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Abstract

We examine the predictive power of the dividend yield for forecasting future excess returns,

cashflows, and interest rates. The ability of the dividend yield to predict excess returns is best

visible at short horizons with the short rate as an additional regressor. At short horizons, the

short rate strongly negatively predicts excess returns, while at long horizons, the predictive

power of the dividend yield is weak. These results are robust in international data and are

not due to lack of power. We formulate a present value model that matches the predictability

evidence, which shows that while excess discount rates still dominate the variation in dividend

yields, short rate movements also play a large role. Finally, we detect a strong role for the

earnings yield as a predictive instrument, not for excess returns, but for future cashflows.



1 Introduction

In a rational no-bubble model, the price-dividend ratio is the expected value of future cashflows

discounted with time-varying discount rates. Because price-dividend ratios, or dividend yields,

vary over time, dividend yield variability can be attributed to the variation of expected cashflow

growth, expected future risk-free rates, or risk premia. The “conventional wisdom” in the lit-

erature (see, among others, Campbell, 1991; Cochrane, 1992) is that aggregate dividend yields

strongly predict excess returns, and the predictability is stronger at longer horizons.1 Since

dividend yields only weakly predict dividend growth, conventional wisdom attributes most of

the variation of dividend yields to changing forecasts of expected returns. We critically and

comprehensively re-examine this conventional wisdom regarding return predictability on the

aggregate market.

Our main findings can be summarized as follows. First, the statistical inference at long

horizons critically depends on the choice of standard errors. With the standard Hansen-Hodrick

(1980) or Newey-West (1987) standard errors, there is some evidence for long horizon pre-

dictability but it disappears when we correct for heteroskedasticity and remove the moving aver-

age structure in the error terms induced by summing returns over long horizons (see Richardson

and Smith, 1991; Hodrick, 1992; Boudoukh and Richardson, 1993).

Second, we find that the most robust predictive variable for future excess returns is the short

rate, but it is significant only at short horizons.2 Whereas the dividend yield does not univari-

ately predict excess returns, the predictive ability of the dividend yield is considerably enhanced,

at short horizons, in a bivariate regression with the short rate. To mitigate data snooping con-

cerns (see Lo and MacKinlay, 1990; Bossaerts and Hillion, 1999; Ferson, Sarkissian and Simin,

2003; Goyal and Welch, 2004), we confirm and strengthen this evidence using three other coun-

tries: the U.K., France, and Germany.

Third, the dividend yield’s predictive power to forecast future dividend growth is not robust

across sample periods or countries. We find that high dividend yields are associated with high

future interest rates. While the statistical evidence for interest rate predictability is weak, the

same positive relationship is implied by an economic model and we observe the same patterns

across countries.
1 Among those examining the predictive power of the dividend yield on excess stock returns are Fama and

French (1988), Campbell and Shiller (1988a and b), Goetzmann and Jorion (1993 and 1995), Hodrick (1992),

Stambaugh (1999), Wolf (2000), Goyal and Welch (2003, 2004), Engstrom (2003), Valkanov (2003), Lewellen

(2004), and Campbell and Yogo (2005).
2 Authors examining the predictability of excess stock returns by the nominal interest rate include Fama and

Schwert (1977), Campbell (1987), Breen, Glosten and Jagannathan (1989), Shiller and Beltratti (1992) and

Lee (1992).
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To help interpret our findings and to deepen our understanding of the data, we provide

additional economic analysis. First, we build a non-linear present value model with stochastic

discount rates, short rates, and dividend growth, that matches our evidence on excess return pre-

dictability. As is true in the data, the model implies that the dividend yield only weakly predicts

future cashflows, but is positively related to future movements in interest rates. While excess

discount rates still dominate the variation in price-dividend ratios, with a variance decompo-

sition of 61%, short rate movements account for up to 22% of the variation. In comparison,

dividend growth accounts for around 7% of the variance of price-dividend ratios. The rest of

the variation is accounted for by covariance terms.

Because many studies, particularly in the portfolio choice literature, use univariate dividend

yield regressions to compute expected returns (see, for example, Campbell and Viceira, 1999),

we use the non-linear present value model to examine the fit of regression-based expected re-

turns with true expected returns. Consistent with the data, we find that a univariate dividend

yield regression provides a rather poor proxy to true expected returns. However, using both the

short rate and dividend yield considerably improves the fit, especially at short horizons.

Second, using the present value model, we show that long-horizon statistical inference with

the standard Hansen-Hodrick (1980) or Newey-West (1987) standard errors is treacherous. We

find that both Hansen-Hodrick and Newey-West standard errors lead to severe over-rejections

of the null hypothesis of no predictability at long horizons, but that standard errors developed

by Hodrick (1992) retain the correct size in small samples. The power of Hodrick t-statistics

exceeds 0.60 for a 5% test for our longest sample. Moreover, when we pool data across different

countries, the power for our shortest sample increases to 74%. Hence, lack of power is unlikely

to explain our results.3

Finally, we focus on expanding the information set to obtain a potentially better estimate

of true value-relevant cashflows in the future. Dividends may be potentially poor instruments

because dividends are often manipulated or smoothed. Bansal and Lundblad (2002) and Bansal

and Yaron (2004) argue that dividend growth itself follows an intricate ARMA process, Con-

3 Given the excellent performance of Hodrick (1992) standard errors, we do not rely on the alternative inference

techniques that use unit-root, or local-to-unity, data generating processes (see, among others, Richardson and

Stock, 1989; Richardson and Smith, 1991; Elliot and Stock, 1994; Torous, Valkanov and Yan, 2004; Lewellen,

2004; Campbell and Yogo, 2005; Polk, Thompson and Vuolteenaho, 2005; Jansson and Moreira, 2006). One major

advantage of Hodrick standard errors is that the set-up can handle multiple regressors, whereas the inference with

unit-root type processes relies almost exclusively on univariate regressors. The tests for multivariate predictive

regressions using local-to-unity data generating processes developed by Polk et al. (2005) involve computationally

intensive bootstrapping procedures. This test also has very poor size properties under the non-linear present value

we present in Section 5. These results are available upon request.
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sequently, it is conceivable that more than one factor drives the dynamics of cashflows. One

obvious way to increase the information set is to use earnings. Lamont (1998) argues that the

earnings yield has independent forecasting power for excess stock returns in addition to the

dividend yield. When we examine the predictive power of the earnings yield for both returns

and cashflows, we find only weak evidence for Lamont’s excess return predictability results.

However, we detect significant predictability of future cashflows by earnings yields.

This paper is organized as follows. Section 2 describes the data. Section 3 contains the

main predictability results for returns, while Section 4 discusses cashflow and interest rate pre-

dictability by the dividend yield. Section 5 develops a present value model under the null and

various alternative models to interpret the empirical results. In Section 6, we conduct a size and

power analysis of Hodrick (1992) standard errors. Section 7 investigates the predictive power of

the earnings yield for excess returns and cashflows. Section 8 concludes and briefly discusses a

number of contemporaneous papers on stock return predictability. It appears that the literature

is converging to a new consensus, substantially different from the old view.

2 Data

We work with two data sets, a long data-set for the U.S., U.K., and Germany, and a shorter

data set for a sample of four countries (U.S., U.K., France, and Germany). In the data, dividend

and earnings yields are constructed using dividends and earnings summed up over the past year.

Monthly or quarterly frequency dividends and earnings are impossible to use because they are

dominated by seasonal components.

We construct dividend growth and earnings growth from these ratios, producing rates of

annual dividend or earnings growth over the course of a month or a quarter. To illustrate this

construction, suppose we take the frequency of our data to be quarterly. We denote log dividend

growth at a quarterly frequency asgd,4
t , with the superscript 4 to denote that it is constructed

using dividends summed up over the past year (four quarters). We computegd,4
t from dividend

yieldsD4
t /Pt, where the dividends are summed over the past year, using the relation:

gd,4
t = log

(
D4

t /Pt

D4
t−1/Pt−1

× Pt

Pt−1

)
, (1)

whereD4
t = Dt + Dt−1 + Dt−2 + Dt−3 represents dividends summed over the past year and

Pt/Pt−1 is the price return over the past quarter.

In our data, the long sample is at a quarterly frequency and the short sample is at a monthly

frequency. In the case of the monthly frequency, we append dividend yields, earnings yields,

dividend growth and earnings growth with a superscript of 12 to indicate that dividends and
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earnings have been summed over the past 12 months. We also denote log dividend yields

by lower case letters. Hencedy4
t = log(D4

t /Pt), in the case of quarterly data anddy12
t =

log(D12
t /Pt) in the case of monthly data. We also use similar definitions for log earnings yields:

ey4
t andey12

t .

2.1 Long Sample Data

Our U.S. data consists of price return (capital gain only), total return (capital gain plus dividend)

and dividend and earnings yields on the Standard & Poor’s Composite Index from June 1935

to December 2001. This data is obtained from theSecurity Price Index Record, published by

Standard & Poor’s Statistical Service. Lamont (1998) uses the same dataset over a shorter

period. The long-sample U.K. data comprises price returns and total returns on the Financial

Times Actuaries Index, and we construct implied dividend yields from these series. For our

German data, we take price returns, total returns, and dividend yields on the CDAX index from

the Deutsche Borsche. The long-sample U.K. and German data span June 1953 to December

2001 and were purchased from Global Financial Data. All the long sample data for the U.S.,

U.K. and Germany are at the quarterly frequency, and we consequently use 3-month T-bills as

quarterly short rates.

Panel A of Table 1 lists summary statistics. U.S. earnings growth is almost as variable as

returns, whereas the volatility of dividend growth is less than half the return volatility. The

variability of U.K. and German dividend growth rates is of the same order of magnitude as that

of returns. The instruments (short rates, dividend and earnings yields) are all highly persistent.

Because the persistence of these instruments plays a crucial role in the finite sample perfor-

mance of predictability test statistics, we report test statistics under the null of a unit root and a

stationary process in Panel A. Investigating both null hypotheses is important because unit root

tests have very low power to reject the null of a stationary, but persistent, process.

In the U.K. and Germany, dividend yields are unambiguously stationary, as we reject the

null of a unit root and fail to reject the null of stationarity at the 5% level. For the U.S. dividend

yield, the evidence for non-stationarity is weak as we fail to reject either hypothesis. This

is surprising because the trend towards low dividend yields in the 1990’s has received much

attention. Figure 1 plots dividend yields for the U.S., U.K., and Germany. For the U.K., the

dividend yield also declined during the late 1990’s, but the U.K. experienced similar low level

dividend yields during the late 1960’s and early 1970’s. For Germany, there is absolutely no

trend in the dividend yield. If a time trend in dividend yields is a concern for interpreting the

evidence on excess return predictability using the dividend yield, international data are clearly

helpful. Present value models that impose transversality also imply that dividend yields must
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be stationary.

Interest rates are also highly persistent variables. While German interest rates appear to

be stationary, there is some evidence of borderline non-stationary behavior for both U.S. and

U.K. interest rates. Most economic models also imply that interest rates are stationary (see,

for example, Clarida, Galı́ and Gertler, 1999). Our present value model incorporates realistic

persistence in short rates, but because of the high persistence of the short rate, we check the

robustness of interest rate predictability by using a detrended short rate.

2.2 Short Sample MSCI Data

The data for the U.S., U.K., France, and Germany consist of monthly frequency price indices

(capital appreciation only), total return indices (including income) and valuation ratios from

Morgan Stanley Capital International (MSCI) in local currency, from February 1975 to Decem-

ber 2001. We use the 1 month EURO rate from Datastream as the short rate.

Panel B of Table 1 shows that the U.S. has the least variable stock returns with the least vari-

able cashflow growth rates. The extreme variability of French earnings growth rates is primarily

due to a few outliers between May 1983 to May 1984, when there are very large movements

in price-earnings ratios. Without these outliers, the French earnings growth variability drops

to 33%. The variability of short rates, dividend and earnings yields is similar across countries.

The equity premium for the U.S., France, Germany, and the U.K. roughly lies between 4%

and 6% during this sample period. Dividend yields and short rates are again very persistent

over the post-1975 sample. We also report excess return correlations showing that correlations

range between 0.47 to 0.60. The correlations for the U.S., U.K., and Germany are similar to the

correlations over the post-1953 period reported in Panel A.

3 The Predictability of Equity Returns

3.1 Predictability Regressions

Denote the gross return on equity byYt+1 = (Pt+1 + Dt+1)/Pt and the continuously com-

pounded return byyt+1 = log(Yt+1). The main regression we consider is:

ỹt+k = αk + β′kzt + εt+k,k (2)

whereỹt+k = (τ/k)[(yt+1−rt)+ · · ·+(yt+k−rt+k−1)] is the annualizedk-period excess return

for the aggregate stock market,rt is the risk-free rate fromt to t + 1, andyt+1− rt is the excess

1 period return from timet to t + 1. A period is either a month (τ = 12) or a quarter (τ = 4).
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All returns are continuously compounded. The error termεt+k,k follows aMA(k − 1) process

under the null of no predictability (βk = 0) because of over-lapping observations. We use log

dividend yields and annualized risk-free rates as instruments inzt.

We estimate the regression (2) by OLS and compute standard errors of the parametersθ =

(α β′k)
′ following Hodrick (1992). Using GMM,θ has an asymptotic distribution

√
T (θ̂− θ)

a∼
N(0, Ω) whereΩ = Z−1

0 S0Z
−1
0 , Z0 = E(xtx

′
t), xt = (1 z′t)

′. Hodrick exploits covariance sta-

tionarity to remove the overlapping nature of the error terms in the standard error computation.

Instead of summingεt+k,k into the future to obtain an estimate ofS0, Hodrick sumsxtx
′
t−j into

the past and estimatesS0 by:

Ŝ0 =
1

T

T∑

t=k

wktwk′t (3)

where

wkt = εt+1,1

(
k−1∑
i=0

xt−i

)
.

We show (below) that the performance of Hodrick (1992) standard errors is far superior

to the Newey-West (1987) standard errors or the robust GMM generalization of Hansen and

Hodrick (1980) standard errors (see Appendix A) typically run in the literature. Hence, our

predictability evidence exclusively focuses on Hodrick t-statistics. Mindful of Richardson’s

(1993) critique of focusing predictability tests on only one particular horizonk, we also compute

joint tests across horizons. For the quarterly (monthly) frequency data, we test for predictability

jointly across horizons of 1, 4, and 20 quarters (1, 12, and 60 months). Appendix B details

the construction of joint tests across horizons accommodating Hodrick standard errors. Finally,

when considering predictability in multiple countries, we estimate pooled coefficients across

countries and provide joint tests of the null of no predictability. Pooled estimations mitigate

the data mining-problem plaguing U.S. data and, under the null of no predictability, enhance

efficiency because the correlations of returns across countries are not very high (see Table 1).

Appendix C details the econometrics underlying the pooled estimations.

3.2 Return Predictability in the U.S.

We report results for several sample periods, in addition to the full sample 1935-2001. Interest

rate data are hard to interpret before the 1951 Treasury Accord, as the Federal Reserve pegged

interest rates during the 1930’s and the 1940’s. Hence, we examine the post-Accord period,

starting in 1952. Second, the majority of studies establishing strong evidence of predictability

use data before or up to the early 1990’s. Studies such as Lettau and Ludvigson (2001) and

Goyal and Welch (2003) point out that predictability by the dividend yield is not robust to the
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addition of the 1990’s decade. Hence, we separately consider the effect of adding the 1990’s to

the sample.

We start by focusing on a univariate regression with the dividend yield as the regressor.

Figure 2 shows the slope coefficients for three different sample periods, using the quarterly

U.S. S&P data. The left-hand column reports the dividend yield coefficients, while the right-

hand column reports t-statistics computed using Newey-West (1987), robust Hansen-Hodrick

(1980), and Hodrick (1992) standard errors. For the Newey-West errors, we usek + 1 lags.

The coefficient pattern is similar across the three periods, but the coefficients are twice as large

for the period omitting the 1990’s from the sample. For the other two periods (1935-2001 and

1952-2001), the one-period coefficient is about 0.110, rises until the one-year horizon and then

decreases, before increasing again near 20 quarters.

Over 1935-2001, the Hodrick t-statistic is above 2 only for horizons 2 to 4 quarters. How-

ever, there is no evidence of short-run predictability (at the one-quarter horizon) and there is no

evidence of long-horizon predictability. We draw a very different picture of predictability if we

use Newey-West or robust Hansen-Hodrick t-statistics, which are almost uniformly higher than

Hodrick t-statistics. Using Newey-West standard errors, the evidence in favor of predictability

would extend to 8 quarters for the full sample. Over the 1952-2001 sample, there is no ev-

idence of predictability, whereas for the 1935-1990 period, the evidence for predictability is

very strong, whatever the horizon, with all three t-statistics being above 2.4.

Table 2 summarizes the excess return predictability results for horizons of 1 month (quarter),

1 year and 5 years. We only report t-statistics using Hodrick standard errors. In addition to

the sample periods shown in Figure 2, we also show the 1952-1990 period, which is close to

the 1947-1994 sample period in Lamont (1998). When we omit the 1990’s, we confirm the

standard results found by Campbell and Shiller (1988a and b) and others: the dividend yield is

a significant predictor of excess returns at all horizons. However, when we use all the data, we

only find 5% significance at the one-year horizon for the longest sample. A test for predictability

by the dividend yield jointly across horizons rejects with a p-value of 0.014 for the 1935-1990

period, but fails to reject with a p-value of 0.587 over the whole sample, even though the shorter

horizon t-statistics all exceed 1.5 in absolute value. While it is tempting to blame the bull market

of the 1990’s for the results, our data extend until the end of 2001 and hence incorporate a part

of the bear market that followed. For the 1975-2001 sample, reported in Panel B, the dividend

yield also fails to predict excess returns.

Table 2 also reports bivariate regression results with the short rate as an additional regressor.

For the post-Treasury Accord 1952-2001 sample, a 1% increase in the annualized short rate

decreases the equity premium by about 2.16%. The effect is significant at the 1% level. A
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joint test on the interest rate coefficients across horizons rejects strongly for both the 1952-2001

period (p-value = 0.004) and also over the 1952-1990 period (p-value = 0.000). The predictive

power of the short rate dissipates quickly for longer horizons, but remains borderline significant

at the 5% level at the one-year horizon.4 If expected excess returns are related only to short

rates and short rates follow a univariate autoregressive process, the persistence of the interest

rate (0.955 in Table 1) implies that the coefficient on the short rate should tend to zero slowly

for long horizons. In fact, the decay rate should be1/k × (1 − ρk)/(1 − ρ) for horizonk.

The decay rate in data is clearly more rapid, indicating that either expected excess returns or

risk-free rates, or both, are multi-factor processes.

In the bivariate regression, the dividend yield coefficient is only significant at the 5% level

for the one-quarter horizon. Joint tests reject at the 1% (5%) level for the one-quarter (four-

quarter) horizon, but fail to reject at long horizons. When we omit the 1990’s, the predictive

power of the short rate becomes even stronger. A joint predictability test still fails to reject

the null of no predictability at long horizons, but the p-value is borderline significant (0.052).

Over the 1975-2001 sample, the coefficient on the short rate remains remarkably robust and is

significant at the 5% level. While the coefficient on the dividend yield is no longer significantly

different from zero, it is similar in magnitude to the full sample coefficient and a joint test is

borderline significant (p-value = 0.057). The Richardson (1993) joint predictability test over all

horizons and both predictors rejects at the 1% level in the samples excluding the 1990’s and the

full sample, rejects at the 5% level for 1952-2001, and rejects at the 10% level for 1975-2001.

Looking at the 1951-2001 and 1975-2001 samples, the evidence for the bivariate regression

at short horizons is remarkably consistent. Moreover, the coefficient on the dividend yield

is larger in the bivariate regression than in the univariate regression. This suggests that the

univariate regression suffers from an omitted variable bias that lowers the marginal impact of

dividend yields on expected excess returns. Engstrom (2003), Menzly, Santos and Veronesi

(2004), and Lettau and Ludvigson (2005) also note that a univariate dividend yield regression

may understate the dividend yield’s ability to forecast returns.

3.3 Predictability of Excess Returns in Four Countries

The weak predictive power of the univariate dividend yield in the full sample may simply be

a small sample phenomenon, due to the very special nature of the last decade for the U.S.

stock market. Alternatively, the conventional wisdom of strong long-horizon excess return pre-

4 The results do not change when a detrended short rate is used instead of the level of the short rate or when we

use a dummy variable over the period from October 1979 to October 1982 to account for the monetary targeting

period.
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dictability by dividend yields prior to 1990 may be a statistical fluke. International evidence can

help us to sort out these two interpretations of the data and check the robustness of predictability

patterns observed in U.S. data.

Figure 3 displays the univariate dividend yield coefficients and their t-statistics using Ho-

drick standard errors in the 1975-2001 sample. First, none of the patterns in other countries

resembles the U.S. pattern. For France and Germany, and to a lesser degree for the U.K., the

coefficients first increase with horizon, then decrease, and finally increase again. This is roughly

the pattern we see in U.S. data for the longer samples. However, for France and Germany the

coefficients are small at short horizons and are negative for many horizons. They are also never

statistically significant. The U.K. coefficient is larger and remains positive across horizons: it is

also significantly different from zero at the very shortest horizons. These results are opposite to

the results in a recent study by Campbell (2003), who reports strong long-horizon predictabil-

ity for France, Germany and the U.K. over similar sample periods. We find that Campbell’s

conclusions derive from the use of Newey-West (1987) standard errors and the predictability

disappears when Hodrick (1992) standard errors are employed.

For the U.K. and Germany, we also investigate the longer 1953-2001 sample in Panel A

of Table 3. The first column reports the univariate dividend yield coefficients. We only find

significance at the one-year horizon for the U.K., but the coefficients are all positive and more

than twice as large as the U.S. coefficients.5 Germany’s dividend yield coefficients are the same

order of magnitude as that of the U.S., but are all insignificant.

Figure 4 displays the coefficient patterns for the annualized short rate and its associated t-

statistics in the bivariate regression for the 1975-2001 sample. Strikingly, this coefficient pattern

is very robust across countries. For all countries, the one-month coefficient is negative, below

-3 for Germany and around -1.5 for France. The coefficient monotonically increases with the

horizon, levelling off around 0.35 for the U.S., 0.13 for France, 1.41 for Germany, and -0.74

for the U.K.. The t-statistics are larger in absolute magnitude for short horizons. In particular,

at the one-month horizon, the short rate coefficients are statistically different from zero for the

U.S. and Germany and the t-statistics are near 1.5 (in absolute value) for the U.K. and France.

Panel A of Table 3 reports the bivariate coefficients for the long sample for the U.K. and

Germany. Both countries have negative coefficients on the short rate. For Germany, the short

rate coefficient is highly significant, while the U.K. t-statistic is only -1.5. For both countries, the

short rate coefficients increase with horizon and turn positive at the five-year horizon. Similar

to the U.S., the dividend yield coefficients are larger in the bivariate regressions than in the

5 For the U.K., we also looked at a sample spanning 1935-2001, where we find a significant univariate dividend

yield coefficient at the five-year horizon, but not at the one-quarter horizon.
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univariate regression. However, the dividend yield coefficient is still only significantly different

from zero at the 5% level in the U.K. at the one-year horizon.

To obtain more clear-cut conclusions, Table 3 reports pooled predictability coefficients and

tests. We pool across the U.S., U.K., and Germany for the long sample in Panel A, and pool

across all four countries in Panel B. The univariate dividend yield regression delivers mixed

evidence across the two samples. For the long sample, the dividend yield coefficients are larger

than 0.10 at the one-quarter and one-year horizons and statistically significant at the 5% level.

The joint predictability tests for the shorter sample reveal a pattern of small dividend yield

coefficients that decrease with horizon and are never significantly different from zero. We also

report a J-test of the over-identifying restrictions for the joint estimation (see Appendix C).

This test fails to reject for all horizons in both the long and short samples, which suggests that

pooling is appropriate.

What is most striking about the bivariate regression results across the long and short samples

is the consistency of the results. At the one-period forecasting horizon, the short rate coefficient

is -1.96 in the long sample and -1.82 in the short sample, both significant at the 1% level. The

bivariate regression also produces a dividend yield coefficient around 0.16 that is significant at

the 1% (5%) level in the long (short) sample. Not surprisingly, the joint test rejects at the 5%

level. However, for the short sample, the test of the over-identifying restrictions rejects at the

5% level, suggesting that pooling may not be appropriate for this horizon. For longer horizons,

this test does not reject, and the evidence for predictability weakens. Nevertheless, for the long

sample, we still reject the null of no predictability at the 1% level for the one-year horizon.

We conclude that whereas the dividend yield is a poor predictor of future returns in univari-

ate regressions, there is strong evidence of predictability at short horizons using both dividend

yields and short rates as instruments. The short rate is the stronger predictor and predicts excess

returns with a coefficient that is negative in all four countries that we consider.

4 Do Dividend Yields Predict Cashflows or Interest Rates?

Our predictability results overturn some conventional, well-accepted results regarding the pre-

dictive power of dividend yields for stock returns. The dividend yield is nonetheless a natural

predictor for stock returns. Define the discount rateδt as the log conditional expected total

return,ln(Et[Yt+1]):

exp(δt) = Et[(Pt+1 + Dt+1)/Pt] ≡ Et[Yt+1]. (4)
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Denotinggd
t+1 as log dividend growth,gd

t+1 = log(Dt+1/Dt), we can re-arrange (4) and iterate

forward to obtain the present value relation:

Pt

Dt

= Et

[ ∞∑
i=1

exp

(
−

i−1∑
j=0

δt+j +
i∑

j=1

gd
t+j

)]
, (5)

assuming a transversality condition holds. Note that (5) is different from the Campbell and

Shiller (1988a and b) log linear approximation for the log price-dividend ratiopt − dt =

log(Pt/Dt):

pt − dt ≈ c + Et

[ ∞∑
j=1

ρj−1(yt+j − gd
t+j)

]
, (6)

wherec andρ are linearization constants. Equation (5) is an exact expression and involves true

expected returns. In contrast, the approximation in equation (6) involves actual total log returns

yt.

Since the price-dividend ratio varies through time, so must some component on the RHS

of (5). As the discount rate is the sum of the risk-free rate and a risk premium, time-varying

price-dividend ratios or dividend yields consequently imply that either risk-free rates, risk pre-

miums, or cashflows must be predictable by the dividend yield. Although we find predictable

components in excess returns, the dividend yield appears to be a strong predictive instrument

at short horizons only when augmented with the short rate. Of course, the non-linearity in (5)

may make it difficult for linear predictive regressions to capture these predictable components.

In this section, we examine whether the dividend yield predicts cashflow growth rates or future

interest rates.6

4.1 Dividend Growth Predictability

Panel A of Table 4 investigates U.S. dividend growth over two samples, 1935-2001 and 1952-

2001. Over the longer sample, we find no evidence of dividend growth predictability. For the

shorter sample, high dividend yields predict future high dividend growth at the one- and four-

quarter horizons. The magnitude of the coefficients is preserved in the bivariate regression, but

the coefficient is no longer significantly different from zero at the one-quarter horizon and bor-

derline significant at the one-year horizon. However, the short rate coefficient is positive and

6 Goyal and Welch (2003) show that in a Campbell and Shiller (1988a and b) log-linear framework, the pre-

dictive coefficient on the log dividend yield in a regression of the one-period total return on a constant and the

log dividend yield can be decomposed into an autocorrelation coefficient of the dividend yield and a coefficient

reflecting the predictive power of dividend yields for future cashflows. In Section 5, we attribute the time-variation

of the dividend yield into its three possible components – risk-free rates, excess returns, and cashflows – using a

non-linear present value model.
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strongly significant at the one-quarter horizon. The coefficient becomes smaller and insignifi-

cant at longer horizons. The joint tests (across the two coefficients) reject at the 1% level for

both the one- and four-quarter horizons.

Campbell and Shiller (1988a and b) note that the approximate linear relation (6) implies

a link between high dividend yields today and either high future returns, or low future cash-

flows, or both. Hence, the positive sign of the dividend yield coefficient in the short sample

is surprising. However, the Campbell-Shiller intuition is incomplete because it relies on a lin-

ear approximation to the true present value relation (5). Positive dividend yield coefficients in

predictive cashflow regressions can arise in rational models. For example, Ang and Liu (2004)

show how the non-linearity of the present value model can induce a positive dividend yield

coefficient. Menzly, Santos and Veronesi (2004) show that the dividend yield coefficient is a

function of a variable capturing shocks to aggregate preferences which changes over time and

can take positive values.

In Panels B and C of Table 4, we investigate the relation between dividend yields and

cashflows for other countries. Panel B pools data across the U.S., U.K., and Germany for

the 1953-2001 sample. Unlike the U.S. post-1952 sample, the dividend yield coefficients are

strongly negative. Because the U.K. and German coefficients are so different from the U.S.

(not reported), a pooled result is hard to interpret, and the GMM over-identifying restrictions

are strongly rejected with a p-value of less than 0.001. Nevertheless, pooling yields negative,

not positive, dividend yield coefficients. The short rate coefficients are strongly positive, and

are about twice the magnitude of the U.S. coefficients (a 1% increase in the short rate approx-

imately forecasts an annualized 70 basis point increase in expected dividend growth over the

next quarter).

Panel C reports coefficients for the MSCI sample. The dividend yield coefficients are small,

mostly negative and never statistically significantly different from zero. The short rate coef-

ficients are also insignificant, although they are similar in magnitude to the coefficient found

in long-term U.S. data. There is no general pattern in the individual country dividend yield

coefficients (not reported): the dividend yield coefficient in the univariate regression is positive

(negative) in the U.S. and U.K. (France and Germany), with the dividend yield coefficients re-

taining the same signs in the bivariate regression in each country. All in all, we conclude that the

evidence for linear cashflow predictability by the dividend yield is weak and not robust across

countries or sample periods.7

7 It is conceivable that dividend yields exhibit stronger predictive power forreal dividend growth. However, we

find the results for real and nominal growth to be quite similar. In the long U.S. sample, the dividend yield fails to

forecast future ex-post real dividend growth and the coefficients are positive. For the shorter sample, pooled results

across the four countries produce negative coefficients that are actually significant at short horizons. These results
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4.2 Interest Rate Predictability

We examine the possibility that the dividend yield predicts risk-free rates in Table 5, which

reports coefficients of a regression of future annualized cumulated interest rates on log divi-

dend yields. The persistence of the risk-free rate causes two econometric problems in linear

regressions. First, because the interest rate and dividend yield are both persistent variables, the

regression is potentially subject to spurious regression bias. To address this issue, we also report

results using the detrended dividend yield, which is the dividend yield relative to a 12-month

moving average (see Campbell, 1991; Hodrick, 1992). Second, the residuals in the predictive

regression are highly autocorrelated, which means that the use of Hodrick (1992) standard er-

rors is inappropriate. For a one-period horizon, we use Cochrane-Orcutt standard errors, and

generalize the use of this procedure to panel data in the Appendix. We do not report standard

errors for horizons greater than one period, because the residuals contain both autocorrelation

and moving average effects that cannot be accommodated in a simple procedure.

Table 5 reports that the long sample for the U.S. shows a positive effect of the dividend yield

on future interest rates. The effect is economically small (a 1% increase in the log dividend yield

predicts an increase in the one-quarter short rate by 1.7 basis points on an annualized basis

next quarter). Using a detrended dividend yield also leads to the same positive sign. While

both effects are statistically insignificant, we view the relationship between dividend yields and

future interest rates as economically important because interest rates are a crucial component

of a present value relation. From the present value relation (5), we expect a positive relation

between dividend yields and future discount rates. The interest rate enters the discount rate in

two ways. The discount rate is the sum of the risk free rate and the risk premium and enters

these two components with opposite signs. It is the first component that gives rise to the positive

relation.

Although not statistically significant, the positive sign of interest rate predictability by div-

idend yields is robust. First, omitting the 1990’s does not change the inference, but actually

increases the t-statistics. Second, we also find a positive sign for Germany and the U.K. in the

long sample and for all countries in the short sample. In particular, for MSCI data, the individual

coefficients range from 0.036 in the U.S. to 0.085 in France at the one-month horizon.8

are available upon request. Campbell (2003) also finds analogous results.
8 We also examine the predictive power of the dividend yield for ex-post real interest rates, similar to Campbell

(2003). While the individual coefficients across countries fail to have a consistent sign, pooled results produce

positive coefficients at all horizons, as in the nominal case. However, the coefficients are not statistically significant.
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5 A Present Value Model for Stock Returns

In this section, we present a present value model that sheds light on what kind of discount rate

processes are most consistent with the predictability evidence.

5.1 The Model

We start with the basic present value relation in (5), and parameterize the dynamics of the

discount rates and cashflows. We assume that the continuously compounded risk-free ratert

and log dividend growthgd
t follow the VAR:

Xt = µ + ΦXt−1 + εt, (7)

whereXt = (rt, gd
t )
′ andεt ∼ IID N(0, Σ). Let the discount rate,δt, in equation (4) follow the

process:

δt = α + ξ′Xt + φδt−1 + ut, (8)

with ut ∼ IID N(0, σ2) andεt andut independent. We denote the individual components ofξ

asξ = (ξr, ξgd)′.

Proposition 5.1 Assuming thatXt = (rt, gd
t )
′ follows equation (7) and that the log conditional

total expected returnδt follows (8), the price-dividend ratioPt/Dt is given by:

Pt

Dt

=
∞∑
i=1

exp(ai + b′iXt + ciδt) (9)

where

ai+1 = ai + ciα +
1

2
c2
i σ

2 + (e2 + bi + ciξ)
′µ +

1

2
(e2 + bi + ciξ)

′Σ(e2 + bi + ciξ)

b′i+1 = (e2 + bi + ciξ)
′Φ

ci+1 = φci − 1, (10)

wheree2 = (0, 1)′, ai and ci are scalars, andbi is a 2 × 1 vector. The initial conditions are

given by:

a1 = e′2µ +
1

2
e′2Σe2

b′1 = e′2Φ

c1 = −1. (11)

Proof: See Appendix D.
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Proposition 5.1 implies that the dividend yield is a highly non-linear function of interest

rates, excess returns, and cashflows. Not surprisingly, if discount rates are persistent, theci co-

efficients are negative and higher discount rates decrease the price-dividend ratio. Analogously,

when dividend growth is positively autocorrelated, a positive shock to dividend growth likely

increases the price-dividend ratio, unless it entails an opposite discount rate effect (ξgd > 0).

The present value model endogenously generates heteroskedasticity. While previous stud-

ies model returns and dividend yields in finite-order VAR systems (see, among many others,

Hodrick, 1992; Campbell and Shiller, 1988a and b; Stambaugh, 1999), a VAR cannot fully

capture the non-linear dynamics of dividend yields implied by the present value model. We can

also contrast our present value model with Goetzmann and Jorion (1993, 1995) and Bollerslev

and Hodrick (1996), who either ignore the cointegrating relation between dividends and price

levels that characterizes rational pricing, or only develop approximate solutions. In contrast, we

impose cointegration between dividends and prices and our solution is exact.

Under the special case of constant total returns, that isδt = α, with ξ = φ = σ2 = 0, and

IID dividend growth (gd
t = µd +σdε

g
t ), equation (9) simplifies to a version of the Gordon model:

Pt

Dt

=
exp(µd + 1

2
σ2

d)

1− exp(µd + 1
2
σ2

d − α)
.

Another important special case of the model is constant expected excess returns, whereδt =

α + rt, soξ = (1, 0)′, andφ = σ2 = 0. In this case, the time variation in total expected returns

is all due to the time-variation in interest rates. This is the relevant null model for our excess

return regressions where the expected excess return is constant but the total expected return

varies with the interest rate.

Under the null of constant expected excess returns, the gross total returnYt = (Pt+1 +

Dt+1)/Pt) less the gross interest rateexp(rt) is:

Et[Yt+1 − exp(rt)] = exp(rt)[exp(α)− 1],

so regressing the simple net excess return on the interest rate actually yields a non-zero coef-

ficient onrt. The scaled expected return,Et[Yt+1/ exp(rt)] is constant and equal toα. The

predictability regressions typically run in the literature do not correspond to any of these two

concepts, since they use log returnsỹt+1 ≡ log(Yt+1) − rt. In our economy, regressing log

returns onto state variables does not yield zero coefficients because the log excess return is het-

eroskedastic. However, we would expect these coefficients to be small, relative to the null of

time-varying expected excess returns (whereδt takes the full specification in (8)).

Under the alternative of time-varying discount rates in (8), total expected returns can depend

on both fundamentals (short rates and dividend growth) as well as exogenous shocks. The case

15



of ξ = 0 represents fully exogenous time-varying expected returns. By specifyingδt = α+ξ′Xt,

equation (8) also nests the case of state-dependent expected returns.

5.2 Estimation

The estimation of the present value model is complicated by the fact that in the data, we observe

dividends summed up over the past year, but we specify a quarterly frequency in the model. We

estimate the present value model with Simulated Method of Moments (SMM) (see Duffie and

Singleton, 1993) on U.S. data from January 1952 to December 2001. We provide full details of

the estimation in Appendix E.

Panel A of Table 6 reports the VAR parameters. Dividend growth displays significant posi-

tive persistence and the interest rate has a small and insignificant effect on dividend growth. The

implied unconditional standard deviation ofgd
t from the estimation is 0.0173 per quarter. If we

estimate a VAR on(rt, gd,4
t ), the implied unconditional standard deviation ofgd,4

t is 0.0156 per

quarter. Hence, summing up dividends over the past four quarters effectively creates a smoother

series of dividend growth compared to the true, but unobservable, cashflow process.

Panel B presents the parameter estimates for five different discount rate processes in (8).

The first model we estimate (Null 1) is a simple constant total expected stock return benchmark

model. The second model (Null 2) is our main null model because it imposes constant expected

excess returns by settingξr = 1 andξgd
= φ = σ = 0. The first model under the alternative

of time-varying discount rates that we consider (Alternative 1) features completely exogenous

discount rates (ξ = 0). The estimation shows that the log discount rate is very persistent

(φ = 0.98) and its unconditional variance is about 1% at the quarterly level. Alternative 2

setsφ = 0, but allows the discount rate process to depend on the two state variables. We find

a slightly positive but insignificant effect of dividend growth rates on the discount rate, but a

strong and significantly negative interest rate effect. Alternative 3 combines the two models.

The negative interest rate effect disappears, but the zero coefficient means that excess returns

are negatively related to interest rates. The persistence of the discount rate process now drops

to 0.93. The last line of Panel B reports the p-value of theχ2-test of the over-identifying

restrictions for the SMM estimation. Only Alternative 3 passes this test.

5.3 Economic Implications

In this section, we investigate how well the present value models match the data moments and

decompose the variability of the price-dividend ratio into its components. We also examine how

well linear predictive regressions capture true expected returns implied by the models.

16



Moments and Price-Dividend Ratio Variance Decomposition

Table 7 reports a number of implied moments for the various models. Panel A reports the vari-

ance and mean of the dividend yield and excess returns. We start by examining the Null models.

Because Null 1 has no time-variation in expected returns, it underestimates the volatility of ex-

cess returns and generates only one tenth of the dividend yield variability present in the data.

The annualized mean equity premium is only 2.6% instead of 6.12% in the data, but this is still

comfortably within two standard errors of the data moment. The model also matches the mean

dividend yield. The Null 2 model has similar mean implications but the variation of excess

returns increases substantially and endogenous dividend yield volatility triples. By definition,

all of the variation in price-dividend ratios should come from either short rates or cashflows,

which we confirm in a variance decomposition of the price-dividend ratio reported in Panel B.

The variance decompositions represent the computation:

1− varz(P/D4)

var(P/D4)
, (12)

where var(P/D4) is the variance of price-dividend ratios implied by the model, and varz(P/D4)

is the variance of the price-dividend ratio produced by the model when the variablez is non-

stochastic and set at its long-run mean. We takez to be short rates, dividend growth, total

discount rates, and excess discount rates, respectively. For Null 2, the price-dividend ratio

variance accounted for by short rate movements is 87.4%. The total discount rate accounts for

14.2% of the variation of the price-dividend ratio, but this is all due to time-varying interest

rates. By construction, the excess discount rate does not account for any of the volatility of

the price-dividend ratio. Dividend growth also accounts for only a small part (5.5%) of total

price-dividend ratio volatility.

The Alternative models 1-3 match the data much better than the null models, showing that

some variation in (excess) discount rates is essential. In particular, all three alternative models

match the variability of excess returns and, in addition, Alternatives 1 and 3, both featuring ex-

ogenous discount rate variation, match the variability of dividend yields. Alternative 3, the best

fitting model, also perfectly matches the first-order autocorrelation of the dividend yield (0.9596

compared to 0.9548 in U.S. data spanning 1952-2001). The variance decomposition of the var-

ious models are as expected, given how the discount rates are modelled in each specification: in

Alternative 1, most variation comes from the exogenous discount rate; in Alternative 2 almost

all variation comes from the short rate (which in turn drives variation in the discount rate) and in

Alternative 3, the exogenous discount rate dominates but interest rates are still important. Since

Alternative 3 fits the data the best, the variance decomposition is of considerable interest. It

suggests that 61% of the price-dividend ratio variation is driven by risk premiums, 22% by the
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short rate, and 7% by dividend growth. The remainder is accounted for by covariance terms.

How well do Predictive Regressions Capture True Expected Returns?

In Panel C of Table 7, we examine how well linear forecasting models can capture true time-

variation in expected returns in the Alternative models. We compute the correlation of expected

log excess returns,Et(ỹt+k), implied by the model with the fitted value on the RHS of the

regression (2).9 There are two striking results in Panel C. First, a univariate dividend regression

captures a much smaller proportion of movements in log expected excess returns than a bivariate

regression including both risk-free rates and dividend yields. For example, for Alternative 1

(3), the correlation rises from 74% (75%) in a univariate regression to 93% (84%) in a bivariate

regression at a one-quarter horizon.

Second, long-horizon regressions do not necessarily capture the dynamics of true expected

excess returns better than short-horizon regressions. Cochrane (2001), and others, show that in

linear VAR models, long-horizon regressions more successfully capture predictable components

in expected returns. However, in our non-linear present value model, long-horizon regressions

may fare worse than short-horizon regressions in capturing true expected returns. For example,

for Alternative 3, the forecasts from a one-quarter regression with the short rate and dividend

yield have a correlation of 87% with true expected excess returns, whereas the correlation is

82% at a 20-quarter horizon. In Alternative 2, where there are no exogenous components in

discount rates, the correlation between the bivariate regression and true expected returns is

around 98% for all horizons. However, this alternative has the worst fit with the data (see also

below).

5.4 Implications for Predictive Regressions

We now investigate how well the present value models fit the linear patterns of predictability

that we observe in the data. In Table 8, we compare regression coefficients implied by the

present value models to their values in data.

9 In a present value model, the economically relevant quantity for discount rates is the log expected return

δt = log((Pt+1+Dt+1)/Pt) = log(Et(Yt+1)). However, the predictive regressions produce a forecast of expected

log returnsEt(log(Yt+1)). The two quantitieslog(Et(Yt+1)) andEt(log(Yt+1)) are not equivalent because of

time-varying Jensen’s inequality terms. For example, the correlation of
∑

δt+j − rt+j in Null Model 2 is zero

with any variable, whereas the correlation of expected excess log returnsEt(ỹt+k) is not. We computeEt(ỹt+k)

following the method described in Appendix E.
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Expected Excess Return Regressions

In the Null 1 model, total expected returns are constant. Hence excess returns are, by construc-

tion, negatively related to interest rates, which explains the large negative short rate coefficients

in the bivariate regressions. Because dividend yields are correlated with interest rates, the uni-

variate regression also picks up some predictability. In the Null 2 model, expected excess returns

are constant, so that the only predictability we should observe comes from non-linearities. As

in the Null 1 model, the coefficients on the dividend yield are invariably small and of the wrong

sign compared to the predictions in Campbell and Shiller (1988a and b).

The alternative models imply different patterns of predictability. Despite substantial vari-

ation in the exogenous discount rate, Alternative 1 generates a population slope coefficient of

only 0.089 in a dividend yield regression, which is slightly below what is observed in the data.

Because the discount rate is not linked to the interest rate, an excess return projection on div-

idend yields and the interest rate leads to coefficients on interest rates in the neighborhood of

-1 and a dividend yield coefficient of 0.088. Both coefficients are somewhat lower in absolute

magnitude than what is observed in the data.

Alternative 2 implies a dividend yield predictability regression coefficient of 0.356. This is

very close to the dividend yield coefficient for the U.S. if we ignore the 1990’s (0.296 in Table

2). Hence, in a world where discount rates only depend on short rates and dividend growth,

the dividend yield would indeed be a strong predictor of excess returns. However, because the

variation in discount rates is mostly driven by short rates, the dividend yield coefficient drops

to 0.057 in a bivariate regression and the predictable component is now mostly absorbed by the

short rate. This is inconsistent with the data, where bivariate regressions yield larger dividend

yield coefficients, not smaller ones.

Alternative 3 combines features of both Alternatives 1 and 2 and the coefficients are nicely

in between the two alternatives. This model also yields a negative omitted variable bias in the

univariate dividend yield regression as is true in the data. Note that, with the exception of the

univariate slope coefficient in the dividend yield regression under Alternative 2, all predictability

coefficients for all alternative models are within two standard errors of the observed coefficients

in the data.

Dividend Growth Regressions

Table 8 also reports how the different models fare with respect to the predictability of dividend

growth. The main feature in the data is that both dividend yields and short rates receive positive

coefficients in a bivariate regression. Since practically all of the variation in dividend yields is
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due to dividend growth in the Null 1 model, dividend growth is much too predictable in this

model. Dividend growth predictability in the Null 2 model is also inconsistent with the data.

In the alternative models, positive dividend yield coefficients in dividend growth regressions

occur primarily in two ways. First, the discount rate can depend positively on dividend growth

(ξgd > 0 in equation (8)). Positive persistence in dividend growth normally leads to a negative

association between dividend yields and future cash flows, but in this case, high dividend growth

also increases the discount rate and increases dividend yields. Second, the short rate may enter

negatively in the dividend growth equation (7). This means that low discount rates (which

tend to raise the dividend yield) are directly associated with relatively higher expected dividend

growth rates. Our estimates for Alternative 3 shares both these features (see Table 6) and the

implied moments of this model are fully consistent with what is observed in the data.

Risk-Free Rate Regressions

A rational present value model with stochastic interest rates also implies that dividend yields

predict interest rates. Under Null 2, the coefficient is 0.214, much larger than what is observed

in the data. Since interest rates do not affect the risk premium in this model, we observe a very

strong positive relation between the current dividend yield and future interest rates. The smaller

coefficient in the data indicates that the risk premium component is likely to negatively depend

on interest rates. Hence, the current dividend yield should show a negative relation with the

interest rate component of future risk premiums. In Alternative 1, the total discount rate does

not depend on the interest rate, yielding a coefficient very close to zero. Alternative 2 makes

the interest rate dependence of the discount rate too strong, resulting in a negative coefficient.

In contrast, Alternative 3 most closely (but not perfectly), matches the coefficient in the data.

Hence, we conclude that the present value model represented by Alternative 3 is remarkably

consistent with the data.

6 Bias, Size and Power

The inference regarding predictability may critically depend on the finite sample properties

of the estimator. In this section, we investigate the finite sample bias, size, and power of the

estimators in the linear predictive regressions.
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6.1 Small Sample Bias

In a linear return-dividend yield system (see Stambaugh, 1999; Lewellen, 2004; Amihud and

Hurvich, 2004), there is an upward bias in the predictive coefficient on the dividend yield,

deriving from the negative correlation between return and dividend yield innovations and the

persistence of dividend yields. This analysis does not apply in our framework for two reasons.

First, both the return and the dividend yield are non-linear processes in our model. Second, once

we consider multivariate regressions, the bias can no longer be signed in all cases, as already

noted by Stambaugh (1999).

Table 9 reports the small sample bias in several regressions based on data generated from

the Null 2 model (constant expected excess returns). We consider the small sample distribu-

tions for samples of length 104, 200, and 267 quarters, which correspond to the 1975-2001,

1952-2001, and 1935-2001 sample periods, respectively. We start with regressions using scaled

returns,Yt+1/ exp(rt), as the dependent variable. In these regressions, the population coef-

ficients are zero as the null imposes constant expected scaled returns. In small samples, the

univariate regression yields a Stambaugh bias that is negligible for our longest sample (0.0012).

Interestingly, in the bivariate regression, the bias on the dividend yield coefficient is now nega-

tive but the bias on the short rate coefficient is positive and rather large, ranging from 0.35 for

the smallest sample to 0.14 for the longest sample. In this model, the short rate plays the role

of the dividend yield in the linear systems. It is the prime determinant of the variation in the

price-dividend ratio, it is contemporaneously negatively correlated with returns, and it is very

persistent. Hence, a Stambaugh-like bias for short rates, but not dividend yields, results.

In the second panel of Table 9, we report the bias results for the predictive regressions using

log excess returns. Note that the population coefficients are not zero because of heteroskedas-

ticity. For the univariate dividend yield regressions, the population coefficients are slightly

negative at short horizons and positive at the five-year horizon. For our small sample, they

interact with the Stambaugh bias to produce a small upward bias for our smallest sample but

a downward, negligible bias for our longest sample. For the bivariate regressions, the popu-

lation biases are negative for both the short rate and dividend yield coefficients. However, in

small samples, the scaled return biases clearly dominate and we find the short rate (dividend

yield) coefficient to be biased upwards (downwards). The small sample biases become sig-

nificantly smaller at long horizons and turn slightly positive for the dividend yield coefficient.

Clearly, recent inference techniques that focus on univariate regressions in a linear framework

(see, for example, Valkanov (2003), Torous, Valkanov and Yan (2004), and Polk, Thompson

and Vuolteenaho (2005)) are of little use in our setting.

In summary, the small sample biases under the null strengthen our empirical evidence. That
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is, the univariate dividend yield predictability coefficients are slightly over-estimated and the

small sample biases for the bivariate coefficients go the wrong way at short horizons: the esti-

mated short rate coefficient is negative, but the small sample bias is positive; and the estimated

dividend yield coefficient is positive but the small sample bias is negative.

6.2 Size

Table 10 reports empirical sizes for tests of a 5% nominal (asymptotic) size. In the shortest

sample for the one-quarter horizon, the univariate dividend yield regression displays negligi-

ble size distortions, but for the bivariate regressions, all tests slightly over-reject at asymptotic

critical values. For longer horizons, the performance of the Newey-West and robust Hansen-

Hodrick estimators deteriorates, with the empirical size exceeding 33% for a 5% test in the

univariate dividend regression.10 For our longer samples, these distortions become smaller but

do not disappear. For example, at the five-year horizon, the empirical size of the dividend yield

regression still exceeeds 18.5% for both Newey-West and robust Hansen-Hodrick estimators in

the 267 quarter sample.

The Newey-West and robust Hansen-Hodrick standard errors are too small because they

under-estimate the serial correlation in the error terms as the autocorrelation estimates are

downwardly biased. The Newey-West standard error also uses a Bartlett kernel of declining,

tent-shaped weights. Under the null, the kernel is rectangular, so the Newey-West standard

errors under-weight the effect of autocorrelations at long lags unless a higher lag length is cho-

sen. While the robust Hansen-Hodrick standard errors employ the correct rectangular filter,

the estimate of the covariance matrix is not guaranteed to be invertible in small samples. In

contrast, Hodrick uses covariance stationarity to remove the MA structure in the residuals. Ho-

drick’s covariance estimator in equation (3) is invertible, and avoids the biased estimation of

autocorrelations at long lags.

For Hodrick standard errors, the worst size distortion occurs at the one-quarter horizon with

a 7% empirical size for a 5% nominal test on the short rate coefficient. For longer horizons,

the Hodrick tests become slightly conservative, with the worst size distortion occurring for the

dividend yield coefficient in the bivariate regression (a 3.7% empirical size for a 5% nominal

test). The joint tests across horizons show few size distortions for the univariate regression, but

are somewhat too conservative for the bivariate regression. In summary, the Hodrick standard

errors display very satisfactory small sample properties that are far superior to those of Newey-

10 Hodrick standard errors also have relatively few size distortions, especially compared to Newey-West standard

errors, for standard linear VARs, like the Stambaugh (1999) system. Hodrick (1992) also demonstrates that Hodrick

standard errors are correctly sized for multivariate VARs.
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West and Hansen-Hodrick standard errors.

6.3 Power

Power in One Country

Table 11 shows the size-adjusted power for the Hodrick standard errors under Alternatives 1-3.

Alternative 1 generates about the same predictive coefficient on the dividend yield as observed

in the data but the predictive power of the short rate is unrealistically weak. Panel A shows

that the power of the univariate dividend yield regression is very small for the shortest sample,

only 25.5% (12.1%) at the one-quarter (20-quarter) horizon. For the longer samples, power

rises to around 60% (40%) at the one-quarter (20-quarter) horizon. The results for the bivariate

regressions are quite similar, with the power for the short rate coefficient slightly weaker than

for the dividend yield. Hence, power is only satisfactory for the long samples, and even here,

we might fail to reject the null of no predictability even though predictability is truly present.

Alternative 2, reported in Panel B, generates as much short rate predictability as in the data,

but slightly over-predicts the univariate predictive power of the dividend yield. For the 104-

quarter length sample at short horizons, the power of the univariate dividend yield regression

is satisfactory (55.2%). The power deteriorates with the horizon reaching 12.6% at 5 years.

Power increases substantially with the sample size; for our longest sample, the Hodrick test has

a power of over 97% at the one-quarter horizon. If predictability in the data is as strong as under

Alternative 2, it is unlikely that we failed to detect univariate predictability. The power to detect

the predictive ability of the short rate in the bivariate regression is very high for all samples

and at all horizons. In the bivariate regression, there is little power to detect the true relation

of future excess returns with the dividend yield because the dividend yield coefficient is very

small in the presence of the short rate as a predictor. Consistent with this, the univariate joint

χ2 tests across horizons is very powerful, but the power of the test in the bivariate regression is

minimal.

Panel C reports the power under Alternative 3, which fits the data the best. The power of the

univariate tests is slightly better than the power under Alternative 2. For the bivariate regression,

the predictive coefficient of the short rate (dividend yield) is under-estimated (over-estimated)

relative to the data coefficients under Alternative 3. Consequently, the power to detect the true

predictive relation with the short rate is low at long horizons (because the predictability through

the short rate is short-lived), whatever the sample size is. Power at a one-quarter horizon rises

from 13.8% for the shortest sample to 29.2% for the longest sample. Fortunately, the power

to detect predictability through the dividend yield in the bivariate system is quite high: power
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is 62.8% (97.1%) for the shortest (longest) sample at a one-quarter horizon. For a 20-quarter

horizon, we need longer samples to obtain a powerful test (power is only 19.8% for the 1975-

2001 sample but is 68.2% for the 1935-2001 sample). With such high power, it is unlikely that

we would have failed to uncover predictability by the dividend yield. Overall, the joint tests

are quite powerful (at least 58.7% power). We conclude that lack of power is unlikely to drive

our failure to find predictability of excess returns by dividend yields, particularly for the longer

U.S. sample, unless the true predictability in the data is quite weak to begin with.

Power Pooling Cross-Country Data

To examine the increase in power that pooling cross-country data allows, our DGP must match

the empirical correlations of excess returns across countries in the data. For the U.S., U.K.,

France, and Germany, the cross-country correlations for excess returns are all around 0.50 (see

Table 1). To account for the cross-sectional correlation, we modify the present value model

in the following fashion. First, we consider each country to be a separate draw of(Xt, δt),

using Alternative 3. Second, we specify the process forXt in each country to be independent

but allow the discount rates for different countries to be correlated. Specifically, we allow the

shocksui
t in the discount rate (8) for countryi to be correlated with the discount rate shocks

uj
t for countryj. We set this correlation at 0.80, which produces an unconditional correlation

coefficient of 0.535 between the implied excess equity returns for any two countries.

To compare the increase in power pooling international data, Table 12 reports power under

Alternative 3 for a cross-sectional panel ofN countries and compares it to increasing the short

U.S. sample byN times. Pooling data by adding one other country turns out to be only slightly

worse than doubling the sample size of the U.S.. For four countries, the pooled test is better than

using a sample of 312 quarters, which is larger than the longest U.S. sample we have. Hence,

pooling information across countries should increase the confidence in our results more than

the U.S. long sample does from a pure statistical power perspective.

7 The Predictive Power of the Earnings Yield

Our findings so far suggest that dividend yields have marginal predictive power for returns

within a bivariate regression, with the short rate dominating the dividend yield. Campbell and

Shiller (1988a) and Lamont (1998) claim that the earnings yield has information over and above

the dividend yield in capturing predictable components in returns.
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7.1 The Earnings Yield and Excess Return Predictability

The first column of Panel A, Table 13 reports a univariate regression with the earnings yield as

the regressor. The results are similar to what we found for the dividend yield regression in Table

2. This suggests that the weak univariate relation between returns and yield variables primarily

comes from the price in the denominator of both variables.

To allow comparison with Lamont (1998), we report a bivariate regression of excess returns

on log dividend and log earnings yields. Lamont finds a positive coefficient on the dividend

yield and a negative coefficient on the earnings yield. He argues that the predictive power of the

dividend yield stems from the role of dividends in capturing permanent components of prices,

whereas the negative coefficient on the earnings yield is due to earnings being a good measure

of business conditions. Table 13 shows that the coefficients over the long U.S. sample, while

having the same sign found by Lamont, are insignificant and not one joint test of the predictive

power of dividend and earnings yields is significant at the 10% level. Only when the 1990’s

are excluded, as in the 1952-1990 sample similar to Lamont’s paper, do we find significant

coefficients for dividend and earnings yields. When we add the short rate as a predictor in

a trivariate regression of excess returns on risk-free rates, dividend and earnings yields, the

coefficients on dividend and earnings yields remain insignificantly different from zero and the

sign on the earnings yield is fragile. For the post-1952 samples, the short rate predictive power

remains robust in the presence of the earnings yield.

Panel B of Table 13 pools all the specifications across the U.S., U.K., France, and Germany.

There are no significant coefficients in the univariate regression. The bivariate specification

preserves the Lamont coefficient pattern with the earnings yield coefficient now significantly

negative at the five-year horizon. However, jointχ2 predictability tests fail to reject the null of

no predictability. In the trivariate specification, the short rate and dividend yield coefficients

have similar signs and significance to the results from the bivariate regressions in Section 3.

The earnings yield coefficient is significantly negative only at the five-year horizon, but a joint

test across all predictors at the five-year horizon fails to reject the null of no predictability.

For individual countries, the Lamont coefficient pattern is neither robust nor significant (not

reported). In conclusion, there is little evidence that earnings yields predict excess returns. The

earnings yields coefficients are not robust across different sample periods or countries.

7.2 The Earnings Yield and Cashflow Predictability

In this section, we use both dividend and earnings yields to predict cashflows, as measured

by dividend growth and earnings growth. Panel A of Table 14 reports the results for dividend
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growth. In the univariate regression, the earnings yield is a better predictor of dividend growth

than the dividend yield. The coefficients are larger in magnitude than the dividend yield coef-

ficients, and, except for the coefficient in the 20-quarter regression, significantly different from

zero. The earnings yield coefficients are all positive.

The bivariate dividend yield-earnings yield regression shows an intriguing result. The La-

mont (1998) pattern of a positive dividend yield coefficient and a negative earnings yield coef-

ficient is reversed, and highly significant, for the cashflow regressions! At short horizons, both

coefficients are different from zero at the 1% level and the joint test also rejects at the 1% level.

The coefficients become smaller, and the statistical significance weakens, with longer horizons.

We still find predictability at the 5% level for the one-year horizon, but only the earnings yield is

significant (at the 5% level) for the five-year horizon. Adding the risk-free rate in the trivariate

regression does not change this picture very much, but a high short rate is also a very strong

signal of lower future dividend growth at the one- and four-quarter horizons. One possible inter-

pretation is that since interest rates are high during recessions and recessions are persistent (see

Ang and Bekaert, 2002), high interest rates predict low future cashflows. The negative dividend

yield coefficient can arise from prices reflecting future positive cashflow prospects.

We find that the negative dividend yield and positive earnings yield coefficients for predict-

ing dividend growth are very robust across different subsamples, but we do not report these

results to conserve space. In particular, omitting the 1990’s, the signs of the coefficients are the

same, but the t-statistics are even larger in magnitude than the those reported for the full sample.

The inverse Lamont pattern is also robust in the subsamples beginning in 1952.

When we pool data across countries using MSCI data, the cross-sectional variation in the

coefficients makes the cashflow Lamont pattern weaker, but it remains significant at the 1% level

at the one-month horizon, in both the bivariate and trivariate regressions. At longer horizons,

earnings and dividend yields do not predict future cashflows. Moreover, the pattern is also

repeated in the coefficients for each individual country. Internationally, the short rate is not

a robust predictor of future cash flows, perhaps because the cyclicality of interest rates is not

consistent across countries.

In Panel B of Table 14, we repeat the same regressions for earnings growth. The univariate

regression with the earnings yield delivers a negative coefficient. The sign of this point esti-

mate could be potentially consistent with a standard price effect. However, it is statistically

insignificant. Interestingly, the sign of the dividend and earnings yield coefficients are reversed

for earnings growth, compared to dividend growth: for earnings growth, we see a positive (neg-

ative) coefficient on the dividend (earnings) yield. The effect is strongest for the earnings yield,

which is significant at the 5% level for the one- and five-year horizons, although borderline in
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the latter case. Looking at the jointχ2 tests, we conclude that there is some evidence of cash-

flow growth predictability at longer horizons (the p-value is at most 0.057), primarily driven by

the earnings yield. The 1952-2001 sample also preserves these coefficient patterns.

When we pool data across countries, the coefficients increase in magnitude and the statisti-

cal significance increases considerably. All the joint tests now reject at the 1% level, and even

the short rate predicts cashflow growth significantly at the one-year horizon. The strong inter-

national results are due to the fact that in each individual country, the dividend yield (earnings

yield) coefficients are positive (negative).

We conclude that high dividend yields signal high future earnings growth and high earnings

yields signal low future earnings growth rates. It is conceivable that the second effect is a

genuine price effect (higher prices in response to predicted rises in future earnings), but the first

effect is harder to interpret. The puzzling nature of our findings becomes more apparent when

we look at the earnings and dividend growth simultaneously. We find the following sign pattern:

Dividend Growth Earnings Growth Payout Ratio

Dividend Yield –ve +ve –ve

Earnings Yield +ve –ve +ve

We can derive the results in the last column because the change in the payout ratio equals

(logarithmic) dividend growth minus earnings growth. Hence, our results imply that higher

dividend yields (higher earnings yields) strongly predict lower (higher) payout ratios tomorrow.

Can we explain the reverse patterns for the two cashflow measures for dividend and earnings

yields used jointly in predictive regressions? We can rule out a Lamont (1998) story translated to

cashflows. According to Lamont, dividend yields capture price effects, whereas earnings yields

capture the cyclical component in earnings and hence potentially also risk aversion. Under this

scenario, we would expect the dividend yield to be negatively related to earnings growth (the

usual positive cash flow prospects), but we find a positive effect.

When dividend yields are high today, we predict low dividend growth in the future because

payout ratios strongly decrease. This may be the result of dividend smoothing, or it may reflect

prices anticipating higher growth opportunities that decrease the payout ratio. The positive

relation between current high dividend yields and future earnings growth implies that that these

growth opportunities do not rapidly translate into higher future earnings. The negative relation

between the current earnings yield and future earnings may be consistent with either a price

effect or mean reversion in earnings. The payout ratio reacts positively to an increase in the

earnings yield. In the mean reversion story, this could be an artifact of dividend smoothing.

In the price story, lower prices today may reflect poor future earnings and poor future growth

opportunities. The poor growth opportunities may increase the payout ratio, particularly if

dividends are sticky.
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All in all, we find very strong evidence of dividend growth predictability, both in U.S. and

international data, by using the dividend and earnings yield jointly as predictors. We find weaker

evidence in U.S. data, but very strong international evidence, of earnings growth predictability

by dividend and earnings yields. A challenge for future work is to create a present value model

with sophisticated dynamics for earnings growth, payout ratios, and dividend growth to match

this evidence.

8 Conclusion

The predictable components in equity returns uncovered in empirical work over the last thirty

years have had a dramatic effect on finance research. Theoretical equilibrium models try to

match the predictability evidence as a stylized fact. The partial equilibrium dynamic asset al-

location literature investigates the impact of the predictability on hedging demands. Much of

the focus has been on the predictive prowess of the dividend yield, especially at long horizons.

In this article, we pose the question whether this predictability exists. After carefully account-

ing for small sample properties of standard tests, our answer is surprising but important. At

long horizons, excess return predictability by the dividend yield is not statistically significant,

not robust across countries, and not robust across different sample periods. In this sense, the

predictability that has been the focus of most recent finance research is simply not there.

Nevertheless, we do find that stock returns are predictable, calling for a re-focus of the pre-

dictability debate in four directions. First, our results suggest that predictability is mainly a

short-horizon, not a long-horizon, phenomenon. The predictive ability of the dividend yield is

best seen in a bivariate regression with short rates only at short horizons. Second, the strongest

predictability comes from the short rate rather than from the dividend yield. The result that the

short rate predicts equity returns goes back to at least Fama and Schwert (1977), but somehow

recent research has failed to address what might account for this predictability and has mostly

focused on the dividend yield as an instrument. Third, high dividend yields predict high fu-

ture interest rates. Finally, dividend and earnings yields have good predictive power for future

cashflow growth rates, but not future excess returns. Hence, a potentially important source of

variation in price-earnings and price-dividend ratios is the predictable component in cashflows.

Our results generally imply that univariate linear models of expected returns are unlikely to

satisfactorily capture all the predictable components in returns.

After our results were first distributed in a working paper article (Ang and Bekaert, 2001),

a number of articles have been written that confirm them. Campbell and Yogo (2005) develop

a new inference methodology within the linear regression framework of Stambaugh (1999),
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and find that the predictive power of the dividend yield is considerably weakened, but that the

predictive power of the short rate is robust. Lettau and Ludvigson (2005) also find that the price-

dividend ratio weakly forecasts excess returns but confirm that future dividend growth, long

ignored by the literature, is predictable. Engstrom (2003) confirms our findings that univariate

dividend yield regressions have difficulty capturing all the predictable components in returns,

by constructing economies where the dividend yield is a noisy predictor of both excess returns

and cashflow growth.

We hope that our results will, in the short run, affect the asset allocation literature, which

often has taken the predictive power of the dividend yield in a univariate regression as a styl-

ized fact, and in the longer run, will stimulate research on theoretical models that might explain

the predictability patterns we demonstrate, particularly return predictability by the short rate

at short horizons and the joint predictability of cashflows and excess returns. Finally, future

research should also reconcile the weak out-of-sample evidence of predictability (see, for ex-

ample, Bossaerts and Hillion, 1999; Goyal and Welch, 2003 and 2004) with the in-sample evi-

dence of predictability. While such a reconciliation may require models with structural breaks

or regime shifts (see, for example, Timmermann and Paye, 2003), we note one last interesting

result derived from our U.S. sample. Mimicking Goyal and Welch’s (2004) procedure for out-

of-sample forecasting over the post-1964 period, we find that the bivariate predictive regression

with the short rate and dividend yield produces a lower root mean squared error than the his-

torical mean for forecasting excess returns at a one-quarter horizon, but not at long horizons.

Consequently, for the bivariate predictive regression, the in-sample and out-of-sample evidence

of return predictability is consistent.
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Appendix

A Robust Hansen-Hodrick (1980) Standard Errors
Using GMM, the parametersθ = (α β′k)′ in (2) have an asymptotic distribution

√
T (θ̂ − θ) a∼ N(0,Ω) where

Ω = Z−1
0 S0Z

−1
0 , Z0 = E(xtx

′
t), xt = (1 z′t)′. We estimateS0 by:

Ŝ0 = C(0) +
k−1∑

j=1

[C(j) + C(j)′], (A-1)

where

C(j) =
1
T

T∑

t=j+1

(wt+kw′t+k−j),

andwt+k = εt+k,kxt. This estimator ofS0 is not guaranteed to be positive semi-definite. If it is not, we use
a Newey-West (1987) estimate ofS0 with k lags. Note that fork = 1, the robust Hansen-Hodrick (1980) and
Hodrick (1992) standard errors are identical.

B Testing Predictability Across Horizons
To test if the predictability coefficients are statistically significant acrossn horizonsk1 . . . kn, we set up the simul-
taneous equations:

ỹt+k1 = αk1 + β′k1
zt + ut+k1

...
ỹt+kn = αkn + β′kn

zt + ut+kn . (B-1)

We produce an estimatêβ of β = (αk1β
′
k1

. . . αknβ′kn
)′ by performing OLS on each equation.

The moment conditions for the system in equation (B-1) are:

E(ht+k̄) ≡ E




ht+k1

...
ht+kn


 = E




ut+k1xt

...
ut+knxt


 = E(ut+k̄ ⊗ xt) = 0, (B-2)

wherext = (1z′t)
′, aK × 1 vector andut+k = (ut+k1 . . . ut+kn)′.

From standard GMM,
√

T (θ̂ − θ) a∼ N(0, Ω), with Ω = Z−1
0 S0Z

−1
0 , Z0 = (In ⊗ E(xtx

′
t)), and

S0 = E(ht+k̄h′t+k̄) = E
(
(ut+k̄ut+k̄)⊗ (xtx

′
t)

)
. (B-3)

The Hodrick (1992) estimatêSb
T of S0 is given by:

Ŝb
T =

1
T

W ′W, (B-4)

whereW is aT × Kn matrix W = (Wk1 . . .Wkn) andWk, T × n, is given byWk = (w′1+k, . . . w′T+k), and
wt+k, K × 1, is:

wt+k = et+1

(
k−1∑

i=0

xt−i

)
, (B-5)

since under the null of no predictability the one-step ahead errorset+i = ut+1 are uncorrelated, andut+k =
et+1 + · · ·+ et+k. DenotingX = (x′1, . . . x

′
T ), T ×K, an estimate ofZ−1

0 is given by:

Ẑ−1
T =

1
T

(In ⊗ (X ′X)−1). (B-6)

To test the hypothesisCβ = 0, we use the Newey (1985)χ2 test:

(Cβ̂)′[CΩ̂C ′]−1Cβ̂ ∼ χ2
rank(C), (B-7)

with Ω̂ = Ẑ−1
T Ŝb

T Ẑ−1
T .
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C Testing Predictability Pooling Cross-Sectional Information
Generalizing Hodrick (1992) to Cross-Sectional Regressions

To pool cross-sectional country information, we estimate the system:

ỹi
t+k = αi + β′iz

i
t + ui

t+k (C-1)

for i = 1 . . . N countries, subject to the restrictionβi = β̄ ∀i, but impose no restrictions onαi across countries.
We takei = U.S., U.K., France, and Germany.

Let the dimension ofzt be (K − 1) so there will be a total ofK regressors, including the constant terms
αi for each ofN countries. In equation (C-1) denote the free parametersθ = (α1...αN β̄′)′, and the unrestricted
parameters stacked by each equationβ = (α1β

′
1 . . . αNβ′N )′. We can estimate the system in equation (C-1) subject

to the restriction thatCβ = 0, where C is aNK × (N − 1)(K − 1) matrix of the form:

C =




0̃ I 0̃ −I 0̃ . . .
0̃ O 0̃ I 0̃ −I . . .
...
0̃ O 0̃ . . . 0̃ −I


 (C-2)

where0̃ is a (K − 1) × 1 vector of zeros,O is a (K − 1) × (K − 1) matrix of zeros, andI is a (K − 1) rank
identity matrix.

Denote

ỹt+k =(ỹ1
t+k . . . ỹN

t+k)′ (N × 1)

xi
t =(1zi′

t ) (K × 1)

ut+k =(u1
t+k . . . uN

t+k)′ (N × 1)

Xt =




x1
t 0

. ..
0 xN

t


 (NK ×N). (C-3)

Then, the system can be written as:
ỹt+k = X ′

tβ + ut+k, (C-4)

subject toCβ = 0. Let Y = (ỹ′1+k . . . ỹ′T+k)′, X = (X ′
1 . . . XT )′, U = (u′1+k . . . u′T+k)′. Then, the compact

system can be written as:
Y = Xβ + U subject toCβ = 0. (C-5)

A consistent estimatêβ of β is given by:

β̂ = βols − (X ′X)−1C ′[C(X ′X)−1C ′]−1Cβols, (C-6)

with βols = (X ′X)−1X ′Y . This gives us a consistent estimateθ̂ of θ.
The moment conditions of the system in equation (C-4) are:

E(ht+k) = E(Xtut+k) = 0.

By standard GMMθ̂ has distribution:
√

T (θ̂ − θ) a∼ N(0, (D′
0S
−1
0 D0)−1), (C-7)

with

D′
0 = E

[
∂ht+k

∂θ′

]

and
S0 = E(ht+kh′t+k).

The Hodrick (1992) estimatêSb
T of S0 is given by:

Ŝb
T =

1
T

T∑

t=k

wktwk′t, (C-8)
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wherewkt (NK × 1) is given by:

wkt =

(
k−1∑

i=0

Xt−i

)
et+1.

Under the null hypothesis of no predictabilityut+k = et+1 + . . . et+k whereet+1 are the 1-step ahead serially
uncorrelated errors. This is the SUR equivalent of the Hodrick (1992) estimate for univariate OLS regressions.

An estimateD̂T of D0 is given by:

D̂′
T =

1
T

T∑
t=0

∂ht+k

∂θ′
,

whereθ = (α1 . . . αN β̄′) and

−∂ht+k

∂θ′
=




1 z1′
t 0

1 z2′
t

. . .
0 1 zN ′

t

z1
t z1

t z1′
t z2

t z2
t z2′

t . . . zN
t zN

t zN ′
t




.

The estimatêθ has the distribution:√
T (θ̂ − θ) a∼ N(0, [D̂′

T (Ŝb
T )−1D̂T ]−1). (C-9)

There are(N + K − 1) free parameters inθ with NK moment conditions. This givesNK − (N + K − 1)
over-identifying restrictions. The Hansen (1982)χ2 J-test of over-identifying restrictions is given by:

J = T (h̄′(Ŝb
T )−1h̄) ∼ χ2(NK − (N + K − 1)), (C-10)

with

h̄ =
1
T

T∑
t=0

ht+k.

Generalizing Cochrane-Orcutt to Cross-Sectional Regressions

We start with the one-step ahead predictive regression in equation (C-4) withk = 1, repeated here for convenience:

ỹt+1 = X ′
tβ + ut+1, (C-11)

subject toCβ = 0, whereC is given by equation (C-2). We assume that theN × 1 vector or errorsut+1 follows
the process:

ut+1 = Φut + εt+1, (C-12)

whereεt are IID withE(εtε
′
t) = Ω. The unconditional covariance matrix ofut is given by:

E(utu
′
t) = devech[(I − Φ⊗ Φ)−1vec(Ω)].

We write equation (C-11) in terms of uncorrelated residuals:

ỹt+1 − Φỹt+1 = (Xt −Xt−1Φ′)′β + εt+1,

or as:
y∗t+1 = (X∗

t )′β + εt+1, (C-13)

wherey∗t+1 = ỹt+1 − Φỹt andX∗
t = Xt − Xt−1Φ′. To constructy∗t+1 andX∗

t , we use a consistent estimate,
Φ̂, of Φ. Using the estimatêβ of β in equation (C-6), we set̂Φ = 1/T

∑
vtv

′
t−1, wherevt are the residuals

vt = ỹt+1 −X ′
tβ̂ that are standardized to have unit variance.

To compute Cochrane-Orcutt standard errors forθ = (α1 . . . αN β̄′) in the pooled system (C-11) with matrix-
autocorrelated residuals, we use GMM. The set ofNK × 1 moment conditions implied by the regression (C-13)
are:

E(ht+1) = E(X∗
t εt+1) = 0.

We set the estimatêST of S0 = E(ht+1h
′
t+1) to be:

ŜT =
1
T

T∑
t=1

(X∗
t (y∗t+1 −X∗′

t β̂)).

An estimate,D̂T , of the derivative of the moment conditions with respect toθ can be computed by taking, and
summing, appropriate elements ofX∗

t X∗′
t .
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D Proof of Proposition 5.1
The present value relation (5) can be written as:

Pt

Dt
=

∞∑

i=1

Mt+i,

where

Mt+i = Et


exp


−

i−1∑

j=0

δt+j +
i∑

j=1

gd
t+j





 . (D-1)

We show that
Mt+i = exp(ai + b′iXt + ciδt),

which then proves relation (9).
The initial conditions are given by:

Et[exp(−δt + gd
t+1)] = exp(−δt)Et[exp(e′2Xt+1)]

= exp
(
−δt + e′2µ + e′2ΦXt +

1
2
e′2Σe2

)
, (D-2)

wheree2 = (0, 1)′ and equating coefficients yields equation (11).
To prove the recursive relations (10), we use proof by induction. Suppose thatMt+i = exp(ai + b′iXt + ciδt).

Then, we can write:

Mt+i+1 = Et


exp


−

i∑

j=0

δt+j +
i+1∑

j=1

gd
t+j







= Et[exp(−δt + gd
t+1) exp(ai + b′iXt+1 + ciδt+1)]

= exp
(

ai + ciα + (ciφ− 1)δt +
1
2
c2
i σ

2 + (e2 + bi + ciξ)′µ

+ (e2 + bi + ciξ)′ΦXt +
1
2
(e2 + bi + ciξ)′Σ(e2 + bi + ciξ)

)
. (D-3)

Collecting terms, we can write:

Mt+i+1 = exp(ai+1 + b′i+1Xt + ci+1δt),

whereai+1, bi+1 andci+1 take the form in equation (10). The sum of exponential affine functions of the price-
dividend ratio means that this model falls under the class of affine equity pricing models developed by Ang and
Liu (2001), Bekaert and Grenadier (2002), and Bakshi and Chen (2005).

E Estimating the Present Value Model
The calibration of the present value model proceeds in two steps. First, we estimate the VAR parameters(µ, Φ, Σ)
in (7) of Xt = (rt gd

t )′. This estimation is complicated by the fact that in the data we observe dividends summed
up over the past year, but we specify the frequency of our model to be quarterly. Since the VAR specifies the
dynamics of short rates and dividend growth, we use only short rate and dividend growth data to estimate the VAR.
In the second step, we hold the VAR parameters fixed and estimate the parameters of the discount rateδt in (8). In
both stages, we use Simulated Method of Moments (see Duffie and Singleton, 1993). To calibrate the model, we
use U.S. data from January 1952 to December 2001.

We observe dividend growth summed up over the past 12 months,gd,4
t , but the model requires quarterly

dividend growthgt. By simulatinggd
t from the VAR, we can constructgd,4

t using the transformation:

gd,4
t = log

(
Dt + Dt−1 + Dt−2 + Dt−3

Dt−1 + Dt−2 + Dt−3 + Dt−4

)

= gd
t−3 + log

(
1 + egd

t−2 + e(gd
t−2+gd

t−1) + e(gd
t−2+gd

t−1+gd
t )

1 + egd
t−3 + e(gd

t−3+gd
t−2) + e(gd

t−3+gd
t−2+gd

t−1)

)
. (E-1)
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Equation (E-1) shows that the relation between quarterly growth rates and growth rates at a quarterly frequency
using dividends summed up over the past year is highly non-linear. In particular, the summing of dividends over
the past 4 quarters induces serial correlation up to 3 lags, even whengt is serially uncorrelated.

To estimate the VAR onXt, we impose a restricted companion formΦ whereΦ12 = 0, so there is no Granger-
causality from dividend growth to interest rates. This assumption is motivated by an analysis of an unconstrained
VAR on (rt gd,4

t )′, where we fail to reject the null thatgd,4
t fails to Granger-cause interest rates. Hence, we first

estimate an AR(1) on quarterly short rates and then holding the parameters forrt fixed, we estimate the remaining
parameters inµ, Φ and Σ by using first and second moments ofgd,4

t , in addition to the momentsE(rtg
d,4
t ),

E(gd,4
t−4g

d,4
t ) andE(rt−4g

d,4
t ). Hence, the system is exactly identified. The cross-moment lag length is set at four

because the first three lags are affected by the autocorrelation induced by the non-linear filter for annual dividend
growth in (E-1). We compute the Newey-West (1987) weighting matrix with four lags using the data, so we do not
need to iterate on the weighting matrix.

In the second stage, we hold the parameters of the VAR fixed at their estimates in Panel A. The parameters
α, β, φ andσ2 are estimated by matching 12 moment conditions: the first and second moments of excess returns
ỹt and dividend yieldsD4

t /Pt in the data, withrt−1 andgd,4
t−1 as instruments. Hence, we use the moments:

E[qt ⊗ zt−1] = 0,

whereqt = (ỹt D4
t /Pt ỹ2

t (D4
t /Pt)2)′ andzt−1 = (1 rt−1 gd,4

t−1)
′.

The relation between the closed-form quarterly dividend yieldsdyt (see Proposition 5.1) and the dividend
yields in the datady4

t (which use dividends summed over the last 4 quarters) is complex:

D4
t

Pt
=

Dt + Dt−1 + Dt−2 + Dt−3

Pt

=
Dt

Pt
+

Dt−1

Pt−1

Pt−1

Pt
+

Dt−2

Pt−2

Pt−2

Pt
+

Dt−3

Pt−3

Pt−3

Pt
, (E-2)

where the capital gain overn periodsPt/Pt−n can be evaluated using:

Pt

Pt−n
=

Pt/Dt

Pt−n/Dt−n
exp

(
n−1∑

i=0

gd
t−i

)
.

The predictability regressions use excess log returnsỹt+1 = log(Yt+1) − rt, whereYt = log((Pt+1 +
Dt+1)/Pt). Since we modelδt = log(Et(Pt+1+Dt+1)/Pt)), the expected log excess returnEt(log(Yt+1)−rt) 6=
(log Et(Yt+1)−rt) is not closed form in our model, but is a function of timet state variables because of the Markov
structure of the model. The two quantitiesEt(log(Yt+1)−rt) and(log Et(Yt+1)−rt) are not equal because of the
presence of state-dependent heteroskedasticity, which induces (time-varying) Jensen’s inequality terms. In order
to compute the conditional expected value ofk-period excess returns, we project excess returns onto a fourth order
polynomial in(Xt, δt), and the fitted value is the model-implied conditional expected excess return.
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Table 1: Sample Moments, Unit Root, and Stationarity Tests

Panel A: Long Sample Data

Excess Short Dividend Earnings Dividend Earnings
Return Rate Yield Yield Growth Growth

U.S. S&P Data, June 1935 - December 2001

Mean 0.0749 0.0409 0.0403 0.0768 0.0532 0.0548
Stdev 0.1684 0.0317 0.0150 0.0297 0.0658 0.1572
Auto 0.1173 0.9548 0.9504 0.9517 0.4071 0.3832

Test Statistics
H0: unit root -14.50** -2.194 -1.187 -1.183 -10.83** -10.55**
H0: stationary 0.073 0.635* 0.372 0.336 0.035 0.026

U.K. FT Data, June 1953 - December 2001

Mean 0.0563 0.0751 0.0478 0.0670
Stdev 0.1938 0.0331 0.0131 0.1866
Auto 0.0907 0.9400 0.8290 -0.0486

Test Statistics
H0: unit root -12.66** -2.559 -4.125** -14.64**
H0: stationary 0.037 0.637* 0.199 0.068

Germany DAX Data, June 1953 - December 2001

Mean 0.0577 0.0467 0.0287 0.0788
Stdev 0.1921 0.0198 0.0090 0.2086
Auto 0.0851 0.9376 0.9087 0.1136

Test Statistics
H0: unit root -12.89** -3.036* -3.336* -12.34**
H0: stationary 0.091 0.313 0.328 0.156

Correlations of Excess Returns June 1953 - December 2001

U.S. U.K.
U.K. 0.6281
Germany 0.5118 0.4598
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Table 1 Continued

Panel B: MSCI Data

Excess Short Dividend Earnings Dividend Earnings
Return Rate Yield Yield Growth Growth

February 1975 - December 2001

U.S.

Mean 0.0576 0.0745 0.0353 0.0744 0.0529 0.0501
Stdev 0.1513 0.0341 0.0143 0.0305 0.0589 0.0883
Auto -0.0044 0.9675 0.9892 0.9867 -0.3187 0.1490

U.K.

Mean 0.0604 0.0989 0.0456 0.0874 0.0812 0.0651
Stdev 0.1824 0.0355 0.0123 0.0346 0.0707 0.0973
Auto -0.0184 0.9615 0.9701 0.9758 -0.0524 0.2346

France

Mean 0.0542 0.0906 0.0415 0.0675 0.0782 0.0690
Stdev 0.2079 0.0476 0.0188 0.0397 0.0849 0.5868
Auto 0.0745 0.8741 0.9849 0.9627 -0.0068 -0.0765

Germany

Mean 0.0498 0.0563 0.0359 0.0688 0.0643 0.0564
Stdev 0.1925 0.0241 0.0125 0.0287 0.0876 0.2217
Auto 0.0665 0.9764 0.9860 0.9836 0.0936 0.1781

Correlations of Excess Returns

U.S. U.K. France
U.K. 0.5960
France 0.5237 0.5184
Germany 0.4951 0.4742 0.6178

Panel A reports summary statistics of long-sample data for the U.S., U.K. and Germany, all at a quarterly
frequency. Panel B reports statistics for monthly frequency MSCI data. Excess returns and short rates are
continuously compounded. Sample means and standard deviations (Stdev) for excess returns, dividend and
earnings growth have been annualized by multiplying by 4 (12) and

√
4 (
√

12), respectively for the case of
quarterly (monthly) frequency data. Short rates for the long-sample (MSCI) data are 3-month T-bill returns
(1 month EURO rates). Dividend and earnings yields, and the corresponding dividend and earnings growth
are computed using dividends or earnings summed up over the past year. In Panel A, the unit root test is the
Phillips and Perron (1988) test for the estimated regressionxt = α+ρxt−1+ut under the nullxt = xt−1+ut.
The critical values corresponding to p-values of 0.01, 0.025, 0.05, and 0.10 are -3.46, -3.14, -2.88, and -2.57,
respectively. The test for stationarity is the Kwiatkowski, Phillips, Schmidt and Shin (1992) test. The critical
values corresponding to p-values of 0.01, 0.025, 0.05, and 0.10 are 0.739, 0.574, 0.463, 0.347, respectively.
For the Phillips-Perron and Kwiatkowski-Phillips-Schmidt-Shin tests, we denote any statistic corresponding
to p-values less than 0.05 (0.01) by * (**).
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Table 2: Predictability of U.S. Excess Returns

Panel A: Quarterly S&P Data

Univariate
Regression Bivariate Regression

k-qtrs dy4 only r dy4 χ2 Test

1935-2001 1 0.1028 -1.0888 0.0857 0.070
(1.824) (-1.608) (1.530)

4 0.1128 -0.5596 0.1032 0.104
(2.030) * (-0.827) (1.865)

20 0.1028 -0.3187 0.0952 0.323
(1.364) (-0.598) (1.255)

1952-2001 1 0.0979 -2.1623 0.1362 0.003**
(1.541) (-2.912)** (2.152) *

4 0.1060 -1.4433 0.1313 0.041*
(1.546) (-1.930) (1.921)

20 0.0594 -0.4829 0.0774 0.714
(0.477) (-0.745) (0.600)

1935-1990 1 0.2203 -1.0380 0.1917 0.027*
(2.416) * (-1.543) (2.126) *

4 0.2383 -0.4865 0.2254 0.008**
(3.097) ** (-0.714) (3.006) **

20 0.1787 -0.3229 0.1719 0.017*
(2.819) ** (-0.569) (2.832) **

1952-1990 1 0.2962 -2.7329 0.4125 0.002**
(2.783) ** (-3.504)** (3.672) **

4 0.3070 -1.9840 0.3935 0.000**
(3.000) ** (-2.508)* (3.700) **

20 0.1689 -0.7120 0.2057 0.052
(1.916) (-1.087) (2.387) *

Panel B: Monthly MSCI Data

Univariate
Regression Bivariate Regression

k-qtrs dy12 only r dy12 χ2 Test

1975-2001 1 0.0274 -2.4358 0.1364 0.057
(0.405) (-2.388)* (1.626)

12 0.0106 -1.2470 0.0669 0.395
(0.141) (-1.361) (0.744)

60 -0.0884 0.3451 -0.1207 0.857
(-0.475) (0.238) (-0.397)

We estimate regressions of the form̃yt+k = αk + z′tβ + εt+k,k whereỹt+k is the cumulated and annualized
k-period ahead excess return, with instrumentszt being log dividend yields or risk-free rates and log dividend
yields together. T-statistics in parentheses are computed using Hodrick (1992) standard errors. For Panel A
(B), horizonsk are quarterly (monthly). Theχ2 test column reports a p-value for a test that both the risk-free
rate and log dividend yield coefficients are jointly equal to zero. P-values less than 0.05 (0.01) are denoted
by * (**).
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Table 3: Excess Return Regressions Across Countries

Panel A: Quarterly Long Sample Data

Univariate
Regression Bivariate Regression

k-qtrs dy4 only J-test r dy4 χ2 Test J-test

U.K. 1 0.2280 -1.2148 0.2596 0.069
1953-2001 (1.449) (-1.500) (1.675)

4 0.2600 -0.7138 0.2777 0.041*
(2.075)* (-0.896) (2.273)*

20 0.1290 0.1075 0.1264 0.326
(1.403) (0.182) (1.338)

Germany 1 0.0740 -3.4079 0.1083 0.030*
1953-2001 (0.827) (-2.545)* (1.204)

4 0.1235 -2.1027 0.1443 0.094
(1.366) (-1.679) (1.610)

20 0.0415 0.4758 0.0372 0.814
(0.397) (0.489) (0.360)

Pooled 1 0.1230 0.496 -1.958 0.1600 0.001** 0.133
U.S., U.K., Germany (1.964)* (-2.927)** (2.626)**
1953-2001 4 0.1523 0.344 -1.2561 0.1754 0.008** 0.307

(2.268)* (-1.909) (2.709)**
20 0.0657 0.495 0.0157 0.0653 0.637 0.658

(0.763) (0.0319) (0.818)

Panel B: Monthly MSCI Data

Univariate
Regression Bivariate Regression

k-qtrs dy12 only J-test r dy12 χ2 Test J-test

Pooled 1 0.0560 0.096 -1.8161 0.1640 0.031* 0.016*
U.S., U.K., Germany, France (0.866) (-2.718)** (2.222)*
1975-2001 12 0.0386 0.327 -1.1392 0.1060 0.229 0.113

(0.533) (-2.045)* (1.337)
60 0.0169 0.663 0.1799 0.0035 0.699 0.887

(0.130) (0.405) (0.033)

We estimate regressions of the form̃yt+k = αk + z′tβ + εt+k,k whereỹt+k is the cumulated and annualized
k-period ahead excess return, with instrumentszt being log dividend yields or risk-free rates and log divi-
dend yields together. T-statistics in parentheses are computed using Hodrick (1992) standard errors. Panel
A estimates the regression pooling data across the U.S., U.K., and Germany on data from 1953-2001. The
estimates listed in the country U.K. and Germany panels allow each country to have its own predictive coef-
ficients and intercepts, but we compute SUR standard errors following the method outlined in the Appendix.
The coefficients listed in the pooled panel are produced by constraining the the predictive coefficients to be
the same across countries. In Panel B, monthly frequency MSCI data is used from 1975-2001. The column
labelled “χ2 Test” reports a p-value for a test that both the risk-free rate and log dividend yield coefficients are
jointly equal to zero. The “J-test” columns report p-values for aχ2 test of the over-identifying restrictions.
P-values less than 0.05 (0.01) are denoted by * (**).
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Table 4: Predictability of Dividend Growth

Panel A: U.S. S&P Data

Univariate
Regression Bivariate Regression

k-qtrs dy4 only r dy4 χ2 Test

1935-2001 1 -0.0036 0.0586 -0.0027 0.974
(-0.175) (0.227) (-0.147)

4 -0.0126 -0.0389 -0.0133 0.738
(-0.504) (-0.157) (-0.588)

20 -0.0100 0.0384 -0.0091 0.886
(-0.489) (0.299) (-0.483)

1952-2001 1 0.0251 0.3541 0.0188 0.000**
(2.476) * (2.191) * (1.599)

4 0.0259 0.1791 0.0228 0.005**
(2.503) * (1.131) (1.903)

20 0.0165 0.0863 0.0132 0.325
(0.927) (0.808) (0.649)

Panel B: Pooled Across the U.S., U.K., and Germany

Univariate
Regression Bivariate Regression

k-qtrs dy4 only r dy4 χ2 Test

1953-2001 1 -0.1545 0.6991 -0.1677 0.000**
(-15.54)** (4.296) ** (-14.16)**

4 -0.1552 0.4897 -0.1642 0.000**
(-14.64)** (3.005) ** (-13.19)**

20 -0.0489 0.2678 -0.0555 0.030*
(-2.544)* (2.276) (-2.452)*

Panel C: Pooled Across U.S., U.K., Germany, and France

Univariate
Regression Bivariate Regression

k-qtrs dy12 only r dy12 χ2 Test

1975-2001 1 -0.0179 0.3248 -0.0371 0.616
(-0.757) (1.194) (-1.286)

12 -0.0116 -0.3348 0.0082 0.377
(-0.440) (-1.511) (0.281)

60 -0.0077 -0.0702 -0.0025 0.266
(-0.138) (-0.359) (-0.059)

We estimate regressions of cumulated and annualizedk-period ahead dividend growth, on log dividend yields
alone or risk-free rates and log dividend yields together. Panels B and C pool data jointly across countries,
constraining the predictive coefficients to be the same across countries. Theχ2 test column reports a p-value
for a test that both the risk-free rate and log dividend yield coefficients are jointly equal to zero. T-statistics
in parentheses are computed using Hodrick (1992) standard errors. P-values less than 0.05 (0.01) are denoted
by * (**).
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Table 5: Predictability of Risk-Free Rates

Panel A: U.S. Data

k-qtrs dy4 Detrendeddy4

1952-2001 1 0.0171 0.0458
(0.202) (0.416)

4 0.0161 0.0429
20 0.0267 0.0413

Panel B: Pooled U.S., U.K., Germany

k-qtrs dy4 Detrendeddy4

1953-2001 1 0.0170 0.0211
(0.923) (0.765)

4 0.0138 0.0170
20 0.0099 0.0074

Panel C: Pooled U.S., U.K., Germany, and France

k-mths dy12 Detrendeddy12

1975-2001 1 0.0594 0.0407
(1.525) (0.201)

12 0.0588 0.0676
60 0.0619 0.0495

We estimate regressions of cumulated and annualizedk-period ahead average risk-free rates by log dividend
yields. The detrended log dividend yield refers to the difference between the log dividend yield and a moving
average of log dividend yields over the past year. The pooled data columns pool data jointly across countries.
We compute Cochrane-Orcutt t-statistics (in parentheses) for a 1-quarter horizon.
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Table 6: Calibration of the Present Value Model

Panel A: Estimates of the VAR for (rt gd
t )′

µ Φ Σ1/2

rt gd
t rt gd

t

rt 0.0010 0.9263 0.0000 0.0026 0.0000
(0.0005) (0.0396) (0.0006)

gd
t 0.0053 -0.0078 0.5489 0.0036 0.0171

(0.0013) (0.0899) (0.1208) (0.0001) (0.0048)

Panel B: Estimates of the Discount Rate Process

Null 1 Null 2 Alt 1 Alt 2 Alt 3

α× 100 2.0168 0.8508 0.0407 0.0476 -0.0988
(0.0358) (0.0349) (0.0123) (0.0034) (0.2525)

φ 0.9816 0.9298
(0.0052) (0.0616)

ξr 1.0000 -2.0454 0.0007
(0.4038) (0.0011)

ξgd 0.0041 0.0014
(0.5704) (0.0024)

σ × 100 0.1751 0.5024
(0.0475) (0.1616)

χ2 test p-value 0.0000 0.0000 0.0101 0.0000 0.1332

The table reports parameter estimates and standard errors in parentheses of the present value model. Panel
A reports estimates of the VAR of short rates and dividend growth in (7). The short ratert equation is
an AR(1), with standard errors produced by GMM with four Newey-West (1987) lags. The parameters
for gd

t are estimated using SMM by matching first and second moments ofgd,4
t , along with the moments

E(rtg
d,4
t ), E(gd,4

t−4g
d,4
t ) andE(rt−4g

d,4
t ). Panel B reports parameter estimates for the discount rate process

δt = α + ξ′Xt + φδt−1 + ut (see equation (8)), withξ = (ξr, ξgd)′. The Null Models 1 and 2 impose
the restrictionσ = ξgd = φ = 0 with ξr = 0 for Null Model 1 or ξr = 1 for Null Model 2, respectively.
These represent the null hypotheses of constant expected total returns (Null Model 1) or constant expected
excess returns (Null Model 2). Alternative Model 1 setsξr = ξgd = 0, so the discount rate process is entirely
exogenous, whereas Alternative Model 2 imposesφ = ξgd = 0, so the discount rate process is entirely
endogenous. In Alternative Model 3, all parameters of the discount rate process are non-zero. The estimation
is done by holding the VAR parameters fixed and matching the first and second moments of excess returns
and dividend yields, along with lagged short rates and lagged dividend growth as instruments. The last row
reports the p-value from aχ2 over-identification test.
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Table 7: Economic Implications of the Present Value Model

U.S. Data
Null 1 Null 2 Alt 1 Alt 2 Alt 3 Estm SE

Panel A: Implied Selected Moments

Mean Excess Return 0.0065 0.0066 0.0066 0.0054 0.0068 0.0153 0.0057
Mean Dividend Yield 0.0335 0.0339 0.0343 0.0348 0.0352 0.0349 0.0008
Volatility Excess Return 0.0393* 0.0472* 0.0785 0.0824 0.0811 0.0779 0.0061
Volatility Dividend Yield 0.0010* 0.0031* 0.0120 0.0072* 0.0115 0.0114 0.0011

Panel B: Decompositions of the Variance of the Price-Dividend Ratio

% Short Rate -0.0009 0.8745 -0.0003 0.9757 0.2221
% Dividend Growth 1.0000 0.0545 0.0042 0.0328 0.0689
% Total Discount Rate -0.0009 0.1418 0.9955 0.1593 0.9295
% Excess Return 0.0008 0.0000 0.0214 0.2911 0.6132

Panel C: Correlations between True Expected Excess Returns and Forecasts from Predictive Regressions

k = 1 Univariate Regression dy4 0.7364 0.7783 0.7859
k = 1 Bivariate Regression dy4, r 0.9325 0.9785 0.8654

k = 4 Univariate Regression dy4 0.7521 0.7684 0.7710
k = 4 Bivariate Regression dy4, r 0.9328 0.9916 0.8297

k = 20 Univariate Regression dy4 0.8506 0.7539 0.7976
k = 20 Bivariate Regression dy4, r 0.9177 0.9971 0.8165

The table reports various economic and statistical implications from the present value models. Panel A re-
ports various moments and summary statistics implied from each model. The quarterly moments reported are
the mean and volatility of excess returns and dividend yields in levels. The data standard errors of the mo-
ments are computed by GMM with four Newey-West (1987) lags. In Panel B, the variance decompositions
report the computation1− varz(P/D4)/var(P/D4), where var(P/D4) is the variance of price-dividend ra-
tios implied by the model and varz(P/D4) is the variance of the price-dividend ratios where all realizations
of z = rt, gt, δt or the risk premium are set at their unconditional means. Panel C reports the correlation
between fitted values from the excess return predictive regressions and true conditional expected excess re-
turnsEt(ỹt+k) implied by the model. The population moments implied by the model are computed using
100,000 simulations from the estimates in Table 6. In Panel A, the standard errors for the sample moments
are computed using GMM. The symbol * indicates that the population moments lie outside a two standard
deviation bound around the point estimate of the sample moment.
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Table 8: Predictive Regressions Implied by the Present Value Model

U.S. Data
Null 1 Null 2 Alt 1 Alt 2 Alt 3 Estm SE

Excess Return Regressions

k = 1 Univariate Regression dy4 -0.0416* -0.0404* 0.0886 0.3564* 0.1864 0.0979 0.0635
k = 1 Bivariate Regression r -1.0500 -0.0824* -0.9310 -2.6369 -1.0737 -2.1623 0.7426

dy4 -0.0049* -0.0214* 0.0878 0.0574 0.2269 0.1362 0.0633

k = 4 Univariate Regression dy4 -0.0269 -0.0177 0.0870 0.3122* 0.1723 0.1060 0.0686
k = 4 Bivariate Regression r -0.9419 -0.1191 -0.8541 -2.5694 -0.8562 -1.4433 0.7478

dy4 0.0062 0.0097 0.0862 0.0208 0.2046 0.1313 0.0683

k = 20 Univariate Regression dy4 -0.0213 0.0086 0.0787 0.1772 0.1232 0.0594 0.1245
k = 20 Bivariate Regression r -0.4983 0.0050 -0.4170 -1.5665 -0.3456 -0.4829 3.2404

dy4 -0.0040 0.0075 0.0783 -0.0004 0.1363 0.0774 0.6445

Dividend Growth Regressions

k = 1 Univariate Regression dy4 0.8543* 0.0918* 0.0045* 0.0199 0.0412 0.0251 0.0101
k = 1 Bivariate Regression r 0.2611 0.1548 0.2942 0.8837* 0.1154 0.3541 0.1616

dy4 0.8452* 0.0561* 0.0047 0.1201* 0.0369 0.0188 0.0118

k = 4 Univariate Regression dy4 0.9392* 0.0920* 0.0050 0.0259 0.0212 0.0259 0.0103
k = 4 Bivariate Regression r 0.1478 -0.1019 0.1846 0.7031* 0.0997 0.1791 0.1584

dy4 0.9340* 0.1155* 0.0052 0.1057* 0.0174 0.0228 0.0120

k = 20 Univariate Regression dy4 0.2274* 0.0375 -0.0017 -0.0016 0.0059 0.0165 0.0178
k = 20 Bivariate Regression r 0.0778 -0.0146 0.0861 0.1776 0.0707 0.0863 0.5339

dy4 0.2247* 0.0408 -0.0016 0.0186 0.0032 0.0132 0.1021

Risk-Free Rate Regressions

k = 1 Univariate Regression dy4 0.0342* 0.2142* -0.0008 -0.1052* 0.0354 0.0171 0.0390
k = 4 Univariate Regression dy4 0.0334 0.1928 -0.0008 -0.0946 0.0321 0.0161 –
k = 20 Univariate Regression dy4 0.0230 0.1163 -0.0016 -0.0568 0.0194 0.0267 –

The table reports implied predictive regression coefficients from the present value models. The LHS variables
are cumulated log excess returns, dividend growth, and risk-free rates, respectively. The population moments
are computed using 100,000 simulations from the estimates in Table 6. The standard errors for the regressions
in U.S. data are computed using Hodrick (1992) standard errors for the excess return and dividend growth
regressions, and using a Cochrane-Orcutt procedure for thek = 1 risk-free rate regression. All horizonsk
are in quarters. The symbol * indicates that the coefficients lie outside a two standard deviation bound around
the point estimate of the sample coefficient.
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Table 9: Small Sample Bias Under Null Model 2

(1975-2001) (1952-2001) (1935-2001) Population
k-qtrs T = 104 T = 200 T = 267 T = ∞

Scaled Returns

Univariate 1 dy4 0.0235 0.0045 0.0012 0.0000

Bivariate 1 r 0.3469 0.1799 0.1435 0.0000
dy4 -0.0339 -0.0286 -0.0264 0.0000

Excess Log Returns

Univariate 1 dy4 0.0245 0.0065 -0.0027 -0.0404
4 dy4 0.0408 0.0204 0.0105 -0.0177
20 dy4 0.0441 0.0273 0.0185 0.0086

Bivariate 1 r 0.3521 0.1831 0.1388 -0.0824
dy4 -0.0343 -0.0275 -0.0295 -0.0214

4 r 0.2632 0.1345 0.0989 -0.1191
dy4 0.0038 -0.0005 -0.0057 0.0097

20 r 0.1941 0.1003 0.0696 0.0050
dy4 0.0137 0.0105 0.0067 0.0075

The table reports small sample and population parameter coefficient values for regressions of scaled or cu-
mulated log excess returns onto log dividend yields (univariate regression) or annualized short rates and log
dividend yields (bivariate regression) from Model Null 2. Scaled returns are defined asYt+1/ exp(rt), where
Yt+1 is the gross total equity return. The population moments from the model are computed using 100,000
simulations. The small sample moments are computed using 10,000 simulations of samples of varying length.
All horizonsk are quarterly.
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Table 11: Size-Adjusted Power for Hodrick Standard Errors for One Country

Univariate χ2 Tests
Regression Bivariate Regression Joint Across Horizon

Sample Horizon
Length (Qtrs) k-qtrs dy4 r dy4 Univariate Bivariate

Panel A: Power Under Alternative 1: δt = µ + φδt−1 + ut

104 1 0.255 0.201 0.283 0.325 0.335
4 0.232 0.189 0.268
20 0.121 0.096 0.156

200 1 0.625 0.415 0.650 0.520 0.557
4 0.556 0.410 0.608
20 0.395 0.248 0.436

267 1 0.596 0.344 0.596 0.632 0.691
4 0.548 0.338 0.589
20 0.391 0.161 0.431

Panel B: Power Under Alternative 2: δt = µ + β′Xt

104 1 0.552 0.636 0.075 0.559 0.036
4 0.463 0.795 0.041
20 0.126 0.837 0.007

200 1 0.892 0.795 0.091 0.891 0.042
4 0.808 0.942 0.048
20 0.362 0.984 0.004

267 1 0.971 0.853 0.094 0.967 0.048
4 0.940 0.975 0.054
20 0.577 0.998 0.004

Panel C: Power Under Alternative 3: δt = µ + φδt−1 + β′Xt + ut

104 1 0.566 0.138 0.628 0.587 0.617
4 0.484 0.090 0.562
20 0.159 0.016 0.198

200 1 0.874 0.243 0.902 0.866 0.905
4 0.775 0.181 0.859
20 0.417 0.021 0.483

267 1 0.959 0.292 0.971 0.952 0.976
4 0.923 0.225 0.951
20 0.620 0.024 0.682

The table lists empirical power properties corresponding to a size-adjusted level of 5% of Hodrick (1992) t-statistics.
We examine a univariate regression of excess returns ondy4 and a bivariate regression of excess returns onr and
dy4. We simulate 10,000 samples of various lengths from Alternatives 1-3 (Panels A-C) and record the percentage of
observations greater than the 5% critical-values recorded under the Null 2 Model (constant expected excess returns)
using the simulations in Table 10. Theχ2 tests report the proportion of rejections (using a 5% nominal size) for testing
predictability jointly across horizons of both short rates and log dividend yields. All horizonsk are quarterly.
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Table 12: Power Properties for Pooling Cross-Country Data

One Country Multiple Countries

Univariate Univariate
Regression Bivariate Regression Regression Bivariate Regression

k-qtrs dy4 r dy4 χ2 test dy4 r dy4 χ2 test

Sample Length = 104 qtrs

1 0.575 0.096 0.612 0.487
4 0.509 0.058 0.536 0.412
20 0.201 0.018 0.169 0.133

Sample Length = 208 qtrs Two Countries

1 0.891 0.193 0.913 0.839 0.887 0.143 0.905 0.835
4 0.847 0.115 0.878 0.779 0.827 0.070 0.847 0.747
20 0.503 0.008 0.499 0.350 0.326 0.009 0.327 0.227

Sample Length = 312 qtrs Three Countries

1 0.980 0.289 0.986 0.967 0.974 0.218 0.978 0.963
4 0.962 0.179 0.977 0.941 0.952 0.111 0.963 0.922
20 0.745 0.010 0.762 0.603 0.556 0.009 0.590 0.446

Sample Length = 416 qtrs Four Countries

1 0.998 0.387 0.999 0.995 0.995 0.293 0.996 0.991
4 0.993 0.255 0.996 0.989 0.988 0.153 0.991 0.978
20 0.881 0.012 0.898 0.790 0.739 0.013 0.767 0.652

The table lists empirical power properties of Hodrick (1992) t-statistics, comparing a sample of one country of increas-
ing length versus a cross-sectional panel of countries, each of length 104 quarters. (The number of observations 104
quarters corresponds to the sample period 1975-2001.) Power is taken corresponding to a nominal (asymptotic) size
of 5% using Alternative 3. We examine a univariate regression of excess returns on log dividend yields and a bivariate
regression of excess returns on short rates and log dividend yields. Theχ2 test reports a test for the joint predictability
of the short rate and log dividend yield for a given horizon. The population correlation coefficient between the excess
returns of any two countries is 0.535.
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Note to Table 14
We estimate regressions of the form̃yt+k = α+ z′tβ + εt+k,k whereỹt+k is the cumulated and annualizedk-
period dividend or earnings growth, with the instrumentszt being log earnings yields (univariate regression),
or log dividend yields and log earnings yields (Lamont bivariate regression), or risk-free rates, log dividend
yields and log earnings yields (trivariate regression). T-statistics in parentheses are computed using Hodrick
(1992) standard errors. For the quarterly U.S. S&P data, horizonsk are quarterly, whereas for the monthly
MSCI data horizonsk are monthly. The pooled-country panels pool coefficients jointly across the U.S., U.K.,
France and Germany, constraining the coefficients to be the same across countries. Theχ2 test columns report
a p-value for a test that all the coefficients in each regression are jointly equal to zero. P-values less than 0.05
(0.01) are denoted by * (**).
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We plot dividend yields from June 1935 to December 2001 for the US, and from March 1953 to December
2001 for the UK and Germany.

Figure 1: Dividend Yields over the Long Sample

55



1935-2001 Dividend Yield Coefficient 1935-2001 T-statistic

0 2 4 6 8 10 12 14 16 18 20
0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Horizon (quarters)

C
o

e
ff

ic
ie

n
t

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Horizon (quarters)

T
−

st
a

t

Robust Hansen−Hodrick
Hodrick              
Newey−West           

1952-2001 Dividend Yield Coefficient 1952-2001 T-statistic
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1935-1990 Dividend Yield Coefficient 1935-1990 T-statistic
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The left (right) column shows the dividend yield coefficientsβk (t-statistics) in the regressioñyt+k = α +
βkdy4

t + εt+k,k whereỹt+k is the cumulated and annualizedk-quarter ahead excess return anddy4
t is the log

dividend yield. T-statistics are computed using Hodrick (1992) standard errors. The quarterly data is from
Standard and Poors.

Figure 2: Dividend Yield Coefficients and T-Statistics from US Regressions
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The left (right) column shows the dividend yield coefficientsβk (t-statistics) in the regressioñyt+k = α +
βkdy12

t + εt+k,k whereỹt+k is the cumulated and annualizedk-month ahead excess return anddy12
t is the

log dividend yield. T-statistics are computed using Hodrick (1992) standard errors. The monthly data is from
MSCI and the sample period is from 1975 to 2001.

Figure 3: Dividend Yield Coefficients and T-Statistics in Four Countries
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The left (right) column shows the risk-free rate coefficientsβk (t-statistics) from the bivariate regression
ỹt+k = α + z′tβk + εt+k,k whereỹt+k is the cumulated and annualizedk-month ahead excess return and
zt = (rt dy12

t )′ contains the annualized risk-free rate and the log dividend yield. We report only the short rate
coefficient. T-statistics are computed using Hodrick (1992) standard errors. The monthly data is from MSCI
and the sample period is from 1975 to 2001.

Figure 4: Short Rate Coefficients from Bivariate Regressions in Four Countries
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