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Abstract

Correlations between U.S. stocks and the aggregate U.S. market are much greater for

downside moves, especially for extreme downside moves, than for upside moves. We

develop a new statistic for measuring, comparing, and testing asymmetries in conditional

correlations. Conditional on the downside, correlations in the data differ from the conditional

correlations implied by a normal distribution by 11.6%. We find that conditional asymmetric

correlations are fundamentally different from other measures of asymmetries, such as skewness

and co-skewness. We find that small stocks, value stocks, and past loser stocks have

more asymmetric movements. Controlling for size, we find that stocks with lower betas

exhibit greater correlation asymmetries, and we find no relationship between leverage and

correlation asymmetries. Correlation asymmetries in the data reject the null hypothesis of

multivariate normal distributions at daily, weekly, and monthly frequencies. However, several

empirical models with greater flexibility, particularly regime-switching models, perform better

at capturing correlation asymmetries.



1. Introduction

Correlations conditional on “downside” movements, which occur when both a U.S. equity

portfolio and the U.S. market fall, are, on average, 11.6% higher than correlations implied

by a normal distribution. In contrast, correlations conditional on “upside” movements, which

occur when both an equity portfolio and the market rise, cannot be statistically distinguished

from those implied by a normal distribution. Asymmetric correlations are important for several

applications. For example, in optimal portfolio allocation, if all stocks tend to fall together as

the market falls, the value of diversification may be overstated by those not taking the increase

in downside correlations into account. Asymmetric correlations have similar implications in

risk management. In this paper, we examine this correlation asymmetry in several ways.

We begin by formally defining downside correlations as correlations for which both the

equity portfolio and the market return are below a pre-specified level. Similarly, upside

correlations occur when both the equity portfolio and the market return are above a pre-specified

level. Downside correlations in U.S. markets are much larger than upside correlations as shown

by the plots of downside and upside correlations presented in Longin and Solnik (2001). These

graphs demonstrate that, on the downside, portfolios are much more likely to move together

with the market.

Second, we measure this asymmetry by developing a summary statistic, H . The H

statistic quantifies the degree of asymmetry in correlations across downside and upside markets

relative to a particular model or distribution. This measurement of asymmetry is different

from other measurements established in the literature. Covariance asymmetry has usually

been interpreted within a particular Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) model, where covariance asymmetry is defined to be an increase in conditional

covariance resulting from past negative shocks in returns.1 In contrast, our statistic measures

correlation asymmetry by looking at behavior in the tails of the distribution. Our statistic is not

specific to any model. Hence, we can apply the statistic to evaluate several different models.

We show that conditional correlations differ from other measures of higher moments, such as

skewness and co-skewness, and from risk measured by beta.

TheH statistic corrects for conditioning biases. Boyer, Gibson, and Loretan (1999), Forbes

and Rigobon (1999), and Stambaugh (1995) note that calculating correlations conditional on

high or low returns, or high or low volatility, induces a conditioning bias in the correlation

estimates. For example, for a bivariate normal distribution with a given unconditional

correlation, the conditional correlations calculated on joint upside or downside moves are

different from the unconditional correlation. Ignoring these conditioning biases may lead to
1 Authors such as Cho and Engle (2000), Bekaert and Wu (2000), Kroner and Ng (1998), and Conrad, Gultekin,

and Kaul (1991) document the covariance asymmetry of domestic stock portfolios using multivariate asymmetric

GARCH models.
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spurious findings of correlation asymmetry.

Third, we establish several empirical facts about asymmetric correlations in the U.S.

equity market. We find the level of asymmetry, measured at the daily, weekly, and monthly

frequencies, produces sufficient evidence to reject the null hypothesis of a normal distribution.

To investigate the nature of these asymmetric movements, we examine the magnitudes of

correlation asymmetries using portfolios sorted on various characteristics. Returns on portfolios

of either small firms, value firms, or low past return firms exhibit greater correlation asymmetry.

We find significant correlation asymmetry in traditional defensive sectors, such as petroleum

and utilities. We also find that riskier stocks, as reflected in higher beta, have lower correlation

asymmetry than lower beta stocks. After controlling for size, the magnitude of correlation

asymmetry is unrelated to the leverage of a firm. Previous work focuses on asymmetric

movements of leverage-sorted portfolios of Japanese stocks (Bekaert and Wu, 2000), and size-

sorted portfolios of U.S. stocks (Kroner and Ng, 1998; Conrad, Gultekin, and Kaul, 1991) using

asymmetric GARCH models.

Finally, we analyze asymmetric correlations by asking if several reduced-form empirical

models of stock returns can reproduce the asymmetric correlations found in the data. These

candidate models are used by various authors to capture the increase in covariances on downside

movements. We discuss four models that allow asymmetric movements between upside

and downside movements in returns. These models are an asymmetric GARCH-in-Mean

(GARCH-M) model, a Poisson Jump model, for which jumps are layered on a bivariate normal

distribution, a regime-switching normal distribution model, and a regime-switching GARCH

model. We find the most successful models in replicating the empirical correlation asymmetry

are regime-switching models. However, none of these models completely explain the extent of

asymmetries in correlations.

Our study of asymmetric correlations is related to several areas of finance. There is a

long literature documenting the negative correlation between a stock’s return and its volatility

of returns.2 Other studies analyze patterns of asymmetries in the covariances of stock

returns in domestic equity portfolios.3 This literature concentrates on documenting covariance

asymmetry within a GARCH framework. Our approach uses a different methodology to

document asymmetric correlations, interpreting asymmetries more broadly than simply within

the class of GARCH models. We examine a much wider range of portfolio groups previously
2 For example see, among others, French, Schwert, and Stambaugh (1987), Schwert (1989), Cheung and

Ng (1992), Campbell and Hentschel (1992), Glosten, Jagannathan, and Runkle (1993), Engle and Ng (1993),

Hentschel (1995), and Duffee (1995). Bekaert and Wu (2000) provide a summary of recent GARCH model

applications with asymmetric volatility.
3 Some papers documenting asymmetric betas are Ball and Kothari (1989), Braun, Nelson, and Sunier (1995),

and Cho and Engle (2000). Conrad, Gultekin, and Kaul (1991), Kroner and Ng (1998), and Bekaert and Wu (2000)

document asymmetric covariances in multivariate GARCH models.
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used in the literature, and investigate if other classes of empirical models can replicate the

correlation asymmetry found in data.

Our approach of creating portfolios sorted by firm characteristics creates a very different

view of the determinants of conditional correlations than previously obtained in the literature.

The H statistic uses the full sample of observations measured over time to calculate the

correlation at the extreme tails of the joint distribution. By employing time-series data, we

use as many observations as possible to calculate correlations for events for which there are

relatively few observations. We also focus on the cross-sectional determinants of correlation

asymmetry in stock returns, whereas Erb, Harvey, and Viskanta (1994) and Dumas, Harvey,

and Ruiz (2000) use conditioning on instrumental variables such as business cycle indicators,

rather than on the observations, to determine the characteristics of time-varying correlations.

Work in international markets has found that the correlations of international stock markets

tend to increase conditional on large negative, or “bear market”, returns.4 Longin and Solnik

(2001) use extreme value theory to show that the correlation of large negative returns is much

larger than the correlation of positive returns. However, in their work, Longin and Solnik do not

provide distribution-specific characterizations of downside and upside correlations. Our paper

uncovers strong correlation asymmetries that exist in domestic markets and emphasize that such

asymmetries are more than an international phenomenon in aggregate markets. In our domestic

focus we examine which indivdiual firm characteristics are most related to the magnitude of

correlation asymmetry.

Other related studies by Campbell, Lettau, Malkiel, and Xu (2001), Bekaert and Harvey

(2000), and Duffee (1995) examine cross-sectional dispersion of individual stocks, which

has increased in recent periods. Duffee (2000) and Stivers (2000) document an asymmetric

component in the cross-sectional dispersion. Chen, Hong, and Stein (2001) and Harvey and

Siddique (2000) analyze cross-sectional differences in conditional skewness of stock returns.

However, these authors have not examined the relationships between firm characteristics and

asymmetric correlations. We find that stocks which are smaller, have higher book-to-market

ratios, or have low past returns exhibit greater asymmetric correlations. Stocks with higher beta

risk show fewer correlation asymmetries. We also show that correlation asymmetry is different

from skewness and co-skewness measures of higher moments.

The remainder of this paper is organized as follows. Section 2 demonstrates the economic

significance of asymmetries in correlations within a portfolio allocation framework. Section

3 shows that correlation asymmetries exist in domestic U.S. equity data. We define and

characterize conditional upside and downside correlations and betas of a bivariate normal

distribution in closed-form, and discuss how to correct for conditioning bias. Section 4 measures
4 See Erb, Harvey, and Viskanta (1994), Lin, Engle, and Ito (1994), Longin and Solnik (1995, 2001), Karolyi

and Stulz (1996), De Santis, Gerard, and Hillion (1999), Forbes and Rigobon (1999), Boyer, Gibson, and Loretan

(1999), Stărică (1999), Ang and Bekaert (2000), Bae, Karolyi, and Stulz (2000), and Das and Uppal (2001).
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the correlation asymmetries, and analyzes their cross-sectional determinants. In Section 4,

we develop the H statistic measure of correlation asymmetry, and demonstrate asymmetric

correlations in equity portfolios using the normal distribution as the benchmark. In Section

5, we ask if several models incorporating asymmetry into the conditional covariance structure

can replicate the asymmetry found empirically in the data. Section 6 contains our conclusions.

Proofs are reserved for the Appendices.

2. Economic significance of asymmetric correlations

In this section, we demonstrate the economic significance of asymmetric correlations using a

simple asset allocation problem. Appendix A details the solution and the calibration method

used in this example. Suppose an investor can hold amounts α1 and α2 of two assets with

continuously compounded returns x and y, respectively. The remainder of her wealth is held in

a riskless asset. Let x̃ and ỹ denote the standardized transformations of x and y, respectively.5

The agent maximizes her expected end-of-period Constant Relative Risk Aversion (CRRA)

utility as follows:

max
α1,α2

E

[
W 1−γ

1− γ
]
. (1)

In Eq. (1), the end-of-period wealth is given by W = erf + α1(e
x − erf ) + α2(ey − erf ),

rf = 0.05 is a constant continuously compounded risk-free rate, and γ is the agent’s coefficient

of risk aversion. We set γ equal to 4.

To abstract from the effects of means and variances on portfolio weights, suppose both

assets have the same mean and volatility. We denote the expected continously compounded

excess return of both x and y as µ = 0.07, and the volatility of the continuously compounded

excess return as σ = 0.15. For illustration, we set the unconditional correlation of x and y to be

ρ = 0.50.

Suppose that the agent believes x and y are normally distributed. Since each asset has the

same mean and volatility, the investor holds equal amounts of either asset. Let α† denote this

portfolio position. With normal distributions, lower unconditional correlations imply greater

benefits from diversification.

We examine the joint behavior of the two assets conditional on downside moves, which can

also be called bear-market moves. We define this bear-market move to be a draw that is below

each asset’s mean by more than one standard deviation. If x and y are normally distributed with
5 To standardize a variable x, we perform the transformation x̃ = (x−µ)/σ, where µ is the unconditional mean

of x and σ is the unconditional standard deviation of x. Throughout the paper, we use tildes to denote standardized

returns. Variables without tildes are not standardized.
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unconditional correlation ρ = 0.5, the correlation conditional on x < µ− σ and y < µ− σ is:

ρ̄ = corr(x, y|x < µ− σ, y < µ− σ) = corr(x̃, ỹ|x̃ < −1, ỹ < −1) = 0.1789. (2)

Note that the downside correlation for a normal distribution is less than the unconditional

correlation. This difference arises from the conditioning bias of viewing returns based on

contemporaneous events of both x and y being below a fixed level. Appendix B demonstrates

how to calculate this conditional correlation in closed-form.

Suppose the actual distribution of x and y is a Regime-Switching (RS) Model, although the

agent erroneously believes that x and y are normally distributed. Under the RS Model, returns

X = (x, y) are given by:

X ∼ N(µst,Σst), st ∈ {1, 2}. (3)

For regime st = i , we denote µi as the mean returns and Σi as the covariance matrix. The

transitions between the regimes st = 1 and st = 2 are given by a Markov chain with transition

probabilities: (
P 1− P

1−Q Q

)
. (4)

In Eq. (4), P = Pr(st = 1|st−1 = 1) and Q = Pr(st = 2|st−1 = 2). We calibrate the RS

Model to have the same unconditional mean, µ, the same unconditional volatility, σ, and the

same unconditional correlation, ρ, as the normal distribution.

Instead of the downside correlation ρ̄ being 0.1789, suppose that the true downside

correlation ρ̄ is H percent higher. That is,

corr(x̃, ỹ|x̃ < −1, ỹ < −1) = 0.1789 +H. (5)

This magnitude, represented by H , reflects the statistic we develop in Section 4. This increase

is an effect which cannot be captured by using the normal distribution, which is determined

only by its first two moments. However, the increase in correlation on downside moves relative

to the normal distribution can be captured by the RS Model.

Let the RS Model have parameters µ1 = µ2 = (0.14, 0.14)′, P = 2/3, and Q = 2/3. This

specification implies that the stable probabilities of the Markov Chain π = Pr(st = 1) = 1
2
.

We express the covariance matrices Σi as:

Σi = σ
2
i

(
1 ρi

ρi 1

)
, i = 1, 2. (6)

In Eq. (6), ρi is the correlation of returns in regime i. We set σ1 = σ2 = 0.15 to focus on the

effect of regime-dependent correlations. The correlations ρ1 and ρ2 are chosen so that the RS
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Model has the same unconditional correlation ρ as the normal distribution. We choose ρ1 > ρ2
such that 1

2
(ρ1+ρ2) = ρ. The resulting RS Model has the same first two unconditional moments

as the normal distribution, but its correlation conditional on downside moves is higher than that

implied by the normal distribution.

The asset allocations from the RS Model can be shown to be dependent on the regime.

Since x and y have the same moments, the optimal holdings in each asset are the same, but the

proportion held in x and y differ across the regimes. We denote the optimal portfolio holdings

in each asset as α∗st for regime st. In regime 1, with ρ1 greater than ρ, the investor, who holds

α† based on her belief that x and y are normally distributed, holds much more equity as a

proportion of her investment compared to the optimal weight α∗1. In regime 2, with ρ2 less than

ρ the investor holds too little equity compared to the optimal α∗2. The higher ρ1 in the first

regime causes downside correlations to increase relative to the normal distribution. Since the

normal distribution cannot incorporate the asymmetries in conditional correlations, the investor

over estimates the benefits of diversification on the downside in regime 1, and over-invests

in risky assets. Similarly, she under estimates the benefits of diversification in regime 2, and

under-invests in risky assets.

We calculate the utility loss, which represents the monetary compensation required for an

investor to use the non-optimal normal weights α† instead of the optimal RS Model weights α∗st.
This loss is the advance compensation, in cents per dollar of wealth, that the investor should

have received in order to hold α† instead of α∗st . This estimate is given by w = 100× (w̄ − 1),
where:

w̄ =

(
Q∗st
Q†st

) 1
1−γ
. (7)

In Eq. (7), Q∗st is the indirect CRRA utility under the RS Model, with optimal weights α∗st
conditional on being in regime st, and Q†st is the indirect CRRA utility under the RS Model

distribution, with sub-optimal weights α† conditional on being in regime st. That is,

Q∗st = E[(W
∗
st
)1−γ |st] and Q†st = E[(W

†)1−γ |st], (8)

for whichW ∗
st = e

rf + α∗st(e
x − erf ) +α∗st(ey − erf ),W † = erf +α†(ex− erf ) +α†(ey − erf ),

and both expectations are taken under the RS Model.

Fig. 1 graphs the advance monetary compensation the investor should have received to

compensate for choosing the sub-optimal normal distribution weights instead of the optimal

RS Model weights. The compensation required per dollar of wealth is not small. In Regime 1,

for H = 0.10 the investor requires more than 120 basis points in compensation. In Regime 2,

the investor requires around 100 basis points in compensation. This simple example shows that

potential utility losses are economically large if correlations increase on the downside relative to

a standard normal distribution. In Fig. 1,H measures the difference between the true downside

correlation and the downside correlation implied by a normal distribution.
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3. Calculating upside and downside moments

We now formally develop theH statistic, show and correct for a bias in measuring it, and use it

to characterize the nature of asymmetric correlations in stock portfolios.

3.1. Upside and downside correlations

Conditioning on upside or downside moves and calculating correlations induces a “conditioning

bias”. For a bivariate normal with unconditional correlation ρ, the correlation calculated

conditioning on a subset of observations (for example taking observations above or below a

certain level) differs from the unconditional correlation. Appendix B calculates this bias in

closed-form for a bivariate normal distribution.6 In this section, we show that the conditioning

bias for a bivariate normal distribution exists, and that ignoring this bias can lead to incorrect

inferences from tests of correlation asymmetry.

We consider pairs of standardized returns (x̃, ỹ) ∼ N(0,Σ), where Σ has unit variances and

unconditional correlation ρ. We define:

ρ̂(h1, h2, k1, k2) = corr(x̃, ỹ|h1 < x̃ < h2, k1 < ỹ < k2; ρ) (9)

as the correlation between x̃ and ỹ, conditional on observations for which h1 < x̃ < h2 and

k1 < ỹ < k2. The variable, ρ̂(h1, h2, k1, k2), represents the correlation of a doubly truncated

bivariate normal. In Eq. (9), x̃ and ỹ have unconditional correlation ρ.

There are several special cases of this specification. When h2 and k2 are infinite, we

obtain the one-sided truncation case specified in Rosenbaum (1961). Another special case is

the Longin and Solnik (2001) exceedance correlation. A correlation at an exceedance level ϑ

is defined as the correlation between two variables when both variables register increases or

decreases of more than ϑ standard deviations away from their means, such that:

ρ̄(ϑ) =

{
ρ̂(ϑ,∞, ϑ,∞) = corr(x̃, ỹ|x̃ > ϑ, ỹ > ϑ; ρ) if ϑ ≥ 0
ρ̂(−∞, ϑ,−∞, ϑ) = corr(x̃, ỹ|x̃ < ϑ, ỹ < ϑ; ρ) if ϑ ≤ 0 (10)

For a bivariate normal distribution, these variables are the same, by symmetry. Longin and

Solnik discuss the limiting behavior of exceedance correlations using extreme value theory, but

do not give distribution-specific characterizations of exceedance correlations.

For an exceedance level ϑ, we calculate the empirical exceedance correlation ρ̄(ϑ) as

follows. For pairs of standardized observations {(x̃, ỹ)}, we select a subset of observations
6 Related work by Forbes and Rigobon (1999) looks at the correlation of returns conditioning on different

volatilities. Boyer, Gibson, and Loretan (1999) derive correlations for a bivariate normal conditioning on events

for one variable. In a discussion of Karolyi and Stulz (1996), Stambaugh (1995) demonstrates the conditioning

bias by simulation.
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such that {(x̃, ỹ)|x̃ > ϑ and ỹ > ϑ} for ϑ ≥ 0, and {(x̃, ỹ)|x̃ < ϑ and ỹ < ϑ} for ϑ ≤ 0. The

correlation of the observations in this subset is the empirical exceedance correlation at ϑ. For

ϑ = 0, we calculate both corr(x̃, ỹ|x̃ > 0, ỹ > 0) and corr(x̃, ỹ|x̃ < 0, ỹ < 0). In theory, these

correlations are the same for a symmetric distribution, but may differ in the data. In calculating

the exceedance correlation, ϑ determines the cutoff points for the conditioning sample, which

are expressed in multiples or fractions of standard deviations from the observed mean values.

For ϑ = −1, the exceedance correlation between an equity portfolio and the market return is

calculated on a subset of observations for which both the equity portfolio and the market return

are more than 1 standard deviation below their empirical means.

Panel A of Fig. 2 shows graphs of conditional correlations of a bivariate normal distribution,

conditional on returns above or below a certain level. Panel A shows exceedance correlations

ρ̄(ϑ) for various unconditional ρ. These correlations are calculated using Eqs. (B-11), (B-12),

and (B-13) shown in Appendix B. For a given ρ, the exceedance correlations are tent-shaped.

Intuitively, the exceedance correlations tend to zero as ϑ approaches infinity, either positive

or negative, because the tails of the bivariate normal are flat. The exceedance correlations are

calculated assuming a quadrant of x̃ and ỹ, with origin at point (ϑ, ϑ). As ϑ increases, the

quadrant is pushed further into the tails of the bivariate normal, where the distribution becomes

flatter. One way to determine if correlations are different for upside (ϑ > 0) or downside (ϑ < 0)

moves is to compare positive or negative exceedance correlations in the data with those implied

from a particular distribution, such as the normal distribution. Fig. 2 shows that comparing

correlations conditional on high or low absolute returns cannot be done without taking into

account the conditioning bias.

We can also construct correlations that are conditional on levels of a single variable, x̃. Panel

B of in Fig. 2 shows conditional correlations ρ̂(h1, h2,−∞,+∞) = corr(x̃, ỹ|h1 < x̃ < h2; ρ)
over different intervals (h1, h2). The truncation points h1 and h2 are chosen to correspond to

abscissae from an inverse cumulative normal, which we denote by Φ−1(·). In Fig. 2, h1 and

h2 correspond to the abscissae intervals of probabilities [0.0 0.2 0.4 0.6 0.8 1.0]. That is, the

intervals (h1, h2) correspond to:

(Φ−1(0.0), Φ−1(0.2)) = (−∞, −0.8146)
(Φ−1(0.2), Φ−1(0.4)) = (−0.8146, −0.2533)

...

(Φ−1(0.8), Φ−1(1.0)) = (0.8146, +∞). (11)

The conditional correlations ρ̂(h1, h2,−∞,+∞) are plotted at the inverse cumulative normal

abscissae corresponding to the midpoints [0.1 0.3 0.5 0.7 0.9]. The conditional correlations

produced this way lie in a U-shape.7 Hence, comparing conditional correlations constructed
7 A similar exercise in showing conditional correlation bias over different intervals is done by Boyer, Gibson,
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from samples where one variable has large absolute returns to conditional correlations

constructed from samples where the same variable has small absolute returns must also be done

taking into account the conditioning bias. In particular, calculating conditional correlations

when the conditioning information set consists of exogenous instrumental variables, such as

macroeconomic variables, may also induce a bias, if these conditioning variables are correlated

with returns.

In our empirical work, we take x̃ to be standardized returns of a stock portfolio and ỹ to

be standardized market returns. We can look at movements in x̃ and ỹ conditional on large

movements in both the market and the stock portfolio as analyzed in Longin and Solnik (2001),

or look at movements in x̃ and ỹ conditional only on large market moves (Butler and Joaquin,

2000). In both cases, we cannot simply compare conditional correlations of high or low return

periods. We concentrate on the analysis based on the exceedance correlations of Longin and

Solnik (2001). This characterization has the advantage of succinctly describing the conditional

correlations with one parameter, the exceedance level ϑ, rather than a series of truncation

intervals, as is done in Panel B of Fig. 2. The exceedance conditioning of both x̃ and ỹ also

focuses attention on joint “downside” and “upside” moves. This demonstration is particularly

relevant given past episodes of market crashes when stocks have made simultaneous extreme

moves on the downside.

3.2. Asymmetric correlations in the returns data

We focus on portfolio returns of stocks sorted by industry classifications, size, value, and

momentum. We use market capitalizations to represent size, book-to-market ratios to represent

value, and past returns to represent momentum. Stocks are sorted on market capitalization,

book-to-market ratios, and lagged past 6-month returns and grouped into quintiles to form size,

book-to-market, and momentum portfolios (smallest to largest, growth to value, and losers to

winners, respectively).

We focus on these portfolio groups for the following reasons. Industries have varyings

exposures to economic factors (see Ferson and Harvey, 1991). The Fama and French

(1993) model, using size and value-based factors is very popular. The momentum effect has

received recent attention, largely because it cannot be explained by the Fama and French

model (see Fama and French, 1996). We also study portfolios formed by other cross-

sectional characteristics, such as beta and co-skewness, and portfolios formed by other firm

characteristics, such as leverage. These portfolios are also divided into quintiles. To control

and Loretan (1999). A plot of conditional correlations corr(x, y|h 1 < x < h2; ρ) where h1 and h2 values are

chosen with equal intervals, would show a picture very similar to the plots of Panel A, which has a tent shape. This

relation also applies if we show correlations conditioning only on x, such as corr(x, y|x > ϑ; ρ). In this case, we

produce a tent similar to the top plot of Fig. 2.
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for possible interaction between market capitalization (size) and other characteristics, we also

construct two sets of doubly sorted portfolios: one on size and beta, and another on size and

leverage.

For our empirical analysis, we use data from the Center for Research in Security Prices

(CRSP) and Standard & Poor’s COMPUSTAT to construct portfolios based on various firm and

distributional characteristics. We use both daily and monthly returns from CRSP for the period

covering July 1st, 1963 to December 31st, 1998. We use COMPUSTAT’s annual files to obtain

information about book values and financial leverage. We follow standard conventions, and

restrict our universe to common stocks listed on NYSE, AMEX, or NASDAQ of companies

incorporated in the United States. For the risk-free rate, we use the one-month Treasury Bill

rate provided by Ibbotson Associates. We take CRSP’s value-weighted return of all stocks to

be used as the market portfolio.

We first construct a set of value-weighted industry portfolios grouped by their two-digit

Standard Industrial Classification (SIC) codes. The classification of these industries follow that

of the SIC grouping used in Ferson and Harvey (1991). In addition, we group all stocks that

do not fall into this classification scheme into a miscellaneous industry category. The industries

analyzed are miscellaneous, petroleum, finance, durables, basic industries, food and tobacco,

construction, capital goods, transportation, utilities, textile and trade, service, and leisure.

Within each month, for each portfolio, we calculate daily returns of a buy-and-hold strategy

using the CRSP daily file. At the beginning of every month, each portfolio is re-balanced

and re-formed according to the strategy. The returns are aggregated into weekly frequency by

calculating the total buy-and-hold return of each strategy from the end of every Wednesday

to the end of the following Wednesday. At a weekly frequency, this action yields 1,852

observations. The monthly returns are calculated directly from the CRSP monthly file, and are

also rebalanced and reformed at the beginning of every month. Finally, all returns are converted

into continuously compounded yields and expressed as returns in excess of the one-month T-bill

rate.

The second set of portfolios we construct are value-weighted, size-sorted portfolios. At the

beginning of every month, we determine the breakpoints on market capitalization for our stocks

based on the quintile breakpoints of stocks listed on the NYSE. Hence, our first size-sorted

portfolio contains all the stocks listed on the combined NYSE/AMEX/NASDAQ listings that

are smaller than the 20th percentile NYSE stock.

The third set of portfolios we construct are value-weighted book-to-market portfolios.

At the beginning of every month, our universe of stocks is once again sorted based on

quintile breakpoints of stocks listed on the NYSE. The sorting variable is the book-to-

market ratio calculated using the most recently available fiscal year-end balance sheet data

on COMPUSTAT. Following Fama and French (1993), we define “book value” as the value of
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common stockholders’ equity, plus deferred taxes and investment tax credit, minus the book

value of preferred stock. The book value is then divided by the market value on the day of the

firm’s fiscal year-end.

The next set of portfolios consists of the “6-6” momentum strategy portfolios of Jegadeesh

and Titman (1993). For this set, we sort our stocks based upon the past six-months returns of all

stocks in our universe, rather than just on NYSE stocks. To avoid market microstructure effects,

we require a one-month lag between when the returns are realized and when the portfolios are

formed. Hence, each month, an equal-weighted portfolio is formed based on six-months returns

ending one month prior. Similarly, equal-weighted portfolios are formed based on past returns

that ended two months prior, three months prior, and so on, up to six months prior. We then

take the simple average of six such portfolios. Hence, our first momentum portfolio consists of

1/6 of the returns of the worst performers one month ago, plus 1/6 of the returns of the worst

performers two months ago, etc.

The next two sets of portfolios are based on distributional characteristics of past returns.

The beta with respect to the market is estimated as the regression coefficient of monthly excess

portfolio returns on monthly excess market returns over the past 60 months. Standardized co-

skewness is estimated for every stock using past one-year daily stock returns. As with size and

book-to-market portfolios, value-weighted portfolios based on NYSE quintile breakpoints are

formed over the following month.

The final set of portfolios are formed according to firm leverage. Leverage is calculated

annually as total assets divided by book value, where book value is defined as above. Leverage

for a given month is defined as the mostly recently reported value at the beginning of the month.

As with size and book-to-market portfolios, we compute quintile breakpoints based on stocks

listed on NYSE and value-weighted portfolios are formed.

In addition, we create two sets of doubly sorted portfolios: one sorted on size and beta,

and another sorted on size and leverage. For both sets, we first sort every stock in our universe

by size into quintiles using NYSE breakpoints. Then, within each size quintile, we further

sort stocks into quintiles based on beta. The breakpoints for beta within each size quintile are

also calculated using only NYSE stocks. We then form value-weighted portfolios according to

the 5×5 groupings. Size and leverage portfolios are formed the same way, except that we use

leverage rather than beta.

Table 1 presents the summary statistics of the market, industry, size, book-to-market, and

momentum portfolios at the weekly frequency.8 The mean and standard deviation of the excess

portfolio returns are annualized by multiplying the mean by 52 and the standard deviation by√
52. The size effect, value effect, and momentum effect are clearly depicted by the mean
8 For brevity, we do not report the statistics of other portfolios. Additional summary statistics of the other

portfolios and other frequencies are available from the authors.
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returns of these portfolios across quintiles.

Non-synchronous trading can cause a bias in the estimation of covariance, and hence

correlation. Our portfolio constructions rebalance portfolios at the end of every month,

minimizing micro-structure bid-ask bounce effects. We focus on the weekly frequency since

this frequency represents the best trade-off to avoid the market microstructure biases at daily

frequencies, yet provide a large number of observations. We also focus on value-weighted

portfolios for the industry, size, and book-to-market portfolios to avoid putting too much

weight on small illiquid stocks. As a check, the last two columns of Table 1 list the

sample unconditional correlation with the market portfolio at both the weekly and the monthly

frequencies. The unconditional correlations calculated using weekly data and monthly data are

very similar. This evidence suggests our results are not plagued by errors in the estimation of

correlations induced by non-synchronous trading.

Table 2 lists the ten largest positive and negative excess weekly returns of the market

portfolio. The information in Table 2 is not annualized. The table shows that, aside from a

large negative return attributable to the October 1987 crash, the top ten largest weekly moves

in absolute magnitude of the market are approximately the same for both positive and negative

moves. This finding suggests that our results on asymmetric correlations are not due to under-

sampling of either the downside or upside movements relative to each other at the weekly

frequency. Our results of asymmetric correlations are also robust to excluding the October

1987 crash.

If equity and market returns are normally distributed, their exceedance correlations would

exhibit the tent-shaped distributions shown in Fig. 2. To construct plots of empirical exceedance

correlations, we take x̃ to be the standardized excess return of an equity portfolio, and ỹ to be

the standardized excess return of the market. Fig. 3 shows the exceedance correlations for the

equity portfolios at the weekly frequency.9 The figure provides clear pictorial representations

of the asymmetric movements between the equity portfolios and the market. There are two

main features of the plots. First, we observe that, far from being symmetric, the exceedance

correlations for negative exceedance levels are always greater than the exceedance correlations

for positive exceedances. There is a sharp break evident at ϑ = 0, where the conditioning

changes from calculating corr(x̃, ỹ|x̃ > 0, ỹ > 0) using the positive quadrant to corr(x̃, ỹ|x̃ <
0, ỹ < 0) using the negative quadrant. Second, instead of tapering off to zero, as in the case

of a bivariate normal distribution, the negative exceedances are either flat, or tend to increase

as ϑ becomes more negative. The positive exceedance correlations are more variable than the

negative ones, but there is some evidence that, as ϑ increases, these correlations taper off to zero

for some portfolios.
9 Plots for daily and monthly frequencies and for equal-weighted market returns are available on request. Both

the daily and the monthly frequencies exhibit the same highly asymmetric patterns as documented here for the

weekly frequency. The H statistic in the legend is the measure of this asymmetry we develop in Section 4.
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Fig. 4 shows the exceedance correlations of two representative equity portfolios. It plots

the exceedance correlations of the first and fifth quintiles of the size portfolios with the

market. The implied exceedance correlations from a bivariate normal distribution with the

same unconditional correlation as the equity portfolio and market pairs appear on the same

plot. Fig. 4 demonstrates that the negative exceedance correlations for both portfolios do

not tend towards zero, and are substantially greater than the exceedance correlations of the

bivariate normal distributions. This pattern indicates that correlations between the market and

the portfolios are significantly higher in falling markets than a normal distribution would imply.

The correlations implied by a bivariate normal distribution presents a good approximation of the

positive exceedances for the fifth size quintile, while the empirical exceedances lie above those

implied by the bivariate normal for the first size quintile. Fig. 4 suggests that, while a bivariate

normal distribution cannot match the negative exceedances from the data, it may approximate

positive exceedances for some portfolios.

The exceedance plots in Fig. 3 and Fig. 4 provide a graphical representation of the

asymmetric movements in equity portfolios. They show that correlation asymmetries exist in

the data.

3.3. Upside and downside betas

Analogous to the upside and downside exceedance correlations, we can define upside and

downside beta coefficients.10 For simplicity, we measure upside and downside betas relative

to the means µx and µy of the portfolio excess return x and market excess return y, respectively.

We define an upside beta, β+, as:

β+ =
cov(x, y|x > µx, y > µy)

var(y|x > µx, y > µy) =
σ+x
σ+y

corr(x̃, ỹ|x̃ > 0, ỹ > 0), (12)

such that σ+x =
√

var(x|x > µx, y > µy) and σ+y =
√

var(y|x > µx, y > µy). Similarly, we

can define a downside beta, β−, as:

β− =
cov(x, y|x < µx, y < µy)

var(y|x < µx, y < µy) =
σ−x
σ−y

corr(x̃, ỹ|x̃ < 0, ỹ < 0), (13)

for which σ−x =
√

var(x|x < µx, y < µy) and σ−y =
√

var(y|x < µx, y < µy).
Denoting k+ = σ+x /σ

+
y and k− = σ−x /σ

−
y we can write β+ and β− as:

β+ = k+ × ρ̄(0)+,
and β− = k− × ρ̄(0)−, (14)

10 We thank an anonymous referee for suggesting this analysis.
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where ρ̄(0)+ = corr(x̃, ỹ|x̃ > 0, ỹ > 0) is the positive exceedance correlation at ϑ = 0, and

ρ̄(0)− = corr(x̃, ỹ|x̃ < 0, ỹ < 0) is the negative exceedance correlation at ϑ = 0. The term

k+ is the ratio of upside portfolio volatility to market volatility, and the term k− is the ratio of

downside portfolio volatility to market volatility.

For a bivariate normal distibution, β+ must equal β− by symmetry. The Proposition in

Appendix B can be used to calculate β+ and β− in closed-form. Note that for a bivariate

normal distribution, k− equals k+. Betas increase on the downside if the downside exceedance

correlation increases, or if portfolios become more volatile on the downside relative to the

market. In order for the latter condition to hold, the conditional var(x̃|x̃ < 0, ỹ < 0) must

increase relative to var(ỹ|x̃ < 0, ỹ < 0), when compared to their upside counterparts.

The upside and downside betas examined here are related to, but different from, the

asymmetric betas defined by Ball and Kothari (1989), Braun, Nelson, and Sunier (1995), and

Cho and Engle (2000). The asymmetric betas previously defined in this literature depend

on the sign of unanticipated shocks realized at a given time. Our upside and downside

betas are calculated conditional on the tails of the distribution, analogous to the upside and

downside exceedance correlations. Forbes and Rigobon (1999) study the relationship described

in Eq. (14) and note that if betas are constant, asymmetric covariances may be driven by

asymmetries in volatility. Bawa and Lindenberg (1977) use upside and downside betas,

calculated conditional only on the market return, while we calculate betas conditional on

quadrants, analogous to the exceedance correlations.

3.4. Asymmetric betas in the returns data

We investigate whether empirically different upside and downside betas are the result of

asymmetries either in volatility or of correlations. Under the normal distribution, upside and

downside betas are equal. Table 3 reports β− and β+ for industry, size, and book-to-market

portfolios. The first column of Table 3 lists the unconditional beta of each portfolio. The

second column gives the theoretical value of β− = β+ assuming the null hypothesis of a normal

distribution. In all portfolios, β− > β > β+, where β is the unconditional beta. In all cases

except one, we reject the hypothesis that β− is equal to its theoretical value implied by a normal

distribution. However, on the upside, we usually fail to reject the hypothesis that β+ is equal to

its theoretically implied value.

Volatility is well-known to be asymmetric and increasing on the downside. For the market,

the downside volatility, σ−y equals 0.0148, and the upside volatiliy, σ+y equals 0.0129. The

theoretical value implied by a normal distribution is σ−y = σ+y = 0.0122. We reject the

hypothesis that the observed σ−y equals this value at a 1% confidence interval, but fail to reject

the hypohesis that σ+y equals this value at a 5% confidence interval. However, the ratio of the

downside portfolio volatility to the market k− = σ−x /σ
−
y is roughly the same as the ratio of
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upside portfolio volatility to the market k+ = σ+x /σ
+
y . The last three columns of Table 3 show

k−, k+ and a p-value of the test that k− and k+ are equal. The table shows that, in most cases,

we cannot reject that the upside and downside volatilities are equal. Hence, the statistically

significant increase in downside betas is largely driven by the increase in downside correlations

relative to upside correlations, as shown in Eq. (14).

4. A formal characterization of asymmetric correlations

We develop a summary H statistic of correlation asymmetries which quantitatively measures

asymmetric correlations. Previously, we have concentrated on asymmetric correlations relative

to a normal distribution as the null distribution, but our analysis can handle more general

distributions. The H statistic has several advantages over graphical approaches. First,

the statistic formally summarizes the magnitudes of correlation asymmetries by providing a

succinct numerical measure. That is, the degree of asymmetry can be measured and compared

across different portfolios and different frequencies. The H statistic can be used to rank

portfolios, allowing us to examine whether various characteristics of equity portfolios are

related to the degree of correlation asymmetry. Second, we can numerically compare empirical

exceedance correlations with those implied by a null distribution. By doing so, we account for

the conditioning bias in the exceedance correlations. Finally, we can formally test if exceedance

correlations in the data can be produced by candidate null distributions.

4.1. Description of the H statistic

As in Eq. (10), we denote the exceedance correlation for a given exceedance level ϑi as

ρ̄(ϑi) for standardized data (x̃, ỹ). We choose N exceedance levels θ = (ϑ1, ϑ2, . . . ϑN).

These exceedance levels are set exogenously. Suppose we wish to test if a distribution ξ(φ),

characterized by parameters φ, can produce the empirical exceedances ρ̄(ϑi) in the data. We

denote the exceedance correlations implied by distribution ξ(φ) as ρ̆(ϑi, φ).

If ξ(φ) were to perfectly explain the degree of correlation asymmetry in the data, then, on

average, we would have ρ̄(ϑi) − ρ̆(ϑi, φ) = 0. We create a quadratic statistic based on this

difference. The statisticH = H(φ) is defined as:

H =

[
N∑
i=1

w(ϑi) · (ρ̆(ϑi, φ)− ρ̄(ϑi))2
] 1
2

, (15)

for which the weights w(ϑi) ≥ 0 satisfy:

N∑
i=1

w(ϑi) = 1. (16)
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This statistic measures a weighted average of the squared differences of the exceedance

correlations implied by a model and those given by data. For example, an H = 0.116

means that, on average, the exceedance correlations in the data lie 11.6 percentage points

away from the exceedance correlations implied by the model. To briefly preview our

results, while a normal distribution would imply a conditional downside correlation of

around 76% on average, the conditional downside correlation in the data is around 87.6%.

Note that H is a non-linear function of parameteres φ for a fixed set of ϑ. To look at

correlations jointly over upside and downside movements, we set the exceedance levels θ =

[−1.5, −1.0, −0.5, 0.0, 0.0, 0.5, 1.0, 1.5]. The repeated zero is necessary because we

calculate exceedance correlations corr(x̃, ỹ|x̃ < 0, ỹ < 0) and corr(x̃, ỹ|x̃ > 0, ỹ > 0). We use

a set of positive exceedances θ+ = [0.0, 0.5, 1.0, 1.5] to look at correlations on the upside

and a set of negative exceedances θ− = [−1.5, −1.0, −0.5, 0.0] to assess correlations on the

downside. We denote the H statistics calculated from θ− and θ+ as H− and H+, respectively.

Note that H2 = (H+)2 + (H−)2, so H represents a non-linear average of H+ and H−.

In addition to a quadratic distance, we also consider the weighted sum of the differences

between the exceedance correlations in the data and those implied by the model.11 We define

the statistic AH as:

AH =

N∑
i=1

w(ϑi) · (ρ̆(ϑi, φ)− ρ̄(ϑi)). (17)

TheAH statistic may be zero or even negative if some of the exceedance correlations in the data

are less than the exceedance correlations implied by the model. In contrast, by construction the

H statistic is strictly positive.

The weights w(ϑi) are exogenously set, and are related to the level of sampling error

associated with a particular exceedance correlation. The more accurately estimated the

exceedance correlation for exceedance level ϑi, the higher we set w(ϑi). Below, we discuss

various choices for the weights w(ϑi).

The H statistic can be written in matrix notation. We denote ρ̄(θ) as the N vector of

exceedances from data, and ρ̆(θ, φ) as the N vector of exceedances implied by distribution

ξ(φ):

ρ̄(θ) =



ρ̄(ϑ1)

ρ̄(ϑ2)

. . .

ρ̄(ϑN )


 and ρ̆(θ, φ) =



ρ̆(ϑ1, φ)

ρ̆(ϑ2, φ)

. . .

ρ̆(ϑN , φ)


 . (18)

Following Eq. (18),H can be expressed as:

H =
√
(ρ̄− ρ̆(φ))′Ω−1(ρ̄− ρ̆(φ)), (19)

11 We thank an anonymous referee for suggesting this analysis.
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in which we suppress the dependence on θ. In Eq. (19), Ω = Ω(θ) is a fixed diagonal weighting

matrix dependent only on θ, which takes the form:

Ω =



w(ϑ1)

−1 0 . . . 0

0 w(ϑ2)
−1 0

...
. . .

...

0 0 . . . w(ϑN)
−1


 . (20)

If ξ is normally distributed, the implied exceedance correlations ρ̆(θ, φ) can be calculated

in closed-form using the Proposition in Appendix B. We detail the calculation of the standard

errors for H in Appendix C.

4.2. Choices of weights

The H statistic can be interpreted as the square root of a quadratic statistic. For the quadratic

statistic J , if we suppress θ, J can be written as:

J = (ρ̄− ρ̆(φ))′Ω−1(ρ̄− ρ̆(φ)). (21)

In this form, the efficient choice for Ω, ΩE , is:

ΩE = var(ρ̄)− 2cov(ρ̄, ρ̆(φ)) + var(ρ̆(φ)), (22)

for the case thatN is less than the number of parameters in φ. We choose not to use the efficient

weighting matrix for two reasons.

First, if the data are fixed, or we estimate ρ̄(θ) without error, then ΩE = var(ρ̆(θ, φ)) and

J would have a conventional χ2N distribution. For a normal distribution, there is only one

degree of freedom, φ = ρ, in the parameters of the bivariate normal, which determines the

exceedance correlation. Hence, this approach would mean only one exceedance correlation

can be incorporated in J . In the case of a normal distribution with N > 1, ΩE = D̆′ΓD̆,

where D̆ = ∂
∂φ
ρ̆(θ, φ) is singular because there are more restrictions imposed by exceedance

correlations than degrees of freedom allowed by the parameters. However, we can capture the

notion of using weights inversely proportional to the sample variance of ρ̆(θ, φ), σ2(ρ̆(ϑi, φ))

by using a standardized measure of the inverse of σ2(ρ̆(ϑi, φ)):

w(ϑi) =
σ−2(ρ̆(ϑi, φ))(∑N
j=1 σ

−2(ρ̆(ϑj , φ))
) . (23)

The larger the sampling variance of ρ̆(ϑi, φ), the smaller the weight placed on that exceedance.

We calculate σ2(ρ̆(ϑi, φ)) using the δ-method:

σ2(ρ̆(ϑi, φ)) = D
′
2iΓD2i (24)
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for which D̆i is:

D̆i =
∂

∂φ
ρ̆(ϑi, φ). (25)

The difference between this choice of Ω and the efficient Generalized Method of Moments

(GMM) choice is that Ω is diagonal, to avoid singularities, and is normalized to unity.

The second reason we choose not to use the efficient weighting matrix is that each different

model or distribution ξ implies a different weighting matrix. The first choice of weights above is

not immune to this critique. Since each model implies a different set of weights, theH statistics

are not directly comparable across models. Like the constant weighting matrix of Hansen and

Jagannathan (1997) used to compare different pricing kernels with the same data, we would like

to use a constant weighting matrix to compare different models with the same data. The next

two choices of weights do not depend on any particular distribution, and therefore can be used

to compare different models regarding their estimates of correlation asymmetry.

The second set of weights is held constant across models, and takes into account some notion

of sampling error. We note that increasing the number of observations increases the accuracy of

the estimate. For the normal distribution, covariance sampling error is of the order 1/
√
T , where

T is the sample size. One way to account for sampling error is to set the weights proportional

to the number of observations used to calculate the exceedance correlations. Hence, a second

choice for w(ϑi) uses weights

w(ϑi) =
Ti(∑N
j=1 Tj

) , (26)

such that Ti is the number of observations used in calculating ρ̄(ϑi), the sample exceedance

correlation at the exceedance level ϑi. This choice of weights places more emphasis on

exceedance correlations for which more data are available.

Finally, equal weights may be used:

w(ϑi) =
1

N
. (27)

This choice places greater weight on observations in the extreme tails of the distribution than

the previous choice of weights.

Our preferred form of the H statistic uses the weights presented in Eq. (26). However, we

show all of our results to be robust to different choices of weights.

4.3. Magnitudes and tests of asymmetric correlations

For various pairs of standardized excess returns of the market and stock portfolios (x̃, ỹ), we

estimate the unconditional correlation ρ and calculateH under the null hypothesis of a bivariate
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standard normal distribution with unconditional correlation ρ. We estimate the standard errors

ofH , H−, H+, and AH by GMM using six Newey-West lags as described in Newey and West

(1987).

TheH statistics capture the same features as the exceedance plots. H statistics are reported

in the legends of Fig. 3 corresponding to the various portfolios. The larger the difference in

positive and negative exceedance correlations, the larger the H statistic. With the H statistic, a

numerical measure of the correlation asymmetry can now be assigned to each portfolio.

4.3.1. Impact of weights and frequencies

Table 4 presentsH statistics using the three choices of weights for the five size-sorted portfolios

at daily, weekly, and monthly frequencies. The size portfolios are representative of the results

obtained for all the portfolios. Columns 1 and 2 of Table 4 present the H statistics weighted by

the variances in the normal distribution using Eq. (23). Columns 3 and 4 are weighted by the

number of observations used to construct the sample exceedances using Eq. (26). The last two

columns present equal-weightedH statistics using Eq. (27).

There are two major results of Table 4 which we present as Empirical Facts.

Empirical Fact 1. Asymmetric correlations in the data lead us to reject the null hypothesis of

a normal distribution.

Empirical Fact 2. The magnitude of the correlation asymmetries is unrelated to the horizon.

In Table 4 the p-values of the H statistics are all less than 2.5%, across all choices of weights

and frequencies, and therefore are not reported. There is also no discernable pattern across the

sampling frequencies. For the smallest and the largest size portfolios, correlation asymmetries

with the market portfolio are the greatest at the monthly frequency with all three weight choices.

The equally weighted H statistic is always larger than the other two choices of weights.

This result occurs because the largest sampling error in the normal distribution and the smallest

number of observations occur at the largest absolute value exceedance levels at ϑ = ±1.0, 1.5.
At these exceedances, in particular for the negative exceedances, the largest discrepancies

between the normal distribution and the sample exceedance correlations arise (see Fig. 3 and

Fig. 4). These discrepancies are given more weight in the equally weightedH statistic.

These results extend to other portfolios. Since the rejection of the normal distribution

and the patterns of asymmetries are robust to the weighting choice and the frequency of

observations, we concentrate on using weights proportional to the number of observations in

each sample exceedance as suggested in Eq. (26) and analyze the weekly frequency for the rest

of the paper.
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4.3.2. Characterizing asymmetric correlations

In order to further characterize the asymmetric correlations in equity portfolios, we examine

the relationship between different portfolio sortings and their H statistics. To estimate extreme

correlations requires us to focus on the observations lying in the tails where there are relatively

few data points. TheH statistic uses the full time series sample of returns to measure correlation

asymmetries. To maintain the use of the full sample, we sort portfolios of stocks by various

cross-sectional characteristics and examine their correlation asymmetries.

Table 5 presents the H statistics across a wide selection of portfolios, assuming the null

hypothesis of a bivariate normal distribution. Panels A and B examine the properties of

portfolios formed by industry classifications, size, book-to-market and momentum. Panels E

through G investigate the asymmetry properties of portfolios formed by past beta, co-skewness,

and leverage. For all panels, the first four columns of Table 5 show the H , H−, H+, and

AH statistics. The H statistics for all portfolios have p-values smaller than the 2.5% level of

significance, just as Table 4 show for the size portfolios. The AH statistics also have p-values

smaller than 2.5%. The average H− statistic across all portfolios is 0.1161, while the average

H+ statistic is only 0.0300. We therefore observe the following:

Empirical Fact 3. Correlation asymmetries are greater for extreme downward moves.

Further, only nine portfolios out of 43 portfolios reject at the 5% significance level that the

upside correlations can be reproduced by a theoretical bivariate normal distribution. In contrast,

allH− statistics reject this hypothesis at the 1% level of significance. In calculating the average

H statistics across portfolios in Table 5, we observe:

Empirical Fact 4. Conditional on downside and upside moves, on average the observed

correlations between a portfolio and the market differ from the correlations implied by a normal

distribution by 8.48%. Conditional on just downside moves, the average difference is 11.61%.

The sixth and seventh columns of Table 5 report standardized measures of skewness and

co-skewness, and their standard errors. In Table 5, skewness and co-skewness are defined as:

skewness =
E[ẋ3]

(E[ẋ2])3/2
, (28)

and co-skewness =
E[ẋẏ2]√
E[ẋ2]E[ẏ2]

. (29)

In Eqs. (28) and (29), ẋ is the de-meaned excess return of the portfolio x, ẋ = x − E(x) and ẏ

is the de-meaned excess return of the market y, ẏ = y−E(y). All standard errors are calculated

by GMM using 6 Newey-West lags.
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Table 5 also shows that, at the weekly frequency, each of the portfolios are both negatively

skewed and are negatively co-skewed with the market. This finding may indicate that there

is some common component among all three asymmetry statistics. To ensure that we are not

capturing the same information in H as skewness and co-skewness, we present the correlation

among these statistics across the 43 portfolios in Table 6. The correlation of H with skewness

is 0.243, and with co-skewness is only 0.150. We also find similar correlation results using

AH instead of H . This finding indicates that H is capturing something that is fundamentally

different from skewness or co-skewness. Skewness and co-skewness are much more highly

correlated at 0.951, as are H and AH (correlation of 0.964).

The final column of Table 5 reports the betas of the portfolios with respects the market.

The correlations between the H statistics, skewness, co-skewness, and beta are also reported

in Table 6. All measures of return asymmetries appear to have little positive relation with

systematic risk. In particular, the H statistics are negatively correlated (-0.274) with the beta.

Table 5 reveals that certain portfolios exhibit greater asymmetric correlations than others,

leading to:

Empirical Fact 5. Petroleum and utility industries have the most asymmetric correlations,

while financial firms and basic industries exhibit the lowest asymmetric correlations.

Among industries, petroleum (H = 0.180) and utilities (H = 0.145) are the most

asymmetric, while financials and basic industries exhibit the least asymmetric correlations.

Petroleum and utilities have low betas (0.839 and 0.630 respectively), suggesting that investing

in these traditional defensive sectors may be less beneficial than popularly believed. Note that

these industries have the least negative skewness and co-skewness, and would appear, by these

measures, to be the most normal.

Among size-sorted stock portfolios, we observe the following:

Empirical Fact 6. Decreasing size increases the correlation asymmetry.

This pattern has been previously documented in a GARCH specification by Kroner and

Ng (1998) and Conrad, Gultekin, and Kaul (1991). The book-to-market portfolios also display

an increasing pattern ofH statistics going from growth to value stocks, leading to the following:

Empirical Fact 7. Value stocks are more asymmetric than growth stocks.

While Fama and French (1993) observe size and value premia, portfolios formed on these

characteristics may be more risky by their greater correlation asymmetry than by measuring
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risk only by second moments. In both the size and book-to-market portfolio sortings, the H

statistics are monotonic, unlike the point statistics of the skewness and co-skewness measures.

Moreover, the latter two measures do not display any discernable pattern.

Turning to the momentum quintiles, we observe:

Empirical Fact 8. The past loser portfolio has greater correlation asymmetry than the past

winner quintile.

In the momentum strategy postulated by Jegadeesh and Titman (1993), investors sell

short past loser stocks and invest in past winner stocks. In periods of extreme downside

moves, the loser portfolio is more likely to lose more money than estimated under constant

correlations, thus affording momentum players even greater rewards in down markets. This

effect exacerbates the puzzle posed by the momentum effect. Like Chen, Hong, and Stein

(2001) and Harvey and Siddique (2000), we find that the past winner portfolio is more

negatively skewed than the past loser portfolio, which is consistent with a premium associated

with skewness. However, the relationship between H and skewness or co-skewness goes in the

opposite direction, such that the past losers are the least skewed or co-skewed, and are the most

asymmetric.

In Panels E through G of Table 5, we search for additional determinants of asymmetries.12

We first characterize the correlation asymmetries of portfolios sorted by systematic risk,

measured by the beta. The portfolio of lowest beta stocks is the portfolio that exhibits the

greatest correlation asymmetry. Lower risk firms exhibit more correlation asymmetries than

higher risk firms. Note that co-skewness monotonically increases with beta, while skewness

has no discernable pattern.13

The relationship between beta and correlation asymmetry is robust to size controls. In

Table 7, we sort the stocks twice, to examine the interaction between size, systematic risk,

and correlation asymmetries. For each month, we first sort stocks in our universe into quintiles

by size. Then within each size quintile, we perform a second sort of stocks into quintiles by

past estimates of beta. We construct value-weighted portfolios within this 5×5 grouping. We

find that by controlling for size, riskier firms have fewer correlation asymmetries than less risky

firms. In Table 7, we observe that H statistics decrease going down the rows, where we sort

by size. Going across the columns, where we control for size and sort by beta, the lowest

beta stocks, which appear in the first column of data, have the highest H statistics. Thus, we

conclude that:
12 We also calculatedH statistics for portfolios sorted by volatility (no relationship), skewness (results similar to

co-skewness), turnover (lower H for low turnover stocks), and earnings yield (results similar to book-to-market).
13 We also sorted on Scholes and Williams (1977) betas to alleviate potential concerns over non-synchronous

trading. We found slightly lower H statistics, but the qualitative results were unchanged.
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Empirical Fact 9. Increasing beta decreases correlation asymmetry.

When the sorting criteria is individual stock’s past co-skewness in Panel B of Table 5, we do

not find any pattern between past co-skewness and correlation asymmetry. This results obtained

from sorting stocks by co-skewness suggest that co-skewness measure presented in by Harvey

and Siddique (2000) is not related to the degree of correlation asymmetry in the data. There

is also no pattern in the skewness or co-skewness of portfolios formed by past conditional co-

skewness. The risk measured by beta of stocks sorted by past co-skewness is near market risk

across all quintiles.

Finally, we observe that the most leveraged stocks have the greatest correlation asymmetry.

This effect is weakly monotonic, and not reflected in either the skewness or the co-skewness

measures. Bekaert and Wu (2000) find that the leverage effect accounts for only a small

proportion of asymmetric covariance. In Table 8 we examine the effect of leverage on

correlation asymmetry when controlling for size. We observe, as expected from Empirical

Fact 6, that H statistics decrease as stocks become larger. This pattern is most noticeable when

making comparisons going down rows. However, when size is held constant, we observe the

following:

Empirical Fact 10. There is no relation between leverage and correlation asymmetries

controlling for size.

The lack of a pattern between leverage and correlation asymmetry within size groups may

account for the weak support Bekaert and Wu (2000) uncover for the leverage effect as an

explanation for covariance asymmetry.

4.3.3. Summary of empirical facts

We find that correlation asymmetries in equity portfolios are not fully explained by traditional

skewness and co-skewness measures. These correlation asymmetries persist across daily,

weekly, and monthly frequencies, and are greatest for downside moves. Correlation asym-

metries are larger for small size, high book-to-market ratios, and low past return portfolios.

This observation suggests that size and value strategies are exposed to more contemporaneous

downside moves with the market, which is not reflected in measures that solely capture second

moments, such as volatility. Momentum strategies are more profitable than they first appear,

because in times of market distress, loser stocks, are more likely to fall with the market than

past winners. High beta portfolios are less asymmetric than low beta portfolios. Once we have

controlled for size, there is no discernable pattern between correlation asymmetries and the
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leverage of firms.

5. Empirical models of asymmetric correlations

The previous section examines the characteristics of asymmetric correlations relative to a

normal distribution. We now seek to explain the correlation asymmetries in the data by using

richer models of stock returns which can potentially capture the asymmetric movements. We

evaluate several empirical reduced-form models by using the H metric, which measures how

closely each model can match the correlation asymmetries in the data. Section 5.1 describes the

models, Section 5.2 presents the empirical results of the H statistics using these models as the

null distribution, and Section 5.3 provides some intuition behind the rejection patterns.

5.1. Description of models

Our choice of models is motivated by examining several popular models used to capture

asymmetries between upside and downside movements in stock returns. We use weekly data,

and following Braun, Nelson, and Sunier (1995), Cho and Engle (2000), and others, we work

with independent pairs of stock portfolio and aggregate market observations.

The first model is the GARCH-M Model with asymmetry. The GARCH-M Model uses a

time-varying expected returns model, in which volatility risk is priced in the expected return,

with the conditional covariances set according to a GARCH process. The GARCH process

incorporates asymmetry which allows covariances to increase on the downside. The second

model is the Jump Model. This model layers negative jumps, which are perfectly correlated

in time for both returns, on top of a bivariate normal distribution to produce larger downside

correlations. The last two models are regime-switching (RS) models. The RS Normal Model

mixes two different bivariate normal distributions. This process allows returns to switch to a

regime with lower conditional means, higher volatility, and higher correlations. Transitioning

into this regime increases downside correlations. The RS-GARCH Model combines elements

of the switching behavior of pure RS Normal Models with the volatility persistence of GARCH

processes.

We note that other empirical models capable of producing asymmetric correlations are

available. One large class of models that we do not pursue here are continuous-time stochastic

volatility models, in which shocks to conditional mean and conditional volatility factors may be

correlated, with jumps in either prices or volatility. This class of models is very hard to estimate

(see e.g., Pan, 2001) particularly on multivariate series, and it is not clear that these models

would produce markedly different results from the discrete-time weekly data. Our Jump Model

captures jumps in returns, but without stochastic volatility. The regime-switching models we

estimate can both capture stochastic volatility and jump effects through regime switches.
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Other models we do not investigate involve residuals drawn from distributions that reflect

higher moments. One such model is Harvey and Siddique (1999), which draws from a non-

central t-distribution to capture skewness and kurtosis. In a multivariate application, this model

is computationally intensive because maximum likelihood methods cannot be used. However,

the mixture of normal distributions we employ can also match any degree of conditional

skewness and kurtosis, as noted by Bekaert, Erb, Harvey, and Viskanta (1998).

5.1.1. An asymmetric GARCH-M model

As before, we denote the excess returns of the equity portfolio by x, and the excess market

returns by y. We model the pair (xt, yt) as:

xt = δ covt−1(xt, yt) + ε1,t, (30)

and yt = δ vart−1(yt) + ε2,t. (31)

We take εt as a bivariate normal distribution with zero means and variances equal to Ht. The

coefficient δ is the price of risk and is positive in the Capital Asset Pricing Model (CAPM).

We can model the conditional covariances Ht of (xt, yt) as a GARCH model, and introduce

asymmetry using a multivariate version of Glosten, Jagannathan, and Runkle (1993):

Ht = C
′C + A′Ht−1A+B′εt−1ε′t−1B +D

′ηt−1η′t−1D, (32)

for which

ηt−1 = εt � 1{εt−1<0}. (33)

The symbol � is a Hadamard product representing element by element multiplication, and

1{εt−1<0} is a vector of individual indicator functions for the sign of the errors for x and y.

The matrices A, B, C, and D are symmetric to ensure that Ht is positive definite. Shocks

on the downside increase the variance, as well as the covariance through the asymmetric term

in Ht, but they also increase the conditional mean, by allowing Ht to enter the conditional

mean shown in Eqs. (30) and (31). Eq. (32) is the asymmetric Baba, Engle, Kraft, and Kroner

(BEKK) model of Engle and Kroner (1995), and its multivariate form of asymmetry is a special

case of the nonmenclature system of Kroner and Ng (1998). Similar GARCH-M Models with

asymmetry are estimated by Bekaert and Harvey (1997), De Santis, Gerard, and Hillion (1999),

and Bekaert and Wu (2000).

5.1.2. Bivariate normal distribution with Poisson jumps

Das and Uppal (2001) recommend a model in which returns are drawn from a bivariate normal

distribution that allows negative jumps. The jumps occur simultaneously in time for both
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variables, but the size of the jumps can differ. This jump allowance induces higher correlation

with downward moves. The model is given by:

Xt = µ+ Σ
1
2 εt +

nt∑
i=1

Yt (34)

with Xt = (xt, yt)
′. This model incorporates a Poisson jump process with intensity λ, with

jump distribution Yt, which is a bivariate normal distribution with means equal to µj and

variances equal to Hj. There are nt actual jumps during each period. Das and Uppal discuss

how this model can produce unconditional skewness and kurtosis which match equity data.

5.1.3. Regime-switching bivariate normal distribution

The Regime-Switching Bivariate Normal (RS Normal) Model draws the portfolio returnsXt =

(xt, yt)
′ from one of two bivariate normal distributions of returns, depending on the prevailing

regime st = 1, 2 at time t:

Xt = µ(st) + Σ
1
2 (st)εt. (35)

In this model, the error term εt is independently and identically distributed as a bivariate normal

distribution with zero means and variances equal to I . Following Hamilton (1989), st follows a

Markov Chain with transition probability matrix Π, given by:

Π =

(
P 1− P

1−Q Q

)
. (36)

In Eq. (36), P = Pr(st = 1|st−1 = 1) and Q = Pr(st = 2|st−1 = 2).
This model has been used by Ang and Bekaert (2000) to review international asset allocation

under higher correlations with downside moves in country returns. Ang and Bekaert show that

this model captures a large part of the asymmetric correlations in international equity markets

of developed countries. In this model, asset returns are allowed to switch into a regime with

higher correlations and volatility, reflecting potentially lower means.

5.1.4. A regime-switching GARCH model

In the Regime-Switching GARCH (RS-GARCH) Model, portfolio returnsXt = (xt, yt)′ follow

the process:

Xt = µ(st) + εt, (37)

with two regimes st = 1, 2 and the error term εt distributed as a bivariate normal distribution

with zero means and variances equal toHt(st). The regime variable st follows the same Markov
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Chain with transition probability matrixΠ given by Eq. (36). The conditional covarianceH t(st)

is given by:

Ht(st) = C(st)
′C(st) + A(st)′Ht−1A(st) +B(st)′ε∗t−1ε

∗′
t−1B(st). (38)

In Eq. (38), the forecast error ε∗t−1 is given by:

ε∗t−1 = Xt−1 − Et−2(Xt−1)
= Xt−1 − (pt−1µ1 + (1− pt−1)µ2), (39)

for which µi = µ(st = i), and pt−1 is the ex-ante probability pt−1 = p(st−1 = 1|It−2).
Following Gray (1996) Ht−1, is given by:

Ht−1 = Et−2(Xt−1X ′t−1)− Et−2(Xt−1)Et−2(Xt−1)′
= pt−1(µ1µ′1 +Ht−2,1) + (1− pt−1)(µ2µ′2 +Ht−2,2)

−[pt−1µ1 + (1− pt−1)µ2][pt−1µ1 + (1− pt−1)µ2]′, (40)

such that Ht−2,i = Ht−2(st = i). The matrix C(st) is symmetric, but for reasons of parsimony

we restrict A(st) and B(st) to be diagonal.

This RS-GARCH Model uses an RS version of the Engle and Kroner (1995) BEKK

multivariate GARCH model. It uses a multivariate generalization the algorithm presented in

Gray (1996), and reflected in Eq. (40) to re-combine the lagged RS conditional covariance

term. The model combines the switching character of the RS Normal Model, with the volatility

persistence of GARCH. One of the features of this model is that the volatility can also switch

to a regime which reflects both higher volatility and less persistency, with a switch in the

conditional mean. Glosten, Jagannathan, and Runkle (1993) discuss the pure asymmetric

GARCH specifications, which cannot easily capture this feature.

5.2. Model performance

In this section, we use theH statistic as a criterion to judge the adequacy of a model to match the

asymmetric correlation found in data. We consider a model to do an adequate job of capturing

the correlation asymmetry in the data if that model’sH statistic cannot be statistically rejected.

As a second measure, since the H statistic measures the difference between the empirical

conditional correlations and the conditional correlations implied by the models, we consider

the average magnitude of H statistics across portfolio pairs. We calculate the H statistics from

the models using fixed weights from Eq. (26), which place more weight on sample exceedance

correlations that have been calculated with more observations. These weights ensure that the

same weighting matrix is used across all four models. In this section, we focus our analysis on

the portfolios formed by industry classifications, size, book-to-market ratios, and past returns.
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Table 9 summarizes the rejections across the 28 portfolios. The GARCH-M Model is

rejected by 6 portfolios at the 5% level, the Jump Model is rejected by 21 portfolios, and the RS

Normal Model is rejected by 6 portfolios. At the 5% level, the RS-GARCH Model is rejected

by 4 out of 28 portfolios, giving the RS-GARCH Model the best performance by this criterion.

However, the model still leaves some amount of the correlation asymmetry unexplained. The

full details of theH statistics on the four empirical models summarized by Table 9 are listed in

Table 10.

Table 10 reports theH statistic for each portfolio. To summarize each model’s performance,

we tabulate how many times a particular model produces the smallestH statistic out of all five

models. In all cases, the normal distribution’s H statistic is higher than the best-performing

empirical model presented in Section 5.1. The Jump Model never produces smallest statistic, the

GARCH-M Model produces the smallest statistic once, and the RS-GARCH Model produces

the smallest statistic in five cases. The RS-Normal Model presents the strongest alternative,

producing the lowestH statistic in 22 cases.

Reviewing the magnitudes of the H statistics in Table 10, we find that, while the RS-

GARCH Model rejects the null hypothesis in the fewest cases, it can be a very poor fit of

the data for some portfolios. TheH statistic for the RS-GARCH Model is greater than 0.13 for

6 out of 28 portfolios. The averageH statistic across all 28 portfolios for the RS Normal Model

is 0.0564, while the averages for the GARCH-M Model, the Jump Model, and the RS-GARCH

Model are larger: 0.085, 0.090, and 0.096, respectively. In comparison, the average H statistic

for the normal distribution is 0.095. Hence, while theH statistic rejects the RS-GARCH Model

the least number of times, the RS Normal Model provides the best fit of exceedance correlations.

The same portfolios whose empirical correlation asymmetry proved difficult to match using

the normal distribution, tend to make a difficult fit across all four models. In general, the

petroleum and utility industries have the highest H statistics across models. Portfolios formed

of small stocks, value stocks, and past loser stocks also tend to have the highestH statistics.

5.3. Explaining the model performance

In explaining the performance in matching the correlation asymmetries, it is instructive to

examine a portfolio which no model appears to fit. Fig. 5 shows the exceedance correlations

from the third momentum quintile, which rejects all four empirical models. The sample

exceedance correlations are given by the solid line. Taking each model in turn, Fig. 5 shows

that the GARCH-M Model produces exceedance correlations which are asymmetric but go the

wrong way. That is, the sample exceedance correlations increase on the downside, for negative

ϑ, but the GARCH-M Model exceedance correlations are higher on the upside, for positive

ϑ. The Jump Model produces exceedance correlations which have a tent-shape, much like the

normal distribution. The RS Normal Model produces exceedance correlations with the correct
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asymmetry, but decay too quickly on the downside. Finally, the RS-GARCH Model produces

a small amount of correlation asymmetry in the right direction, but is too persistent on both the

downside and the upside.

The exceedance correlation asymmetry for the GARCH-M Model in Fig. 5 is shared by all

other portfolios. Although this model allows the conditional covariance to increase in response

to an unanticipated shock in returns, the expected return of both the market and the portfolio also

increase in this model. Eq. (30) shows that, for a positive price of risk δ, both the conditional

mean of the market and the stock portfolio may increase when the conditional covariance

increases. Therefore, while the conditional covariance increases through a negative shock in

expected returns, the expected return also increases, making it more likely to draw returns on

the upside. However, the GARCH effect induces persistence in the exceedance correlations

across increasing or decreasing ϑ, which the normal distribution cannot capture.

To illustrate the impact of the negative price of risk on the results of the GARCH-M Model,

we turn to Fig. 6. This figure shows exceedance correlations for the smallest size portfolio

for all four models in each panel, against the sample exceedance correlations. The top left-

hand panel shows the exceedance correlations for the GARCH-M Model. The estimated

exceedance correlations implied by the model are given by circles. If we make the price of

risk to be negative, the GARCH-M Model closely matches the sample exceedance correlations.

This effect is the main failing of the GARCH-M Model: asymmetric exceedance correlations

can be produced, but the asymmetry goes the wrong way unless a negative price of risk is

employed. Economic models do not necessarily rule out negative prices of risk, but the

economic plausibility of negative prices of risk and empirical estimates of the market risk

premium of the U.S. market weigh heavily against this assumption.

As in Fig. 5, the Jump Model in Fig. 6 produces a tent shape. This general result is the

reason behind the poor performance of this model. The Jump Model performs poorly because

it fails to capture the persistence in volatility. The other three models capture this feature of the

data. The Jump Model can be interpreted to be a special case of the RS Normal Model such

that one regime can be interpreted as a jump regime. The probability of entering this regime is

positive, but the probability of remaining in this regime is zero. Examining international data,

Ang and Bekaert (2000) find this crash-like regime to be persistent, but it cannot be captured in

a jump model, which assumes an immediate exit from this regime.

To understand why the Jump Model produces mostly tent shapes in the exceedance plot,

consider the following. Ordinarily, returns are drawn from a normal distribution, which has

a tent shape. Occasionally, when a jump occurs, returns are drawn from another normal

distribution. These jumps are not persistent, and the effect mirrors the tent shapes of an ordinary

normal distribution. The model produces a correlation asymmetry, which is very small and not

persistent across exceedance levels. Changing the parameters of the Jump Model has little effect
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on the tent-shape of its exceedance correlations. The top right hand panel of Fig. 6 shows what

happens when the correlation between the market and stock portfolio increases in the jump

distribution. In this case, the tent shape has moved upwards but retained its shape. A similar

effect occurs when increasing the jump intensity.

Fig. 5 demonstrates that RS Normal Model may produce exceedance correlations that

decline too fast when the exceedance levels ϑ approach positive or negative infinity. Exceedance

correlations can be too persistent across ϑ for the RS Normal Model to mimic, such that this

model occasionally fails. Empirical estimates of this model produce both a “normal regime,”

with high expected returns, low volatilities, and low correlations, and a “downside” regime,

with low expected returns, high volatilities, and high correlations.

The bottom left panel of Fig. 6 shows that merely increasing the probability of staying in

the down-regime does not necessarily increase the degree of asymmetry. The down-regime

corresponds to st = 2, and the probability of staying in this regime can be isolated as Q in the

Markov Chain of Eq. (36). If the down-regime is not at all persistent (Q = 0), the RS Normal

Model perform like the Jump Model, producing tent-shapes. Also, the case of Q = 1 − P
is a simple switching model, in which the regimes have no persistence. This case is shown

in the bottom left panel of Fig. 6. The persistence through time of the two regimes drives

the persistence across exceedance levels ϑ of the exceedance correlations. Unfortunately, the

persistence across the exceedances, when ϑ approaches positive or negative infinity, cannot be

matched by the RS Normal Model.

The final model, the RS-GARCH Model, employs persistent covariance and allows regime

switching, leading to a more successful match of the persistence in the exceedance correlations

across the exceedance levels. The bottom right panel of Fig. 6 shows the RS-GARCH Model

exceedance correlations plotted against the sample exceedance correlations. The panel also

shows what happens to the exceedance correlation when the probability of staying in the normal

regime increases, given that we are in the normal regime (or P in Eq. (36) if st = 1). In this

case, the exceedance correlations switch sign, allowing to increase on the upside. In general, the

superior performance of this model arises from its ability to produce asymmetries of the right

direction, as does the RS Normal Model, and adding the ability to match exceedance correlation

persistence across ϑ.

In summary, of the four discrete-time models we consider, no single model captures all of

the asymmetry in correlations observed in the data. The GARCH-M Model produces correlation

asymmetry which is persistent across the exceedance levels, but this correlation asymmetry goes

the wrong way unless a negative price of risk is estimated. The Jump Model is rejected almost

uniformly across all the portfolios, showing the importance of allowing for persistent volatility

and covariance effects. Volatility persistence cannot be captured in a pure jump model. The

RS Normal Model can produce the correct sign of correlation asymmetry and provides the best
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fit with the data. It generally produces the lowest H statistics across all the models considered

here. However, this model may not match the persistence of the asymmetries across exceedance

levels. The RS-GARCH Model is rejected by the data least frequently, and is able to match the

persistence of the asymmetries across exceedance levels. Our results point to the need for

the development of more sophisticated empirical models to capture the empirical asymmetric

correlations. These models must capture persistent volatility effects, as well as capture more

asymmetric correlation patterns than the models presented here.

6. Conclusion

Correlations between domestic equity portfolios and the aggregate market are greater in

downside markets than in upside markets. To quantify these effects, we develop anH statistic to

measure the asymmetries in correlations. Unlike previous literature, which examines covariance

asymmetry in the context of the class of asymmetric GARCH models, we can assess the extent

of correlation asymmetry in the data relative to any particular model. Moreover, the statistic we

develop has the advantage of allowing us to succinctly measure correlation asymmetries, easily

compare the degree of asymmetries across portfolios, frequencies, and null distributions, and

formally conduct statistical tests of asymmetries.

Asymmetries between upside and downside correlations exist between stocks in a single

market, as well as across markets internationally. We find that correlation asymmetries

are fundamentally different from other measures of asymmetries, such as skewness and co-

skewness, and tend to be inversely related to systematic market risk. We examine the sources of

correlation asymmetries and find greater asymmetries among smaller stocks, value stocks, and

recent loser stocks. Correlation asymmetry is the largest among traditional defensive sectors,

such as petroleum and utilities. We find that riskier stocks, as measured by a higher beta, have

lower correlation asymmetry, and, controlling for size, the degree of correlation asymmetry

is unrelated to leverage. Overall, a typical portfolio exhibits correlations conditional on the

downside that differ from those of a normal distribution by 11.6%.

We examine several empirical models to see if they can account for the correlation

asymmetries in the data. Normal distributions are, not surprisingly, rejected by the data. We

estimate an asymmetric GARCH-M model, a Poisson jump model, a regime-switching normal

distribution model, and a regime-switching GARCH model. Of these, the Regime-Switching

Normal Model is the best able to match the magnitude of empirical correlation asymmetries,

while the Regime-Switching GARCH Model is statistically rejected least often. The popular

CAPM-based GARCH-M models can produce asymmetric correlations, but these correlations

go the wrong way unless a negative price of risk is used. Our Jump Model fail to capture the

persistence of covariance dynamics in the data, and capture almost no asymmetric correlation
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effects. While regime-switching models perform best in explaining the amount of correlation

asymmetry reflected in the data, these models still leave a significant amount of correlation

asymmetry in the data unexplained.

Our results have implications for empirical and theoretical asset pricing. Harvey and

Siddique (2000) demonstrate that non-linearities in third moments are priced. Since asymmetric

correlations are different from skewness or co-skewness, asymmetric correlations may also play

a role in an asset-pricing model. One example where these effects would arise is an economy

with a representative agent with first order risk aversion (see Ang, Bekaert, and Liu, 2000) or

Loss Aversion (see Barberis, Huang, and Santos, 2001) preferences. Such an investor treats

gains and losses asymmetrically and is very averse to downside risks. OurH statistic quantifies

asymmetric correlation risk on the downside, which may also be priced. Further, asymmetric

correlations also have implications for portfolio allocation and risk management.

Our work raises the question: why do asymmetric movements in asset returns arise in

the first place? They may reflect some particular structure of the macro-economy or some

intricate interactions of economic agents in equilibrium. While Dumas, Harvey, and Ruiz

(2000) show that aggregate characteristics affect returns across countries, we show that cross-

sectional firm characteristics are related to the magnitudes of asymmetric correlations within a

domestic market. Modern equilibrium models with either noise traders and frictions (Kyle and

Xiong, 2001), or disparately informed agents with frictions (Hong and Stein, 2001) explain little

about the relation between firm characteristics and asymmetric movements. These authors do

not model cross-sectional differences between individual asset characteristics. Our work shows

that these differences in firm characteristics are related to the asymmetries in asset returns.
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Appendix A. Solution of the asset allocation problem
The first order conditions (FOC) of the investor’s investment problem are:

Et(W
−γx) = 0, (A-1)

where W = erf + α(ex − erf ) + α(ey − erf ).
Since x and y have the same distribution, the portfolio holding in each asset is identical, even though these

assets are correlated. This expectation can be computed by numerical quadrature, described in Tauchen and Hussey
(1991), as follows:

M∑
s=1

(W−γ
s xsps) = 0, (A-2)

where the M values of the risky asset returns ({xs}Ms=1 and {ys}Ms=1) and associated probabilities are chosen by an
optimal quadrature rule. Ws represents the investor’s terminal wealth when the risky asset returns are xs and ys.
Tauchen and Hussey (1991) demonstrate that quadrature is very accurate using few optimally chosen points. The
FOC in Eq. (A-2) can be solved over α by a non-linear root solution.

When x and y are bivariate normally distributed, Gaussian quadrature is used with 5 points to approximate the
distribution of x and y. Hence, we use M = (5 × 5), or 25 quadrature points. Correlation is achieved by using a
Cholesky decomposition transformation.

When X = (x, y)′ is drawn from the RS Model, we approximate the joint distribution as follows. For regime
st = 1, we approximate the normal distribution, N(µ1,Σ1), using 25 quadrature points. For regime s t = 2,
another 25 quadrature points are used. Conditional on regime s t = 1, we use weights P and 1 − P , where
P = Pr(st = 1|st−1 = 1), to mix the associated probabilities of the quadrature points of regimes 1 and 2 to
produceM = 50 quadrature point approximation to the RS Model conditional on regime 1. Conditional on regime
st = 2, we use weights 1−Q and Q, where Q = Pr(st = 2|st−1 = 2), to mix the associated probabilities of the
quadrature points of regimes 1 and 2.

To match the first and second moments of the RS Model to the unconditional means, volatilities, and
correlation of the normal distribution, we note that the unconditional mean of the RS Model is given by:

πµ1 + (1− π)µ2, (A-3)

where π = Pr(st = 1) is the stable probability of the RS Model. This probability in Eq. (A-3) is

π =
1−Q
2− P −Q, (A-4)

and the unconditional covariance is given by:

π(Σ1 + µ1µ
′
1) + (1− π)(Σ2 + µ2µ′2)− (πµ1 + (1− π)µ2)(πµ1 + (1− π)µ2)′. (A-5)

By exogenous choices of P = Q = 2/3, µ1 = µ2 = (0.07, 0.07)
′, σ1 = σ2 = 0.15, and the stable probability

π = 1/2, the unconditional means of x and y using the RS Model are both 0.07, and unconditional volatilities of
x and y using the RS Model are both 0.15. We can choose ρ1 and ρ2 to produce the unconditional correlation ρ by
setting 12 (ρ1 + ρ2) = ρ.

We produce a particular H as follows. We choose ρ2 to determine ρ1. For example, ρ2 set at 0.35 will yield
ρ1 of 0.65. This relation gives the RS Model the same unconditional means, volatilities, and correlation as the
bivariate normal distribution. Then we calculate corr(x̃, ỹ|x̃ < −1, ỹ < −1), for x and y drawn from the RS
Model, by using simulation with 100,000 draws. This calculation will be greater than the correlation with the same
conditioning calculated from the bivariate normal, which is given in Appendix B in closed-form. The difference
between corr(x̃, ỹ|x̃ < −1, ỹ < −1) calculated from the RS Model and from the bivariate normal gives H . To
produce Fig. 1, we choose ρ2 ∈ {0.19, 0.20, . . . 0.48}.

Appendix B. Proposition
Let X = (x, y) ∼ N(0,Σ), where Σ has unit variances and unconditional correlation ρ. We define:

ρ̂(h1, h2, k1, k2) = corr(x, y|h1 < x < h2, k1 < y < k2; ρ) (B-6)
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as the correlation of x and y conditional on observations for which h 1 < x < h2 and k1 < y < k2, where x and y
have unconditional correlation ρ.

Let L(·) denote the cumulative density of a doubly truncated bivariate normal distribution:

L(h1, h2, k1, k2) =

∫ h2
h1

∫ k2
k1

g(x, y; ρ)dxdy, (B-7)

where

g(x, y; ρ) =
1

2π
√
1− ρ2 exp

(
− 1

2(1− ρ2) (x
2 − 2ρxy + y2)

)
,

is the density function of X . L(·) can be evaluated by numerical methods.
The following Proposition allows us to obtain a closed-form solution for ρ̂:

Proposition 1. Let mij = E(xiyj|h1 < x < h2, k1 < y < k2). Then

m10 =

(
1

L(·)
)
[ψ(h1, h2, k1, k2; ρ) + ρψ(k1, k2, h1, h2; ρ)] , (B-8)

m20 =

(
1

L(·)
)[

L(·) + χ(k1, k2, h1; ρ)− χ(k1, k2, h2; ρ) + ρ2χ(h1, h2, k1; ρ)− ρ2χ(h1, h2, k2; ρ)
]
,

(B-9)

and m11 =

(
1

L(·)
)
[ρL(·) + ρΥ(h1, h2, k1; ρ)− ρΥ(h1, h2, k2; ρ) + ρΥ(k1, k2, h1; ρ)

−ρΥ(k1, k2, h2; ρ) + Λ(h1, h2, k1; ρ)− Λ(h1, h2, k2; ρ)] . (B-10)

In Eqs. (B-8), (B-9), and (B-10), ψ(·), χ(·), Υ(·) and Λ(·) are given in the proof. The moments m 01 and m02 are
obtained by interchanging (h1, h2) and (k1, k2) in the formulae for m10 and m20.

From Proposition 1:

var(x|h1 < x < h2, k1 < y < k2) = m20 −m210, (B-11)

var(y|h1 < x < h2, k1 < y < k2) = m02 −m201, (B-12)
and cov(x, y|h1 < x < h2, k1 < y < k2) = m11 −m10m01. (B-13)

Eqs. (B-11), (B-12), and B-13) allow us to calculate ρ̂(h1, h2, k1, k2) as

ρ̂(h1, h2, k1, k2) =
cov(x, y|h1 < x < h2, k1 < y < k2)√

var(x|h1 < x < h2, k1 < y < k2)
√

var(y|h1 < x < h2, k1 < y < k2)
. (B-14)

Proof of Proposition 1:

Let

φ(x) =
1√
2π
exp(−x

2

2
) (B-15)

denote the N(0, 1) density, and

Φ(x) =

∫ x
−∞

1√
2π
exp(−w

2

2
)dw (B-16)

denote the cumulative distribution function of N(0, 1).

First Moment

The first moment m10 is obtained from the definition:

m10 =
1

2π
√
1− ρ2L(·)

∫ k2
k1

∫ h2
h1

x exp

(
−1
2

x2 − 2ρxy + y2
(1− ρ2)

)
dxdy. (B-17)
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The equation for m01 is similar, by symmetry. Make the change of variable z = (x − ρy)/(
√
1− ρ2), and let

v1 = (h1 − ρy)/(
√
1− ρ2) and v2 = (h2 − ρy)/(

√
1− ρ2). We re-write Eq. (B-17) as:

m10L(·) =
√
1− ρ2
2π

∫ k2
k1

[
− exp

(
−1
2
(z2 + y2)

)]z=v2
z=v1

dy

+
ρ

2π

∫ k2
k1

y exp

(
−y

2

2

)[∫ v2
v1

exp

(
−z

2

2

)
dz

]
dy. (B-18)

The second term of Eq. (B-18), ρm01L(·), and the first term can be written, after a further change of variable and
integration by parts, as (1 − ρ2)ψ(h1, h2, k1, k2), where

ψ(h1, h2, k1, k2; ρ) = φ(h1)

[
Φ

(
k2 − ρh1√
1− ρ2

)
− Φ

(
k1 − ρh1√
1− ρ2

)]

− φ(h2)
[
Φ

(
k2 − ρh2√
1− ρ2

)
− Φ

(
k1 − ρh2√
1− ρ2

)]
. (B-19)

By symmetry we have:

m10L(·) = (1− ρ2)ψ(h1, h2, k1, k2; ρ) + ρm01L(·),
and m01L(·) = (1− ρ2)ψ(k1, k2, h1, h2; ρ) + ρm10L(·), (B-20)

hence,

m10L(·) = ψ(h1, h2, k1, k2; ρ) + ρψ(k1, k2, h1, h2; ρ). (B-21)

Variable m01 is given by interchanging the order of h1, h2, k1, and k2.

Second Moment

By definition:

m20 =
1

2π
√
1− ρ2L(·)

∫ k2
k1

∫ h2
h1

x2 exp

(
−1
2

x2 − 2ρxy + y2
(1 − ρ2)

)
dxdy. (B-22)

Using the same change of variables as above, we have:

m20L(·) = 1
2π

∫ k2
k1

[
(z(1− ρ2) + 2ρ

√
1− ρ2y) exp

(
−z

2

2

)]z=v2
z=v1

exp

(
−y

2

2

)
dy

+
1

2π

∫ k2
k1

[(1− ρ2)+]ρ2y2]
∫ v2
v1

exp

(
−z

2

2

)
dz exp

(
−y

2

2

)
dy. (B-23)

The first term equals (1 − ρ2)L(·) + ρ2m02L(·), and the second term, after a further change of variables and
integration by parts, can be written as:

(1− ρ4) (χ(k1, k2, h1; ρ)− χ(k1, k2, h2; ρ)) , (B-24)

where:

χ(k1, k2, h1; ρ) = h1φ(h1)

[
Φ

(
k2 − ρh1√
1− ρ2

)
− Φ

(
k1 − ρh1√
1− ρ2

)]

+
ρ
√
1− ρ2√

2π(1 + ρ2)

[
φ

(√
k21 − 2ρk1h1 + h21√

1− ρ2

)
− φ

(√
k22 − 2ρk2h1 + h21√

1− ρ2

)]
. (B-25)
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By symmetry, we have:

m20L(·) = L(·)((1− ρ2) + ρ2m02) + (1 − ρ4) (χ(k1, k2, h1; ρ)− χ(k1, k2, h2; ρ)) ,
and m02L(·) = L(·)((1− ρ2) + ρ2m20) + (1 − ρ4) (χ(h1, h2, k1; ρ)− χ(h1, h2, k2; ρ)) . (B-26)

Solving Eq. (B-26) gives:

m20L(·) = L(·) + χ(k1, k2, h1; ρ)− χ(k1, k2, h2; ρ) + ρ2χ(h1, h2, k1; ρ)− ρ2χ(h1, h2, k2; ρ). (B-27)

Cross Moment

By definition:

m11 =
1

2π
√
1− ρ2L(·)

∫ k2
k1

∫ h2
h1

xy exp

(
−1
2

x2 − 2ρxy + y2
(1− ρ2)

)
dxdy. (B-28)

Using the same change of variables as above, we have:

m11L(·) = 1
2π

∫ k2
k1

∫ v2
v1

ρy2 exp

(
−1
2
(y2 + z2)

)
dzdy

+
1

2π

∫ k2
k1

(
√
1− ρ2y)

[
− exp

(
−z

2

2

)]z=v2
z=v1

exp

(
−y

2

2

)
dy. (B-29)

The first term in Eq. (B-29) is ρm02L(·), and the second term can be written, after a change of variables and
integration by parts, as:

ρ(1− ρ2)(Υ(k1, k2, h1; ρ)−Υ(k1, k2, h2; ρ)) + (1 − ρ
4)

(1 + ρ2)
(Λ(k1, k2, h1; ρ)− Λ(k1, k2, h2; ρ)), (B-30)

where:

Υ(k1, k2, h1; ρ) = h1φ(h1)

[
Φ

(
k2 − ρh1√
1− ρ2

)
− Φ

(
k1 − ρh1√
1− ρ2

)]
,

and Λ(k1, k2, h1; ρ) =

√
1− ρ2√
2π

[
φ

(√
k21 − 2ρk1h1 + h21√

1− ρ2

)
− φ

(√
k22 − 2ρk2h1 + h21√

1− ρ2

)]
. (B-31)

Note that χ(a, b, c; ρ) = Υ(a, b, c; ρ) + ρ
1+ρ2Λ(a, b, c; ρ). Also note that (Λ(k1, k2, h1; ρ) − Λ(k1, k2, h2; ρ)) =

(Λ(h1, h2, k1; ρ)− Λ(h1, h2, k2; ρ)). After simplification, we can write m11 as:

m11L(·) = ρL(·) + ρΥ(h1, h2, k1; ρ)− ρΥ(h1, h2, k2; ρ) + ρΥ(k1, k2, h1; ρ)
− ρΥ(k1, k2, h2; ρ) + Λ(h1, h2, k1; ρ)− Λ(h1, h2, k2; ρ). (B-32)

Appendix C. CalculatingH statistics
To calculate the H statistics using the null distribution of the empirical models in Section 5, we need to calculate
the implied exceedance correlations ρ̆(θ, φ) by simulation. Denote the distribution under the null as ξ(φ), such
that ξ represents one of the models from Section 5 with parameters, φ. For each equity portfolio, we estimate the
parameters, φ, of the model. At the estimated parameters, we then create a simulated time series with 100,000
observations. We take the exceedance correlations of the simulated time series as the exceedance correlation
implied by the distribution ρ̆(θ, φ).

To calculate standard errors for the H statistic, we use GMM and the δ-method. To illustrate, we first take
a single exceedance correlation, ρ̄(ϑi), corresponding to the exceedance level ϑ i. For expositional simplicity,
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we assume ϑi to be positive. The exceedance correlation ρ̄(ϑ i) can be estimated using the following moment
conditions g1i(ηi):

g1i(ηi) = E



xt1{xt>ϑ,yt>ϑ} − η1i
yt1{xt>ϑ,yt>ϑ} − η2i
x2t1{xt>ϑ,yt>ϑ} − η3i
y2t 1{xt>ϑ,yt>ϑ} − η4i
xtyt1{xt>ϑ,yt>ϑ} − η5i


 . (C-1)

In Eq. (C-1), ηi = (η1i η2i η3i, η4i, η5i)′ and 1 is an indicator function. Note that ρ̄(ϑi) is a nonlinear function of
ηi.

We can set up moment conditions similar to Eq. (C-1) for all exceedance correlations ρ̄(ϑ i) in the N vector
of exceedance correlations ρ̄(θ) corresponding to the vector of exceedances θ = (ϑ 1, . . . , ϑN )′. Denote these
moment conditions as g1(η) = {g1i(ηi)}Ni=1, such that η = (η′1 . . . η′N )

′. Let G1 denote ∂
∂η
g1 and S1 denote the

estimate of the covariance matrix of g1(η), which can be obtained with the estimator of Newey and West (1987),
or another similar estimate. Then, by the δ-method, the conditional moment estimates η have covariance matrix
Γ1 = {G1S−11 G′1}−1.

Suppose that the parameters of ξ(φ) are estimated by setting GMM orthogonality conditions g 2(φ) to zero. Let
G2 denote ∂

∂φ
g2, and S2 denote the estimate of the covariance matrix of g2(φ). In the case of maximum likelihood,

the orthgonality conditions g2(φ) are the scores at the optimum, and the covariance matrix S 2 can be estimated by
a White (1980) outerproduct of the scores. The parameters, φ, are estimated with covariance matrix, Γ 2. Using the
δ-method, Γ2 = {G2S−12 G′2}−1.

Let S denote the joint covariance matrix of [g ′1 g′2]′. Furthermore, let

G =

[
G1 0
0 G2

]
, (C-2)

with D1 = ∂
∂η
H and D2 = ∂

∂φ
H . Then, using the δ-method:

var(H) = D{GS−1G′}−1D′, (C-3)

such that D = [D′1 D′2]′. The square root of Eq. (C-3) is the standard error of H .
If ξ is a normal distribution, then the derivative D2 used for the calculation of the standard errors of H can

be obtained analytically. For more complex distributions of ξ, ρ̆(θ, φ) will not be in closed-form. For these cases,
D2 must be calculated by simulation. as follows. Note that ρ̆(ϑ, φ), the exceedance correlation implied by ξ(φ), is
a function of φ which can be computed by simulation. Holding fixed the simulated errors involved in computing
ρ̆(ϑ, φ), we change the i-th parameter in φ̂ by ε = 0.0001, and re-compute the simulated time series at the new
parameters. This new time series is used to calculate a new implied exceedance correlation, which we denote
Hi(θ, φ). The i-th element of D2 can be estimated with the directional derivative (Gateaux derivative) for an
increment of ε in the i-th parameter of φ̂, given by (Hi(θ, φ) −H(θ, φ))/ε.

37



References
Ang, A., Bekaert, G., 2000. International asset allocation with time-varying correlations. Unpublished working

paper. Columbia University, New York, NY.

Ang, A., Bekaert, G. Liu, J., 2000. Why stocks may disappoint. Unpublished working paper. Columbia
University, New York, NY.

Bae, K. H., Karolyi, G. A., Stulz, R. M., 2000. A new approach to measuring financial contagion. Unpublished
working paper. National Bureau of Economic Research, Cambridge, MA.

Ball, R., Kothari, S. P., 1989. Nonstationary expected returns: implications for tests of market efficiency and
serial correlation in returns. Journal of Financial Economics 25, 51-74.

Barberis, N., Huang, M., Santos, T., 2001. Prospect theory and asset prices. Quarterly Journal of Economics 116,
1-54.

Bawa, V. S., Lindenberg, E. B., 1977. Capital market equilibrium in a mean-lower partial moment framework.
Journal of Financial Economics 5, 189-200.

Bekaert, G., Erb, C. R., Harvey, C. R., Viskanta, T. E., 1998. Distributional characteristics of emerging market
returns and asset allocation. Journal of Portfolio Management 24, 102-116.

Bekaert, G., Harvey, C. R., 1997. Emerging equity market volatility. Journal of Financial Economics 43, 29-77.

Bekaert, G., Harvey, C. R., 2000. Foreign speculators and emerging equity markets. Journal of Finance 55,
565-613.

Bekaert, G., Wu, G., 2000. Asymmetric volatility and risk in equity markets. Review of Financial Studies 13,
1-42.

Boyer, B. H., Gibson, M. S., Loretan, M., 1999. Pitfalls in tests for changes in correlations. International Finance
Discussion Paper 597. Board of Governors of the Federal Reserve System, Washington, DC.

Braun, P. A., Nelson D. N., Sunier, A. M., 1995. Good news, bad news, volatility and betas. Journal of Finance
50, 1575-1603.

Butler, K. C., Joaquin, D. C., 2000. Are the gains from international portfolio diversification exaggerated? the
influence of downside risk in bear markets. Unpublished working paper. Michigan State University, East
Lansing, MI.

Campbell, J. Y., Hentschel, L., 1992. No news is good news: an asymmetric model of changing volatility in stock
returns. Journal of Financial Economics 31, 281-318.

Campbell, J. Y., Lettau, M., Malkiel, B. G., Xu, Y., 2001. Have individual stocks become more volatile? an
empirical exploration of idiosyncratic risk. Journal of Finance 56, 1-43.

Chen, J., Hong, H., Stein, J., 2001. Forecasting crashes: trading volume, past returns and conditional skewness in
stock prices. Journal of Financial Economics 61, 345-381.

Cheung, Y. W., Ng, L. K., 1992. Stock price dynamics and firm size: an empirical investigation. Journal of
Finance 47, 1985-1997.

Cho, Y. H., Engle, R. F., 2000. Time-varying betas and asymmetric effects of news: empirical analysis of blue
chip stocks. Unpublished working paper. National Bureau of Economic Research, Cambridge, MA.

Conrad, J., Gultekin, M., Kaul, G., 1991. Asymmetric predictability of conditional variances. Review of Financial
Studies 4, 597-622.

Das, S., Uppal, R., 2001. Systemic risk and portfolio choice. Unpublished working paper. London Business
School, London, UK.

De Santis, G., Gerard B., Hillion, P., 1999. The relevance of currency risk in the EMU. Unpublished working
paper. University of California, Los Angeles, CA.

Duffee, G. R., 1995. Stock returns and volatility: a firm-level analysis. Journal of Financial Economics 37,
399-420.

Duffee, G. R., 2000. Asymmetric cross-sectional dispersion in stock returns: evidence and implications.
Unpublished working paper. University of California, Berkeley, CA.

38



Dumas, B., Harvey, C. R., Ruiz, P., 2000. Are correlations of stock returns justified by subsequent changes in
national outputs. Unpublished working paper. Duke University, Durham, NC.

Engle, R. F., Kroner, K. F., 1995. Multivariate simultaneous generalized ARCH. Econometric Theory 11,
122-150.

Engle, R. F., Ng, V. 1993. Measuring and testing the impact of news on volatility. Journal of Finance 48,
1749-1778.

Erb, C., Harvey, C. Viskanta, T., 1994. Forecasting international equity correlations. Financial Analysts Journal
50, 32-45.

Fama, E. F., French, K. R., 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial
Economics 33, 3-56.

Fama, E. F., French, K. R., 1996. Multifactor explanations of asset pricing anomalies. Journal of Finance 51, 1,
55-84.

Ferson, W. E., Harvey, C. R., 1991. The variation of economic risk premiums. Journal of Political Economy 99,
385-415.

Forbes, K., Rigobon, R., 1999. No contagion, only interdependence: measuring stock market co-movements.
Unpublished working paper. National Bureau of Economic Research, Cambridge, MA.

French, K. R., Schwert. G. W., Stambaugh, R., 1987. Expected stock returns and volatility. Journal of Financial
Economics 19, 3-29.

Glosten, L. R., Jagannathan, R. Runkle, D. E., 1993. On the relation between the expected value and the volatility
of the nominal excess return on stocks. Journal of Finance 48, 1770-1801.

Gray, S. F., 1996. Modeling the conditional distribution of interest rates as a regime-switching process. Journal of
Financial Economics 42, 27-62.

Hamilton, J. D., 1989. A new approach to the economic analysis of nonstationary time series and the business
cycle. Econometrica 57, 357-384.

Hansen, L., Jagannathan, R., 1997. Assessing specification errors in stochastic discount factor models. Journal of
Finance 52, 557-590.

Harvey, C. R., Siddique, A., 1999. Autoregressive conditional skewness. Journal of Financial and Quantiative
Analysis 34, 465-488.

Harvey, C. R., Siddique, A., 2000. Conditional skewness in asset pricing tests. Journal of Finance 55, 1263-1295.

Hentschel, L., 1995. All in the family: nesting symmetric and asymmetric GARCH models. Journal of Financial
Economics 39, 71-104.

Hong, H., Stein, J., 2001. Differences of opinion, rational arbitrage and market crashes. Unpublished working
paper. Stanford University, Stanford, CA.

Jegadeesh, N., Titman, S., 1993. Returns to buying winners and selling losers: implications for stock market
efficiency. Journal of Finance 48, 65-91.

Karolyi, A., Stulz, R., 1996. Why do markets move together? an investigation of US-Japan stock return
comovements. Journal of Finance 51, 951-986.

Kroner, K. F., Ng, V. K., 1998. Modeling asymmetric comovements of asset returns. Review of Financial Studies
11, 817-844.

Kyle, A. S., Xiong, W., 2001. Contagion as a wealth effect of financial intermediaries. Journal of Finance 56,
1401-1440.

Lin, W. L., Engle, R. F., Ito, T., 1994. Do bulls and bears move across borders? international transmission of stock
returns and volatility. Review of Financial Studies 7, 507-538.

Longin, F., Solnik, B., 1995. Is the correlation in international equity returns constant: 1960-1990? Journal of
International Money and Finance 14, 3-26.

Longin, F., Solnik, B., 2001. Extreme correlation of international equity markets. Journal of Finance 56, 649-676.

Newey, W. K., West, K. D., 1987. A simple positive semi-definite, heteroskedasticity and autocorrelation
consistent covariance matrix. Econometrica 55, 703-708.

39



Pan, J., 2001. Integrated time-series analysis of spot and option prices. Journal of Financial Economics,
forthcoming.

Rosenbaum, S., 1961. Moments of a truncated bivariate normal distribution. Journal of the Royal Statistical
Society, Series B, 23, 405-8.

Scholes, M., Williams, J. T., 1977. Estimating betas from nonsynchronous data. Journal of Financial Economics
5, 309-327.

Schwert, G. W., 1989. Why does stock market volatility change over time? Journal of Finance 44, 1115-1153.

Stambaugh, R., 1995. Unpublished discussion of Karolyi and Stulz (1996), National Bureau of Economic
Research Universities Research Conference on Risk Management, May 1995.
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Figure 1: Economic costs of downside asymmetric correlations

Figure 1 shows the effects of ignoring increasing correlation on the downside in a hypothetical portfolio
allocation problem. A Constant Relative Risk Aversion (CRRA) investor with risk aversion γ = 4 allocates
her portfolio among two risky assets and a riskless asset. She believes the assets are lognormally distributed,
and chooses asset holdings α†. Under the normal distribution, the correlation, conditional on downside
movements of both assets by more than 1 standard deviation from the mean, is given by ρ̄. The true
distribution of the continuously compounded returns is given instead by a Regime-Switching (RS) Model
with identical unconditional means, variances, and correlation. This distribution produces a true correlation
of ρ̄ +H conditional on a downside move of more than 1 standard deviation from the mean, where H > 0.
The optimal portfolio weights, implied by the RS Model, are given by α ∗st for regime st = 1, 2. The regime-
dependent correlations of the RS Models are chosen to produce various H statistics. The plot shows ex-ante
utility losses, in cents per dollar of wealth, created since the investor holds sub-optimal weights α † instead of
α∗st for regime st.
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Panel A. Longin-Solnik exceedance correlations
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Panel B. Correlations conditioning on absicssae intervals
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Figure 2: Conditional correlations of a bivariate normal distribution

Panel A shows the exceedance correlations, corr(x̃, ỹ|x̃ > ϑ, ỹ > ϑ; ρ), for exceedance ϑ > 0 of x̃ and ỹ
drawn from a bivariate normal with zero mean, unit variances, and unconditional correlation ρ. For ϑ < 0, the
exceedance correlation is corr(x̃, ỹ|x̃ < ϑ, ỹ < ϑ; ρ). Panel B gives conditional correlations corr(x̃, ỹ|h 1 <
x̃ < h2; ρ), where h1 and h2 are chosen to correspond to absicssae from an inverse cumulative normal. We
choose h1 and h2 to correspond to the absicssae intervals of probabilities [0.0 0.2 0.4 0.6 0.8 1.0]. That is, we
choose the first (h1, h2) = (Φ−1(0), Φ−1(0.2)) for which Φ−1(·) is an inverse cumulative normal. We plot
these at the inverse cumulative normal absicssae corresponding to the midpoints [0.1 0.3 0.5 0.7 0.9], such
that the x-axis points are Φ−1(0.1), Φ−1(0.3), etc.
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Figure 3: Exceedance correlations of industry, size, book-to-market, and momentum portfolios

We plot exceedance correlations with the market portfolio for selected industry, size, book-to-market, and
momentum portfolios. These are the conditional correlations corr(x̃, ỹ|x̃ > ϑ, ỹ > ϑ; ρ) for exceedance ϑ >
0 for normalized portfolio x̃ and the normalized market portfolio ỹ. For ϑ < 0, the exceedance correlation is
defined as corr(x̃, ỹ|x̃ < ϑ, ỹ < ϑ; ρ). Exceedance correlations are calculated at the weekly frequency. The
H statistic in the legend is the measure of correlation asymmetry developed in Section 4.
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Figure 4: Exceedance correlations: empirical versus bivariate normal

This figure shows the exceedance correlations with the market portfolio for the quintile 1 and quintile 5
size portfolios. Data is sampled weekly, from July 1963 to December 1998. The theoretical exceedance
correlations from a bivariate normal with the same unconditional correlation is also shown on the plot for
each portfolio.
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Figure 5: Exceedance correlations for the third momentum portfolio

This figure shows the correlations for the third quintile momentum portfolio with the value-weighted
market portfolio. Data is sampled weekly, from July 1963 to December 1998. The theoretical exceedance
correlations from an asymmetric GARCH-in-Mean (GARCH-M) model, a Poisson Jump model, a regime-
switching (RS) normal distribution, and a regime-switching GARCH (RS-GARCH) model are presented on
the same plot together with the empirical exceedance correlations found in the data.
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Figure 6: Exceedance correlations for the smallest size portfolio

We plot the exceedance correlations for the smallest size portfolio with the value-weighted market at the
weekly frequency. We show the exceedance correlations from the data (solid lines) and those implied by
various models. From top left clockwise, we have a GARCHM model, a Jump model, a RSGARCH model
and a RS Normal model. Within each panel, we also plot an exceedance correlation of a comparative static,
that is, altering one parameter of the models and re-calculating the exceedance correlations. For the GARCH-
M Model, we make the price of risk negative. For the Jump Model, we provide jumps with greater correlation
between the market and the equity portfolio. For the RS Normal Model, we increase the probability of
entering a downside regime. For the RS-GARCH Model, we increase the probability of entering a normal
regime.
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Table 1: Summary statistics for the market and equity portfolios

This table shows the summary statistics of the market portfolio and the equity portfolios. Data is sampled
weekly, or monthly for the last column, from July 1963 to December 1998. The number of observations is
1852, or 426 for the last column. The mean and the standard deviation have been annualized by multiplying
the mean and standard deviation in the data by 52 and

√
52, respectively. The columns Auto 1 and Auto 2

give the first and the second autocorrelations. The last two columns show the unconditional correlation of
the portfolios with the market at weekly and monthly frequencies. All returns are log-returns in excess of the
annualized 1-month T-bill risk-free rate.

The market portfolio is the value-weighted index of all stocks in CRSP. Panel A shows the summary statistics
of the value-weighted industry portfolios. Panels B and C show the summary statistics of the value-weighted
portfolios formed by sorting on market capitalizations and book-to-market ratios, respectively. Panel D
presents the summary statistics of the equal-weighted portfolios of stocks sorted by their lagged past six-
months returns, with one to six months of lags.

Unconditional Correlation
Standard with the market

Portfolio Mean Deviation Auto 1 Auto 2 Weekly Monthly
Market Portfolio 0.066 0.146 0.068 0.004

Panel A. Industry portfolios (value-weighted)
Misc. 0.031 0.188 0.137 0.046 0.860 0.883
Petroleum 0.054 0.174 0.033 -0.001 0.706 0.708
Finance 0.062 0.160 0.120 0.024 0.920 0.917
Durables 0.052 0.177 0.084 0.025 0.935 0.934
Basic Ind 0.056 0.157 0.049 0.004 0.946 0.944
Food/Tobacco 0.081 0.143 0.034 0.050 0.866 0.867
Construction 0.050 0.185 0.108 0.011 0.895 0.902
Capital Goods 0.048 0.179 0.064 0.000 0.918 0.905
Transportation 0.032 0.200 0.102 0.012 0.854 0.851
Utilities 0.048 0.115 0.092 0.023 0.798 0.792
Textile/Trade 0.060 0.181 0.101 0.035 0.872 0.859
Service 0.074 0.209 0.144 0.033 0.895 0.896
Leisure 0.065 0.187 0.136 0.096 0.891 0.888

Panel B. Size portfolios (value-weighted)
1 Smallest 0.054 0.163 0.332 0.154 0.823 0.830
2 0.066 0.169 0.242 0.080 0.894 0.903
3 0.064 0.162 0.193 0.054 0.931 0.934
4 0.063 0.156 0.140 0.026 0.966 0.967
5 Largest 0.053 0.145 0.013 -0.009 0.988 0.987

Panel C. Book-to-market portfolios (value-weighted)
1 Growth 0.048 0.167 0.037 0.004 0.961 0.954
2 0.049 0.153 0.086 0.009 0.966 0.971
3 0.050 0.141 0.099 0.003 0.938 0.942
4 0.073 0.132 0.082 0.021 0.917 0.913
5 Value 0.091 0.143 0.116 0.058 0.875 0.859

Panel D. Momentum portfolios (equal-weighted)
1 Past Losers 0.023 0.171 0.371 0.169 0.783 0.743
2 0.060 0.140 0.319 0.145 0.864 0.831
3 0.078 0.131 0.291 0.126 0.901 0.873
4 0.092 0.136 0.252 0.103 0.911 0.887
5 Past Winners 0.111 0.163 0.224 0.086 0.882 0.857
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Table 2: Ten largest weekly negative and positive moves of the market portfolio

We present the ten largest positive and negative moves for the value-weighted market portfolio in excess of the
risk-free rate. Data is sampled weekly, from July 1963 to December 1998. Dates reported are end-of-period.
Returns are not annualized.

Ranking Date Movement

Panel A. Largest negative moves
1 Largest move 21-Oct-87 -0.194
2 28-Oct-87 -0.108
3 2-Sep-98 -0.089
4 20-Nov-74 -0.067
5 22-Aug-90 -0.066
6 29-Oct-97 -0.062
7 4-Aug-74 -0.062
8 31-Jul-74 -0.060
9 10-Dec-80 -0.060
10 7-Oct-98 -0.058

Panel B. Largest positive moves
1 Largest move 3-Jun-70 0.097
2 13-Oct-82 0.089
3 25-Aug-82 0.086
4 29-Jan-75 0.086
5 21-Oct-98 0.075
6 4-Nov-87 0.070
7 1-Dec-71 0.067
8 26-Aug-70 0.064
9 7-Jan-87 0.064
10 9-Oct-74 0.062
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Table 3: Asymmetries in beta and volatility

This table shows the level of asymmetries in the betas among equity portfolios. The first column of this table
shows the unconditional beta observed in the data. The second column shows the beta conditional on an
upside or downside move under the normal distribution. The third and fourth columns show the conditional
betas observed in the data. The fifth and sixth columns show k− and k+ where k− = σ−x /σ−y , k+ = σ+x /σ

+
y ,

σ−x =
√

var(x|x < µx, y < µy), σ−y =
√

var(y|x < µx, y < µy), σ+x =
√

var(x|x > µx, y > µy) and

σ+y =
√

var(y|x > µx, y > µy). The last column shows the p-value of testing k− = k+. ∗ indicates
rejection of a test that the observed value equal the theoretical value at the 5% confidence level, while ∗∗
indicates rejection at the 1% confidence level. Tests for the observed β− and β+ determine if β− or β+ equal
sthe theoretical value implied by a normal distribution. P-values for the test of k − = k+ are calculated using
bootstrap methodology with 1000 simulated samples. Data is sampled weekly from July 1963 to December
1998.

The market portfolio is the value-weighted index of all stocks in CRSP. Panel A shows the level of
asymmetries in the betas of the value-weighted industry portfolios. Panels B and C show the level of
asymmetries in the betas of the value-weighted portfolios formed by sorting on market capitalizations and
book-to-market ratios, respectively.

Unconditional Theoretical Observed Observed k− = k+

Portfolio β β− = β+ β− β+ k− k+ p-value

Panel A. Industry portfolios (value-weighted)
Misc 1.10 0.89 1.16∗∗ 0.81 1.42 1.21 0.0286∗
Petroleum 0.84 0.56 0.74∗∗ 0.61 1.16 1.22 0.5503
Finance 1.01 0.89 0.97∗∗ 0.87 1.10 1.08 0.6163
Durables 1.13 1.02 1.09∗∗ 0.95∗∗ 1.21 1.16 0.3070
Basic Ind 1.01 0.93 1.03∗∗ 0.88∗ 1.10 1.01 0.0026∗∗
Food/Tobacco 0.85 0.69 0.85∗∗ 0.66 1.02 0.93 0.2309
Construction 1.14 0.96 1.19∗∗ 0.91 1.37 1.22 0.0099∗∗
Capital Goods 1.12 0.99 1.08∗∗ 0.97 1.23 1.18 0.2629
Transportation 1.17 0.94 1.12∗∗ 0.86 1.37 1.31 0.3237
Utilities 0.63 0.47 0.57∗∗ 0.46 0.75 0.82 0.3037
Textile/Trade 1.08 0.89 1.06∗∗ 0.88 1.28 1.21 0.3002
Service 1.28 1.09 1.25∗∗ 1.03 1.47 1.35 0.1471
Leisure 1.14 0.96 1.13∗∗ 0.90 1.35 1.22 0.1454

Panel B. Size portfolios (value-weighted)
1 Smallest 0.92 0.71 1.01∗∗ 0.65 1.27 1.08 0.0232∗
2 1.03 0.88 1.11∗∗ 0.81∗ 1.30 1.07 0.0032∗∗
3 1.03 0.92 1.11∗∗ 0.84∗ 1.24 1.02 0.0003∗∗
4 1.03 0.98 1.07∗∗ 0.91∗∗ 1.13 1.00 0.0002∗∗
5 Largest 0.98 0.96 0.98 0.92∗ 1.01 0.95 0.0766

Panel C. Book to market portfolios (value-weighted)
1 Growth 1.10 1.03 1.08∗ 1.01 1.16 1.10 0.3015
2 1.01 0.96 1.04∗∗ 0.89 1.09 0.98 0.0003∗∗
3 0.90 0.82 0.95∗∗ 0.75 1.03 0.90 0.0000∗∗
4 0.83 0.73 0.82∗∗ 0.67 0.93 0.86 0.1304
5 Value 0.85 0.70 0.81∗∗ 0.64 0.98 0.94 0.5116
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Table 4: H Statistics for the size portfolios with the market

We present theH statistics under the null hypothesis of a bivariate normal distribution for the value-weighted
size-sorted portfolios. A different bivariate normal is fitted for each pair of (x, y) observations, where x
is the normalized excess market return and y is a normalized excess stock portfolio return. The market
portfolio is the value-weighted index of all stocks in CRSP and the stocks portfolios are the value-weighted
size portfolios, formed by sorting on market capitalizations. Panels A, B, and C, report results at the daily,
weekly, and monthly frequencies, respectively.

Columns labeled SE display the standard error of the model. The first two columns reflect weights constructed
using the variances of the exceedance correlations ρ̆(ϑ, φ) implied by a bivariate normal distribution, as in Eq.
(23). In Columns 3 and 4, the weights are proportional to the number of observations used to construct each
ρ̄(ϑ), the sample exceedance, shown in Eq. (26). The last two columns use equal weights. The null hypothesis
of a bivariate normal is rejected at the 2.5% confidence level for every portfolio, at all frequencies, by the
H statistics (p-values are not reported). All standard errors are calculated using GMM and 6 Newey-West
(1987) lags. Data is from July 1963 to December 1998.

Weighted by Weighted by Number Equally
Normal Distn σ2(ρ̆) of Observations Weighted

Portfolio H SE H SE H SE

Panel A. Daily frequency
1 Smallest 0.152 0.036 0.150 0.034 0.185 0.053
2 0.141 0.028 0.132 0.025 0.178 0.038
3 0.122 0.023 0.109 0.020 0.151 0.029
4 0.081 0.017 0.068 0.014 0.096 0.020
5 Largest 0.023 0.004 0.017 0.004 0.026 0.004

Panel B. Weekly frequency
1 Smallest 0.150 0.057 0.147 0.055 0.199 0.070
2 0.098 0.043 0.091 0.040 0.126 0.053
3 0.074 0.032 0.065 0.029 0.092 0.039
4 0.049 0.020 0.040 0.017 0.059 0.022
5 Largest 0.012 0.006 0.010 0.004 0.014 0.007

Panel C. Monthly frequency
1 Smallest 0.214 0.048 0.214 0.045 0.252 0.064
2 0.146 0.036 0.135 0.033 0.175 0.049
3 0.120 0.028 0.096 0.027 0.162 0.031
4 0.057 0.021 0.046 0.019 0.067 0.023
5 Largest 0.043 0.010 0.037 0.008 0.047 0.011
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Table 5: H Statistics from a bivariate normal distribution

This table presents asymmetry statistics for equity portfolios assuming the null hypothesis of a bivariate
normal distribution. Weights proportional to the number of observations in each sample exceedance are used
(Eq. (26)) to construct the H statistics. Data is sampled weekly from July 1963 to December 1998.

The market portfolio is the value-weighted index of all stocks in CRSP. Panel A shows the statistics of the
value-weighted industry portfolios. Panels B and C show the statistics of the value-weighted portfolios
formed by sorting on market capitalizations and book-to-market ratios, respectively. Panel D presents the
statistics of the equal-weighted portfolios of stocks sorted by their lagged past six-months returns, with one
to six months of lags. Panels E, F, and G show the statistics of the value-weighted portfolios formed by
sorting on beta, co-skewness, and leverage, respectively.

The second column of this table shows the mean returns of the portfolios, annualized by multiplying the
weekly mean by 52. The third, fourth, fifth, and sixth columns show the H , H −, H+, and AH statistics,
respectively. For the H , H−, H+, andAH statistics, ‡ and † indicate that the model cannot be rejected at the
5% and 1% confidence levels, respectively. The seventh and eighth columns show skewness and co-skewness,
respectively. For skewness and co-skewness, ∗ indicates rejection of the hypothesis that the statistic is not
different from zero at the 5% confidence level. The last column shows the beta of the portfolios. All standard
errors are calculated using GMM and 6 Newey-West (1987) lags.

Portfolio Mean H H− H+ AH Skewness Co-skewness β

Panel A. Industry Portfolios (value-weighted)
Misc 0.031 0.125 0.174 0.033‡ 0.080 -0.881 -0.624 1.104
Petroleum 0.054 0.180 0.237 0.094 † 0.146 -0.148 -0.353 0.839
Finance 0.062 0.074 0.099 0.033 ‡ 0.055 -0.378 -0.451 1.006
Durables 0.052 0.078 0.109 0.016 ‡ 0.043 -0.528 -0.540 1.134
Basic Ind 0.056 0.072 0.101 0.015 ‡ 0.052 -0.670 -0.580 1.014
Food/Tobacco 0.081 0.117 0.163 0.032 ‡ 0.087 -0.500∗ -0.477 0.847
Construction 0.050 0.119 0.165 0.037 † 0.083 -0.875 -0.649 1.136
Capital Goods 0.048 0.087 0.116 0.043 † 0.068 -0.509 -0.515 1.123
Transportation 0.032 0.132 0.185 0.020 ‡ 0.082 -0.572 -0.573 1.172
Utilities 0.048 0.145 0.202 0.026‡ 0.089 -0.115 -0.401 0.630
Textile/Trade 0.060 0.125 0.165 0.064 † 0.099 -0.568 -0.527 1.080
Service 0.074 0.094 0.132 0.027 ‡ 0.072 -0.583 -0.522 1.280
Leisure 0.065 0.078† 0.110 0.019‡ 0.055 -0.539∗ -0.499 1.138

Panel B. Size portfolios (value-weighted)
1 Smallest 0.054 0.147 0.198 0.066 † 0.102 -0.893 -0.654 0.920
2 0.066 0.091† 0.124 0.039‡ 0.068 -0.953 -0.629 1.035
3 0.064 0.065† 0.088 0.031‡ 0.049 -0.935 -0.623 1.033
4 0.063 0.040 0.054 0.018 ‡ 0.028 -0.717 -0.576 1.031
5 Largest 0.053 0.010† 0.012 0.007† 0.008 -0.530 -0.502 0.982

Panel C. Book to market portfolios (value-weighted)
1 Growth 0.048 0.037 0.045 0.027 0.032 -0.454 -0.463 1.100
2 0.049 0.045 0.063 0.012 ‡ 0.028 -0.662 -0.569 1.014
3 0.050 0.080 0.108 0.035 ‡ 0.053 -0.903 -0.652 0.904
4 0.073 0.090 0.122 0.038 † 0.050 -0.531 -0.542 0.831
5 Value 0.091 0.100 0.136 0.038 ‡ 0.048† -0.398 -0.495 0.855

Panel D. Momentum portfolios (equal-weighted)
1 Past Losers 0.023 0.165 0.224 0.058 ‡ 0.120 -0.112 -0.486 0.914
2 0.060 0.119 0.163 0.041 ‡ 0.079 -0.590 -0.568 0.825
3 0.078 0.093† 0.129 0.028‡ 0.062 -1.038 -0.676 0.807
4 0.092 0.077† 0.110 0.012‡ 0.052 -1.345 -0.743 0.848
5 Past Winners 0.111 0.092† 0.130 0.016‡ 0.057 -1.348∗ -0.745 0.986
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Table 5. (cont.)

Portfolio Mean H H− H+ AH Skewness Co-skewness β

Pabel E. Beta portfolios (value-weighted)
1 Low Beta 0.071 0.123 0.171 0.038 ‡ 0.072 -0.762 -0.633 0.612
2 0.074 0.053 0.074 0.015 ‡ 0.037 -0.733 -0.583 0.864
3 0.071 0.057 0.078 0.019 ‡ 0.035 -0.719 -0.586 0.977
4 0.063 0.056 0.076 0.025 ‡ 0.039 -0.762 -0.588 1.109
5 High Beta 0.040 0.068† 0.091 0.033‡ 0.050 -0.499 -0.501 1.330

Panel F. Co-skewness portfolios (value-weighted)
1 Low/Neg. Coskew 0.079 0.066 0.092 0.022 ‡ 0.037 -0.686∗ -0.576 0.994
2 0.080 0.054 0.075 0.020 ‡ 0.034 -0.759 -0.596 1.005
3 0.085 0.057 0.077 0.026 ‡ 0.033† -0.614 -0.561 0.990
4 0.055 0.053 0.072 0.020 ‡ 0.033 -0.872 -0.623 0.988
5 High/Pos. Coskew 0.058 0.067† 0.090 0.031‡ 0.048 -0.440 -0.482 0.924

Panel G. Leverage portfolios (value-weighted)
1 Low Debt 0.057 0.063 0.086 0.025 † 0.042 -0.821 -0.618 1.003
2 0.064 0.043 0.059 0.018 ‡ 0.028 -0.472 -0.489 0.957
3 0.062 0.050† 0.068 0.021‡ 0.030 -0.601 -0.544 0.967
4 0.061 0.059 0.081 0.022 ‡ 0.031 -0.735 -0.599 0.964
5 High Debt 0.058 0.101 0.140 0.030 ‡ 0.067 -0.613 -0.577 1.024
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Table 6: Correlations among asymmetry statistics

We present the correlations among the asymmetry statistics calculated in Table 5. The
correlations are calculated using the 43 estimates of H , H−, H+, and AH statistics,
skewness, co-skewness, and beta, as presented in Table 5.

H H− H+ AH Skewness Coskewness β
H 1.000 0.998 0.751 0.964 0.243 0.150 -0.274
H− 1.000 0.714 0.953 0.220 0.123 -0.280
H+ 1.000 0.824 0.342 0.321 -0.167
AH 1.000 0.272 0.222 -0.177
Skewness 1.000 0.951 -0.054
Coskewness 1.000 -0.003
β 1.000
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Table 7: H Statistics across size/beta portfolios

The table presents the H statistics for equity portfolios
assuming the null hypohesis of a bivariate normal distribution.
We first stocks by size into quintiles. Then, within each size
quintile, we further sort stocks into quintiles based on beta. For
each size and beta grouping, we form a value-weighted equity
portfolio.

Frequency of the data is weekly. Weights proportional to the
number of observations in each sample exceedance are used
(see Eq. (26)) to construct the H statistic. The null hypothesis
of a bivariate normal is rejected at the 2.5% confidence level for
every portfolio at all frequencies by theH statistic (p-values are
not reported).

Beta
Size 1 Low 2 3 4 5 High
1 Smallest 0.185 0.162 0.167 0.159 0.145
2 0.168 0.118 0.119 0.118 0.100
3 0.149 0.100 0.094 0.088 0.083
4 0.157 0.088 0.077 0.058 0.067
5 Largest 0.127 0.082 0.057 0.056 0.056
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Table 8: H Statistics across size/leverage portfolios

This table presents the H statistics for equity portfolios
assuming the null hypothesis of a bivariate normal distribution.
We first stocks by size into quintiles. Then, within each size
quintile, we further sort stocks into quintiles based on leverage.
For each size and leverage grouping, we form a value-weighted
equity portfolio.

Frequency of the data is weekly. Weights proportional to the
number of observations in each sample exceedance are used
(see Eq. (26)) to construct the H statistic. The null hypothesis
of a bivariate normal is rejected at the 2.5% confidence level for
every portfolio at all frequencies by theH statistic (p-values are
not reported).

Leverage
Size 1 Low 2 3 4 5 High
1 Smallest 0.158 0.151 0.156 0.156 0.162
2 0.115 0.116 0.110 0.119 0.117
3 0.104 0.084 0.085 0.106 0.086
4 0.083 0.064 0.072 0.092 0.095
5 Largest 0.079 0.057 0.065 0.066 0.074
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Table 9: Summary of rejections from table 10

We present a summary of rejections from Table 10. We list the number of
rejections,M , out of a possibleN number of portfolios asM/N in the Table.

GARCH-M Jump Model RS Normal RS-GARCH

Panel A. Rejections at 5% confidence level
Industry 2/13 11/13 3/13 2/13
Size 1/5 3/5 0/5 1/5
Book to Market 1/5 3/5 2/5 0/5
Momentum 2/5 4/5 1/5 1/5
Overall 6/28 21/28 6/28 4/28

Panel B. Rejections at 1% confidence level
Industry 1/13 6/13 3/13 1/13
Size 0/5 1/5 0/5 1/5
Book to Market 0/5 2/5 0/5 0/5
Momentum 1/5 2/5 0/5 0/5
Overall 2/28 11/28 3/28 2/28
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Table 10: H Statistics assessing alternate models

The table reports the H statistics for equity portfolios under the null hypothesis of other
distributions: a GARCH-M model, a Poisson Jump model, a regime-switching (RS) normal
distribution model and a regime-switching GARCH model. The weights used are proportional to
the number of observations used to calculate the sample exceedance correlations (see Eq. (26)).
Frequency of the data is weekly. A ∗ indicates rejection of the model at the 5% confidence level,
and ∗∗ indicates rejection at the 1% confidence level.

The market portfolio is the value-weighted index of all stocks in CRSP. Panel A shows the H
statistics of the value-weighted industry portfolios. Panels B and C show the H statistics of the
value-weighted portfolios formed by sorting on market capitalizations and book-to-market ratios,
respectively. Panel D presents the H statistics of the equal-weighted portfolios of stocks sorted by
their lagged past six-months returns, with one to six months of lags.

GARCH-M Jump Model RS Normal RS-GARCH
Portfolio H SE H SE H SE H SE

Panel A. Industry portfolios (value-weighted)
Misc 0.114 0.249 0.117 ∗∗ 0.038 0.076 0.066 0.044 0.049

Petroleum 0.107 0.280 0.212 ∗∗ 0.050 0.127 ∗∗ 0.045 0.168 ∗∗ 0.031

Finance 0.060 0.040 0.067 ∗ 0.030 0.034 0.125 0.070 0.138

Durables 0.073 0.040 0.074 ∗∗ 0.028 0.056 0.052 0.076 0.163

Basic Ind 0.056 0.051 0.077 ∗∗ 0.021 0.048 ∗∗ 0.008 0.046 0.161

Food/Tobacco 0.130 0.322 0.127 ∗∗ 0.031 0.073 0.066 0.106 0.061

Construction 0.087 ∗ 0.036 0.111 ∗ 0.054 0.067 0.261 0.076 0.107

Capital Goods 0.051 0.031 0.058 ∗ 0.029 0.037 0.022 0.030 0.098

Transportation 0.114 0.119 0.102 ∗ 0.050 0.082 0.094 0.187 0.097

Utilities 0.156 0.115 0.138 ∗∗ 0.030 0.109 0.117 0.197 ∗ 0.099

Textile/Trade 0.072 0.066 0.108 0.102 0.061 ∗∗ 0.023 0.102 0.160

Service 0.079 ∗∗ 0.025 0.064 ∗ 0.028 0.035 0.027 0.129 0.115

Leisure 0.068 0.041 0.061 0.036 0.039 0.041 0.054 0.031

Panel B. Size portfolios (value-weighted)
1 Smallest 0.124 ∗ 0.053 0.127 ∗∗ 0.042 0.084 0.119 0.069 0.067

2 0.073 0.044 0.075 ∗ 0.032 0.039 0.062 0.092 0.100

3 0.046 0.034 0.044 0.024 0.026 0.020 0.064 0.093

4 0.030 0.018 0.030 0.024 0.016 0.033 0.055 0.074

5 Largest 0.008 0.007 0.016 ∗ 0.007 0.003 0.004 0.030 ∗∗ 0.005

Panel C. Book-to-market portfolios (value-weighted)
1 Growth 0.023 0.017 0.042 0.036 0.010 0.052 0.060 0.054

2 0.039 ∗ 0.018 0.036 ∗∗ 0.010 0.024 ∗ 0.011 0.036 0.033

3 0.059 0.116 0.083 ∗∗ 0.024 0.048 0.030 0.110 0.085

4 0.080 0.052 0.093 0.068 0.061 0.120 0.122 0.179

5 Value 0.114 0.072 0.115 ∗ 0.057 0.078 ∗ 0.038 0.175 0.106

Panel D. Momentum portfolios (equal-weighted)
1 Past Losers 0.239 0.129 0.157 ∗∗ 0.033 0.101 ∗ 0.044 0.090 0.220

2 0.105 ∗ 0.043 0.117 ∗∗ 0.015 0.080 0.058 0.100 0.104

3 0.094 ∗∗ 0.028 0.096 ∗ 0.039 0.061 0.292 0.138 ∗ 0.068

4 0.081 0.044 0.074 0.044 0.046 0.036 0.115 0.109

5 Past Winners 0.099 0.075 0.097 ∗ 0.046 0.059 0.109 0.149 0.125
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