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Abstract

While many studies document that the market risk premium is predictable and that betas

are not constant, the dividend discount model ignores time-varying risk premiums and betas.

We develop a model to consistently value cashflows with changing risk-free rates, predictable

risk premiums and conditional betas in the context of a conditional CAPM. Practical valuation

is accomplished with an analytic term structure of discount rates, with different discount rates

applied to expected cashflows at different horizons. Using constant discount rates can produce

large mis-valuations, which, in portfolio data, are mostly driven at short horizons by market risk

premiums and at long horizons by time-variation in risk-free rates and factor loadings.



To determine an appropriate discount rate for valuing cashflows, a manager is confronted by

three major problems: the market risk premium must be estimated, an appropriate risk-free rate

must be chosen and the beta of the project or company must be determined. All three of these

inputs into a standard CAPM are not constant. Furthermore, cashflows may co-vary with the

risk premium, betas or other predictive state variables. A standard Dividend Discount Model

(DDM) cannot handle dynamic betas, risk premiums or risk-free rates because in this valuation

method, future expected cashflows are valued at constant discount rates.

In this paper, we present an analytical methodology for valuing stochastic cashflows that

are correlated with risk premiums, risk-free rates and time-varying betas. All these effects are

important. First, the market risk premium is not constant. Fama and French (2002) argue that

the risk premium moved to around 2% at the turn of the century from 7-8% twenty years earlier.

Jagannathan, McGratten and Scherbina (2001) also argue that the market ex-ante risk premium

is time-varying and fell during the late 1990’s. Furthermore, a large literature claims that a

number of predictor variables, including dividend yields (Campbell and Shiller (1988a and b)),

risk-free rates (Fama and Schwert (1977)), term spreads (Campbell (1987)), default spreads

(Keim and Stambaugh (1986)), and consumption-asset-labor deviations (Lettau and Ludvigson

(2001)), have forecasting power for market excess returns.

Second, the CAPM assumes that the riskless rate is the appropriate 1-period, or instanta-

neous, riskless rate, which in practice is typically proxied by a 1-month or a 3-month T-bill

return. However, it is highly unlikely that over the long horizons of many corporate capital

budgeting problems that the riskless rate remains constant. Since the total expected return

comprises both a risk-free rate and a risk premium, adjusted by a factor loading, time-varying

risk-free rates imply that total expected returns also change through time. Note that even an

investor who believes that the expected market excess return is constant, and a project’s beta is

constant, still faces stochastic total expected returns as short rates move over time.

Finally, as companies grow, merge or invest in new projects, their risk profiles change. It

is quite feasible that a company’s beta changes even in short intervals, and is very likely to

change over 10 or 20 year horizons. There is substantial variation in factor loadings even for

portfolios of stocks, for example industry portfolios (Fama and French (1997)) and portfolios

sorted by size and book-to-market (Ferson and Harvey (1999)). The popularity of multifactor

models for computing unconditional expected returns (for example, Fama and French (1993))

may reflect time-varying betas and conditional market risk premiums in a conditional CAPM

(see Jagannathan and Wang (1996)).



This paper presents, to our knowledge, the first analytic, tractable method of discounting

cashflows that embeds the effects of changing market risk premiums, risk-free rates and time-

varying betas. Previous practice adjusts the DDM by using different regimes of cashflow growth

or expected returns (see Lee, Myers and Swaminathan (1999) for a recent example). These

adjustments are not made in an overall framework and so are subject to Fama (1996)’s critique

of ad-hoc adjustments to cashflows with changing expected returns. In contrast, our valuation

is done in an internally consistent framework.

Our valuation framework significantly extends the current set of analytic present value mod-

els developed in the affine class (see, among others, Ang and Liu (2001), Bakshi and Chen

(2001) and Bekaert and Grenadier (2001)). If a security’s beta is constant and the market risk

premium is time-varying, then the price of the security would fall into this affine framework.

Similarly, the case of a time-varying beta and a constant market risk premium can also be

handled by an affine model. However, unlike our set-up, the extant class of models cannot si-

multaneously model time-variation in both beta and the market risk premium. This is because

the expected return involves a product of two stochastic, predictable variables (beta multiplied

by the market premium).

We derive our valuation formula under a very rich set of conditional expected returns. Our

functional form for time-varying expected returns nests the specifications of the conditional

CAPM developed by Harvey (1989), Ferson and Harvey (1991, 1993 and 1999), Cochrane

(1996), Jagannathan and Wang (1996), among others. These studies use instrumental variables

to model the time-variation of betas or market risk premiums. In our framework, short rates

also vary through time. The set-up also incorporates correlation between stochastic cashflows,

betas and risk premiums.

To adapt our valuation framework to current practice in capital budgeting, we compute

a term structure of discount rates applied to random cashflows. Practical cashflow valuation

separates the problem into two steps: first, estimate the expected future cashflows of a project or

security, and then take their present value, usually by applying a constant discount rate. Instead

of applying a constant discount rate, we compute a series of discount rates, or spot expected

returns, which can be applied to a series of expected cashflows. The model incorporates the

effects of changing market risk premiums, risk-free rates and time-varying betas by specifying

a different discount rate for each different maturity.

Brennan (1997) also considers the problem of discounting cashflows with time-varying ex-

pected returns and proposes a term structure of discount rates. Our model significantly gen-
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eralizes Brennan’s formulation. In his set-up, the beta of the security is constant and only the

risk premium changes. Furthermore, his discount rates can only be computed by simulation and

were not applied to valuing predictable cashflows. In contrast, our discount rates are tractable,

analytic functions of a few state variables known at each point in time. We use this analytic

form to attribute the mis-pricing effects of time-varying discount rates.

We illustrate a practical application of our theoretical framework by working with cashflows

and expected returns of portfolios sorted by book-to-market ratios and industry portfolios. First,

we compute the term structure of discount rates at the end of our sample, December 2000, for

each portfolio. At this point in time, the term structure of discount rates is upward sloping and

much lower than a constant discount rate computed from the CAPM. Second, we compute the

potential mis-pricing of ignoring the time-variation of expected returns. To focus on the effects

of time-varying discount rates, we compute the value of a perpetuity of an expected cashflow of

$1 received each year using the term structure of discount rates from each portfolio. Ignoring

time-varying expected returns can induce large potential mis-valuations; mis-pricings of over

50% using a traditional DDM are observed.

To determine the source of the mispiricings, we use our model to decompose the variance of

the spot expected returns into variation due to each of the separate components betas, risk-free

rates and the risk premium. We find that most of the variation is driven by changes in beta and

risk-free rates at long horizons, while it is most important to take into account of the variation

of the risk premium at short horizons.

The rest of this paper is organized as follows. Section I presents a model for valuing stochas-

tic cashflows with time-varying expected returns. In Section II we show how to compute the

term structure of discount rates corresponding to our valuation model and derive variance de-

compositions for the discount rates. We apply the model to data, which we describe in Section

III. The empirical results are discussed in Section IV. Section V concludes.

I. Valuing Cashflows with Time-Varying Expected Returns

In this section, our contribution is to develop a closed-form methodology for computing spot

discount rates in a system which allows for time-varying cashflow growth rates, betas, short

rates and market risk premiums. We begin with the standard definition of a security’s expected

return.

An asset pricing model specifies the expected return of a security, where the log expected
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returnµt is defined as:1

exp(µt) = Et

[
Pt+1 + Dt+1

Pt

]
, (1)

wherePt is the price andDt is the cashflow of the security. If, in addition, the cashflow process

Dt is also specified, then the pricePt of the security can be written as:

Pt = Et

[ ∞∑
s=1

(
s−1∏

k=0

exp(−µt+k)

)
Dt+s

]
. (2)

Equation (2) can be derived by iterating equation (1) and assuming transversality.

A traditional Gordon-model formula assumes that the expected return is constant,µt = µ̄,

and the expected rate of cashflow growth is also constant:

Et[Dt exp(gt+1)] = Et[Dt+1] = Dt exp(ḡ).

In this case, the cashflow effects and the discounting effects can be separated:

Pt =
∞∑

s=1

Et[Dt+s]

exp(sµ̄)
. (3)

This reduces equation (2) to:

Pt

Dt

=
∞∑

j=1

exp(−s · (µ̄− ḡ))

=
1

exp(µ̄− ḡ)− 1
,

which is the DDM formula, expressed with continuously compounded returns and growth rates.

However, as many empirical and theoretical studies suggest, expected returns and cashflow

growth rates are time-varying and correlated. When this is the case, the simple discounting

formula (3) does not hold. In particular, the effect of the cashflow growth rates cannot be

separated from the effect of the time-varying discount rates. We must then evaluate equation

(2) directly. In order to take this expectation, we specify a rich class of conditional expected

returns.

Consider a conditional log expected returnµt specified by a conditional CAPM:

µt = α + rt + βtλt, (4)

whereα is a constant,rt is a risk-free rate,βt is the time-varying beta andλt is the time-

varying market risk premium. In the class of conditional CAPM’s considered by Harvey (1989),

1 In equation (1), expected returns are continuously compounded to make the mathematical exposition simpler.
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Shanken (1990), Ferson and Harvey (1991 and 1993) and Cochrane (1996), among others, the

time-varying beta or risk premium are parameterized by a set of instrumentszt in a linear

fashion. For example, the conditional risk premium can be predicted byzt:

λt ≡ Et[y
m
t+1 − rt] = b0 + b′1zt, (5)

whereym
t+1 − rt is the log excess return on the market portfolio. Similarly, the conditional beta

can be predicted byzt and past betas:

Et[βt+1] = c0 + c′1zt + c2βt. (6)

The instrumental variableszt may be any variables which predict cashflows, betas or aggre-

gate returns. For example, Harvey (1989) specifies expected returns of securities to be a linear

function of market returns, dividend yields and interest rates. Jagannathan and Wang (1996)

allow for conditional expected market returns to be a function of labor and interest rates. Fer-

son and Harvey (1991 and 1993) allow both time-varying betas and market risk premiums to

be linearly predicted by factors like inflation, interest rates and GDP growth, while Ferson and

Korajzyck (1995) allow time-varying betas in an APT model. In Cochrane (1996), betas can

be considered to be a linear function of several instrumental variables, which also serve as the

conditioning information set.

To take the expectation (2), we need to know the evolution of the instrumentszt, the betas

βt and the cashflows of the securitygt, wheregt+1 = ln(Dt+1/Dt). Suppose we can summarize

these variables by aK×1 state-vectorXt, whereXt = (gt βt z
′
t)
′. The first and second elements

of Xt are cashflow growth and the beta of the asset, respectively, but this ordering is solely for

convenience. Suppose thatXt follows a VAR(1):

Xt = c + ΦXt−1 + Σ
1
2 εt, (7)

whereεt ∼ IID N(0, I). The one-order lag specification of this process is not restrictive, as

additional lags may be added by re-writing the VAR into a companion form. Note that the

instrumental variableszt can predict betas, as well as market risk premiums, through the com-

panion formΦ in (7).

The following proposition shows how to compute the price of the security (2) in closed

form:

Proposition I.1 Let Xt = (gt βt z
′
t)
′, with dimensionsK × 1, follow the process in equation

(7). Suppose the log expected return (1) takes the form:

µt = α + ξ′Xt + X ′
tΩXt, (8)
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whereα is a constant,ξ is aK× 1 vector andΩ is a symmetricK×K matrix. Then, assuming

existence, the price of the security is given by:

Pt = Et

[ ∞∑
s=1

(
s−1∏

k=0

exp(−µt+k)

)
Dt+s

]

Pt

Dt

=
∞∑

n=1

exp(a(n) + b(n)′Xt + X ′
tH(n)′Xt), (9)

where the coefficientsa(n) is a scalar,b(n) is aK × 1 vector andH(n) is aK ×K symmetric

matrix. The coefficientsa(n), b(n) andH(n) are given by the recursions:

a(n + 1) = a(n)− α + (e1 + b(n))′c + c′H(n)c− 1

2
ln det(I − 2ΣH(n))

+
1

2
(e1 + b(n) + 2H(n)c)′(Σ−1 − 2H(n))−1(e1 + b(n) + 2H(n)c)

b(n + 1) = −ξ + Φ′(e1 + b(n)) + 2Φ′H(n)c

+2Φ′H(n)(Σ−1 − 2H(n))−1(e1 + b(n) + 2H(n)c)

H(n + 1) = −Ω + Φ′H(n)Φ + 2Φ′H(n)(Σ−1 − 2H(n))−1H(n)Φ (10)

wheree1 represents a vector of zero’s with a 1 in the 1st place and

a(1) = −α + e′1c +
1

2
e′1Σe1

b(1) = −ξ + Φ′e1

H(1) = −Ω (11)

The general formulation of the expected return in equation (8) can be applied to the follow-

ing special cases:

1. First, the trivial case is thatµt = µ̄ is constant, soξ = Ω = 0, α > 0, giving the standard

DDM in equation (3).

2. Second, equation (8) nests a conditional CAPM relation with time-varying betas and short

rates by specifyingzt = rt, the short rate, soXt = (gt βt rt)
′. The one-period expected

return follows:

µt = α + rt + βtλ̄ = α + (e3 + λ̄e2)
′Xt, (12)

whereλ̄ is the constant market risk premium andei represents a vector of zeros with a 1

in theith place. Hence, we can setξ = (e3 + λe2) andΩ = 0.
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3. Third, if the market risk premium is predictable but the security or project’s beta is con-

stant (βt = β̄), then we can specifyXt = (gt rt zt)
′, wherezt are predictive instruments

forecasting the market risk premium:

λt ≡ Et[y
m
t+1 − rt] = b0 + b′1zt.

The expected return then becomes:

µt = α + rt + β̄λt = α + (e2 + β̄b1)
′Xt,

so we can setξ = (e2 + β̄b1) andΩ = 0.

4. Finally, we can accommodate both time-varying betas and risk premiums. If the market

risk premiumλt = b0 + b′1zt andXt is given by our full specificationXt = (gt βt z
′
t)
′,

then the conditional expected return can be written as:

µt = α + rt + λtβt = α + rt + b0βt + βt(b
′
1zt). (13)

If rt is included in the instrument setzt, then equation (13) takes the form of equation (8)

for appropriate choices ofξ andΩ. The quadratic termΩ is now non-zero to reflect the

interaction term ofβt(b
′
1zt).

The quadratic Gaussian structure of the discount rateµt in equation (8) results from mod-

elling the interaction of stochastic betas and stochastic risk premiums. Quadratic Gaussian

models have been used in the finance literature in other applications. For example, Constan-

tinides (1992) and Ahn, Dittmar and Gallant (2002) develop quadratic Gaussian term structure

models. Kim and Omberg (1996), Campbell and Viceira (1999) and Liu (1999), among others,

apply quadratic Gaussian structures in portfolio allocation.

The pricing formula in equation (9) is analytic because the coefficientsa(n), b(n) andH(n)

are known functions and stay constant through time. Prices move because cashflow growth

or state variables affecting expected returns change inXt. The class of affine present value

models in Ang and Liu (2001), Bakshi and Chen (2001) and Bekaert and Grenadier (2001) only

have the scalar and linear recursionsa(n) and b(n). Our model has an additional recursion

for a quadratic termH(n). The extant class of present value models is unable to handle the

interaction between betas and risk premiums. Note that the quadraticH(n) term also affects

the recursions ofa(n) andb(n).2

2 An alternative approach is taken by Menzly, Santos and Veronesi (2003), who price stocks in a habit economy

by specifying the fraction each asset contributes to total consumption. In contrast, we specify exogenous cashflows

in a way that is easily adaptable to current valuation practice.
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In our analysis, we consider only a CAPM formulation with time-varying betas and time-

varying market risk premiums, but Proposition I.1 is general enough to model time-varying

betas for multiple factors, and time-varying risk premiums for multiple factors. This generalized

setting would include linear multi-factor models, like the Fama and French (1993) three-factor

model. In this case,Xt would now include time-varying betas with respect to each of the factors,

and the instrumental variableszt could predict each of the factor premiums.

In Proposition I.1, we assume that beta is an exogenous process and solve endogenously for

the price of the security. Using the exogenously specified expected returns and cashflows, we

can construct return series for individual assets and if the number of shares outstanding of each

asset is specified, we can construct the return series of the market portfolio. We can compute the

covariance of an individual stock return and the aggregate market portfolio, and hence compute

the implied beta of the stock from returns. Therefore, beta is both an input to the model and

an output of the model. The beta specified as an input into the VAR in equation (7) and the

resulting beta from the implied returns from Proposition I.1 are not necessarily the same. To

see this, our model assumes that the market return takes the following form:

ym
t+1 − rt = λt(Xt) + σm

t (Xt)v
m
t+1, (14)

whereλt is the same market risk premium in equation (4). The continuously compounded

returns of securityi implied by the prices from Proposition I.1 satisfy:

yi
t+1 − rt +

1

2
(σi

t(Xt))
2 = βi

t(y
m
t+1 − rt) + σi

t(Xt)u
i
t+1, (15)

where 1
2
(σi

t(Xt))
2 is the Jensen’s term from working in continuously compounded returns,

yi
t+1 − rt is the excess return for asseti, andσi

t(Xt) is the idiosyncratic volatility of asseti

that depends on state variables.3

We obtain returns in equation (15) using the relationyt+1 = (1 + Pt+1/Dt+1)/(Pt/Dt) ×
exp(gt+1). Heteroskedasticity in returns arises from the non-linear form of equation (9), even

though the driving process forXt in equation (7) is homoskedastic. The betaβi
t specified in

the VAR in equation (7) is not the same as covt(y
i
t+1, y

m
t+1)/(σ

m
t )2 in equation (15). If we also

aggregate the returns of individual stocks by multiplying equation (15) by the market weightsωi

3 Equations (14) and (15) represent an arbitrage-free specification, since there is a strictly positive pricing kernel

mt+1 that supports these returns:

mt+1 = R−1
t exp

(
−1

2
λ2

t

(σm
t )2

− λt

σm
t

vm
t+1

)
,

whereRt is the gross risk-free rateRt = exp(rt).
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of each asseti, we do not obtain equation (14). This is because of the heteroskedastic Jensen’s

term 1
2
(σi

t(Xt))
2 introduced by the stock valuation equation (9). However, we would expect the

discrepancy to be small, becauseσi
t(Xt)

2 in (15) is small.

The model’s implied beta from returns can be made the same as the model’s beta in the VAR

in three ways. First, we can simply ignore the small Jensen’s term in equation (15). Second,

we can perform a Campbell and Shiller (1988b) log-linearization on the returns implied from

Proposition I.1, equation (9), and then re-write equation (15) using log-linearized returns. Both

of these approximations imply that an asset’s returns satisfy a conditional version of an APT

model, where ∑
i

ωiβ
i
t = 1 and

∑
i

ωiσ
iui

t+1 = 0.

The second relation is the standard assumption of a factor or APT model. That is, as the number

of assets becomes large, diversification causes idiosyncratic risk to tend to zero.

Finally, we can change the model specification. Proposition I.1 specifies the log discount

rate to be a quadratic Gaussian process. This ensures that the discount rate is always positive.

Instead, we could work in simple returns, following the conditional CAPM specified by Ferson

and Harvey (1993 and 1999). If we specify the simple discount rate to be a quadratic Gaussian

process, then equation (9) would become the sum of quadratic Gaussian multiplied by exponen-

tial quadratic Gaussian terms, extending Ang and Liu (2001). Then, the implied simple returns

would satisfy equation (15) without the Jensen’s term and the model’s beta used as an input into

the VAR would be consistent with the implied model beta from returns. However, this has the

disadvantage of allowing negative discount rates and does not allow a term structure of discount

rates for valuation to be easily computed (below).

A final comment is that, like any present value or term structure model, Proposition I.1 has

an implied stochastic singularity. By exogenously specifying a beta, risk premium and risk-free

rate, we specify an expected return. Combined with the cashflow process, this implies a market

valuation that may not equal the observed market price of the stock.

II. The Term Structure of Expected Returns

Current practical capital budgeting is a two-step procedure. First, managers compute expected

future cashflowsEt[Dt+s] from projections, analysts’ forecasts, or from extrapolation of his-

torical data. A constant discount rate is computed, usually using the CAPM (see Graham and

Harvey (2001)). The second step is to discount expected cashflows using this discount rate. The

9



DDM allows this separation of cashflows and discount rates only because expected returns are

assumed to be constant.

Although Proposition I.1 allows us to value stochastic cashflows with time-varying returns,

it is hard to directly apply the proposition to practical situations where the expected cashflow

stream is separately estimated. To adapt current practice to allow for time-varying expected re-

turns, we maintain the separation of the problem of estimating future cashflows and discounting

the cashflows. However, we change the second part of the DDM valuation method. In particu-

lar, instead of a constant discount rate, we apply a series of discount rates to the expected future

cashflows, where each expected future cashflow is discounted at the discount rate appropriate

to the maturity of the cashflow.

This series of discount rates is computed to specifically take into account the time-variation

of expected returns. That is, we specify a series of discount ratesµt(n) for horizonn where:

Pt = Et

[ ∞∑
s=1

(
s−1∏

k=0

exp(−µt+k)

)
Dt+s

]
=

∞∑
s=1

Et[Dt+s]

exp(s · µt(s))
. (16)

Each different expected cashflow at timet+n, Et(Dt+n), is discounted back at its own expected

returnµt(n), as illustrated in Figure 1.

To show how the term structure of discount ratesµt(s) can incorporate the effects of time-

varying conditional expected returns, we introduce the following definition:

Definition II.1 A “spot expected return” or “spot discount rate”µt(n) is a discount rate which

applies between timet and t + n and is determined at timet. The spot expected return is the

valueµt(n) which solves:

Et

[(
n−1∏

k=0

exp(−µt+k)

)
Dt+n

]
=

Et[Dt+n]

exp(n · µt(n))
. (17)

The series{µt(n)} varying maturityn is the term structure of expected returns or discount

rates.

In equation (17), the LHS of the equation is a single term in the pricing equation (2). Using this

definition enables equation (2) to be re-written as (16).

The definition in equation (17) is a generalization of the term structure of discount rates in

Brennan (1997). Brennan restricts the time-variation in expected returns to come only from

risk-free rates and market risk premiums, but ignores other sources of predictability (like time-

varying betas and cashflows). The spot expected returnsµt(n) depend on the information set
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at time t, and as time progresses, the term structure of discount rates changes. Note that the

one-period spot expected returnµt(1) is just the one-period expected return applying between

time t andt + 1, µt(1) ≡ µt.

To compute the spot expected returnsµt(s), we use the following proposition:

Proposition II.1 Let Xt = (gt βt z
′
t)
′ follow the process in equation (7) and the one-period

expected returnµt follow equation (8). Then, assuming existence, the spot expected return

µt(n) is given by:

µt(n) = A(n) + B(n)′Xt + X ′
tG(n)Xt, (18)

whereA(n) is a scalar,B(n) is aK × 1 vector andG(n) is aK ×K symmetric matrix. In the

coefficientsA(n) = (ā(n) − a(n))/n, B(n) = (b̄(n) − b(n))/n andG(n) = −H(n)/n, a(n),

b(n) andH(n) are given by equation (10) in Proposition I.1. The coefficientsā(n) andb̄(n) are

given by the recursions:

ā(n + 1) = ā(n) + e′1c + b̄(n)′c +
1

2
(e1 + b̄(n))′Σ(e1 + b̄(n))

b̄(n + 1) = Φ′(e1 + b̄(n)) (19)

wheree1 represents a vector of zero’s with a 1 in the 1st place and

ā(1) = e′1c +
1

2
e′1Σe1

b̄(1) = Φ′e1. (20)

Note thatµt(n) is a quadratic function ofXt, the information set at timet. This is because

the price of the security or asset is a function of exponential quadratic terms ofXt in equation

(9). AsXt changes through time, so do the spot expected returns. This reflects the conditional

nature of the expected returns, which depend on the state of the economy summarized byXt.

Like the term structure of interest rates, the term structure of discount rates can take a variety

of shapes, including upward sloping, downward sloping, humped and inverted shapes.

Besides being easily applied in practical situations, there are several reasons why our model’s

formulation of spot expected returns is useful in the context of valuing cashflows. First, we com-

pute the term structure of expected returns by specifying models of the conditional expected

return from a rich class of conditional CAPM’s, used by many previous empirical studies. We

can estimate the discount curve for individual firms by looking at discount curves for industries

or for other groups of firms with similar characteristics (for example, stocks with high or low

book-to-market ratios).
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Second, direct examination of the discount rate curve gives us a quick guide to potential mis-

pricings between taking or not taking into account time-varying expected returns. The greater

the magnitude of the difference between the discount ratesµt(n) and a constant discount rate

µ̄, the greater the mis-valuation. This difference is exacerbated at early maturities, where the

time value of money is large. Since the expected cashflows are the same in the numerator of

each expression in equations (3) and (16), we can compare a valuation which takes into account

the effects of changing expected returns to a valuation which ignores them by looking at the

difference between the discount curve{µt(n)} and the constant expected returnµ̄ used in the

standard DDM.

Third, it may be no surprise that accounting for time-varying expected returns can lead

to different prices from using a constant discount rate from an unconditional CAPM. What is

economically more important is quantifying the effects of time-varying expected returns by

looking at its underlying sources of variation. Our analytic term structure of discount rates

in Proposition II.1 allows us to attribute the effect of time-varying expected returns into its

different components. For example, are time-varying risk-free rates the most important source

of variation of conditional expected returns, or is it more important to account for time-variation

in the risk premium?

Finally, the discount curve is analogous to the term structure of zero coupon rates. In fixed

income, cashflows are known and the zero coupon rates represent the present value of $1 to

be received at different maturities in the future. In equities, cashflows are stochastic (and are

correlated with the time-varying expected return) andµt(n) represents the expected, rather than

certain, return of receiving future cashflows in the future at timet + n. In fixed income mar-

kets, zero coupon yields are observable while in equity markets the spot discount rates are not

observable. However, one can potentially obtain the term structure of expected returns from

observing the prices of stock futures contracts of different maturities. For example, if a se-

ries of derivative securities were available, each derivative security representing the claim on

a stock’s dividend, payable only in each separate future period, the prices of these derivative

securities would represent the spot discount curve. Given the lack of suitable traded derivatives,

particularly on portfolios, we directly estimate the discount curves.

If a conditional CAPM is correctly specified, the constantα in equations (4) or (8) should

be zero. Since the subject of this paper is to illustrate how to discount cashflows with time-

varying expected returns, rather than correctly specifying an appropriate conditional CAPM, in

our empirical calibration we include anα in the stock’s conditional expected return. Proposition
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II.1 does not require the conditional CAPM to be exactly true. Hence, we include a constant to

capture any potential mis-specifications from a true conditional CAPM.

In addition to conducting a valuation incorporating all the time-varying risk-free, risk pre-

mium and beta components, we also compute discount curves relative to two more special cases.

First, if an investor correctly takes into account the time-varying market risk premium but ig-

nores the time-varying beta, this also results in a mis-valuation. We can measure this valuation

by estimating a systemXt = (gt rt zt)
′ which omits the time-varying beta, and using a constant

beta in the expected returnµt = α + rt + β̄λt. The constant beta can be estimated using an

unconditional CAPM. Second, an investor can correctly measure the time-varying beta, but ig-

nore the predictability in the market risk premium. In this second system, the investor uses an

expected returnµt = α + rt + βtλ̄, whereλ̄ is the unconditional mean of the market log excess

return.

A. The Time-Variation in Discount Rates

To investigate the source of the time-variation in discount rates, we can compute the variance

of the discount rate var(µt(n)) using the following corollary:

Corollary II.1 The variance of the discount rate var(µt(n)) is given by:

var(µt(n)) = B(n)′ΣXB(n) + 2tr((ΣXG(n))2), (21)

whereΣX is the unconditional covariance matrix ofXt, given by: ΣX = devec((I − Φ ⊗
Φ)−1vec(Σ)).

It is possible to perform an approximate variance decomposition on (21), given by the following

corollary:4

Corollary II.2 The variance ofµt(n) can be approximated by:

var(µt(n)) = (B(n) + 2G(n)X̄)′ΣX(B(n) + 2G(n)X̄), (22)

ignoring the quadratic term in equation (21), wherēX = (I−Φ)−1c is the unconditional mean

of Xt.

4 The variance from the higher order terms are extremely small, for our empirical values.
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We can use equation (22) to attribute the variation ofµt(n) to variation of each of the

individual state variables inXt. However, some of the sources of variation we want to examine

are transformations ofXt, rather thanXt itself. For example, a variance decomposition with

respect to cashflows (gt) or betas (βt) can be computed using equation (22) becausegt andβt are

contained inXt. However, a direct application of equation (22) does not allow us to attribute

the variation ofµt(n) to sources of uncertainty driving the time-variation in the market risk

premiumλt, sinceλt is not included inXt, but is a linear transformation ofXt. To accommodate

variance decompositions of linear transformations ofXt, we can rewrite equation (22) using the

mappingZt = L−1(Xt − l) for L aK ×K matrix andl aK × 1 vector:

var(µt(n)) = (B(n) + 2G(n)X̄)′LΣZL′(B(n) + 2G(n)X̄), (23)

whereΣZ = L−1ΣX(L′)−1.

Orthogonal variance decompositions can be computed using a Cholesky, or similar, orthog-

onalizing transformation forΣX or ΣZ . However, in our work our variance decompositions

do not sum to 1. For a single variable, we count all the contributions in the variance of that

variable, together with all the covariances with each of the other variables. Hence, our variance

decompositions double-count the covariances, but are not subject to an arbitrary orthogonaliz-

ing transformation.

III. Empirical Specification and Data

The model presented in Section II is very general, only needing cashflows and betas to be

included in a vector of state variablesXt. To illustrate the implementation of the methodology,

we specify the vectorXt that we use in our empirical application in Section A. Section B

describes the data and the calibration.

A. Empirical Specification

We specifyXt asXt = (gt βt ∆pot rt cayt πt)
′, wheregt is cashflow growth,βt is the time-

varying beta,∆pot is the change in the payout ratio,rt is the nominal short rate,cayt is Lettau

and Ludvigson (2001)’s deviation from trend of consumption-asset-labor fluctuations andπt is

ex-post inflation. We motivate the inclusion of these variables as follows.

First, to predict the risk premium, we use nominal short ratesrt andcayt. To be specific, we
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parameterize the market risk premium as:

λt = b0 + brrt + bcaycayt. (24)

While many studies use dividend yields to predict market excess returns (see Campbell and

Shiller (1988a)), we choose not to use dividend yields because this predictive relation has grown

very weak during the 1990’s (see Ang and Bekaert (2002) and Goyal and Welch (2003)). In

contrast, Ang and Bekaert (2002) and Campbell and Yogo (2002) find that the nominal short

rate has strong predictive power, at high frequencies, for excess aggregate returns. Lettau and

Ludvigson (2001) demonstrate thatcayt is a significant forecaster of excess returns, at a quar-

terly frequency, both in-sample and out-of-sample. Both of these predictive instruments have

stronger forecasting ability than the dividend yield for aggregate excess returns.

Second, to help forecast dividend cashflowsgt, we use the change in the payout ratio, which

can be considered to be a measure of earnings growth inXt. Vuolteenaho (2002) shows that

variation in firm-level earnings growth accounts for a large fraction of the variation of firm-level

stock returns. However, earnings growth is difficult to compute for stock portfolios with high

turnover. Instead, we use the change in the payout ratio, the ratio of dividends to earnings. This

is equivalent to including earnings growth, since the change in the payout ratio, together with

gt, contains equivalent information. To show this, if we denote earnings at timet asEarnt,

then gross earnings growthEarnt/Earnt−1 can be expressed as:

Earnt

Earnt−1

=

(
1/pot

1/pot−1

)
exp(gt)

wherepot = Dt/Earnt represents the payout ratio.

Finally, since movements in nominal short rates must be due either to movements in real

rates or inflation, we also include the ex-post inflation rateπt in Xt. This has the advantage of

allowing us to separately examine the effects of the nominal short rate or the real interest rate.

To map the notation of Propositions I.1 and II.1 into this set-up, we can specify the formu-

lation of the one-period expected return in equation (8) as follows:

µt = α + rt + λtβt

= α + e′4Xt + (b0 + brrt + bcaycayt)βt

= α + ξ′Xt + X ′
tΩXt, (25)

15



whereξ = (e4 + b0e2) andΩ is given by:

Ω =




0 0 0 0 0 0

0 0 0 br/2 bcay/2 0

0 0 0 0 0 0

0 br/2 0 0 0 0

0 bcay/2 0 0 0 0




.

By applying Corollary II.2. we can attribute the variation ofµt(n) to linear transformations

of Xt. For example, to compute the variance decomposition ofµt(n) to the risk premiumλt,

we can transformXt = (gt βt ∆pot rt cayt πt)
′ to Zt = (gt βt ∆pot rt λt πt)

′ using the mapping:

Xt = l + LZt,

wherel is a constant vector andL is a6× 6 matrix given by:

L =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 − br

bcay

1
bcay

− br

bcay

0 0 0 0 0 1




.

B. Data Description and Estimation

To illustrate the effect of time-varying expected returns on valuation, we work with ten book-

to-market sorted portfolios and the Fama and French (1997) definitions of industry portfolios.5

We focus on these portfolios because of the well-known value effect and because industry port-

folios have varying exposure to various economic factors (see Ferson and Harvey (1991)). For

the book-to-market portfolios, we focus on the deciles 1, 6 and 10, which we label “growth,”

“neutral” and “value,” respectively. We use data from July 1965 - Dec 2000 for the book-to-

market decile portfolios and from Jan 1964 - Dec 2000 for the industry portfolios. All portfolios

are value-weighted.

To estimate dividend cashflow growth rates of the portfolios, we compute monthly dividends

as the difference between the portfolio value-weighted returns with dividends and capital gains,

5 We exclude the industry portfolios Health, Miscellaneous and Utilities because of missing data.
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and the value-weighted returns excluding dividends:

Pt+1/12 + D̄t+1/12

Pt

− Pt+1/12

Pt

=
D̄t+1/12

Pt

,

where the frequency1/12 refers to monthly data. The bar superscript in the variableD̄t+1/12

denotes a monthly, as opposed to annual, dividend. To compute annual dividend growth, we

sum up the dividends over the past 12 months, as is standard practice to remove seasonality (see

Hodrick (1992)):

Dt =
11∑
i=0

D̄t−i/12.

Growth rates of cashflows are constructed taking logs:gt = log(Dt/Dt−1). These cashflow

growth rates represent annual increases of cashflows but are measured at a monthly frequency.

To estimate time-varying betas on each portfolio, we employ the following standard proce-

dure, dating back to at least Fama and MacBeth (1973). We run rolling 60-month regressions

of the excess total return of the portfolio on a constant and the excess market risk return:

ȳτ/12 − r̄(τ−1)/12 = αt + βt(ȳ
m
τ/12 − r̄(τ−1)/12) + uτ (26)

where all returns are continuously compounded,ȳτ/12 is the portfolio’s log total return over

monthτ , r̄(τ−1)/12 is the continuously-compounded 1-month risk-free rate (the 1-month T-bill

rate) from(τ − 1)/12 to τ/12 and ȳm
τ/12 is the market’s log total return over monthτ . The

regression is run at a monthly frequency fromτ = t − 60/12 to τ = t. The time series of the

estimated linear coefficients in the regression (26) is the observable time-series of the portfolio

betasβt. We compute anα in equation (4) so that the average portfolio excess return in the data

is matched by this series of betas.

While this estimation procedure is standard and has been used by several authors to doc-

ument time-varying betas, including recently Fama and French (1997), it is not the optimal

method to estimate betas. If the VAR is correctly specified, then we should be able to infer the

true, unobservable betas from the data of realized returns, and the other observable variables in

Xt, in a more efficient fashion. For example, Adrian and Franzoni (2002) use a Kalman filter to

estimate time-varying betas, while Ang and Chen (2002) and Jostova and Philipov (2002) em-

ploy a Gibbs sampler. However, these estimations are complex and it is not the aim of this paper

to use sophisticated econometric methods to estimate betas. Rather, we focus on discounting

cashflows under time-varying betas, using a simple, standard procedure for estimating betas as

an illustration.
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To predict the market risk premium, we estimate the coefficients in the regression implied

from equation (24):

ym
t+1 − rt = b0 + brrt + bcaycayt + εt+1, (27)

whereym
t+1− rt is an annual market excess return, using a one-year ZCB risk-free rate. To form

annual monthly returns, we first compute monthly log total returns on the market portfolio from

montht/12 to (t + 1)/12 and then aggregate over 12 months to form annual log returns:

ym
t+1 =

12∑
i=1

ȳm
t+i/12.

We use the monthly data in Lettau and Ludvigson (2002) to construct a series ofcayt which

uses data only up to timet to estimate a cointegrating vector to estimate the consumption-

wealth-labor deviation from trend at timet. This avoids any look-ahead bias in the construction

of cayt (see Brennan and Xia (2002) and Hahn and Lee (2002)). All returns are continuously

compounded and the regression is run at a monthly frequency, but with an annual horizon.

We estimate our VAR in equation (7) and the predictability regression of aggregate excess

returns in equation (27) at an annual horizon. That is,t to t + 1 represents one year. Hence,

we use one-year ZCB risk-free ratesrt, year-on-year log CPI inflationπt and an annual change

in the payout ratio,∆pot in the VAR. We define the payout ratio of yeart to be the ratio of the

sum of annual dividends to summed annual earnings per share, excluding extraordinary items,

of the companies in the portfolio. To compute this, we use the COMPUSTAT annual file, and

extract dividends and earnings of companies in the portfolio in December of yeart. We exclude

any companies with negative earnings.

To gain efficiency in estimating the VAR and the predictability regression, we use monthly

data. Since we have annual horizons but monthly data, the residuals from each regression in

the VAR and in the predictability regression have an MA(11) form induced by the use of over-

lapping observations. While all parameter estimates are consistent even with the overlap, the

standard errors of the parameters are affected by the MA(11) terms. To account for this, we

report standard errors computed using 12 Newey-West (1987) lags.

Panel A of Table 1 presents some selected summary statistics of the representative book-

to-market portfolios and the average industry. The numbers in the average industry row are

averages of the statistics over all industries. Dividend growth is quite volatile: 28% (19%) for

growth (value) stocks, and 21% for the average industry. Payout ratios, as expected, are highest

for neutral and value stocks, at approximately 42% and lowest for growth stocks, at 26%. The

average change in the payout ratios is close to zero for all portfolios. The annualized portfolio
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alpha we report is estimated using a monthly regression of the portfolio excess returns onto a

constantα and the excess market return over the whole sample. The alphas for the book-to-

market portfolios reflect the well known value spread, increasing from -2% for growth stocks

to 4% for value stocks.

The betas of the portfolios display significant time-variation. The betas of growth (value)

stocks have an annual volatility of 10% (17%), and the average industry beta volatility is 19%.

These betas are also quite persistent, over 75% at an annual horizon. We plot the time-varying

betas at a monthly frequency in Figure 2. The betas for growth stocks and value stocks have

generally diverged across the sample, with the betas for growth stocks increasing and the betas

for value stocks decreasing. For example, at the beginning of the 1970’s value stocks have a

beta of around 1.2, which decreases to just above 0.7 by the year 2000. The betas of industry

portfolios (not shown), while exhibiting time-variation, appear more stationary.

The upward trend in the growth beta and downward trend in the value beta post-1965, has

been emphasized by, among others, Adrian and Franzoni (2002), Ang and Chen (2002), Camp-

bell and Vuolteenaho (2002) and Franzoni (2002). Campbell and Vuolteenaho (2000) discuss

some reasons for the trends in growth and value stocks, related to changing discount rate and

cashflow sensitivities. Our VAR requires stationarity of all variables, including beta, to make

econometric inferences, particularly for computing variance decompositions in Corollary II.1.

The stationary assumption for beta may appear to be violated from Figure 2. However, Adrian

and Franzoni (2002) and Ang and Chen (2002) show that because betas are very persistent se-

ries, it is hard to differentiate a highly persistent beta series from a beta process with a unit root

in small samples. This is analogous to interest rates, where unit root tests fail to reject the null

of a unit root in small samples because of low power, but term structure models require the short

rate to be a stationary process.

We list the estimates of the regression (27) in Panel B of Table 1. The coefficient on the

interest rate is negative, so higher interest rates cause decreases in market risk premiums. This

is the same sign found by many studies since Fama and Schwert (1977). However, while Ang

and Bekaert (2002) and Campbell and Yogo (2002) document strong predictive power of the

short rate at monthly horizons, the significance is greatly reduced at an annual horizon. Lettau

and Ludvigson (2001) find that, in-sample,cayt significantly predicts market risk premiums

with a positive sign. However, without look-ahead bias at an annual horizon, the predictive

power of cayt is reduced. Nevertheless, it is the same sign found by Lettau and Ludvigson

(2001).
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Since the risk premium is a function of instrumental variables, it is possible to infer the

variation of the risk premium from the regression coefficientsbr andbcay in (27) using:

σλ =
√

ζ ′ΣXζ, (28)

whereζ = (0 0 0 br bcay 0)′ andΣX is the unconditional covariance matrix ofXt. From the

estimated parameters in Panel B of Table 1, the unconditional volatility of the risk premium is

2.66% and the risk premium has an autocorrelation of 0.54.

IV. The Calibrated Term Structure of Expected Returns

In this section, we concentrate on presenting the term structure of discount rates for the growth,

neutral and value portfolios. The term structure of discount rates from these portfolios are

representative of the general picture of the spot expected returns from other portfolios. However,

we look at mis-pricings from valuations incorporating time-varying expected returns from both

book-to-market and industry portfolios.

A. VAR Estimation Results

We report some selected VAR estimation results in Table 2 for growth, neutral and value stocks.

The average industry refers to a pooled estimation of the VAR across all industry portfolios.

Table 2 shows that there are some significant feed-back effects from the instrumentsrt, cayt

and ∆pot to growth rates and time-varying betas. For example, for growth (value) stocks,

lagged interest rates (cayt) predict future cashflows, and for neutral stocks, interest rates and

∆pot predict growth rates and betas. For the average industry,rt, cayt andπt significantly

predict dividend growth and betas.

In Table 2, while cashflowsgt are predictable, particularly by short rates andcayt for in-

dustry portfolios, cashflows have weak forecasting ability for the variables driving conditional

expected returns,βt, rt, cayt. The VAR results for the “Average Industry” pools across all 45

industry portfolios and does not find any evidence of predictability for cashflows. Hence, we

might expect the feed-back effect of cashflows on time-varying expected returns to be weak.

B. Discount Curves

Figure 3 plots the term structure of discount ratesµt(n) for growth, neutral and value stocks.

The discount curve for the full model is shown in circles. At the end of December 2000, the
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term structure of discount rates is upward sloping. At December 2000, the risk-free rate and

cayt both predict low conditional expected returns for the market. This markedly lowers the

short-end of the discount curve. Since the risk premium is mean-reverting, the discount rates

increase with maturity and asymptote to a constant.6

In Figure 3, the spot discount curve for growth stocks lies below the discount curve for

value stocks. However, in Figure 2, the betas of growth stocks are higher than value stocks. The

discrepancy is due to two reasons. First, the constantα term in equation (4) is negative (positive)

for growth (value) stocks. This reflects the well-known value effect (see, for example, Fama

and French, 1993) and brings down the spot discount curve for growth stocks relative to value

stocks. Second, the discount curves also incorporate the effect of cashflows on time-varying

expected returns in the VAR in equation (7).

Figure 3 also super-imposes the discount curves for the three special cases. First, the term

structure of discount rates for an unconditional CAPM is a horizontal line since it is constant

across horizon. Second, the shape of the term structure of discount rates ignoring the time-

variation in beta is similar to the shape of the full model, particularly for growth and neutral

stocks. There is a faster gradient for value stocks, but the similarities may result in a relatively

small degree of mis-valuation if we ignore the time-variation in beta. However, there is a large

change in the shape of the term structure when we ignore time-variation in the risk premium.

In this case, the discount curves are much higher because when we ignore time-variation of the

risk premium, we cannot capture the low conditional expected returns of the market portfolio at

December 2000. For growth and value stocks, the term structure of discount rates ignoring the

time-varying risk premium take on inverse humped shapes, illustrating some of the variety of

the different shapes the discount curves may assume.

C. Mis-Pricing of Cashflow Perpetuities

We use the term structure of discount rates in Figure 3 to value a perpetuity of an expected

cashflow of $1 received at the end of each year at the end of December 2000 in Table 3 for port-

folios sorted by book-to-market ratios and selected industry portfolios. Table 3 also illustrates

the large mis-valuations that may result by (counter-factually) assuming expected returns are

constant, ignoring the fact that betas vary over time, or ignoring the time-variation in the market

risk premium.

To compute the perpetuity values we setEt[Dt+s] = 1 for each horizons in equation (16).

6 As n →∞, µ(n) → µ̄, whereµ̄ is a constant. This is proved in the Appendix.
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We value this perpetuity within each book-to-market decile or industry, under our model with

time-varying conditional expected returns. These perpetuities do not represent the prices of any

real firm or project because they are not actual forecasted cashflows. By keeping expected cash-

flows constant across the portfolios, we directly illustrate the role that time-varying expected

returns play without having to control for cashflow effects across industries in the numerator.

However, in the denominator, the discount rates still incorporate the effects of cashflows on

time-varying expected returns in the VAR.

After computing perpetuity values from our model, we compute perpetuity values from three

mis-pricings relative to the true model: (i) using a constant discount rate from an unconditional

CAPM, which is a traditional DDM valuation, (ii) ignoring the time-variation inβ but recog-

nizing the market risk premium is predictable and (iii) ignoring the predictability of the market

risk premium but taking into account time-varyingβ. We report the mis-pricings as percentage

errors:

mis-pricing error=
wrong− correct

correct
, (29)

where “correct” is the perpetuity value from the full valuation and “wrong” is the perpetuity

value from each special case.

We turn first to the results in Table 3 for the book-to-market portfolios. The perpetuity values

are from the the baseline case of time-varying short rates, betas and risk premiums. There is a

general pattern of high perpetuity values for growth stocks to low perpetuity values for value

stocks, but the pattern is not strictly monotonic. This follows from the low (high) discount rates

for growth (value) stocks in Figure 3. The perpetuity values are almost monotonic, except for

the 2nd book-to-market decile. This is mostly due to the more negative alpha for the 2nd decile

(-0.03) than the 1st decile (-0.02). In addition, the growth firms (decile 1) have low payout

ratios. This may understate the potential predictability of discount rates by cashflows.

The second column in Table 3 reports large mis-pricing errors from applying a DDM, with a

mean error of -15%. The maximum mis-pricing, in absolute terms, is -32% for the 2nd book-to-

market decile portfolio. The DDM produces much higher cashflow perpetuity values because

at the end of December 2000, the conditional expected returns from our model are low, while

the unconditional expected return implied by the CAPM is much higher.

The case presented in the column labelled “Ignoring Beta” in Table 3 allows for time-varying

expected returns, but only through the risk premium and short rate. Ignoring time-varying betas

results in overall smaller mis-pricings, but at this point in time the effect of time-varying betas

can still be large (for example, 12% for the 3rd book-to-market decile portfolio). The largest
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effect in mis-specifying the expected return at December 2000 comes from ignoring the time-

varying market return, in the last column, rather than mis-specifying the time-varying beta.

Like the DDM, ignoring variation in the risk premium produces consistently higher values of

the cashflow perpetuity relative to the baseline case. This is because as the level of the market

is very high at December 2000, the conditional risk premium is very low. When we use the

average risk premium, we ignore this effect.

The same picture is repeated for the industry portfolios, except the extreme mis-pricings

are even larger. At December 2000, the discount rates for individual industries take on a sim-

ilar shape to the discount rates for book-to-market portfolios in Figure 3, because of the low

conditional risk premium versus the relatively high unconditional expected return. Table 3 lists

the two portfolios with the two largest absolute pricing errors from the unconditional CAPM,

which are the ship industry (-58%) and fabricated products (-33%), respectively. The ship in-

dustry has a low beta at December 2000 (0.63), which causes it to have a very high perpetuity

value. The unconditional beta is much higher (1.06), which means that using the DDM with the

unconditional CAPM results in a very incorrect valuation. On average, using an unconditional

CAPM for valuation produces a mis-pricing of -17% across all industry portfolios. Like the

book-to-market portfolios, ignoring the risk premium at December 2000 produces larger mis-

valuations on average (-13%) than ignoring the time-variation of beta (-5%). In summary, the

effect of time-varying expected returns on valuation is important.

D. Variance Decompositions

That ignoring time-varying expected returns, or some component of time-varying expected re-

turns produces different valuations than the DDM is no surprise. What is more economically

interesting is to investigate what is driving the time-variation in the discount rates. We exam-

ine this by applying Corollary II.2 to compute variance decompositions of the spot expected

returns.

We first illustrate the volatility of the spot expected returns,
√

var(µt(n)), at each maturity

in the left column of Figure 4. As the maturity increases, the volatility of the discount rates

tends to zero. This is because asn → ∞, µt(n) approaches a constant because of stationarity,

so var(µt(n)) → 0. At a 30-year horizon, theµt(30) discount rate still has a volatility above

2.5% for growth and neutral stocks, and above 7.0% for value stocks. While the volatility curve

must eventually approach zero, it need not do so monotonically. In particular, for value stocks,

there is a strong hump-shape, starting from around 4.7% at a 1 year horizon, increasing to near
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8.0% at 13 years before starting to decline. The strong hump in
√

var(µt(n)) for value stocks

compared to growth and neutral stocks is due to the much larger persistence of the value betas

(0.84 compared to 0.68 (0.57) for growth (neutral) stocks in the VAR estimates of Table 2).

Note that the current beta is known in today’s conditional expected return. A shock to the beta

only takes effect next period and the more persistent the beta, the larger the contribution to the

variance of the discount rate.

In the right-hand column of Figure 4, we decompose the variance of the discount rates.

Our first result is that the time-variation in cashflows makes only a very small contribution to

the variance of the spot expected returns. We add both the variance decomposition togt and

the variance decomposition to∆pot together to determine the total variance decomposition to

cashflows. The small effect of cashflows on discount rates is expected, because cashflows or

payouts weakly predict the variables driving time-varying expected returns: time-varying betas,

short rates, andcayt. The persistence of cashflows is also very low (see Table 1), and so shocks

to cashflows have little long-term effect on the variances of the discount factors.

Second, at very short maturities Figure 4 shows that the attribution of the variance ofµt(n)

to nominal risk-free rates is large, the attribution to the market risk premium is also large, and the

attribution to beta is smaller than the variance decomposition to risk-free rates or to the market

risk premium. For example, for neutral stocks, approximately 65% of var(µt) is accounted for

by risk-free rates, 72% by the market risk premium, and 20% by time-varying beta. Hence,

at short horizons, it is crucial to account for time-varying short rates and risk premiums. The

effect of beta is secondary.

Some intuition for this result can be gained by more closely examining the one-period ex-

pected return:

µt = rt + βtλt

= (rt + r̄ − r̄) + (βt + β̄ − β̄)(λt + λ̄− λ̄)

= const+ (rt − r̄t) + β̄(λt − λ̄) + λ̄(βt − β̄) + (βt − β̄)(λt − λ̄), (30)

where r̄, β̄ and λ̄ represent the unconditional means of nominal interest rates, beta and risk

premiums, respectively. Ignoring the covariance and other higher-order terms in (30), we have:

var(µt) ≈ var(rt) + β̄2var(λt) + λ̄2var(βt). (31)

The variance ofrt enters one for one and so has a large effect, but var(λt) and var(βt) are scaled

by the effects of̄β andλ̄. Sinceβ̄ is approximately 1, the variance of the risk premium also has
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a large effect. However, the average log risk premium in the data is of the order of 5%, which

means that var(βt) has a smaller effect on the variance ofµt than risk-free rates or market risk

premia. For value stocks, the variance of betas is relatively large, allowing betas to account

for up to 41% of the variance ofµt(1), but this is still smaller than the one-period variance

decompositions to risk-free rates (71%) and risk premia (72%).

Third, the variance decomposition of the risk premium decreases asn increases. While the

time-variation in the market is very important for the value of short-term cashflows, we can

pay less attention to the predictability of the market premium for long-term cashflows. Mathe-

matically, the risk premium is a linear function of the instrumental variablesrt andcayt. The

autocorrelation ofrt is around 0.74 at an annual horizon, andcayt is much less autocorrelated

(0.63 at an annual horizon). The risk premium is a linear function of bothrt andcayt, and is

less autocorrelated than the short rate (0.54). This means that at long horizons, shocks to the

risk premium are less persistent than shocks to the short rate and other variables in the system,

leading to a reduction in the variance decomposition to the risk premium asn increases.7

Finally, the variance decomposition of the risk-free rate can increase or decrease with hori-

zon, and can dominate, or be dominated by the variance of time-varying beta. For growth

stocks, the attribution of var(µt(n)) to the interest rate only slightly decreases asn increase,

while for value stocks the risk-free rate variance decomposition becomes much smaller at long

horizons. Hence, growth stocks are more sensitive to movements in the nominal term structure

than value stocks. This is in line with intuition as growth stocks have few short-term cashflows

but potentially large long-term cashflows.

The mechanism by which the nominal risk-free rate orβt can dominate the variance de-

composition of var(µt(n)) at long horizons is due to the relative persistence of the interest rate

versus beta and the size of the predictive coefficients in the risk premium. Since the interest rate

is very persistent, shocks tort tend to dominate at long horizons unless the autocorrelation of

beta is large enough, relative to the autocorrelation of real rates, to off-set its effects. The au-

tocorrelation of beta (0.86) is much larger than the autocorrelation of the beta of growth stocks

(0.76), which allows the variance attribution toβ to dominate at long horizons for the value

portfolio.

In Figure 5, we perform a more detailed variance decomposition of var(µt(n)) to risk-free

rates. Figure 5 repeats the variance decompositions tort from Figure 4 and also plots the

7 If dividend yields are used instead ofcayt, the variance decomposition to the risk premium falls across all

horizons. While the dividend yield is more persistent than both the nominal or ex-post real risk-free rate, the

predictive coefficient of the dividend yield in the risk premium regression is almost zero in our sample.
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variance decompositions to actual (or ex-post) real ratesrt − πt and expected (or ex-ante) real

ratesEt(rt+1 − πt+1). First, the variance decompositions to nominal, actual and expected real

rates all follow the same patterns in absolute magnitude. In particular, at short horizons the

variance decompositions to real rates, like nominal rates, is large. The same intuition for these

results for the nominal rate using the approximation in equation (31) also applies to the ex-ante

or ex-post real rates.

Second, the variance decomposition to ex-ante and ex-post real rates is negative, compared

to the positive variance decompositions tort. The reason is that whilert is unconditionally

positively correlated with the other state variables, the actual and expected real rates are neg-

atively correlated with the other state variables. For example, for value stocks, the correlation

of rt with βt is 56%, whereas the correlation ofrt − πt with βt is -25% and the correlation of

Et(rt+1 − πt+1) with βt is -35%.8 By definition, the variance decompositions to risk-free rates,

ex-ante and ex-post real rates that do not count the covariances must be positive. Hence, the

negative variance decompositions result solely from the unconditional negative correlations of

real rates with other state variables. Finally, the variance decompositions of actual real rates

are larger than than the variance decompositions of ex-ante real rates. This is expected, as the

actual real rate comprises the ex-ante real rate plus unpredictable inflation noise.

V. Conclusion

Despite the strong evidence for time-variation in the market risk premium, factor loadings and

risk-free rates, the main tool of valuation, the Dividend Discount Model does not take into

account any of these stylized facts. We develop a valuation methodology which incorporates

time-varying risk premiums, betas and risk-free rates by computing a series of discount rates

which differ across maturity. The price of a security has an analytical solution, which depends

only on observable instruments.

For application to practical capital budgeting problems, we develop an analytical, tractable

term structure of discount rates. This series of discount rates differs across maturity and can be

applied to value a series of expected cashflows. The discount curve is constructed in such a way

to consistently model the dynamics of time-varying risk-free rates, betas and risk premiums.

8 The fact that the actual and expected real rates are negatively correlated with inflation (at -58% and -43%,

respectively), while there is a positive correlation of nominal risk-free rates and inflation (70%), is the well-known

Mundell (1963) and Tobin (1965) effect.
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We estimate the term structure of discount rates for book-to-market and industry portfolios,

and find the effect of time-variation in risk-free rates, betas and risk premiums is large. By com-

puting a variance decomposition of the discount rates, we show that at short horizons, investors

should be most concerned with the impact of time-varying interest rates and risk premiums for

discounting cashflows. At long horizons, the time-variation in risk-free rates or beta is more

important.

While we provide an easily applicable methodology for handling the effects of time-varying

risk premiums, risk-free rates and beta, and demonstrate that all these are important for valua-

tion, future research must deal with some practical issues. For example, parameter uncertainty

in the predictability of the market risk premium and estimating betas will affect the capital bud-

geting problem. Time-varying risk-free rates, betas and risk premiums can only make potential

mis-pricings in these situations even larger.
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Appendix

A. Proof of Proposition I.1
Before proving Proposition I.1 we first prove a useful lemma:

Lemma A.1 Let ε be aK × 1 vector, whereε ∼ N(0, Σ), A a K ×K matrix andΩ a symmetricK ×K matrix.
If (Σ−1 − 2Ω) is strictly positive definite, then:

E[exp(Aε + ε′Ωε)] = exp
(
−1

2
ln det(I − 2ΣΩ) +

1
2
A′(Σ−1 − 2Ω)−1A

)
.

Proof:

E[exp(Aε + ε′Ωε)] =
∫

(2π)−K | detΣ|−1/2 exp
(
−1

2
ε′Σ−1ε

)
exp(A′ε + ε′Ωε)dKε

=
∫

(2π)−K | detΣ|−1/2 exp
(
−1

2
ε′(Σ−1 − 2Ω) + A′ε

)
dKε (A-1)

If (Σ−1 − 2Ω) is strictly positive definite then there exists aK ×K lower triangular matrixM , det M 6= 0, such
that(Σ−1 − 2Ω) = (MM ′)−1. Substituting this into the above expression we obtain:

E[exp(Aε + ε′Ωε)] =
∫

(2π)−K |det Σ|−1/2 exp
(
−1

2
ε′(M ′)−1M−1ε + A′ε

)
dKε (A-2)

Now substituteu = M−1ε:

E[exp(Aε + ε′Ωε)] =
∫

(2π)−K | detΣ|−1/2|det M | exp
(
−1

2
u′u + A′Mu

)
dKu

= |det M ||detΣ|−1/2 exp
(

1
2
A′MM ′A

)

= |det M ||detΣ|−1/2 exp
(

1
2
A′(Σ−1 − 2Ω)−1A

)
(A-3)

Finally, looking at the determinant terms we have:

|det M || detΣ|−1/2 =
( |det(Σ−1 − 2Ω)−1|

|det Σ|
)(1/2)

=
(

1
detΣ(Σ−1 − 2Ω)

)(1/2)

= exp
(
−1

2
ln |det(I − 2ΣΩ)|

)
(A-4)

Substituting into (A-3) we obtain the required result.¥

Constantinides (1992) states a continuous-time version of Lemma A.1, except his result is only for a univariate
case.

To prove Proposition I.1, consider one cashflow at timet + n in the term in equation (2) divided byDt:

Et

[(
n−1∏

k=0

e−µt+k

)
Dt+n

]
/Dt. (A-5)
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We show that:

Et

[(
n−1∏

k=0

e−µt+k

)
Dt+n

Dt

]
= exp(a(n) + b(n)′Xt + X ′

tH(n)′Xt). (A-6)

Summing up overn gives Proposition I.1.
The initial condition is given by:

Et[exp(µt)Dt+1]
Dt

= Et[exp(−α− ξ′Xt −X ′
tΩXt + e′1Xt+1)]

= exp
(
−α− ξ′Xt −X ′

tΩXt + e′1(c + ΦXt) +
1
2
e′1Σe1

)
(A-7)

Equating coefficients gives equation (11).

Using induction, for arbitrary timet + n + 1 we can evaluateEt

[
(
∏n

k=0 e−µt+k) Dt+n+1
Dt

]
as:

= Et{exp(−α− ξ′Xt −X ′
tΩXt + e′1Xt)

×Et[exp(a(n) + b(n)′Xt+1 + X ′
t+1H(n)Xt+1)]}

= exp(a(n)− α− ξ′Xt +−X ′
tΩXt)Et[exp((e1 + b(n))′Xt+1 + X ′

t+1H(n)Xt+1)]

= exp(a(n)− α− ξ′Xt +−X ′
tΩXt)

× exp((e1 + b(n))′(c + ΦXt) + (c + ΦXt)′H(n)(c + ΦXt))
×Et[exp((e1 + b(n))′εt+1 + 2(c + ΦXt)′H(n)εt+1 + ε′t+1H(n)εt+1)], (A-8)

which involves taking the expectation of a quadratic Gaussian. This can be done using Lemma A.1 to obtain:

exp(a(n)− α + (e1 + b(n))′c + c′H(n)c
−ξ′Xt + (e1 + b(n))′ΦXt + 2c′H(n)ΦXt −X ′

tΩXt + X ′
tΦ
′H(n)ΦXt)

× exp
(
−1

2
ln det(I − 2ΣH(n)) +

1
2
D′(Σ−1 − 2H(n))−1D

)
(A-9)

whereD = (e1 + b(n) + 2H(n)(c + ΦXt)). Expanding the expression gives equation (10).¥

Our methodology can easily be extended to allow for heteroskedasticity of an affine form in the conditional
volatility, along the lines of Duffie and Kan (1996) in continuous-time or the discrete-time set-up in Ang and Liu
(2001). To implement this, specify the now-constant conditional volatilityΣ of the system as time-varying:

Xt = c + ΦXt−1 + ut, (A-10)

whereut ∼ IID N(0, Σt−1), where
Σt = Q0 + Q¯Xt (A-11)

and “̄ ” represents a tensor product:

Q¯Xt ≡
K∑

j=1

XtjQ
(j),

whereXtj refers to thejth element of theK × 1 vectorXt. TheK ×K matricesQ0 andQ(j) are symmetric. In
this set-up,µt(n) still has the same quadratic form as equation (18), and the recursions fora(n), b(n) andH(n)
take a similar form as equation (10), except with additional terms to accommodate the heteroskedasticity.

B. Proof of Proposition II.1
To prove Proposition II.1, we determine separately the expressions of the numerator and the denominator of the
fraction in the expression:

µt(n) =
1
n

ln


 Et[Dt+n]/Dt

Et

[(∏n−1
k=0 e−µt+k

)
Dt+n

]
/Dt


 (B-12)
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in Definition II.1 of the spot expected return.
We first begin by showing that:

Et[Dt+n]/Dt = exp(ā(n) + b̄(n)′Xt), (B-13)

whereā(n) andb̄(n) given in equations (19) and (20). The solution method is similar to those used in discrete-time
affine economies such as Ang and Liu (2001) and Bekaert and Grenadier (2001). The initial condition is given by:

Et[Dt+1]/Dt = Et[exp(gt+1)] = Et[exp(e′1Xt+1)]

= exp(e′1c +
1
2
e′1Σe1 + e′1ΦXt). (B-14)

Equating coefficients gives the initial conditions in equation (20). For the recursion, we use proof by induction and
take iterative expectations:

Et[Dt+n+1]
Dt

= Et

[
Dt+1

Dt
Et+1

[
Dt+n

Dt

]]

= Et[exp(e′1Xt+1 + ā(n) + b̄(n)′Xt+1)]

= exp(e′1c + e1′ΦXt + ā(n) + b̄(n)′c + b̄(n)′ΦXt)Et[exp((e1 + b̄(n))′Σ
1
2 εt+1)]

= exp
(

e′1c + ā(n) + b̄(n)′c + (e1 + b̄(n))′ΦXt +
1
2
(e1 + b̄(n))′Σ(e1 + b̄(n))

)
(B-15)

Equating coefficients gives the recursion in equation (19).
Proposition I.1 shows that the denominator of (B-12) has the form

Et

[(
n−1∏

k=0

e−µt+k

)
Dt+n

Dt

]
= exp(a(n) + b(n)′Xt + X ′

tH(n)′Xt), (B-16)

wherea(n), b(n) andH(n) follow the recursions in equation (10).
This allows us to writeµt(n) in equation (B-12) as:

µt(n) = A(n) + B(n)′Xt + X ′
tG(n)Xt, (B-17)

whereA(n) = (ā(n)− a(n))/n, B(n) = (b̄(n)− b(n))/n andG(n) = −H(n)/n. ¥

C. Variance of the Discount Rate

Proof of Corollary II.1

To compute the variance of the discount rate, var(µt(n)), in Corollary II.1 we use the following lemma:

Lemma C.1 For an arbitrary matrixM , the following relationships are true (see Harville (1997)):

∂

∂λ
ln detM = tr

(
M−1 ∂M

∂λ

)

∂

∂λ
M−1 = −M−1 ∂M

∂λ
M−1. (C-1)

Since, from Proposition II.1,µt(n) = A(n) + B(n)′Xt + X ′
tG(n)Xt we have:

var(µt(n)) = B(n)′ΣXB(n) + var(X ′
tG(n)Xt). (C-2)

We use a moment generating function to evaluate the last term. Let:

g(λ) = E[exp(λε′Mε)]. (C-3)
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Then:

var(ε′Mε) =
∂2g(λ)
∂λ2

∣∣∣
λ=0

−
(

∂g(λ)
∂λ

∣∣∣
λ=0

)2

. (C-4)

Using Lemma A.1, we have

g(λ) = exp
(
−1

2
ln det(I − 2λΣM)

)
, (C-5)

whereΣ is the variance matrix ofε. Using Lemma C.1, we have:

∂

∂λ
g(λ) ln detM = g(λ)tr

(
(I − 2λΣM)−1ΣM

)
, (C-6)

and

∂2

∂λ2
g(λ) ln detM

= g(λ)
{(

tr(I − 2λΣM)−1ΣM)
)2

+ tr
(
(I − 2λΣM)−12ΣM(I − 2λΣM)−1ΣM

)}
. (C-7)

Therefore, we have:
var(ε′Mε) = tr

(
(ΣM)2

)
, (C-8)

evaluating equation (C-5). Hence,

var(µt(n)) = B(n)′ΣXB(n) + 2tr((ΣXG(n))2) (C-9)

given in equation (21).¥

Proof of Corollary II.2

From the definition ofµt(n) = A(n) + B(n)′Xt + X ′
tG(n)Xt we can write:

µt(n) = (A(n)−B(n)′X̄) + B(n)′(Xt − X̄) + (Xt − X̄ + X̄)′G(n)(Xt − X̄ + X̄)
= (A(n)−B(n)′X̄ + X̄ ′G(n)X̄) + (B(n) + 2G(n)X̄)′(Xt − X̄)

+(Xt − X̄)′G(n)(Xt − X̄). (C-10)

Ignoring the quadratic term, we have:

var(µt(n)) = (B(n) + 2G(n)X̄)′ΣX(B(n) + 2G(n)X̄). (C-11)

SinceΣX = LΣZL′, we can rewrite this expression as:

var(µt(n)) = (B(n) + 2G(n)X̄)′LΣZL′(B(n) + 2G(n)X̄), (C-12)

giving us equation (22).¥

D. Long-Term Discount Rates
It is possible to compute the long-term discount rateµ(∞) using the following proposition:

Proposition D.1 Suppose the following limits exist:

lim
n→∞

ā(n)
n

= ā∞,

lim
n→∞

a(n)
n

= a∞,

lim
n→∞

b̄(n) = b̄∞,

lim
n→∞

b(n) = b∞,

lim
n→∞

H(n) = H∞, (D-1)
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then the long-term discount rateµ(∞) is given by:

µ(∞) = (ā∞ − a∞), (D-2)

where:

ā∞ = e′1c + b̄′∞c +
1
2
(e1 + b̄∞)′Σ(e1 + b̄∞)

a∞ = −α + (e1 + b∞)′c + c′H∞c− 1
2

ln det(I − 2ΣH∞). (D-3)

GivenH∞, b̄∞ andb∞ are given by:

b̄∞ = (I − Φ′)−1 Φ′e1

b∞ =
(
I − Φ′ − 2Φ′H∞(Σ−1 − 2H∞)−1

)−1

(−ξ + Φ′e1 + 2Φ′H∞c + 2Φ′H∞(Σ−1 − 2H∞)−1(e1 + 2H∞c)
)
. (D-4)

The matrixH∞ solves the relation:

H∞ = −Ω + Φ′H∞Φ + 2Φ′H∞(Σ−1 − 2H∞)−1H∞Φ. (D-5)

In practice, it is easy to solve forH∞ by iterating the recursion forH(n) in equation (10) to a very large
number. Aftern > 100 years,H(n) is constant. OnceH∞ is found,ā∞ anda∞ are closed-form.

32



References
Adrian, Tobias, and Francesco Franzoni, 2002, Learning about beta: An explanation of the value premium,

Working paper, MIT.

Ahn, Dong Hyun, Robert. F. Dittmar, and A. Ronald Gallant, 2002, Quadratic term structure models: Theory and
evidence,Review of Financial Studies15, 243-288.

Ang, Andrew, and Geert Bekaert, 2002, Stock return predictability: Is it there? Working paper, Columbia
Business School.

Ang, Andrew, and Joseph Chen, 2002, CAPM over the long-run: 1926-2001, Working paper, Columbia Business
School.

Ang, Andrew, and Jun Liu, 2001, A general affine earnings valuation model,Review of Accounting Studies6,
397-425.

Bakshi, Gurdip, and Zhiwu Chen, 2001, Stock valuation in dynamic economies, Working paper, Yale University.

Bekaert, Geert, and Steve Grenadier, 2001, Stock and bond pricing in an affine economy, Working paper,
Columbia Business School.

Brennan, Michael J., 1997, The term structure of discount rates,Financial Management26, 81-90.

Brennan, Michael J., and Yihong Xia, 2001, TAY’s as good as CAY, Working paper, Wharton.

Campbell, John Y., 1987, Stock returns and the term structure,Journal of Financial Economics18, 373-399.

Campbell, John Y., and Robert J. Shiller, 1988a, Stock prices, earnings and expected dividends,Journal of
Finance43, 661-676.

Campbell, John Y., and Robert J. Shiller, 1988b, The dividend-price ratio and expectations of future dividends
and discount factors,Review of Financial Studies1, 195-228.

Campbell, John Y., and Luis M. Viceira, 1999, Consumption and portfolio decisions when expected returns are
time varying,Quarterly Journal of Economics114, 433-495.

Campbell, John Y., and Tuomo Vuolteenaho, 2002, Bad beta, good beta, Working paper, Harvard University.

Campbell, John Y. and Motohiro Yogo, 2002, Efficient tests of stock return predictability, Working paper, Harvard
University.

Cochrane, John H., 1996, A cross-sectional test of an investment-based asset pricing model,Journal of Political
Economy104, 572-621.

Constantinides, George M., 1992, A theory of the nominal term structure of interest rates,Review of Financial
Studies5, 531-552.

Duffie, Darrel and Rui Kan, 1996, A yield-factor model of interest rates,Mathematical Finance6, 379-406.

Fama, Eugene F., 1996, Discounting under uncertainty,Journal of Business69, 415-428.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds,Journal
of Financial Economics25, 23-49.

Fama, Eugene F., and Kenneth R. French, 1997, Industry costs of equity,Journal of Financial Economics43,
153-193.

Fama, Eugene F., and Kenneth R. French, 2002, The equity premium,Journal of Finance57, 637-659.

Fama, Eugene F., and James MacBeth, 1973, Risk, return, and equilibrium: Empirical tests,Journal of Political
Economy81, 607-636.

Fama, Eugene F., and G. William Schwert, 1977, Asset returns and inflation,Journal of Financial Economics5,
115-146.

Ferson, Wayne E., and Campbell R. Harvey, 1991, The variation of economic risk premiums,Journal of Political
Economy99, 385-415.

Ferson, Wayne E., and Campbell R. Harvey, 1993, The risk and predictability of international equity returns,
Review of Financial Studies6, 527-566.

33



Ferson, Wayne E., and Campbell R. Harvey, 1999, Conditioning variables and the cross section of stock returns,
Journal of Finance54, 1325-1360.

Ferson, Wayne E., and Robert A. Korajczyk, 1995, Do arbitrage pricing models explain the predictability of stock
returns?Journal of Business68, 309-349.

Franzoni, Francesco, 2002, Where is beta going? The riskiness of value and small stocks, Working paper, MIT.

Goyal, Amit, and Ivo Welch, 2003, The myth of predictability: Does the dividend yield forecast the equity
premium?Management Science49, 639-654.

Graham, John R., and Campbell R. Harvey, 2001, The theory and practice of corporate finance: Evidence from
the field,Journal of Financial Economics61, 1-28.

Hahn, Jaehoon, and Hayong Lee, 2002, On the estimation of the consumption-wealth ratio: Cointegrating
parameter instability and its implications for stock return forecasting, Working paper, University of
Washington.

Harvey, Campbell R., 1989, Time-varying conditional covariances in tests of asset pricing models,Journal of
Financial Economics24, 289-317.

Harville, David A., 1997,Matrix algebra from a statistician’s perspective(Springer-Verlag, New York).

Hodrick, Robert J., 1992, Dividend yields and expected stock returns: Alternative procedures for inference and
measurement,Review of Financial Studies5, 357-386.

Jagannathan, Ravi, Ellen R. McGrattan, and Anna Scherbina, 2001, The declining US equity premium,Quarterly
Review, Federal Reserve Bank of Minneapolis24, Fall, 3-19.

Jagannathan, Ravi, and Zhenyu Wang, 1996, The conditional CAPM and the cross-section of expected returns,
Journal of Finance51, 3-53.

Jostova, Gergana, and Alex Philipov, 2002, Bayesian analysis of stochastic betas, Working paper, Boston College.

Keim, Donald B., and Robert F. Stambaugh, 1986, Predicting returns in the stock and bond markets,Journal of
Financial Economics17, 357-390.

Kim, Tong S., and Edward Omberg, 1996, Dynamic nonmyopic portfolio behavior,Review of Financial Studies9,
141-161.

Lee, Charles M. C., James N. Myers, and Bhaskaran Swaminathan, 1999, What is the intrinsic value of the Dow?
Journal of Finance64, 1693-1741.

Lettau, Martin, and Sydney Ludvigson, 2001, Consumption, aggregate wealth, and expected returns,Journal of
Finance56, 815-849.

Lettau, Martin, and Sydney Ludvigson, 2002, Measuring and modeling variation in the risk-return tradeoff,
Working paper, NYU.

Liu, Jun, 1999, Portfolio selection in stochastic environments, Working paper, UCLA.

Menzly, Lior, Tano Santos, and Pietro Veronesi, 2003, The time series of the cross section of asset prices,
Working paper, University of Chicago.

Mundell, Robert, 1963, Inflation and real interest,Journal of Political Economy71, 280-283.

Newey, Whitney, and Kenneth West, 1987, A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix,Econometrica55, 703-708.

Shanken, Jay, 1990, Intertemporal asset pricing – An empirical investigation,Journal of Econometrics45, 99-120.

Tobin, James, 1965, Money and economic growth,Econometrica33, 671-684.

Vuolteenaho, Tuomo, 2002, What drives firm-level stock returns?,Journal of Finance57, 233-264.

34



Table 1: Sample Moments

Panel A: Selected Summary Statistics

Returns Dividend Growthgt Betaβt Payout Ratiopot

mean stdev α mean stdev auto mean stdev auto mean stdev auto

Growth 0.10 0.22 -0.02 0.05 0.28 -0.27 1.18 0.10 0.76 0.26 0.11 0.69
Neutral 0.13 0.15 0.02 0.07 0.13 -0.11 0.96 0.07 0.76 0.42 0.08 0.64

Value 0.16 0.18 0.04 0.09 0.19 0.06 0.99 0.17 0.86 0.41 0.12 0.62

Average Industry 0.13 0.21 -0.01 0.05 0.21 0.04 1.07 0.19 0.76 0.36 0.13 0.38

Panel B:Risk Premium Regression

estim std err p-val
const 0.08 0.05 0.13

r -0.71 0.90 0.43
cay 1.97 1.66 0.24

Panel A reports summary statistics mean, standard deviation (stdev) and annual autocorrelation
(auto) for total returns, cashflow growthgt and betasβt of book-to-market decile portfolios 1
(growth), 6 (neutral) and 10 (value) and the average mean, average standard deviation and aver-
age autocorrelation across 46 industry portfolios. All growth rates and returns are continuously
compounded and have an annual horizon but are sampled at a monthly frequency. The column la-
beledα denotes the CAPM alpha, from running a regression of monthly excess portfolio returns
onto a constant (α) and the excess market return. The alpha is reported as an annualized number.
The sample period is July 1965 to December 2000 for the book-to-market portfolios and January
1965 to December 2000 for the industry portfolios. Panel B reports the result of a predictive regres-
sion of ym

t+1 − rt = α + βrrt + βcaycayt, whereym
t is the annual market return,rt is a 1 year

zero coupon bond rate, andcay is Lettau-Ludvigson (2002)’s consumption-asset-labor deviations,
estimated recursively. The sample period is June 1965 to December 2000 and the regression is run
at a monthly frequency.
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Table 2: Companion FormΦ Parameter Estimates

gt βt ∆pot rt cayt πt

Growth Stocks gt -0.35 0.45 0.37 -4.06 1.86 1.69
B/M Decile = 1 (0.17) (0.32) (0.32) (1.43) (2.40) (1.23)

βt -0.00 0.68 -0.08 0.48 0.85 -0.74
(0.03) (0.11) (0.08) (0.48) (0.54) (0.44)

∆pot 0.04 0.11 -0.37 0.71 -0.19 -0.31
(0.02) (0.15) (0.18) (0.58) (1.42) (0.68)

rt -0.00 -0.02 -0.04 0.60 0.21 0.14
(0.00) (0.03) (0.03) (0.12) (0.18) (0.14)

cayt 0.00 0.03 -0.01 0.09 0.54 0.07
(0.01) (0.01) (0.02) (0.08) (0.09) (0.05)

πt 0.01 -0.04 -0.03 -0.09 0.07 0.73
(0.00) (0.04) (0.03) (0.16) (0.16) (0.15)

Neutal Stocks gt -0.13 0.03 0.61 -1.60 -0.06 1.22
B/M Decile = 6 (0.18) (0.27) (0.24) (0.91) (1.58) (1.12)

βt -0.00 0.57 -0.11 1.20 -0.23 -0.10
(0.05) (0.12) (0.09) (0.38) (0.50) (0.34)

∆pot 0.12 -0.02 -0.32 0.83 0.11 -0.38
(0.07) (0.10) (0.13) (0.51) (0.57) (0.34)

rt 0.02 0.02 -0.01 0.58 0.12 0.14
(0.01) (0.03) (0.04) (0.13) (0.15) (0.12)

cayt 0.00 0.01 -0.00 0.06 0.65 0.02
(0.01) (0.02) (0.01) (0.08) (0.08) (0.05)

πt 0.00 0.03 -0.01 -0.16 -0.09 0.81
(0.02) (0.05) (0.03) (0.18) (0.20) (0.15)

Value Stocks gt -0.06 0.20 -0.16 1.37 5.83 -1.26
B/M Decile = 10 (0.12) (0.20) (0.13) (1.19) (1.50) (1.48)

βt -0.04 0.84 -0.12 -0.12 0.40 0.74
(0.04) (0.07) (0.07) (0.42) (0.82) (0.44)

∆pot 0.16 -0.15 -0.43 1.16 0.72 0.44
(0.05) (0.14) (0.20) (0.42) (1.09) (0.46)

rt 0.01 0.02 -0.04 0.57 0.16 0.16
(0.01) (0.01) (0.01) (0.11) (0.14) (0.14)

cayt 0.00 0.00 0.01 0.06 0.63 0.01
(0.00) (0.01) (0.01) (0.06) (0.09) (0.05)

πt 0.03 0.05 -0.04 -0.17 -0.08 0.65
(0.01) (0.02) (0.01) (0.14) (0.15) (0.14)

Average Industry gt -0.16 -0.04 0.19 -0.75 1.41 1.02
(0.24) (0.19) (0.22) (0.00) (0.00) (0.00)

βt 0.00 0.91 -0.02 -0.03 0.10 0.10
(0.01) (0.13) (0.26) (0.02) (0.00) (0.00)

∆pot -0.01 0.02 -0.45 0.40 0.40 0.14
(0.01) (0.02) (0.14) (0.02) (0.01) (0.00)

rt 0.00 0.00 -0.00 0.58 0.11 0.18
(0.01) (0.03) (0.00) (0.02) (0.01) (0.02)

cayt 0.00 0.00 -0.00 0.07 0.64 0.02
(0.01) (0.01) (0.00) (0.00) (0.01) (0.03)

πt 0.01 0.01 -0.00 -0.11 -0.11 0.80
(0.11) (0.08) (0.00) (0.00) (0.00) (0.02)

The table reports estimates of the companion formΦ of the VAR in (7). The estimation is done at an annual
horizon, using monthly (overlapping) data. For the average industry results, we pool data across all industries.
Standard errors are computed using Newey-West (1987) 12 lags. Parameters significant at the 95% level are
denoted in bold. The sample period is July 1970 to December 2000 for the book-to-market sorted portfolios
and from January 1970 to December 2000 for the industry portfolios.
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Table 3: Mis-Pricing of Portfolios

Mis-Pricing Errors %
Perpetuity Unconditional Ignoring Ignoring

Value CAPM Beta Risk Premium

Book-to-Market Sorted Portfolios

1 Growth 11.17 -13.41 3.72 -8.33
2 16.39 -31.98 -9.69 -28.74
3 10.81 -7.65 12.39 -9.29
4 10.90 -15.09 1.18 -16.31
5 10.97 -15.48 0.84 -18.45
6 8.93 -13.96 -2.34 -14.42
7 9.09 -9.89 -0.22 -13.21
8 7.78 -13.30 -6.85 -14.09
9 7.25 -18.83 -9.44 -8.63
10 Value 7.02 -13.54 -4.04 -7.56

Average Mis-pricings Across Book-to-Market Sorted Portfolios
Mean Error -15.31 -1.45 -13.39
Stdev Error 6.59 6.67 6.39

Selected Industries

FabPr 17.65 -32.85 -7.04 -16.77
Ships 16.10 -57.87 -51.84 4.84

Average Mis-pricings Across All Industry Portfolios
Mean Error -16.89 -4.81 -12.74
Stdev Error 9.94 9.05 6.82

We value a perpetuity of an expected cashflow of $1 received at the end of each year using the time-varying
expected returns for each book-to-market portfolio at the end of December 2000. We report percentage mis-
pricing errors (wrong-correct)/correct for valuation using a wrong model versus the full model valuation.
Three wrong models are considered: using a constant discount rate, ignoring the time-varying betas and
ignoring the time-varying market risk premium.
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Figure 1: The Spot Discount Curveµt(n)

Et[Dt+1] Et[Dt+2] Et[Dt+3]

t t+1 t+2 t+3

µt( 1 )

µt( 2 )

µt( 3 )

The spot expected returnµt(n) is used to discount an expected risky cashflowEt[Dt+n] of a security at time
t + s back to timet. The spot expected returnµt(n) solves:

Et

[(
n−1∑

k=0

exp(−µt+k)

)
Dt+n

]
=

Et[Dt+n]
exp(n · µt(n))

,

whereµt is the one period expected return fromt to t + 1.

38



1975 1980 1985 1990 1995 2000
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Growth 
Neutral
Value  

The figure shows time-varying betas of growth, neutral and value stocks, computed using rolling 60-month
regressions of excess portfolio returns on market excess returns.

Figure 2: Time-Varying Beta of Book-to-Market Portfolios

39



Growth Stocks

0 5 10 15 20 25 30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Discount Curve µ
t
(n) for BM Decile = 1

Spot Discount Curve µ
t
(n)       

Unconditional CAPM                 
Ignoring Time−Varying Betas        
Ignoring Time−Varying Risk Premiums

Neutral Stocks

0 5 10 15 20 25 30
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Discount Curve µ
t
(n) for BM Decile = 6

Spot Discount Curve µ
t
(n)       

Unconditional CAPM                 
Ignoring Time−Varying Betas        
Ignoring Time−Varying Risk Premiums

Value Stocks

0 5 10 15 20 25 30
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Discount Curve µ
t
(n) for BM Decile = 10

Spot Discount Curve µ
t
(n)       

Unconditional CAPM                 
Ignoring Time−Varying Betas        
Ignoring Time−Varying Risk Premiums

The figure shows discount curvesµt(n), with n in years on thex-axis, computed at the end of December
2000 for various book-to-market portfolios.

Figure 3: Discount Curves
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Neutral Stocks
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The left-hand column plots
√

var(µt(n)), for eachn on thex-axis. The right-hand column attributes the
var(µt(n)) into proportions due to dividend growth, beta, the risk-free rate and the risk premium. The pro-
portions double-count the covariances and so do not sum to 1.

Figure 4: Variance Decomposition for the Term Structure of Discount Rates
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Neutral Stocks
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The figure shows risk-free variance decompositions for growth, neutral and value stocks for nominal risk-free
rates (rt), ex-post real rates (rt − πt) and ex-ante real ratesEt(rt+1 − πt+1). The proportions double-count
the covariances and so do not sum to 1.

Figure 5: Risk-Free Rate Variance Decompositions
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