and (31). Eqg. (32) isthe asymmetric Baba, Engle, Kraft, and Kroner
(BEKK) model of Engle and Kroner (1995), and its multivariate form of asymmetry is a special
case of the nonmenclature system of Kroner and Ng (1998). Similar GARCH-M Models with
asymmetry are estimated by Bekaert and Harvey (1997), De Santis, Gerard, and Hillion (1999),
and Bekaert and Wu (2000).

5.1.2. Bivariate normal distribution with Poisson jumps

Das and Uppal (2001) recommend a model in which returns are drawn from a bivariate normal
distribution that allows negative jumps. The jumps occur simultaneously in time for both
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variables, but the size of the jJumps can differ. Thisjump alowance induces higher correlation
with downward moves. The model is given by:

Xi=p+Sieq+y Y (34)
=1
with X; = (x4, y;)’. This model incorporates a Poisson jump process with intensity A, with
jump distribution Y;, which is a bivariate normal distribution with means equal to x; and
variances equal to H;. There are n, actual jumps during each period. Das and Uppal discuss
how thismodel can produce unconditional skewness and kurtosis which match equity data.

5.1.3. Regime-switching bivariate normal distribution

The Regime-Switching Bivariate Normal (RS Normal) Model draws the portfolio returns X, =
(x¢, y¢)' from one of two bivariate normal distributions of returns, depending on the prevailing
regimes;, = 1,2 attimet:

X, = p(se) + 22 (sy)ex. (35)

In thismodel, the error term ¢, isindependently and identically distributed as a bivariate normal
distribution with zero means and variances equal to 7. Following Hamilton (1989), s, followsa
Markov Chain with transition probability matrix I1, given by:

n-( 1= (36)
1-Q  Q

InEQ. (36), P = Pr(s; = 1|s;_1 = 1)and Q = Pr(s; = 2|s;_1 = 2).

Thismodel has been used by Ang and Bekaert (2000) to review international asset allocation
under higher correlations with downside movesin country returns. Ang and Bekaert show that
this model captures a large part of the asymmetric correlations in international equity markets
of developed countries. In this model, asset returns are allowed to switch into a regime with
higher correlations and volatility, reflecting potentially lower means.

5.1.4. A regime-switching GARCH model

Inthe Regime-Switching GARCH (RS-GARCH) Model, portfolioreturns X; = (x;, y;)’ follow
the process:

Xi = pu(se) + e, (37)

with two regimes s, = 1,2 and the error term ¢; distributed as a bivariate normal distribution
with zero means and variances equal to H,(s;). Theregimevariable s, followsthe same Markov
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Chain with transition probability matrix I given by Eq. (36). The conditional covariance H(s;)
isgiven by:

Hy(s1) = C(5:)'C(s1) + A(sy) Hi 1 A(s1) + B(s1) €651 B(s1). (38)
In Eq. (38), the forecast error €;_, isgiven by:

61 = Xio1—Eiao(Xi)
= Xi1— (pe—1pn + (1 — prq) pa), (39)

for which u; = p(s; = i), and p;_; is the ex-ante probability p,_; = p(si-1 = 1|Zi—2).
Following Gray (1996) H;_,, isgiven by:

Hi 1 = Eo(Xi1 X, 1) — Era(Xi1)Eia(X1)
= pro1(pap) + Hi91)+(1— Pe—1)(paps + Hi 55)
—[pe—1pr + (1 = pe1) o) [pe—1p1 + (1 — pr_1) 2]’ (40)

suchthat H; o; = H;_o(s; = i). Thematrix C(s;) is symmetric, but for reasons of parsimony
werestrict A(s;) and B(s;) to be diagonal.

This RSSGARCH Model uses an RS version of the Engle and Kroner (1995) BEKK
multivariate GARCH model. It uses a multivariate generalization the algorithm presented in
Gray (1996), and reflected in Eq. (40) to re-combine the lagged RS conditional covariance
term. The model combines the switching character of the RS Normal Model, with the volatility
persistence of GARCH. One of the features of this model is that the volatility can also switch
to a regime which reflects both higher volatility and less persistency, with a switch in the
conditional mean. Glosten, Jagannathan, and Runkle (1993) discuss the pure asymmetric
GARCH specifications, which cannot easily capture this feature.

5.2. Mode performance

In thissection, we usethe H statistic asacriterion to judge the adequacy of amodel to match the
asymmetric correlation found in data. We consider a model to do an adequate job of capturing
the correlation asymmetry in the dataif that model’s H statistic cannot be statistically rejected.
As a second measure, since the H statistic measures the difference between the empirical
conditional correlations and the conditional correlations implied by the models, we consider
the average magnitude of H statistics across portfolio pairs. We calculate the H statistics from
the models using fixed weights from Eqg. (26), which place more weight on sample exceedance
correlations that have been calculated with more observations. These weights ensure that the
same weighting matrix is used across all four models. In this section, we focus our analysis on
the portfolios formed by industry classifications, size, book-to-market ratios, and past returns.
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Table 9 summarizes the rejections across the 28 portfolios. The GARCH-M Modd is
rejected by 6 portfolios at the 5% level, the Jump Model isregected by 21 portfolios, and the RS
Normal Model is rejected by 6 portfolios. At the 5% level, the RS-GARCH Moded is rejected
by 4 out of 28 portfolios, giving the RS-GARCH Model the best performance by this criterion.
However, the model still leaves some amount of the correlation asymmetry unexplained. The
full details of the H statistics on the four empirical models summarized by Table 9 arelisted in
Table 10.

Table 10 reportsthe H statistic for each portfolio. To summarize each model’s performance,
we tabulate how many times a particular model produces the smallest H statistic out of al five
models. In all cases, the normal distribution’s H statistic is higher than the best-performing
empirical model presented in Section 5.1. The Jump Model never produces smallest statistic, the
GARCH-M Mode produces the smallest statistic once, and the RS-GARCH Model produces
the smallest statistic in five cases. The RS-Norma Model presents the strongest alternative,
producing the lowest H statistic in 22 cases.

Reviewing the magnitudes of the H dstatistics in Table 10, we find that, while the RS-
GARCH Modd rejects the null hypothesis in the fewest cases, it can be a very poor fit of
the data for some portfolios. The H statistic for the RSS-GARCH Model is greater than 0.13 for
6 out of 28 portfolios. The average H statistic acrossall 28 portfoliosfor the RS Normal Model
is0.0564, while the averages for the GARCH-M Model, the Jump Model, and the RS-GARCH
Model are larger: 0.085, 0.090, and 0.096, respectively. In comparison, the average H stetistic
for the normal distributionis 0.095. Hence, whilethe H statistic rejectsthe RS-GARCH Model
theleast number of times, the RS Normal Model providesthe best fit of exceedance correlations.

The same portfolios whose empirical correlation asymmetry proved difficult to match using
the normal distribution, tend to make a difficult fit across all four models. In general, the
petroleum and utility industries have the highest H statistics across models. Portfolios formed
of small stocks, value stocks, and past loser stocks also tend to have the highest H statistics.

5.3. Explaining the model performance

In explaining the performance in matching the correlation asymmetries, it is instructive to
examine a portfolio which no model appears to fit. Fig. 5 shows the exceedance correlations
from the third momentum quintile, which rejects all four empirical models. The sample
exceedance correlations are given by the solid line. Taking each model in turn, Fig. 5 shows
that the GARCH-M Model produces exceedance correlations which are asymmetric but go the
wrong way. That is, the sample exceedance correlations increase on the downside, for negative
¥, but the GARCH-M Model exceedance correlations are higher on the upside, for positive
. The Jump Model produces exceedance correlations which have a tent-shape, much like the
normal distribution. The RS Normal Model produces exceedance correlations with the correct
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asymmetry, but decay too quickly on the downside. Finally, the RS-GARCH Model produces
asmall amount of correlation asymmetry in the right direction, but is too persistent on both the
downside and the upside.

The exceedance correlation asymmetry for the GARCH-M Model in Fig. 5 is shared by all
other portfolios. Although this model allows the conditional covariance to increase in response
to an unanticipated shock in returns, the expected return of both the market and the portfolio also
increase in this model. Eq. (30) shows that, for a positive price of risk §, both the conditional
mean of the market and the stock portfolio may increase when the conditional covariance
increases. Therefore, while the conditional covariance increases through a negative shock in
expected returns, the expected return also increases, making it more likely to draw returns on
the upside. However, the GARCH effect induces persistence in the exceedance correlations
across increasing or decreasing +J, which the normal distribution cannot capture.

To illustrate the impact of the negative price of risk on the results of the GARCH-M Modd,
we turn to Fig. 6. This figure shows exceedance correlations for the smallest size portfolio
for al four models in each panel, against the sample exceedance correlations. The top left-
hand panel shows the exceedance correlations for the GARCH-M Model. The estimated
exceedance correlations implied by the model are given by circles. If we make the price of
risk to be negative, the GARCH-M Model closely matches the sample exceedance correlations.
This effect is the main failing of the GARCH-M Model: asymmetric exceedance correlations
can be produced, but the asymmetry goes the wrong way unless a negative price of risk is
employed. Economic models do not necessarily rule out negative prices of risk, but the
economic plausibility of negative prices of risk and empirical estimates of the market risk
premium of the U.S. market weigh heavily against this assumption.

Asin Fig. 5, the Jump Model in Fig. 6 produces a tent shape. This genera result is the
reason behind the poor performance of this model. The Jump Model performs poorly because
it fails to capture the persistence in volatility. The other three models capture this feature of the
data. The Jump Model can be interpreted to be a special case of the RS Normal Model such
that one regime can be interpreted as ajump regime. The probability of entering thisregimeis
positive, but the probability of remaining in this regime is zero. Examining international data,
Ang and Bekaert (2000) find this crash-like regime to be persistent, but it cannot be captured in
ajump model, which assumes an immediate exit from this regime.

To understand why the Jump Model produces mostly tent shapes in the exceedance plot,
consider the following. Ordinarily, returns are drawn from a normal distribution, which has
a tent shape. Occasionally, when a jump occurs, returns are drawn from another normal
distribution. These jumpsare not persistent, and the effect mirrorsthe tent shapes of an ordinary
normal distribution. The model produces a correlation asymmetry, which is very small and not
persistent across exceedance levels. Changing the parameters of the Jump Model haslittle effect
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on the tent-shape of its exceedance correlations. The top right hand panel of Fig. 6 showswhat
happens when the correlation between the market and stock portfolio increases in the jJump
distribution. In this case, the tent shape has moved upwards but retained its shape. A similar
effect occurs when increasing the jump intensity.

Fig. 5 demonstrates that RS Normal Model may produce exceedance correlations that
declinetoo fast when the exceedance level s+ approach positive or negativeinfinity. Exceedance
correlations can be too persistent across +) for the RS Normal Model to mimic, such that this
model occasionally fails. Empirical estimates of this model produce both a “normal regime,”
with high expected returns, low volatilities, and low correlations, and a “downside” regime,
with low expected returns, high volatilities, and high correlations.

The bottom left panel of Fig. 6 shows that merely increasing the probability of staying in
the down-regime does not necessarily increase the degree of asymmetry. The down-regime
corresponds to s; = 2, and the probability of staying in this regime can be isolated as @ in the
Markov Chain of Eg. (36). If the down-regimeisnot at all persistent (¢ = 0), the RS Normal
Model perform like the Jump Model, producing tent-shapes. Also, thecaseof Q = 1 — P
is a simple switching model, in which the regimes have no persistence. This case is shown
in the bottom left panel of Fig. 6. The persistence through time of the two regimes drives
the persistence across exceedance levels ¢ of the exceedance correlations. Unfortunately, the
persistence across the exceedances, when ¢ approaches positive or negative infinity, cannot be
matched by the RS Normal Model.

The final model, the RS-GARCH Model, employs persistent covariance and allows regime
switching, leading to amore successful match of the persistence in the exceedance correlations
across the exceedance levels. The bottom right panel of Fig. 6 shows the RSS-GARCH Model
exceedance correlations plotted against the sample exceedance correlations. The panel also
showswhat happens to the exceedance correl ation when the probability of staying in the normal
regime increases, given that we are in the normal regime (or P in Eq. (36) if s; = 1). Inthis
case, the exceedance correlations switch sign, allowing to increase on the upside. In general, the
superior performance of this model arises from its ability to produce asymmetries of the right
direction, asdoesthe RS Normal Model, and adding the ability to match exceedance correlation
persistence across 1.

In summary, of the four discrete-time models we consider, no single model captures all of
theasymmetry in correlationsobserved in the data. The GARCH-M Model produces correlation
asymmetry which ispersistent across the exceedance levels, but this correlation asymmetry goes
the wrong way unless a negative price of risk is estimated. The Jump Model is rejected almost
uniformly across all the portfolios, showing the importance of allowing for persistent volatility
and covariance effects. Volatility persistence cannot be captured in a pure jump model. The
RS Normal Model can produce the correct sign of correlation asymmetry and provides the best
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fit with the data. It generally produces the lowest H statistics across all the models considered
here. However, thismodel may not match the persistence of the asymmetries across exceedance
levels. The RSSGARCH Model isreected by the data least frequently, and is able to match the
persistence of the asymmetries across exceedance levels. Our results point to the need for
the development of more sophisticated empirical models to capture the empirical asymmetric
correlations. These models must capture persistent volatility effects, as well as capture more
asymmetric correlation patterns than the models presented here.

6. Conclusion

Correlations between domestic equity portfolios and the aggregate market are greater in
downside marketsthan in upside markets. To quantify these effects, we develop an H statisticto
measure the asymmetriesin correlations. Unlike previousliterature, which examines covariance
asymmetry in the context of the class of asymmetric GARCH models, we can assess the extent
of correlation asymmetry in the datarelative to any particular model. Moreover, the statistic we
develop has the advantage of allowing us to succinctly measure correlation asymmetries, easily
compare the degree of asymmetries across portfolios, frequencies, and null distributions, and
formally conduct statistical tests of asymmetries.

Asymmetries between upside and downside correlations exist between stocks in a single
market, as well as across markets internationally. We find that correlation asymmetries
are fundamentally different from other measures of asymmetries, such as skewness and co-
skewness, and tend to be inversely related to systematic market risk. We examine the sources of
correlation asymmetries and find greater asymmetries among smaller stocks, value stocks, and
recent loser stocks. Correlation asymmetry is the largest among traditional defensive sectors,
such as petroleum and utilities. We find that riskier stocks, as measured by a higher beta, have
lower correlation asymmetry, and, controlling for size, the degree of correlation asymmetry
is unrelated to leverage. Overall, a typical portfolio exhibits correlations conditional on the
downside that differ from those of a normal distribution by 11.6%.

We examine several empirical models to see if they can account for the correlation
asymmetries in the data. Normal distributions are, not surprisingly, rejected by the data. We
estimate an asymmetric GARCH-M model, a Poisson jump model, a regime-switching normal
distribution model, and a regime-switching GARCH model. Of these, the Regime-Switching
Normal Model is the best able to match the magnitude of empirical correlation asymmetries,
while the Regime-Switching GARCH Model is statistically rejected least often. The popular
CAPM-based GARCH-M models can produce asymmetric correlations, but these correlations
go the wrong way unless a negative price of risk is used. Our Jump Model fail to capture the
persistence of covariance dynamics in the data, and capture almost no asymmetric correlation
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effects. While regime-switching models perform best in explaining the amount of correlation
asymmetry reflected in the data, these models still leave a significant amount of correlation
asymmetry in the data unexplained.

Our results have implications for empirical and theoretical asset pricing. Harvey and
Siddigue (2000) demonstrate that non-linearitiesin third momentsare priced. Since asymmetric
correlations are different from skewness or co-skewness, asymmetric correlations may also play
arolein an asset-pricing model. One example where these effects would arise is an economy
with a representative agent with first order risk aversion (see Ang, Bekaert, and Liu, 2000) or
Loss Aversion (see Barberis, Huang, and Santos, 2001) preferences. Such an investor treats
gainsand losses asymmetrically and is very averse to downsiderisks. Our H statistic quantifies
asymmetric correlation risk on the downside, which may aso be priced. Further, asymmetric
correlations also have implicationsfor portfolio allocation and risk management.

Our work raises the question: why do asymmetric movements in asset returns arise in
the first place? They may reflect some particular structure of the macro-economy or some
intricate interactions of economic agents in equilibrium. While Dumas, Harvey, and Ruiz
(2000) show that aggregate characteristics affect returns across countries, we show that cross-
sectional firm characteristics are related to the magnitudes of asymmetric correlations within a
domestic market. Modern equilibrium models with either noise traders and frictions (Kyle and
Xiong, 2001), or disparately informed agentswith frictions (Hong and Stein, 2001) explainlittle
about the relation between firm characteristics and asymmetric movements. These authors do
not model cross-sectional differences between individual asset characteristics. Our work shows
that these differences in firm characteristics are related to the asymmetriesin asset returns.
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Appendix A. Solution of the asset allocation problem

Thefirst order conditions (FOC) of the investor’s investment problem are:
E,(W ™ 7z) =0, (A-1)

whereW = e"/ + a(e® —e™) + a(e¥ —e'1).

Since x and y have the same distribution, the portfolio holding in each asset is identical, even though these
assets are correlated. This expectation can be computed by numerical quadrature, described in Tauchen and Hussey
(1991), asfollows:

M
> (W zeps) =0, (A-2)

s=1

wherethe M values of therisky asset returns ({z , }2£, and {y, }}.,) and associated probabilities are chosen by an
optimal quadrature rule. W, represents the investor’s terminal wealth when the risky asset returns are « ; and .
Tauchen and Hussey (1991) demonstrate that quadrature is very accurate using few optimally chosen points. The
FOC in Eq. (A-2) can be solved over o by a non-linear root solution.

When z and y are bivariate normally distributed, Gaussian quadrature is used with 5 pointsto approximatethe
distribution of z and y. Hence, weuse M = (5 x 5), or 25 quadrature points. Correlation is achieved by using a
Cholesky decomposition transformation.

When X = (z, y)" isdrawn from the RS Model, we approximate the joint distribution as follows. For regime
st = 1, we approximate the normal distribution, N (1, ¥1), using 25 quadrature points. For regime s; = 2,
another 25 quadrature points are used. Conditiona on regime s; = 1, we use weights P and 1 — P, where
P = Pr(s; = 1|s;—1 = 1), to mix the associated probabilities of the quadrature points of regimes 1 and 2 to
produce M = 50 quadrature point approximation to the RS Model conditional on regime 1. Conditional on regime
sy = 2, weuseweights1 — @ and Q, where Q = Pr(s; = 2|s;—1 = 2), to mix the associated probabilities of the
quadrature points of regimes 1 and 2.

To match the first and second moments of the RS Model to the unconditional means, volatilities, and
correlation of the normal distribution, we note that the unconditional mean of the RS Model is given by:

Ty + (1 — )z, (A-3)
where = Pr(s; = 1) isthe stable probability of the RS Model. This probability in Eq. (A-3) is
1-Q
"= P-Q (A-4)
and the unconditional covarianceis given by:
m(E1 + papy) + (1= m) (B2 + paps) — (mpa + (1= mpz)(mps + (1= m)pe2)". (A-5)

By exogenous choicesof P = Q = 2/3, u1 = p2 = (0.07, 0.07)’, 01 = 02 = 0.15, and the stable probability
m = 1/2, the unconditional means of = and y using the RS Model are both 0.07, and unconditional volatilities of
2 and y using the RS Model are both 0.15. We can choose p; and p- to produce the unconditional correlation p by
setting 1 (p1 + p2) = p.

We produce a particular H as follows. We choose p» to determine p;. For example, ps set at 0.35 will yield
p1 of 0.65. This relation gives the RS Model the same unconditional means, volatilities, and correlation as the
bivariate normal distribution. Then we caculate corr(z, |2 < —1, § < —1), for z and y drawn from the RS
Model, by using simulation with 100,000 draws. This calculation will be greater than the correlation with the same
conditioning calculated from the bivariate normal, which is given in Appendix B in closed-form. The difference
between corr(z, §|z < —1, § < —1) caculated from the RS Model and from the bivariate normal gives H. To
produce Fig. 1, we choose p, € {0.19, 0.20, ...0.48}.

Appendix B. Proposition

Let X = (z, y) ~ N(0,X), where ¥ has unit variances and unconditional correlation p. We define:

ﬁ(h17h27k17k2) = Corr(xay|h1 <z < h27k1 <y< k27p) (B_G)
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asthe correlation of = and y conditional on observationsfor whichhy < x < he and k1 < y < ko, wherex and y
have unconditional correlation p.
Let L(-) denote the cumulative density of a doubly truncated bivariate normal distribution:

h

2 k2
L(h17h27k17k2) = / / g(!l?,y,p)dl‘dy, (B'7)
h1 k1

where
(z* — 2pzy + y2)) ,

1 1
T,Y;p) = ——F——=€xXp | —=—%
9(@,y;p) 2m\/1— p? p< 2(1 - p?)

is the density function of X. L(-) can be evaluated by numerical methods.
The following Proposition allows us to obtain a closed-form solution for p:

Proposition 1. Let m;; = E(z'y?|h; < x < ha, k1 <y < kz). Then

mi = (%) [¥(h1, ha, k1, ka; p) + pto(k1, ke, b1, ha; p)] , (B-8)
o= (%) [L(-) + x(K1, k2, has p) = x (R, k2, has p) + p*x(has ha, ks p) = p°x(ha, ha, ka; p)]
(B-9)

1
andmy; = <m> [PL(-) + pY (1, ho, k1; p) — pY(ha, ho, ko; p) + pY (K1, k2, haj; p)

—pY(k1, ko, ho; p) + A(ha, ha, k1; p) — A(ha, he, k2; 0)] - (B-10)
In Egs. (B-8), (B-9), and (B-10), ¢(-), x(-), Y(-) and A(-) are given in the proof. The momentsm ¢; and m2 are
obtained by interchanging (h1, h2) and (k1, k2) in the formulaefor m1o and mayp.

From Proposition 1:

var(zlhy < < ha, ki <y < ka) = mag —m?, (B-11)
var(ylhy <z < ha, ki <y < ka) = mos — miy, (B-12)
and COV(.’E,ylhl <r < hg,k‘l <y < k‘g) = mi1 — M10Mo1- (B-l3)

Egs. (B-11), (B-12), and B-13) allow usto calculate p(h 1, ho, k1, k2) 8

cov(z,ylhy < x < ha, k1 <y < ka)

6(h1, ho, k1, k2) = . B-14
plh, ha, b, ko) VVvar(zlhy < @ < ho, ki1 <y < ka)\/Var(ylh1 < x < ha, k1 <y < k2) (B-14)
Proof of Proposition 1:
Let
$la) = = exp(~ ) (B-15)
T) = exp(—— -
V2r P
denotethe N (0, 1) density, and
T 1 2
D(x) :[w \/%exp(—w?)dw (B-16)

denote the cumulative distribution function of N (0, 1).
First Moment

The first moment m ¢ is obtained from the definition:
1 ka  pha 122 -9 2
mo= e [ [Caew (_ﬂ) dedy. (B-17)
2y/1 — p2L(-) Jiy Jny 2 (1-p?)
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The equation for m; is similar, by symmetry. Make the change of varigble z = (z — py)/(\/1 — p?), and let
vy = (h1 — py)/ (/1 — p?) andve = (ha — py)/ (/1 — p?). Were-write Eq. (B-17) as.

mioL(-) = @ ; {— exp <—%(22 + yz))} o dy

k1 Z2=v1

ko 2 v2 2
p y z
£ v _z . (B-1
* 27 k1 yep ( 2 ) [[)1 P ( 2 ) dz:| dy ( 8)

The second term of Eq. (B-18), pm o1 L(-), and the first term can be written, after a further change of variable and
integration by parts, as (1 — p2)(h1, ha, k1, k2), where

Y(hy, ha, k1, k2 p) = ¢(hy) |

() ()

o) |0 (Qifﬁ o (%)] )
By symmetry we have:
mioL(-) = (1 = p*)¢(h1, ha, k1, ka; p) + pmor L(-),
and mo1 L(-) = (1 = p*)(ki1, k2, h1, ha; p) + pmaoL(-), (B-20)
hence,
mioL(-) = P (h1, ha, k1, k2; p) + p(k1, k2, ha, ha; p). (B-21)

Variable mg; isgiven by interchanging the order of i1, hs, k1, and ks.
Second Moment
By definition:

la® —2pxy+y

mao = — \/1__L / " / x exp( W) dzdy. (B-22)

Using the same change of variables as above, we have:

1

k2 5 22 Z=02 y2
_ _ 2 _ _Z_
277/ {(2(1 p°) +2pV/1— p?y)exp < 5 )szl exp < 5 > dy

+i k2[(1_ 2)+] 2 2]/U2 < _2_2 dz ex —y—2 d (B-23)
o A | e (=5 Jdzew (=5 ) dy.

k1

maoL() =

The first term equals (1 — p?)L(+) + p?>mo2L(-), and the second term, after a further change of variables and
integration by parts, can be written as:

(1= p") (x(k1, k2, has p) = x(k1, k2, has p)) (B-24)

o ks — phy 3 k1 — phy
1-p? V1-=p?

where:

X(k1, k2, h1;p) = hid(h)

T [ (VR it | (VERR ] g
V21 (1 + p?) V1-p? V-
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By symmetry, we have:

maoL(-) = L(-)((1 = p*) + p*moz) + (1 = p*) (x(k1, k2, hu; p) — x(R1, ko, ho; p)
andmo2 L(-) = L(-)((1 = p*) + p*mao) + (1 = p*) (x(h1, ha, k1; p) = x(ha, ha, k2 p)) - (B-26)

Solving Eg. (B-26) gives:
maoL(-) = L(-) + x(k1, k2, ha; p) — X (K1, ka2, ho; p) + p*x(h1, ha, k1; p) — p?X(hi, ha, ka; p). (B-27)

Cross Moment

By definition:

k2 1:1: — 2pxy + y?
mip = Ty ex ——%—— | dzdy. B-28
T o /T 2L / / Y p< (1-p?%) ) / (829

Using the same change of variables as above, we have:

k2
ma1L(-) / / Py eXP( ~(y*+2 )) dzdy
27T k1

ko 2=vgy
+ L ( 1— p2y) {— exp (—Z—22>] exp (—y—22> dy. (B-29)

21 I

The first term in Eq. (B-29) is pmo2L(-), and the second term can be written, after a change of variables and
integration by parts, as.

p(1 = p*)(X(ky, ka, ha; p) — Y (1, ka, hos ) + %(A(khkzvhl;p) — A(k1, k2, ha; p)), (B-30)

where:

T(k17k27h1;p) = hld)(hl) ¢

k2_ph1 _3 kl—phl

vi—e) t\ime)]

p VEZ = 2pkihy + 12 iy VEZ = 2pkyhy + 12
V2r V1= p? V1—p?

Note that x(a, b, ¢; p) = Y(a,b,c; p) + T —£-A(a,b,c; p). Also notethat (A(kq, ke, h1;p) — A(k1, ko, ha; p)) =
(A(h1, ha, k1; p) — A(ha, ho, ko; p)). After simplification, we can write mq; as:

1_ 2
and Ak, ko, By ) — Y2

(B-31)

mi1L(-) = pL(:) + pY(h1, ha, k1; p) — pY (h1, ha, k2; p) + pX (K1, k2, h1; p)
- pT(kh k27 h27 p) + A(h17 h27 k17 p) - A(h17 h27 k27 p) (B-32)

Appendix C. Calculating H statistics

To calculate the H statistics using the null distribution of the empirical modelsin Section 5, we need to calculate
the implied exceedance correlations p(6, ¢) by simulation. Denote the distribution under the null as £(¢), such
that ¢ represents one of the models from Sectlon 5 with parameters, ¢. For each equity portfolio, we estimate the
parameters, ¢, of the model. At the estimated parameters, we then create a simulated time series with 100,000
observations. We take the exceedance correlations of the simulated time series as the exceedance correlation
implied by the distribution p(6, ¢).

To calculate standard errors for the H statistic, we use GMM and the §-method. To illustrate, we first take
a single exceedance correlation, p(v#;), corresponding to the exceedance level ;. For expositional simplicity,
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we assume ; to be positive. The exceedance correlation p(¢;) can be estimated using the following moment
conditions gy;(n;):

T ip, >0,y >0} — M
ytl{wt>19,yt>19} — 7M2i
q1i(ni) =E xgl{mt>19,yt>19} — M3 | - (C-1)
ygl{wt>19,yt>19} — N4
Tyt Lz, >9,y, >0} — N

InEq. (C-1), n; = (n1i M2 W34, Mais M5:)’ @nd 1 is an indicator function. Note that 5(+;) is anonlinear function of
7i-

We can set up moment conditions similar to Eq. (C-1) for al exceedance correlations p(+ ;) in the N vector
of exceedance correlations p() corresponding to the vector of exceedances = (¥4, ..., ¥n)’. Denote these
moment conditions as g1 () = {g1:(m:)},, suchthat n = (0} ...n)’. Let G; denote a%gl and S; denote the
estimate of the covariance matrix of g1 (n), which can be obtained with the estimator of Newey and West (1987),
or another similar estimate. Then, by the §-method, the conditional moment estimates n have covariance matrix
I ={GS;'aq

Suppose that the parameters of £(¢) are estimated by setting GMM orthogonality conditions g »(¢) to zero. Let
G5 denote a% g2, and S» denote the estimate of the covariance matrix of g2(¢). In the case of maximum likelihood,
the orthgonality conditions g-(¢) are the scores at the optimum, and the covariance matrix .S can be estimated by
aWhite (1980) outerproduct of the scores. The parameters, ¢, are estimated with covariance matrix, I" 5. Using the
s-method, Ty = {G2S; 1G4} 1.

Let S denote the joint covariance matrix of [g7 g5]’. Furthermore, let

Gy 0
6= G & 2

with D; = (,%H and Dy = 2% H. Then, using the 6-method:

var(H) = D{GS~'G'}"'D/, (C-3)

suchthat D = [D} Dj]’. The squareroot of Eq. (C-3) isthe standard error of H.

If £ isanormal distribution, then the derivative D, used for the calculation of the standard errors of H can
be obtained analytically. For more complex distributions of &, 5(6, ¢) will not be in closed-form. For these cases,
D, must be calculated by simulation. as follows. Notethat (49, ¢), the exceedance correlation implied by £(¢), is
afunction of ¢ which can be computed by simulation. Holding fixed the simulated errors involved in computing
p(19, ¢), we change the i-th parameter in ¢ by e = 0.0001, and re-compute the simulated time series at the new
parameters. This new time series is used to calculate a new implied exceedance correlation, which we denote
H;(0,$). Thei-th element of Dy can be estimated with the directional derivative (Gateaux derivative) for an

increment of ¢ in the i-th parameter of ¢, givenby (H; (6, ¢) — H(0, $)) /.

37



References
Ang, A., Bekaert, G., 2000. International asset allocation with time-varying correlations. Unpublished working
paper. Columbia University, New York, NY.

Ang, A., Bekaert, G. Liu, J., 2000. Why stocks may disappoint. Unpublished working paper. Columbia
University, New York, NY.

Bae, K. H., Karolyi, G. A., Stulz, R. M., 2000. A new approach to measuring financial contagion. Unpublished
working paper. National Bureau of Economic Research, Cambridge, MA.

Ball, R., Kothari, S. P, 1989. Nonstationary expected returns: implications for tests of market efficiency and
serial correlation in returns. Journal of Financial Economics 25, 51-74.

Barberis, N., Huang, M., Santos, T., 2001. Prospect theory and asset prices. Quarterly Journal of Economics 116,
1-54.

Bawa, V. S, Lindenberg, E. B., 1977. Capital market equilibrium in a mean-lower partial moment framework.
Journal of Financial Economics 5, 189-200.

Bekaert, G., Erb, C. R, Harvey, C. R,, Viskanta, T. E., 1998. Distributional characteristics of emerging market
returns and asset alocation. Journal of Portfolio Management 24, 102-116.

Bekaert, G., Harvey, C. R., 1997. Emerging equity market volatility. Journal of Financial Economics 43, 29-77.

Bekaert, G., Harvey, C. R., 2000. Foreign speculators and emerging equity markets. Journal of Finance 55,
565-613.

Bekaert, G., Wu, G., 2000. Asymmetric volatility and risk in equity markets. Review of Financial Studies 13,
1-42.

Boyer, B. H., Gibson, M. S, Loretan, M., 1999. Pitfallsin tests for changesin correlations. International Finance
Discussion Paper 597. Board of Governors of the Federal Reserve System, Washington, DC.

Braun, P. A., Nelson D. N., Sunier, A. M., 1995. Good news, bad news, volatility and betas. Journal of Finance
50, 1575-1603.

Butler, K. C., Joaquin, D. C., 2000. Are the gains from international portfolio diversification exaggerated? the
influence of downsiderisk in bear markets. Unpublished working paper. Michigan State University, East
Lansing, MI.

Campbell, J. Y., Hentschel, L., 1992. No news is good news: an asymmetric model of changing volatility in stock
returns. Journal of Financial Economics 31, 281-318.

Campbell, J. Y., Lettau, M., Malkiel, B. G., Xu, Y., 2001. Have individual stocks become more volatile? an
empirical exploration of idiosyncratic risk. Journal of Finance 56, 1-43.

Chen, J., Hong, H., Stein, J., 2001. Forecasting crashes: trading volume, past returns and conditional skewnessin
stock prices. Journal of Financial Economics 61, 345-381.

Cheung, Y. W., Ng, L. K., 1992. Stock price dynamics and firm size: an empirical investigation. Journal of
Finance 47, 1985-1997.

Cho, Y. H., Engle, R. F., 2000. Time-varying betas and asymmetric effects of news. empirical analysis of blue
chip stocks. Unpublished working paper. National Bureau of Economic Research, Cambridge, MA.

Conrad, J., Gultekin, M., Kaul, G., 1991. Asymmetric predictability of conditional variances. Review of Financial
Studies 4, 597-622.

Das, S., Uppal, R., 2001. Systemic risk and portfolio choice. Unpublished working paper. London Business
School, London, UK.

De Santis, G., Gerard B., Hillion, P, 1999. The relevance of currency risk in the EMU. Unpublished working
paper. University of California, Los Angeles, CA.

Duffee, G. R., 1995. Stock returns and volatility: afirm-level analysis. Journal of Financial Economics 37,
399-420.

Duffee, G. R., 2000. Asymmetric cross-sectional dispersion in stock returns. evidence and implications.
Unpublished working paper. University of California, Berkeley, CA.

38



Dumas, B., Harvey, C. R., Ruiz, P, 2000. Are correlations of stock returns justified by subsequent changesin
national outputs. Unpublished working paper. Duke University, Durham, NC.

Engle, R. F, Kroner, K. F., 1995. Multivariate simultaneous generalized ARCH. Econometric Theory 11,
122-150.

Engle, R. F, Ng, V. 1993. Measuring and testing the impact of news on volatility. Journal of Finance 48,
1749-1778.

Erb, C., Harvey, C. Viskanta, T., 1994. Forecasting international equity correlations. Financial Analysts Journal
50, 32-45.

Fama, E. F., French, K. R., 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial
Economics 33, 3-56.

Fama, E. F, French, K. R., 1996. Multifactor explanations of asset pricing anomalies. Journal of Finance 51, 1,
55-84.

Ferson, W. E., Harvey, C. R., 1991. The variation of economic risk premiums. Journal of Political Economy 99,
385-415.

Forbes, K., Rigobon, R., 1999. No contagion, only interdependence: measuring stock market co-movements.
Unpublished working paper. National Bureau of Economic Research, Cambridge, MA.

French, K. R., Schwert. G. W., Stambaugh, R., 1987. Expected stock returns and volatility. Journal of Financial
Economics 19, 3-29.

Glosten, L. R., Jagannathan, R. Runkle, D. E., 1993. On the relation between the expected value and the volatility
of the nominal excess return on stocks. Journal of Finance 48, 1770-1801.

Gray, S. F.,, 1996. Modeling the conditional distribution of interest rates as a regime-switching process. Journal of
Financial Economics 42, 27-62.

Hamilton, J. D., 1989. A new approach to the economic analysis of nonstationary time series and the business
cycle. Econometrica’57, 357-384.

Hansen, L., Jagannathan, R., 1997. Assessing specification errorsin stochastic discount factor models. Journal of
Finance 52, 557-590.

Harvey, C. R., Siddique, A., 1999. Autoregressive conditional skewness. Journal of Financial and Quantiative
Analysis 34, 465-488.

Harvey, C. R., Siddique, A., 2000. Conditional skewnessin asset pricing tests. Journal of Finance 55, 1263-1295.

Hentschel, L., 1995. All in the family: nesting symmetric and asymmetric GARCH models. Journal of Financial
Economics 39, 71-104.

Hong, H., Stein, J., 2001. Differences of opinion, rational arbitrage and market crashes. Unpublished working
paper. Stanford University, Stanford, CA.

Jegadeesh, N., Titman, S., 1993. Returns to buying winners and selling losers: implications for stock market
efficiency. Journal of Finance 48, 65-91.

Karolyi, A., Stulz, R., 1996. Why do markets move together? an investigation of US-Japan stock return
comovements. Journal of Finance 51, 951-986.

Kroner, K. F, Ng, V. K., 1998. Modeling asymmetric comovements of asset returns. Review of Financia Studies
11, 817-844.

Kyle A. S, Xiong, W., 2001. Contagion as awealth effect of financial intermediaries. Journal of Finance 56,
1401-1440.

Lin, W. L., Engle, R. F, Ito, T., 1994. Do bulls and bears move across borders? international transmission of stock
returns and volatility. Review of Financial Studies 7, 507-538.

Longin, F., Solnik, B., 1995. Is the correlation in international equity returns constant: 1960-19907? Journal of
International Money and Finance 14, 3-26.

Longin, F., Solnik, B., 2001. Extreme correlation of international equity markets. Journal of Finance 56, 649-676.

Newey, W. K., West, K. D., 1987. A simple positive semi-definite, heteroskedasticity and autocorrelation
consistent covariance matrix. Econometrica 55, 703-708.

39



Pan, J., 2001. Integrated time-series analysis of spot and option prices. Journal of Financial Economics,
forthcoming.

Rosenbaum, S., 1961. Moments of atruncated bivariate normal distribution. Journal of the Royal Statistical
Society, Series B, 23, 405-8.

Scholes, M., Williams, J. T., 1977. Estimating betas from nonsynchronous data. Journal of Financial Economics
5, 309-327.

Schwert, G. W., 1989. Why does stock market volatility change over time? Journal of Finance 44, 1115-1153.

Stambaugh, R., 1995. Unpublished discussion of Karolyi and Stulz (1996), National Bureau of Economic
Research Universities Research Conference on Risk Management, May 1995.

Starica, C., 1999. Multivariate extremes for models with constant conditional correlations. Journal of Empirical
Finance 6, 515-553.

Stivers, C., 2000. Firm-level return dispersion and the future volatility of aggregate stock market returns.
Unpublished working paper. University of Georgia, Athens, GA.

Tauchen, G., Hussey, R., 1991. Quadrature-based methods for obtaining approximate solutions to nonlinear asset
pricing models. Econometrica59, 371-396.

White, H., 1980. A heteroskedasticity consistent covariance matrix estimator and a direct test for
heteroskedasticity. Econometrica 48, 817-838.

40



25 -

N
=)
\

=
&l
\

1.0 s

Compensation in cents per dollar of wealth

s — - Regime 1
s .
P — Regime 2
Ve
0.5 s
7/
e
e
7
7,
0.02 0.04 0.06 0.08 .10 12 14 .16 .18
H statistic

Figure 1. Economic costs of downside asymmetric correlations

Figure 1 shows the effects of ignoring increasing correlation on the downside in a hypothetical portfolio
alocation problem. A Constant Relative Risk Aversion (CRRA) investor with risk aversion v = 4 alocates
her portfolio among two risky assets and a riskless asset. She believes the assets are lognormally distributed,
and chooses asset holdings of. Under the normal distribution, the correlation, conditional on downside
movements of both assets by more than 1 standard deviation from the mean, is given by p. The true
distribution of the continuously compounded returns is given instead by a Regime-Switching (RS) Model
with identical unconditional means, variances, and correlation. This distribution produces a true correlation
of p + H conditional on a downside move of more than 1 standard deviation from the mean, where H > 0.
The optimal portfolio weights, implied by the RS Model, are givenby o ;, for regime s, = 1, 2. Theregime-
dependent correlations of the RS Models are chosen to produce various H statistics. The plot shows ex-ante
utility losses, in cents per dollar of wealth, created since the investor holds sub-optimal weights o T instead of
af, forregime s;.
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Figure 2: Conditional correlations of a bivariate normal distribution

Panel A shows the exceedance correlations, corr(z, g|z > 9,35 > 9;p), for exceedance ¥ > 0 of z and §
drawn from a bivariate normal with zero mean, unit variances, and unconditional correlation p. For 9 < 0, the
exceedance correlation is corr(z, §|Z < 9,5 < ; p). Panel B gives conditional correlations corr(z, glh1 <
Z < ha;p), where hy and hs are chosen to correspond to absicssae from an inverse cumulative normal. We
choose h; and h4 to correspond to the absicssae interval s of probabllltlas [0.00.20.40.60.81.0]. Thatis, we

choosethefirst (h1, ha) =

(®~1(0), ®~1(0.2)) for which ®~

L(.) isan inverse cumulative normal. We plot

these at the inverse cumulative normal absicssae corresponding to the midpoints [0.1 0.3 0.5 0.7 0.9], such

that the z-axis points are ®

~1(0.1), 1(0.3), etc
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Figure 3: Exceedance correlations of industry, size, book-to-market, and momentum portfolios
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We plot exceedance correlations with the market portfolio for selected industry, size, book-to-market, and
momentum portfolios. These are the conditional correlations corr(z, y|z > ¢, § > ¥; p) for exceedance ¥ >
0 for normalized portfolio Z and the normalized market portfolio §. For ¢ < 0, the exceedance correlation is
defined as corr(z, g|z < ¥, 3 < 9; p). Exceedance correlations are calculated at the weekly frequency. The
H statistic in the legend is the measure of correlation asymmetry developed in Section 4.
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Figure 4. Exceedance correlations. empirical versus bivariate normal

This figure shows the exceedance correlations with the market portfolio for the quintile 1 and quintile 5
size portfolios. Data is sampled weekly, from July 1963 to December 1998. The theoretical exceedance
correlations from a bivariate normal with the same unconditional correlation is also shown on the plot for
each portfolio.
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Figure 5. Exceedance correlations for the third momentum portfolio

This figure shows the correlations for the third quintile momentum portfolio with the value-weighted
market portfolio. Data is sampled weekly, from July 1963 to December 1998. The theoretical exceedance
correlations from an asymmetric GARCH-in-Mean (GARCH-M) model, a Poisson Jump model, a regime-
switching (RS) normal distribution, and a regime-switching GARCH (RS-GARCH) model are presented on
the same plot together with the empirical exceedance correlations found in the data.
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Figure 6: Exceedance correlations for the smallest size portfolio

We plot the exceedance correlations for the smallest size portfolio with the value-weighted market at the
weekly frequency. We show the exceedance correlations from the data (solid lines) and those implied by
various models. From top left clockwise, we have a GARCHM model, a Jump model, a RSGARCH model
and a RS Normal model. Within each panel, we aso plot an exceedance correlation of a comparative static,
that is, altering one parameter of the models and re-cal culating the exceedance correl ations. For the GARCH-
M Model, we make the price of risk negative. For the Jump Model, we provide jumpswith greater correlation
between the market and the equity portfolio. For the RS Normal Model, we increase the probability of
entering a downside regime. For the RSSGARCH Model, we increase the probability of entering a normal

regime.
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Table 1. Summary statistics for the market and equity portfolios

This table shows the summary statistics of the market portfolio and the equity portfolios. Data is sampled
weekly, or monthly for the last column, from July 1963 to December 1998. The number of observationsis
1852, or 426 for the last column. The mean and the standard deviation have been annualized by multiplying
the mean and standard deviation in the data by 52 and /52, respectively. The columns Auto 1 and Auto 2
give the first and the second autocorrelations. The last two columns show the unconditional correlation of
the portfolios with the market at weekly and monthly frequencies. All returns are log-returnsin excess of the
annualized 1-month T-bill risk-free rate.

The market portfolio is the value-weighted index of al stocksin CRSP. Panel A shows the summary statistics
of the value-weighted industry portfolios. Panels B and C show the summary statistics of the value-weighted
portfolios formed by sorting on market capitalizations and book-to-market ratios, respectively. Panel D
presents the summary statistics of the equal-weighted portfolios of stocks sorted by their lagged past six-
months returns, with one to six months of lags.

Unconditional Correlation
Standard with the market
Portfolio Mean Deviation Autol Auto2 Weekly Monthly
Market Portfolio  0.066 0.146 0.068 0.004

Panel A. Industry portfolios (value-weighted)

Misc. 0.031 0.188 0.137 0.046 0.860 0.883
Petroleum 0.054 0.174 0033 -0.001 0.706 0.708
Finance 0.062 0.160 0120 0.024 0920 0.917
Durables 0.052 0177 0084 0025 0935 0934
Basic Ind 0.056 0.157 0.049 0.004 0946 0944
Food/Tobacco 0.081 0143 0034 0.050 0866 0.867
Construction 0.050 0185 0108 0.011 0.895 0.902

Capital Goods 0.048 0.179 0.064 0.000 0918 0.905
Transportation 0.032 0200 0102 0.012 0854 0.851
Utilities 0.048 0.115 0092 0.023 0.798 0.792

Textile/Trade 0.060 0181 0101 0.035 0.872 0.859
Service 0.074 0209 0144 0.033 0.895 0.89%
Leisure 0.065 0.187 0136 0.096 0.891 0.888
Panel B. Size portfolios (value-weighted)

1 Smallest 0.054 0163 0332 0154 0.823 0.830
2 0.066 0169 0242 0.080 0.894 0.903
3 0.064 0.162 0193 0.054 0931 0.934
4 0.063 0.156 0140 0.026 0.966 0.967
5 Largest 0.053 0.145 0013 -0.009 0.988 0.987
Panel C. Book-to-market portfolios (val ue-weighted)

1 Growth 0.048 0.167 0.037 0.004 0961 0.954
2 0.049 0.153 0.086 0.009 0966 0.971
3 0.050 0141 0.099 0.003 0.938 0.942
4 0.073 0132 0082 0.021 0917 0.913
5Vaue 0.091 0.143 0116 0058 0.875 0.859
Panel D. Momentum portfolios (equal -weighted)

1 Past Losers 0.023 0171 0371 0169 0.783 0.743
2 0.060 0140 0319 0145 0864 0.831
3 0.078 0131 0291 0126 0.901 0.873
4 0.092 0136 0252 0103 0911 0.887

5Past Winners ~ 0.111 0.163 0224 0.086 0.882 0.857
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Table 2: Ten largest weekly negative and positive moves of the market portfolio

We present the ten largest positive and negative movesfor the value-wei ghted market portfolioin excess of the
risk-freerate. Data is sampled weekly, from July 1963 to December 1998. Dates reported are end-of-period.
Returns are not annualized.

Ranking Date Movement

Panel A. Largest negative moves

1Largest move 21-Oct-87 -0.194
2 28-Oct-87 -0.108
3 2-Sep-98 -0.089
4 20-Nov-74 -0.067
5 22-Aug-90 -0.066
6 29-Oct-97 -0.062
7 4-Aug-74 -0.062
8 31-Jul-74 -0.060
9 10-Dec-80 -0.060
10 7-Oct-98 -0.058
Panel B. Largest positive moves

1 Largest move 3-Jdun-70 0.097
2 13-Oct-82 0.089
3 25-Aug-82 0.086
4 29-Jan-75 0.086
5 21-Oct-98 0.075
6 4-Nov-87 0.070
7 1-Dec-71 0.067
8 26-Aug-70 0.064
9 7-Jan-87 0.064
10 9-Oct-74 0.062
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Table 3: Asymmetriesin betaand volatility

Thistable shows the level of asymmetriesin the betas among equity portfolios. The first column of thistable
shows the unconditional beta observed in the data. The second column shows the beta conditional on an
upside or downside move under the normal distribution. The third and fourth columns show the conditional

betas observed in the data. Thefifth and sixth columnsshow &~ and k™ wherek~ = o /o, kT = o f o},

oy = JNVa(zle < pa,y < py), oy = JNa(yle < pa,y < py), of = var(zlz > pa,y > py) and
of = Vvar(ylz > pig,y > py). The last column shows the p-value of testing £~ = k™. x indicates
rejection of a test that the observed value equal the theoretical value at the 5% confidence level, while s
indicates rejection at the 1% confidence level. Tests for the observed 3~ and 3+ determineif 3~ or 31 equal
sthe theoretical valueimplied by anormal distribution. P-values for thetest of k — = kT are calculated using
bootstrap methodology with 1000 simulated samples. Data is sampled weekly from July 1963 to December
1998.

The market portfolio is the value-weighted index of all stocks in CRSP. Panel A shows the level of
asymmetries in the betas of the value-weighted industry portfolios. Panels B and C show the level of
asymmetries in the betas of the value-weighted portfolios formed by sorting on market capitalizations and
book-to-market ratios, respectively.

Unconditional  Theoretical Observed Observed k= =kT
Portfolio 3 B3~ =p3* B~ aa k~ Et p-value
Panel A. Industry portfolios (value-weighted)
Misc 1.10 0.89 1.16** 081 1.42 121 0.0286*
Petroleum 0.84 0.56 0.74** 0.61 1.16 122 0.5503
Finance 1.01 0.89 0.97** 0.87 1.10 1.08 0.6163
Durables 1.13 1.02 1.09** 0.95* 121 1.16 0.3070
Basic Ind 101 0.93 1.03** 0.88* 1.10 1.01 0.0026**
Food/Tobacco 0.85 0.69 0.85** 0.66 1.02 0.93 0.2309
Construction 114 0.96 1.19** 0.91 137 122 0.0099**
Capital Goods 112 0.99 1.08** 0.97 1.23 1.18 0.2629
Transportation 117 0.94 1.12** 0.86 1.37 131 0.3237
Utilities 0.63 0.47 0.57** 0.46 0.75 0.82 0.3037
Textile/Trade 1.08 0.89 1.06** 0.88 1.28 121 0.3002
Service 1.28 1.09 125" 1.03 147 135 0.1471
Leisure 114 0.96 1.13**  0.90 1.35 122 0.1454
Panel B. Sze portfolios (value-weighted)
1 Smallest 0.92 0.71 1.01** 0.65 1.27 1.08 0.0232*
2 1.03 0.88 111* 0.81* 130 1.07 0.0032**
3 1.03 0.92 1.11* 0.84* 124 1.02 0.0003**
4 1.03 0.98 1.07** 0.91** 1.13 1.00 0.0002**
5 Largest 0.98 0.96 0.98 0.92* 1.01 0.95 0.0766
Panel C. Book to market portfolios (value-weighted)
1 Growth 1.10 1.03 1.08* 101 1.16 1.10 0.3015
2 1.01 0.96 1.04** 0.89 1.09 0.98 0.0003**
3 0.90 0.82 0.95** 0.75 1.03 0.90 0.0000**
4 0.83 0.73 0.82** 0.67 0.93 0.86 0.1304
5 Value 0.85 0.70 0.81** 0.64 0.98 0.94 0.5116
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Table 4: H Statisticsfor the size portfolios with the market

We present the H statistics under the null hypothesis of a bivariate normal distribution for the value-weighted
size-sorted portfolios. A different bivariate normal is fitted for each pair of (z,y) observations, where «
is the normalized excess market return and y is a normalized excess stock portfolio return. The market
portfolio is the value-weighted index of all stocksin CRSP and the stocks portfolios are the value-weighted
size portfolios, formed by sorting on market capitalizations. Panels A, B, and C, report results at the daily,
weekly, and monthly frequencies, respectively.

Columnslabeled SE display the standard error of the model. Thefirst two columnsreflect weights constructed
using the variances of the exceedance correlations p(+¥, ¢) implied by abivariate normal distribution, asin Eq.
(23). In Columns 3 and 4, the weights are proportional to the number of observations used to construct each
p(19), the sample exceedance, shownin Eq. (26). Thelast two columnsuse equal weights. Thenull hypothesis
of a bivariate normal is rejected at the 2.5% confidence level for every portfolio, at al frequencies, by the
H statistics (p-values are not reported). All standard errors are calculated using GMM and 6 Newey-West
(1987) lags. Dataisfrom July 1963 to December 1998.

Weighted by Weighted by Number Equally
Normal Distn o%(p) of Observations Weighted
Portfolio H SE H SE H SE

Panel A. Daily frequency
1Smallest 0.152 0.036 0.150 0.034 0.185 0.053

2 0.141 0.028 0.132 0.025 0.178 0.038
3 0.122 0.023 0.109 0.020 0.151 0.029
4 0.081 0.017 0.068 0.014 0.096 0.020

S5Largest  0.023 0.004 0.017 0.004 0.026 0.004

Panel B. Weekly frequency
1 Smallest 0.150 0.057 0.147 0.055 0.199 0.070

2 0.098 0.043 0.091 0.040 0.126 0.053
3 0.074 0.032 0.065 0.029 0.092 0.039
4 0.049 0.020 0.040 0.017 0.059 0.022

S5Largest 0.012 0.006 0.010 0.004 0.014 0.007

Panel C. Monthly frequency
1Smallest 0.214 0.048 0.214 0.045 0.252 0.064

2 0.146 0.036 0.135 0.033 0.175 0.049
3 0.120 0.028 0.096 0.027 0.162 0.031
4 0.057 0.021 0.046 0.019 0.067 0.023

SLarges 0043 0010 0037 0008 0047 0011
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Table 5: H Statistics from a bivariate normal distribution

This table presents asymmetry statistics for equity portfolios assuming the null hypothesis of a bivariate
normal distribution. Weights proportional to the number of observationsin each sample exceedance are used
(Eq. (26)) to construct the H statistics. Datais sampled weekly from July 1963 to December 1998.

The market portfolio is the value-weighted index of al stocks in CRSP. Panel A shows the statistics of the
value-weighted industry portfolios. Panels B and C show the statistics of the value-weighted portfolios
formed by sorting on market capitalizations and book-to-market ratios, respectively. Panel D presents the
statistics of the equal-weighted portfolios of stocks sorted by their lagged past six-months returns, with one
to six months of lags. Panels E, F, and G show the statistics of the value-weighted portfolios formed by
sorting on beta, co-skewness, and leverage, respectively.

The second column of this table shows the mean returns of the portfolios, annualized by multiplying the
weekly mean by 52. The third, fourth, fifth, and sixth columns show the H, H =, HT, and AH statistics,
respectively. Forthe H, H—, H*, and AH statistics, { and 1 indicate that the mode! cannot be rejected at the
5% and 1% confidencelevels, respectively. The seventh and eighth columns show skewness and co-skewness,
respectively. For skewness and co-skewness, * indicates rejection of the hypothesis that the statistic is not
different from zero at the 5% confidencelevel. The last column shows the beta of the portfolios. All standard
errors are calculated using GMM and 6 Newey-West (1987) lags.

Portfolio Mean H H- HT AH  Skewness Co-skewness [
Panel A. Industry Portfolios (val ue-wei ghted)

Misc 0.031 0125 0.174 0.033%* 0080 -0.881 -0.624 1.104
Petroleum 0.054 0180 0237 0.094f 0.146 -0.148 -0.353 0.839
Finance 0.062 0.074 0.099 0.033%' 0055 -0.378 -0.451 1.006
Durables 0.052 0.078 0.109 0.016* 0.043 -0.528 -0.540 1.134
Basic Ind 0.056 0.072 0101 0.015% 0.052 -0.670 -0.580 1.014
Food/Tobacco 0.081 0.117 0.163 0.032f 0.087 -0.500* -0.477 0.847
Construction 0.050 0.119 0.165 0.037f 0.083 -0.875 -0.649 1.136
Capital Goods 0.048 0.087 0.116 0.043" 0.068 -0.509 -0.515 1.123
Transportation 0.032 0.132 0.185 0.020* 0.082 -0.572 -0.573 1.172
Utilities 0.048 0.145 0.202 0.026* 0.089 -0.115 -0.401 0.630
Textile/Trade  0.060 0.125 0.165 0.0647 0.099 -0.568 -0.527 1.080
Service 0.074 0.094 0132 0.027f 0072 -0.583 -0.522 1.280
Leisure 0.065 0.078" 0110 0.019* 0.055 -0.539* -0.499 1.138
Panel B. Size portfolios (value-weighted)

1 Smallest 0.054 0147 0198 00667 0102 -0.893 -0.654 0.920
2 0.066 0.0917 0.124 0.039' 0.068 -0.953 -0.629 1.035
3 0.064 0.065" 0.088 0.031' 0049 -0.935 -0.623 1.033
4 0.063 0.040 0.054 0.018* 0028 -0.717 -0.576 1.031
5 Largest 0.053 0.010f 0.012 0.007f 0.008 -0.530 -0.502 0.982
Panel C. Book to market portfolios (value-weighted)

1 Growth 0.048 0.037 0.045 0.027 0.032 -0454 -0.463 1.100
2 0.049 0.045 0.063 0.012%¢ 0028 -0.662 -0.569 1.014
3 0.050 0.080 0.108 0.035¢ 0.053 -0.903 -0.652 0.904
4 0.073 0.090 0.122 0.038" 0050 -0.531 -0.542 0.831
5 Value 0.091 0100 0136 0.038% 0.048" -0.398 -0.495 0.855
Panel D. Momentum portfolios (equal -weighted)

1PastLosers 0.023 0.165 0224 0.058% 0120 -0.112 -0.486 0.914
2 0.060 0119 0163 0.041' 0079 -0.590 -0.568 0.825
3 0.078 0.093" 0.129 0.028' 0.062 -1.038 -0.676 0.807
4 0.092 0.077f 0110 0.012%f 0.052 -1.345 -0.743 0.848
5Past Winners  0.111 0.092F 0.130 0.016* 0.057 -1.348* -0.745 0.986
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Table 5. (cont.)

Portfolio Mean H H- HT AH  Skewness Co-skewness S
Pabel E. Beta portfolios (val ue-weighted)

1Low Beta 0071 0123 0171 0.038% 0072 -0.762 -0.633 0.612
2 0.074 0.053 0.074 0.015* 0037 -0.733 -0.583 0.864
3 0.071 0.057 0.078 0.019* 0035 -0.719 -0.586 0.977
4 0.063 0.056 0076 0.025% 0039 -0.762 -0.588 1.109
5 High Beta 0.040 0.068" 0.091 0.033* 0.050 -0.499 -0.501 1.330
Panel F. Co-skewness portfolios (val ue-weighted)

1Low/Neg. Coskew 0.079 0.066 0.092 0.022* 0.037 -0.686* -0.576 0.994
2 0.080 0.054 0.075 0.020% 0.034 -0.759 -0.596 1.005
3 0.085 0.057 0.077 0.026% 0.033" -0.614 -0.561 0.990
4 0.055 0.053 0.072 0.020% 0033 -0.872 -0.623 0.988
5High/Pos. Coskew  0.058 0.067F 0.090 0.031* 0.048 -0.440 -0.482 0.924
Panel G. Leverage portfolios (value-weighted)

1 Low Debt 0.057 0.063 0.086 0.025" 0042 -0.821 -0.618 1.003
2 0.064 0.043 0059 0.018* 0.028 -0.472 -0.489 0.957
3 0.062 0.050" 0.068 0.021* 0.030 -0.601 -0.544 0.967
4 0.061 0.059 0081 0.022f 0031 -0.735 -0.599 0.964
5 High Debt 0.058 0.101 0140 0.030f 0067 -0.613 -0.577 1.024
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Table 6: Correlations among asymmetry statistics

We present the correlations among the asymmetry statistics calculated in Table 5. The
correlations are calculated using the 43 estimates of H, H~, H*, and AH statistics,
skewness, co-skewness, and beta, as presented in Table 5.

H H- HT AH Skewness Coskewness ¢}
H 1.000 0998 0.751 0.964 0.243 0.150 -0.274
H~ 1.000 0.714 0.953 0.220 0.123 -0.280
HT 1.000 0.824 0.342 0.321 -0.167
AH 1.000 0.272 0.222 -0.177
Skewness 1.000 0.951 -0.04
Coskewness 1.000 -0.003
3 1.000
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Table 7. H Statistics across size/beta portfolios

The table presents the H datistics for equity portfolios
assuming the null hypohesis of a bivariate normal distribution.
We first stocks by size into quintiles. Then, within each size
quintile, we further sort stocksinto quintiles based on beta. For
each size and beta grouping, we form a value-weighted equity
portfolio.

Freguency of the data is weekly. Weights proportional to the
number of observations in each sample exceedance are used
(see Eq. (26)) to construct the H statistic. The null hypothesis
of abivariate normal isrejected at the 2.5% confidencelevel for
every portfolioat all frequenciesby the H statistic (p-valuesare
not reported).

Beta
Size 1Low 2 3 4 5High
1Smadlest 0.185 0.162 0.167 0.159 0.145
2 0.168 0.118 0.119 0.118 0.100
3 0.149 0.100 0.094 0.088 0.083
4 0.157 0.088 0.077 0.058 0.067

S5Largest 0.127 0.082 0.057 0.056 0.056




Table 8: H Statistics across size/leverage portfolios

This table presents the H statistics for equity portfolios
assuming the null hypothesis of a bivariate normal distribution.
We first stocks by size into quintiles. Then, within each size
quintile, we further sort stocks into quintiles based on leverage.
For each size and leverage grouping, we form a value-weighted
equity portfolio.

Freguency of the data is weekly. Weights proportional to the
number of observations in each sample exceedance are used
(see Eq. (26)) to construct the H statistic. The null hypothesis
of abivariate normal isrejected at the 2.5% confidencelevel for
every portfolioat all frequenciesby the H statistic (p-valuesare
not reported).

Leverage
Size 1Low 2 3 4 5High
1Smallest 0.158 0.151 0.156 0.156 0.162
2 0.115 0.116 0.110 0.119 0.117
3 0.104 0.084 0.085 0.106 0.086
4 0.083 0.064 0.072 0.092 0.095

S5Largest 0.079 0.057 0.065 0.066 0.074
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Table 9: Summary of rgjections from table 10

We present a summary of rejections from Table 10. We list the number of
rejections, M, out of apossible N number of portfoliosas M /N inthe Table.

GARCH-M  JumpModel RSNorma RS-GARCH

Panel A. Regjections at 5% confidencelevel

Industry 2/13 11/13 3/13 2/13
Size 1/5 3/5 0/5 1/5
Book to Market 1/5 3/5 2/5 0/5
Momentum 2/5 4/5 1/5 1/5
Overdl 6/28 21/28 6/28 4/28
Panel B. Rejections at 1% confidencelevel

Industry 1/13 6/13 3/13 1/13
Size 0/5 1/5 0/5 1/5
Book to Market 0/5 2/5 0/5 0/5
Momentum 1/5 2/5 0/5 0/5
Overadl 2/28 11/28 3/28 2/28
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Table 10: H Statistics assessing aternate models

The table reports the H statistics for equity portfolios under the null hypothesis of other
distributions; a GARCH-M model, a Poisson Jump model, a regime-switching (RS) normal
distribution model and a regime-switching GARCH model. The weights used are proportional to
the number of observations used to calculate the sample exceedance correlations (see EQ. (26)).
Frequency of the datais weekly. A x indicates rejection of the model at the 5% confidence level,
and *x indicates rejection at the 1% confidence level.

The market portfolio is the value-weighted index of al stocks in CRSP. Panel A shows the H
statistics of the value-weighted industry portfolios. Panels B and C show the H statistics of the
value-weighted portfolios formed by sorting on market capitalizations and book-to-market ratios,
respectively. Panel D presentsthe H statistics of the equal-weighted portfolios of stocks sorted by
their lagged past six-months returns, with one to six months of lags.

GARCH-M Jump Model RS Normal RS-GARCH

Portfolio H SE H SE H SE H SE
Panel A. Industry portfolios (val ue-weighted)

Misc 0.114 0.249 0.117* 0.038 0.076 0.066 0.044 0.049
Petroleum 0.107 0.280 0.212** 0.050 0.127** 0.045 0.168 ** 0.031
Finance 0.060 0.040 0.067 * 0.030 0.034 0.125  0.070 0.138
Durables 0.073 0.040 0.074** 0.028 0.056 0.052  0.076 0.163
Basic Ind 0.056 0.051  0.077 ** 0.021 0.048** 0.008 0.046 0.161

Food/Tobacco  0.130 0.322 0127 ** 0.031 0.073 0.066  0.106 0.061
Construction 0.087* 0.036 0111* 0.054 0.067 0.261 0.076 0.107
Capital Goods ~ 0.051 0.031 0.058* 0.029 0.037 0.022  0.030 0.098
Transportation  0.114 0.119 0102 * 0.050 0.082 0.094 0.187 0.097

Utilities 0.156 0.115 0.138* 0.030 0.109 0.117 0297 *  0.099
Textile/Trade 0.072 0.066  0.108 0.102 0.061 ** 0.023 0.102 0.160
Service 0.079 ** 0.025 0.064 * 0.028 0.035 0.027 0.129 0.115
Leisure 0.068 0.041 0.061 0.036  0.039 0.041 0.054 0.031
Panel B. Sze portfolios (value-weighted)

1 Smallest 0.124 * 0.0563 0.127** 0.042 0.084 0.119  0.069 0.067
2 0.073 0.044 0.075* 0.032 0.039 0.062  0.092 0.100
3 0.046 0.034 0.044 0.024 0.026 0.020 0.064 0.093
4 0.030 0.018 0.030 0.024 0.016 0.033  0.055 0.074
5 Largest 0.008 0.007 0.016 * 0.007 0.003 0.004  0.030 **  0.005
Panel C. Book-to-market portfolios (value-weighted)

1 Growth 0.023 0.017 0.042 0.036  0.010 0.052  0.060 0.054
2 0.039* 0.018 0.036* 0.010 0.024* 0.011 0.036 0.033
3 0.059 0.116  0.083 ** 0.024 0.048 0.030 0.110 0.085
4 0.080 0.052  0.093 0.068  0.061 0.120 0.122 0.179
5 Value 0.114 0.072 0.115* 0.057 0.078* 0.038 0.175 0.106

Panel D. Momentum portfolios (equal-weighted)
1 Past Losers 0.239 0.129 0.157** 0.033 0101* 0.044 0.090 0.220

2 0.105* 0.043 0.117** 0.015 0.080 0.058  0.100 0.104
3 0.094 ** 0.028 0.096* 0.039 0.061 0.292 0.138*  0.068
4 0.081 0.044 0.074 0.044 0.046 0.036  0.115 0.109

5 Past Winners  0.099 0.075 0.097* 0.046 0.059 0.109 0.149 0.125
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