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Abstract

When designing institutions, we sometimes operate on the basis of

approximate models of the underlying environment. Can we still achieve

near-optimal solutions? We explore this issue for single-agent mechanism

design problem with quasilinear preferences, where the principal know-

ingly uses a discrete model of the true type space. We propose a two-step

scheme, the pro�t-participation mechanism, whereby: (i) the principal

�takes the model seriously� and computes the optimal menu for the ap-

proximate type space; (ii) but she discounts the price of each allocation

proportionally to the pro�t that the allocation would yield in the approx-

imate model. We characterize the bound to the pro�t loss and show that

it vanishes smoothly as the model converges to the true type space. In-

stead, we show that solving the problem as if the model was correct is not

a valid approximation.

1 Introduction

In their path-breaking analysis of organizational decision-making, James March

and Herbert Simon argue that organizations recognize the limits imposed by our

cognitive abilities and develop methods to achieve good results in the presence

of such limits:
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�Most human-decision making, whether individual or organizational,

is concerned with the discovery and selection of satisfactory alter-

natives; only in exceptional cases is it concerned with the discovery

and selection of optimal alternatives.� (March and Simon, 1958, p

162).

When applied to a speci�c organizational problem, their views spur econo-

mists to ask two related questions. Given the cognitive limits we face, can we

�nd institutions that yield a near-optimal payo¤? If so, do the features of the

approximately optimal solution di¤er systematically from those of the optimal

solution?

This paper attempts to answer these questions in the context of one of the

best known problems in microeconomics: single-agent mechanism design with

quasi-linear preferences. This model �commonly referred to as the �screening

problem��has found a variety of important applications from taxation and reg-

ulation to insurance and labor markets. In its classic interpretation of nonlinear

pricing, a multi-product monopolist o¤ers a menu of product-price speci�cations

to a buyer or a continuum of buyers (e.g. Wilson 1993).

In the standard formulation of the screening problem, the principal knows the

true distribution of the agent�s type. We re-visit the general screening problem,

but instead assume that the principal may not know or use the true type space.

For reasons that we will discuss in detail below, our principal instead operates

on the basis of an approximate type space. The principal is aware that her

model is potentially misspeci�ed and has a sense of the quality of her model.

Can she guarantee herself an expected payo¤ that is not much below what she

could expect if she optimized based on true space type?

To discuss type approximation in a meaningful way, we assume that the

agent�s types live in a Euclidean space and there his payo¤is Lipschitz-continuous

in his type. The quality of the model is then how far apart the preferences of a

true type and its closest type in the approximate model might be. Our principal

knows an upper-bound on this distance which we call the approximation index.1

Other than this, we make no further assumptions on the agent�s payo¤, the

principal�s cost function, or the agent�s type distribution.

To illustrate the above, consider a simple example where the agent�s pref-

erences are determined by the geographical coordinates of his location. While

1This assumption can be further relaxed by assuming that the principal only knows that
the approximation index is satis�ed with a high enough probability.
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geography changes continuously the principal may use a simple model where

all types in a certain area are assumed to live at some arbitrary �xed location

therein (this is often the case with actual data). The principal does not know

how agents are distributed within a subdivision. A measure of the quality of

the approximation is the maximum distance within the largest area. One in-

terpretation of our asymptotic analysis is that the geographical subdivision on

which the principal�s data is based becomes �ner and �ner (state, county, city,

5-digit zip code, 9-digit zip code).

Finding a near-optimal solution in our strategic setting poses a challenge that

is, to the best of our knowledge, absent in non-strategic environments. Even

when all primitives are well-behaved, the fact that the agent best-responds to

the principal�s menu choice creates room for discontinuity in the principal�s

expected payo¤ as the menu o¤ered changes. The discontinuity is heightened

by two elements. First, in the exact solution of the screening problem the

principal�s payo¤ function is discontinuous exactly at the equilibrium allocation:

this is because pro�t maximization implies that for every allocation that is

o¤ered in equilibrium there must a binding incentive-compatibility constraint or

participation constraint. Second, outside the monotonic one-dimensional case,

(Mussa and Rosen 1978), there typically are some binding non-local incentive

constraints (Wilson 1993, Armstrong 1996, Rochet and Choné 1998, Rochet and

Stole 2003). This makes approximation di¢ cult: a small perturbation of a type

might lead to large changes in equilibrium choice behavior.

To address such discontinuities one could proceed in two di¤erent ways.

By imposing enough assumptions one could guarantee that only local incentive

constraints are binding. The resulting approximation would be valid, however,

only if the principal were certain that these assumptions are satis�ed. The set

of known environments that satisfy this condition is extremely limited. An al-

ternative and more general approach, which we adopt in this paper, is to look

for a scheme that works even in the presence of binding non-local constraints.

The idea is to �nd solutions that are robust to violations of incentive compati-

bility constraints, in the sense that the damage generated by such violations is

bounded. Our goal is not to �nd a mechanism that works very well in one spe-

ci�c environment, but rather to �nd one that produces an acceptable outcome

for a large class of screening problems �one that uses generic preferences, cost

functions, and type distributions.

It is essential to bear in mind that, in March and Simon�s spirit, the mecha-

nism we are looking for will only rely on information used bythe principal. The
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menu that is o¤ered to the agent will only depend on the principal�s model and

not on the true type space and distribution. The only link between model and

truth that can enter the mechanism is the approximation index.

The core of the paper proposes a mechanism for �nding near-optimal solu-

tions to screening problems. We call our solution concept a pro�t-participation

mechanism. Given an approximate type space and its corresponding approxi-

mation index, we de�ne the pro�t-participation mechanism, based on two steps:

(i) We compute the optimal menu based on the set of all feasible products as

if the model type space was the true type space.

(ii) We take the menu obtained in the �rst step, a vector of product-price

pairs, keep the product component unchanged and instead modify the

price component. In particular, we o¤er a discount on each product pro-

portional to the pro�t (revenue minus production cost) that the principal

would get if she sold that product at the original price. The size of the

discount, which is determined by the mechanism, depends only on the

approximation index.

We prove the existence of an upper bound on the di¤erence between the

principal�s payo¤ in the optimal solution with the true space and in the solution

found by our pro�t-participation mechanism. Such upper bound is a smooth

function of the Lipschitz constant and the approximation index. Hence for any

screening problem, the upper bound vanishes as the approximation index goes

to zero.

Pro�t participation yields a valid approximation because it takes care of

binding non-local incentive-compatibility constraints. By o¤ering a pro�t-related

discount, the principal guarantees that allocations that yield more pro�t in the

menu computed for the approximate types become relatively more attractive

for the agent. Now, a type that is close to an approximate type may still not

choose the product that is meant for that approximate type. If he chooses a

di¤erent product, however, this must be one that would have yielded an approx-

imately higher pro�t in the original menu �the di¤erence is bounded below by

a constant that is decreasing in the discount. While a pro�t-related discount is

bene�cial because it puts an upper bound to the pro�t loss due to deviation to

di¤erent allocations, it also has a cost in terms of lower sale prices. The discount

rate used in the pro�t-participation mechanism strikes a balance between the

cost and the bene�t. As the approximation index goes to zero, a given upper
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bound to the pro�t loss can be achieved with a lower discount and hence the

optimal discount goes to zero as well.

One may wonder whether there are other ways of achieving a valid ap-

proximation in our class of problems. We restrict attention to model-based

mechanisms, namely approximation schemes that begin with step (i) of the

pro�t-participation mechanism but which then can modify prices according to

any rule. In particular this includes the naive mechanism, whereby the princi-

pal uses the optimal menu for the approximate type space. We prove that any

model-based mechanism which violates a pro�t-participation condition cannot

be a valid approximation scheme: the upper bound to the pro�t loss does not

vanish as the approximation index goes to zero. This means that if there ex-

ist mechanisms that do at least as well as the pro�t-participation mechanism,

they must either be very similar to the one we propose, in that they contain an

element of pro�t participation, or radically di¤erent, because they do not start

from the exact solution for the approximate type space. The theorem implies

that the naive mechanism is not a valid approximation: the principal should

not simply act as if her model was correct.

The economic insight from our result is that models can play a useful role

in screening as long as the risk of mis-speci�cation is dealt with in an appropri-

ate manner. A principal who faces a complex screening model or has only an

imperfect model of the type space, can start by taking the model at face value

and �nd its optimal solution. However, the resulting allocation is not robust to

model mis-speci�cation. To make sure that small errors in the model do not lead

to serious pro�t losses, the principal must act �magnanimously�. She needs to

make the agent the residual claimant on part of her pro�t that she would make

if her model was true. Such apparent generosity takes the form of a discount

that is greater for more lucrative products.

Finally, let us ask why the principal uses an approximate model to begin

with. We provide four answers and our results have di¤erent interpretations in

each of these four cases. The most immediate interpretation �also the preferred

one by the authors �is that the principal, or the economist interested in mod-

elling the problem at hand, is unsure about the agent�s preferences and has no

way of resolving this uncertainty. She has a model of the agent�s preferences

however, and she is willing to take a stand on at most how far her model could

be from the truth: the approximation index: Our result provides comfort to the

principal. Even if her model is misspeci�ed, she can still use it to compute a

menu. By discounting the menu appropriately, she can place a bound on her
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loss. The more faith the principal has in her model, the lower is the necessary

discount and the smaller is the loss.2

In the second interpretation, the principal knows all the primitives of the

model, but faces computation costs. Single-agent mechanism design has been

proven to be an NP-complete problem even when the agent has quasilinear

preferences as in our setting (Conitzer and Sandholm 2004). To reduce this

heavy computation burden, the principal may replace the true type space with

a smaller one. By combining a method for partitioning the type space and the

pro�t-participation mechanism, we obtain what computer scientists refer to as

a polynomial-time approximation scheme (PTAS): a valid approximation of the

exact solution which requires a computation time that is only polynomial in the

size of the input.

The third interpretation is in terms of sampling costs. Suppose that com-

putational costs are non-binding, but the principal does not know the agent�s

preferences only the structure of the type space. She can however sample the

type space. For a �xed marketing fee, she can observe the payo¤ function of a

particular type. By incurring this sampling cost repeatedly, she can sample as

many types as she wants. The pro�t-participation mechanism, as stated above,

supplies the principal with an approximate solution whose total sampling cost

is polynomial in the input size. In this interpretation, the principal �rst per-

forms a market analysis leading to the identi�cation of a limited set of typical

consumers. Then, she tailors her product range to the approximate type space

and prices it �magnanimously�in the sense above.

In the fourth interpretation, the sole di¢ culty arises from the burden of

communication faced by the agent. To execute a mechanism the agent needs

to send information to the principal. But the communicational complexity of

the optimal mechanism, the number of bits the agents needs to transmit to

implement this, might be prohibitively high. Our solution method allows the

principal to reduce the communication burden to any desired size in a very

e¢ cient manner. By limiting the size of the menu that is o¤ered to the agent

the principal can reduce the communication burden at the cost of some loss

in pro�t. Our results show that using the PPM the communication burden of

the problem is polynomial in the parameters of the model and in the inverse

of the size of the pro�t loss. In fact, the communication burden grows only

logaritmically in the reduction of the upper-bound on the pro�t loss.

2 In section 5 we discuss the relation between our model uncertainty interpretation and
ambiguity aversion as well as quantal response equilibria.
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In the last three interpretations we can perform a comparative statics ex-

ercise on the cognitive limits of the principal, inspired by March and Simon�s

goal of studying how near-optimal responses to bounded rationality shape or-

ganizational outcomes. Suppose that the principal is constrained to solving the

problem in at most N time units (in the computation time story) or sampling at

most N types (in the search cost story). In both cases, the principal will select

the approximate type space optimally. As a result of this we can show that

as the principal�s resources decrease (N goes down): (i) The approximate type

relies on a rougher categorization; (ii) The menu contains fewer alternatives;

(iii) Pricing becomes more �magnanimous�.

The paper is structured as follows. Section 2 introduces the screening prob-

lem and de�nes the notion of an approximate type space. Section 3 develops

pro�t-participation pricing and establishes an approximation bound (Lemma

1). Section 4 shows the main result of the paper, namely that the pro�t-

participation mechanism is a valid approximation scheme (Theorem 1). In

section 5 we discuss the four possible interpretations of our results. Section

6 shows that model-based mechanisms are valid approximation schemes only

if they contain an element of pro�t participation (Theorem 2). Section 7 con-

cludes.

1.1 Literature

To the best of our knowledge, this is the �rst paper to discuss near-optimal

mechanisms when the principal uses an approximate type space.

There is of course a large body of work on approximation, in many disci-

plines. However, as we argued in the introduction, strategic asymmetric infor-

mation settings such as ours generate non-standard discontinuity issues.3 There

are only a small number of papers that study approximation in mechanism de-

sign, which we attempt to summarize here.

The number of contributions dealing with near-optimal mechanism design

with a single agent is limited. Wilson (1993, section 8.3) discusses the approxi-

mate optimality of multi-part tari¤s (with a one-dimensional type). The closest

work in terms of approximation in mechanism design is Armstrong (1999), who

studies near-optimal nonlinear tari¤s for a monopolist as the number of prod-

3Note that screening problems are hard to solve exactly because of their strategic nature
and the presence of asymmetric information. If we are willing to assume that either the prin-
cipal maximizes total surplus (rather than pro�t) or that the type of the agent is observable,
then the problem simpli�es (See section 5 for a more formal discussion of this point)

7



uct goes to in�nity, under the assumption that the agent�s utility is additively

separable across products. He shows that the optimal mechanism can be ap-

proximated by a simple menu of two-part tari¤s, in each of which prices are

proportional to marginal costs (if agent�s preferences are uncorrelated across

products, the mechanism is even simpler: a single cost-based two-part tari¤).

There are a number of key di¤erences between our approach and Armstrong�s.

Perhaps, the most important one is that his approximation moves from a sim-

pli�cation of the contract space while we operate on the type space.4

Xu, Shen, Bergemann and Yeh (2010) study optimal screening with a one-

dimensional continuous type when the principal is constrained to o¤er a limited

number of products. They uncover a connection with quantization theory and

use it to bound the loss that the principal incurs from having to use coarser

contracts. Again our paper di¤ers both because we look at environments where

non-local constraints may be binding and because we impose restrictions on the

model the principal uses rather than on the contract space.

A growing literature at the intersection of computer science and economics

on near-optimal mechanisms with multiple agents. Those papers may be con-

cerned with computational complexity (e.g., Conitzer and Sandholm 2004) or

communication complexity (e.g., Blumrosen, Nisan, Segal 2007). There, the

main challenge has to do with the complexity in the allocation space created

by the presence of multiple agents and multiple objects to be allocated. The

preferences of individual agents for individual objects are usually relatively sim-

ple. Here instead, there is only one agent and the allocation space is relatively

simple, while the di¢ culty lies in describing the type of the agent.

An exception is Chawla, Hartline, and Kleinberg (2007), who study approxi-

mation schemes for single-buyer multi-item unit-demand pricing problems. The

valuation of the buyer is assumed to be independently (but not necessarily iden-

tically) distributed across items. Chawla et al. �nd a constant-approximation

mechanism based on virtual valuations (with an approximation factor of 3). Our

paper di¤ers because we consider a general pricing problem and because our ap-

proximation operates on the type space rather than on the contract space.5

The goal of our paper is closely related to the goal of Gabaix (2010). In that

decision-theoretic framework, the agent operates on the basis of a �sparse�rep-

4See also Chu, Leslie, and Sorensen (2010) for a theoretical and empirical analysis of this
problem.

5A few papers in management science study numerical heuristics in the context of monopoly
pricing, Green and Krieger (1985) and Dobson and Kalish (1993).
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resentation of the world, i.e. one that �like in our case �is much less complex

than reality. The objective is to �nd the optimal sparse model compatible with

the limited cognitive skills of the decision-maker. Gabaix�s set-up applies to a

large number of economic problems. Our paper instead does not endogenize the

approximate type space (except, partly, when looking for a lower bound to com-

plexity). We focus on identifying and tackling the challenges to approximation

that arise in strategic environments.

2 Setup

From a compact set of available alternatives Y , the principal selects a subset of

alternatives and assigns transfer prices p 2 R to the elements of this subset. The
resulting menu consists of a set of alternative-price pairs or allocations. Let�s

denote a menu by M = f(y0; p0); (y00; p00):::g . We assume that a menu always
contains the outside option y0 whose price p0 is normalized here to be zero.

Once a menu is o¤ered by the principal, the agent is asked to choose exactly

one item from this menu. Although we specify the model with a single agent,

our setup equally applies to settings with a large number of agents.

The agent�s preferences depend on his private type t 2 T drawn according
to some probability distribution f 2 �T with full support. In particular, the
agent�s payo¤ is his type-dependent valuation of the object y net the transfer

price to the principal:

v (t; y; p) = u (t; y)� p

The principal�s pro�t is the transfer price net the cost of producing the object:

� (t; y; p) = p� c (y)

The above assumption follows Rochet and Chone (1998), and much of the lit-

erature on non-linear pricing, in that the principal�s payo¤ does not directly

depend on the agent�s type.

2.1 Assumptions

As in most problems, approximation is only possible if the underlying environ-

ment is su¢ ciently smooth. If the principal does not have enough information

to put some topology on the type space and to guarantee that nearby types
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have similar preferences, it is di¢ cult to see how she can �nd a near-optimal

solution unless she has direct information on most types.6

First, the agent�s type lives in a compact and connected set within a �nite

dimensional Euclidean space. Second, for any �xed alternative y, the agent�s

preferences are Lipschitz continuous in his type. Finally, the principal�s expected

payo¤ is bounded where the natural upper-bound equals the total surplus gen-

erated by the best possible alternative-type combination:

Condition 1 (Type Topology) T � <m is an uncountable, compact and con-
nected set. Let D be the maximal Euclidean distance between any two points in

T ..

Condition 2 (Lipschitz Continuity) There exists a number k such that, for
any y 2 Y and t; t0 2 T , ����u (t; y)� u (t0; y)d (t; t0)

���� � k

Condition 3 (Bounded Pro�t) The �nite upper-bound equals

�max = sup
y2Y;t2T

u (t; y)� c (y)

and without loss of generality, we set the lower bound on � to equal 0.

Given the above assumptions, we can identify an equivalence class of prob-

lems, by noting that a¢ ne transformations of the payo¤ functions leave our

results una¤ected. Hence we can normalize any two of the above three parame-

ters. Speci�cally, de�ne

K = k
D

�max

6There are two ways of viewing the type space in mechanism design. At a general level, it is
an arti�cial construct, a labelling of the possible realizations of the agent�s preferences which
is devoid of direct economic meaning. However, sometimes the mechanism designer knows
that the agent�s preferences are determined by some underlying characteristics, like income,
age, or location, and she builds a model where the type corresponds to actual characteristics.
This second interpretation of the type space is more restrictive, but provides a more natural
background for our asymptotic results.
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We thus normalize D = 1 and �max = 1, and refer to a problem by its nor-

malized Lipschitz constant K. The class of problems de�ned by K is all the

problems (each of which is described by some T , f , u, c, Y ) such that the

normalized Lipschitz constant is not larger than K.

2.2 Stereotype Set and Pro�t

Our key point of departure is that the principal, when facing the above screening

problem, does not have access to the full truth. Instead, she is constrained to

operate on the basis of a model which might systematically di¤er from the truth.

The latter in our setup is given by T and f and the principal�s model will be

given by a pair S and fS . Here S is some �nite subset of the true type-space T

and fS 2 �S is a probability distribution with full support. We refer to S as
the stereotype set or equivalently as the approximate type space,

Analogously to the way the principal�s true expected pro�t was de�ned, we

can de�ne what her expected pro�t would be if the principal�s model was true.

Again, this is a hypotetical object because neither S nor fS are necessarily

true. Nevertheless, as we will show in Section 4, this object plays an important

intermediate role for the principal to estimate a bound on the true optimal

pro�t. Given a �xed menu M =
�
(y0; p(y)) ; :::;

�
yk; p(yk)

��
, the principal�s

expected pro�t under her model of S and fS is given by:

�(S;M) =
X
t2S

fS (t) (p (y (t))� c (y (t))) ;

where (y (t) ; p (y (t))) is the product selected by type t, namely, for all t 2 S,

u (t; y (t))� p (y (t)) � u (t; y)� p(y) for all (y; p (y)) 2M;

with the proviso that, whenever the agent is indi¤erent between two or more

allocations, he chooses the one that yields the highest pro�t to the principal.

Of course, this de�nition can be extended to the true space as �(T;M).7

7At this stage, there are a number of equivalent ways to express the menu, the agent�s
choice, and the principal�s expected pro�t. Perhaps, the most standard one is based on the
use of a direct mechanism. For reasons that will become clear later, we prefer to use an
indirect mechanism formulation in which allocations are indexed by the product.
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2.3 Model Quality

For our asymptotic results, we need a measure of the approximation quality

of the model. Such measure should satisfy two conditions. First, it should be

a scalar that re�ects some �distance�between the model and the truth and it

should go to zero as the model tends to the truth. Second, it should have a

worst-case element, which will allow us to �nd upper bounds to the pro�t loss.

When the measure goes to zero, its pessimistic nature will guarantee that any

other non-worst case measure would go to zero too.

Given any true type space T � <m with distribution f and any stereotype

set S � <m with distribution fS , the true approximation index "true .is de�ned

as follows:

1. An approximation partition P is a partition of T with #S (possibly non-
connected cells), such each cell contains exactly one stereotype, and for

each cell the mass of true types belonging to that cell (computed accord-

ing to density f) equals the probability (according to fS) of that cell�s

stereotype. Let � be the set of all approximation partitions.8

2. For each approximation partition P in �, de�ne d (P) as the maximal
value in any cell of the maximal distance between the stereotype and any

true type in that cell.

3. The true approximation index of (T; f ;S; fS) is "true = infP2� d (P).

In step 1, the true type space is partitioned into cells that correspond to

stereotypes. The mass of types contained in each cell equals the probability

assigned to that stereotype. For each of these partitions P, there will be a true
type that is furthest away from his corresponding stereotype: this is the distance

d (P). If we minimize d (P) over all possible partitions, we obtain "true . Given
the assumptions on T is in, it is easy to see that there exists a partition that

achieves "true , which we call the best approximation partition.

It is important to note that the best approximation partition and the true

approximation index do not have to be computed in order to apply our algo-

8For any model (S; fS) the corresponding set � is nonempty. We can always construct an
approximation partition as follows. Build a ball of increasing radius around every stereotype
set. Balls around stereotypes increase simultaneously at the same speed. Stop expanding the
ball around stereotype t̂ when the mass of the ball equals fS

�
t̂
�
. Expanding balls can only

incorporate types that do not already belong to other balls. It is easy to see that the outcome
of this process is an approximation partition as de�ned above. Of course, some of the resulting
cells may be unconnected.
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rithm. All the agent needs is an upper bound to the approximation index, which

we call " (and from now we refer to simply as the approximation index).

The meaning of the approximation index " depends on the interpretation of

the model. In the �rst interpretation �model uncertainty �the principal does

not know the true T and f . In the sense that such uncertainty is radical, the

principal does not formulate fully-speci�ed Bayesian beliefs about these objects.

She knows however, that her representation, S and fS , does not correspond

to the truth and believes that relative to her model, T and f are such that

"true < ". The approximation index is a form of prior knowledge, which imposes

restrictions on what the true type space and distribution might be relative to the

principal�s model. Importantly, while the approximation index " does narrow

down the set of models the principal might have, it does not pin down the

truth given the principal�s model uniquely. Instead, given an S and fS pair,

it allows for a great degree of �exibility about what the true type-space and

type-generating probability distribution might be.

Note that, in the model uncertainty interpretation our analysis can be easily

extended to situations where the principal is not 100% certain that "true � ".

If the principal thinks that there is a small probability � that "true > ", we can

simply modify the upper bound to the loss by adding a worst-case scenario (a

pro�t of zero) that occurs with probability �.

In the last three interpretations � computational complexity, search cost,

and communication burden �the principal knows T and f and chooses S and

fS . Hence, she will �rst partition T in some way that is suitable to her goals and

easy to compute (for instance, in section 5 we will make use of grids). Then she

will pick S and fS to �t the partition. This will determine a particular maximal

distance " (in the case of the grid, one can pick the center of the cube and " is

half the diagonal). The resulting partition may not be the best approximation

partition and hence it may be that " > "true . But, given that the approximation

loss that we �nd is an increasing function of ", our results are valid a fortiori.9

3 Pro�t-Participation Pricing

In this section we introduce the key component of our solution method, we call

this component Pro�t-Participation Pricing, and prove an intermediate result.

9 In the zip code example mentioned in the introduction, an upper bound to the approx-
imation index is given by the maximal physical distance between any two US residents who
share the same zip code.
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We state this result in a somewhat general form, because we will need to apply

it twice in slightly di¤erent speci�cations in the proof of our main theorem. The

de�nition of Pro�t-Participation Pricing is as follows:

De�nition 1 For any menu M =
�
(y0; p(y)) ; :::;

�
yk; p(yk)

��
, let the menu de-

rived by Pro�t-Participation Pricing be ~M =
�
(y0; ~p(y)) ; :::;

�
yk; ~p(yk)

��
where

the product vector is unchanged and the new price vector ~p(y) is given by

~p (y) = p (y)� � (p (y)� c (y))

such that

� =
p
2K":

In words, Pro�t-Participation Pricing leaves the product component of a

menu �xed, but gives pro�t-based discounts with a constant fraction. To see

this, note that the above transformation can be equivalently expressed as:

new pro�tz }| {
~p (y)� c (y) = (1� �)

old pro�tz }| {
(p (y)� c (y))

In the rest of the analysis below, we �x the principal�s model: S with associ-

ated probability distribution fS , the agent�s payo¤ function u (which need only

be de�ned for stereotypes), the cost function c, a Lipschitz-constant K, and an

approximation index ".

Before proceeding to our �rst result, an additional de�nition is needed.

De�nition 2 For any partition ~P of T , let S
�
~P
�
be the class of stereotype sets

such that each cell in the partition contains exactly one stereotype.10

The next lemma puts a bound on the pro�t loss when the principal replaces

a particular menu with its pro�t-participation discounted version and o¤ers it

to any stereotype set that can be induced by a partition which is at least as �ne

as the best approximation partition.

Lemma 1 Fix T , f , S, fS, as well as an approximation partition P with an

associated approximation index ". For any feasible menu M , let ~M be the menu

10For instance, if ~P is a regular square grid where individual squares have diagonal length

l and " = 1
2
l, S

�
~P; "

�
is a singleton: the only stereotype set that satis�es this condition

consists of all the types at the center of each square. If instead " > 1
2
l, S

�
~P; "

�
contains

multiple elements.
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derived through Pro�t Participation Pricing. Take any set S0 2 S (P 0) where P 0

is a partition at least as �ne as P. Then:

�
�
S0; ~M

�
��(S;M) � �2

p
2K"

The above result bounds the pro�t loss when comparing the expected pro�t

given the principal�s model and a �ner model. The pro�t loss used in lemma

1 is somewhat peculiar. The benchmark �(S;M) assumes that the stereotype

space is correct. Hence, the lemma puts a bound on the di¤erence between the

pro�t when using a discounted menu (in various scenarios corresponding to the

various S0) and the pro�t that the principal would get with the original menu

in her imaginary model world.

This intermediate result will be used twice in the next section, to derive the

main positive result of the paper. Hence two special cases of the lemma will

be of particular interest to us. If P 0 = P, the lemma compares the stereotype
set S with another stereotype set induced by the same partition. If P 0 = T ,

then there is no stereotype set at least as �ne as T , and the lemma compares

an original menu given to stereotype set with the discounted menu given to the

true type space. Here our result claims that o¤ering the discounted menu to the

true type-space leads to a pro�t loss which is bounded again by 2
p
2K" when

compared to the pro�t generated by the original menu in the principal�s model.

Proof. Take any menu M and compute the discounted menu ~M . Consider any

two types t̂ and t such that they belong to the same cell of P and t̂ 2 S and
t 2 S0. Hence, the distance between the two types is bounded above by ".
Note that if t 2 S0 2 S (P 0) and P 0 is �ner than P, then there exists an

element S 2 S (P) such that S0 � S. hence, the distance between a type t 2 S0

and stereotype t̂ 2 S is a fortiori bounded above by ".
There are two possible cases: (i) t and t̂ choose the same product; (ii) t

and t̂ choose di¤erent products. Case (i) is straightforward. Suppose when
~M is o¤ered, t chooses the allocation t̂ chooses from M and let�s denote this

by fby; p(by)g. Here, the only loss for the principal is due to the price discount
determined by � :

~p (by)� c (by) = (1� �) (p(by)� c (by)) :
Hence, we focus on case (ii). Suppose when ~M is o¤ered, t chooses an

allocation y0 di¤erent from by. By the Lipschitz condition and the " distance
15



limit, we know that

��u �t̂; by�� u (t; by)�� � K"��u �t̂; y0�� u (t; y0)�� � K"

implying that utility di¤erentials for t and t̂ cannot be too di¤erent:

u (t; by)� u (t; y0) � u �t̂; by�� u �t̂; y0�� 2K" (1)

This does not preclude, however, that the choices of the two types are di¤erent:

Next, consider a revealed preference argument. With the original price

vector p, the stereotype t̂ prefers by to y0:
u
�
t̂; ŷ
�
� p (ŷ) � u

�
t̂; y0

�
� p (y0) (2)

With the discounted price vector, type t prefers y0 to by:
u (t; ŷ)� ~p (ŷ) � u (t; y0)� ~p (y0) (3)

By subtracting (3) from (2), we get that

p (y0)� ~p (y0)� (p (ŷ)� ~p (ŷ)) (4)

� u (t; ŷ)� u (t; y0)�
�
u
�
t̂; ŷ
�
� u

�
t̂; y0

��
By (1), the right-hand side of (4) is bounded below by 2K", this follows from .

Given the de�nition of ~p, the left-hand side of (4) can also be written as:

discount for y0z }| {
� (p (y0)� c (y0))�

discount for ŷz }| {
� (p (ŷ)� c (ŷ)):

Summing up,

� (p (y0)� c (y0)� (p (ŷ)� c (ŷ))) � �2K" (5)

There are two potential sources of loss, one due to the deviation from ŷ to

y0, the latter due to the price discount. The loss caused by the deviation given

the above inequality is

p (y0)� c (y0)� (p (ŷ)� c (ŷ)) � �2K"
�

(6)
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The loss due to the price discount is (recalling that pro�t is bounded above by

�max, which was normalized to 1),

~p (y0)� c (y0)� (p (y0)� c (y0)) = �� (p (y0)� c (y0)) � �� (7)

Adding these two together we get that

~p (y0)� c (y0)� (p (ŷ)� c (ŷ)) � �� � 2K"
�

(8)

We can now see the explicit trade-o¤ between the two sources of loss. By

optimizing on this, we can bound their sum. In particular, if we set � equal to

argmin
�
� +

2K"

�
=
p
2K"

we get that

~p (y0)� c (y0)� (p (ŷ)� c (ŷ)) � �2
p
2K":

Taking expectations appropriately, we get the statement of the lemma.

The lemma contains the main intuition for why this type of approximation

scheme works. Pro�t participation puts a bound on the loss that the principal

su¤ers if the type space is not what she thought it was. By o¤ering pro�t-

based price discounts, the principal ensures that allocations that generate higher

pro�t to her become relatively more attractive to the agent. Pro�t-participation

pricing is in e¤ect a system of local incentives. The agent becomes a residual

claimant on the principal�s pro�t, and now types near stereotypes are encouraged

to choose similarly high-margin allocations as the stereotypes.

A key feature of pro�t-participation pricing is that there is no guarantee

that types close to a stereotype will choose in the same way as their respective

stereotypes. The principal still does not know how often di¤erent allocations will

be chosen by the agent. In fact, the principal cannot even guarantee that, when

o¤ered the discounted menu, stereotypes will choose the allocation they were

choosing previously. However, the principal knows that whichever allocation

types choose with the discounted menu, the deviation from the allocation chosen

by stereotypes in the undicounted menu cannot be very damaging to pro�t.

The existence of this bound is based on a trade-o¤ introduced by pro�t-

participation pricing. First, o¤ering a price discount leads to a loss to the

principal proportional to � . Second, the greater is the pro�t-based discount,

the smaller is the potential loss that the principal might need to su¤er due to
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a deviation. Setting � =
p
2K" optimizes on this trade-o¤ between the loss

from lower prices and the loss from deviations and establishes the above upper

bound.

4 Pro�t Participation Mechanism

In the previous section, we did not mention optimality. The set of alternatives

and the prices were not chosen with expected pro�t in mind; rather we consid-

ered simply any feasible menu. We now introduce the full version of our solution

concept: we combine �nding the optimal menu given the principal�s model with

modifying such a menu via pro�t-participation pricing.

De�nition 3 The pro�t-participation mechanism (PPM) consists of the follow-
ing steps:

(i) Find an optimal menu M̂ for the screening problem de�ned by S; fS ; Y ,u; c;

(ii) Apply pro�t-participation pricing to M̂ and obtain a discounted menu ~M .

PPM takes the pricing problem described in Section 2 as its input and out-

puts a menu ~M . Our focus now is on the pro�t di¤erence comparing two

scenarios: the principal�s expected pro�t given the true optimal solution and

the principal�s expected pro�t if she o¤ers ~M to the true type space. This

comparison captures the approximation loss.

De�nition 4 Let the PPM loss be the di¤erence between the expected pro�t in

the optimal solution of the true type space and the expected pro�t if the menu

found through PPM is o¤ered (to the true type space).

Note that if the principal does not know the true model, she will typically

not know either the true expected optimal pro�t or the true expected pro�t

given menu ~M: We can now state the main result of the paper in terms of the

known parmeters of our setup.

Theorem 1 The PPM loss is bounded above by 4
p
2K".

Proof. Step 1. De�ne the optimal mechanism

M� = argmax
M

�(T;M)
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to be an allocation vector which contains the outside option and maximizes

the principal�s expected pro�t subject to the IC constraints. Let�s denote this

optimal pro�t by �(T;M�). The optimal mechanism M� and hence the max-

imal pro�t �(T;M�) are unknown objects and they remain unknown in our

approach. In fact, all the sets and menus in the proof are not known to the

principal, except the ones found through PPM.

Step 2. For the rest of the proof, �x P to be the best approximation partition
de�ned for (S; fS ; T; f). The true approximation index is, by de�nition, not

greater than ". Among all possible stereotype sets S (P), pick Smax 2 S (P) to
maximize the principal�s expected pro�t given that M� is o¤ered. Formally,

Smax 2 arg max
S2S(P)

�(S;M�)

The principal�s pro�t when the agent�s type is restricted to Smax must clearly

be at least as good as the optimal pro�t since fewer constraint will be binding.

Hence we have that:

�(Smax;M
�) � �(T;M�)

Step 3. We now apply Lemma 1 for the �rst time. We begin with menu M�

o¤ered to Smax 2 S (P). We discount the menu according to pro�t-participation
pricing, thus obtaining a new menu M 0. The inequality in the lemma holds for

any partition P 0 which is at least as �ne as P and for any S 2 S (P 0); so in
particular it holds for S 2 S (P), which is the stereotype set that we are using.
So we conclude that for S 2 S (P):

�(S;M 0)��(Smax;M�) � �2
p
2K":

Step 4. However, the menu M 0 is not optimal for the stereotype set S. Pick

a menu M̂ that is optimal for that stereotype set:

M̂ 2 argmax
M

�(S;M)

By de�nition,

�
�
S; M̂

�
� �(S;M 0)

Step 5. Let us apply Lemma 1 for the second time. We now take the

partition P 0 to be the �nest possible partition, namely T . We discount M̂
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through pro�t-participation pricing to become ~M: The lemma guarantees that:

�
�
T; ~M

�
��

�
S; M̂

�
� �2

p
2K"

Summing up the above �ve steps:

�(T;M�) = [max pro�t] (Step 1)

�(Smax;M
�) � �(T;M�) (Step 2)

�(S;M 0) � �(Smax;M
�)� 2

p
2K" (Step 3)

�
�
S; M̂

�
� �(S;M 0) (Step 4)

�
�
T; ~M

�
� �

�
S; M̂

�
� 2
p
2K" (Step 5)

and hence the proft-loss due to using ~M instead of the optimal M� is bounded

by:

�
�
T; ~M

�
� �(T;M�)� 4

p
2K"

The proof of the theorem constructs the bound to the PPM loss by apply-

ing Lemma 1 twice. In the �rst application the lemma bounds the di¤erence

between the true optimal pro�t and the stereotype pro�t given any stereotype

set satisfying the approximation index ". The second application bounds the

di¤erence between the maximal stereotype pro�t and the true pro�t given the

discounted menu identi�ed by pro�t-participation princing given the principal�s

mis-speci�ed model. Taken together, the two steps bound the di¤erence be-

tween the maximal pro�t and the pro�t obtained with the discounted version

of the optimal stereotype menu.

Again, the bound is valid without requiring the principal to know anything

beyond her model and two upper bounds to the inaccuracy of the model: the

approximation index " and the Lipschitz constant K.

5 Interpretation and Comparative Statics

As we mentioned in the introduction, we o¤er four di¤erent reasons why the

principal might operate only on the basis of an approximate model. The �rst

one, model uncertainty, is our main motivation. It is based on the fact that

typically principals operate under weaker epistemic conditions than those that
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the standard model assumes. The other three reasons are, respectively, bounds

to computational capacity, sampling capacity, and communication capacity. The

section ends with a comparative statics result on how the near-optimal solution

changes as the cognitive limits of the principal become more binding.

5.1 Model Uncertainty

The model uncertainty is straightforward. In many situations, it is unrealistic

to assume that the principal knows the true model. Rather she operates under

weaker epistemic conditions, like some non-probabilistic uncertainty about the

model (Walley 1991).11 She knows that her model may be wrong but she does

not know in which direction. She knows, however, an upper bound on how

misspeci�ed her model might be, e.g., she knows an approximation index ". In

this case, Theorem 1 allows the principal to achieve a minimum expected pro�t

and and to bound the di¤erence between this pro�t and the optimal expeced

pro�t. Furthermore as her con�dence in her model increases, as " vanishes, this

lower bound converges to the expected pro�t she would have if she knew the

true type space.

Under this interpretation of model uncertainty, it is important to emphasize

that the principal need not know the true type space either to construct the

pro�t-participation mechanism or to compute the upper bound on her loss. It

is su¢ cient that she knows an approximation index which will be consistent

with a relatively large set of prior distributions on the true type space. Thus

the upper bound in our main theorem applies to all of these distributions.

The fact that theorem 1 puts an upper bound on the inevitable loss due to

model misspeci�cation has a worst-case feel, akin to strong ambiguity aversion or

maximin expected utility, e.g., Gilboa and Schmeidler (1989). Hence one may

wonder why the principal should be preoccupied with worst outcomes rather

than average outcomes.We would like to make two observations, however. First,

as we discussed, the approximation index can be intrepreted probabilistically.

The principal might adopt a smaller approximation index that she believes is

true only with probability � < 1: The upper bound on the pro�t loss then can

be intepreted probabilistically in the exactly analogous manner. Second, when

considering the asymptotic case where the discretized model tends to the truth,

11Related concepts are applied to macroeconomics (Hansen and Sargent 2010), but in non-
strategic settings. Bergemann and Schlag (2007) study monopoly pricing (with one good of
exogenous quality) under model uncertainty, with two possible decision criteria: maximin
expected utility and minimax expected regret
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our approach guarantees that PPM is still a valid approximation even if the

principal has more prior information and uses it to compute some average case.

There might appear to be a relation between our model uncertainty inter-

pretation and the quantal response equilibrium of McKelvey and Palfrey (1995).

We can imagine that the model used by our principal excludes some dimensions

of the agent�s type. This means that, as in a quantal-response equilibrium,

if we take the model at face value, we still have some unexplained variability

in the agent�s choice. However, there are two crucial di¤erences. First, while

quantal-response equilibria operate by perturbing the players� strategies, our

agent instead always plays best response. Second, quantal-response equilibrium

postulates a particular form of perturbation, while our principal may not have

such information.

5.2 Computation Cost

In our second interpretation, we return to the standard assumption where the

principal knows all primitives of the model, hence T and f . She now pays some

cost l > 0; however, for each unit of computational time used to calculate a

menu from the primitives of her model. To understand our contribution given

these assumptions, it is useful to begin with some background information on

the computational complexity of screening. A reader who is familiar with these

notions might want to skip this discussion.

To clarify the argument, let�s �rst assume that T is discrete (even though

computational complexity notions can be extended to uncountable sets). Under

the Revelation Principle we can solve the mechanism design problem in two

stages: (i) For each possible allocation of alternatives to types, we see if it is

implementable and, if it is, we compute the proft-maximizing price vector; (ii)

Given the maximized pro�t values in (i), we choose the allocation with the

highest pro�t. Here unless we have a �smart�algorithm tailored to our screening

problem, �nding an exact solution in our setup requires a computation time that

is exponential in the size of the input. While given a �nite T , each step (i) is a

linear program, the number of allocations that we must consider in (i) is as high

as (#Y )#T . The number of steps we must perform can then grow exponentially

in the size of the input.12 This means that �nding the exact solution could

12 If there are less products than types, it may be quicker to compute an indirect mechanism
rather than invoke the Revelation Principle and compute the direct mechanism. To achieve
the exponential bound, assume for instance that #Y = a#T , where a > 1, and increase both
the number of types and products.
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take very long even for relatively modest instances. With an uncountable T;

the time or resources necessary to �nd the optimal solution to the screening

problem might well become unbounded given this brute-force algorithm.

Obviously, the time required to �nd the exact solution would be lower if

there existed a �smart�algorithm. However, Conitzer and Sandholm (Theorem

1, 2004) have shown that the problem of �nding an exact solution to the single-

agent mechanism design problem with quasilinear utility, the model we consider

in our paper as well, is NP-complete. Unless P = NP , there does not exist a

polynomial-time algorithm for screening problems.

Before trying to improve on the brute force algorithm, it is useful to note

that the complexity of screening depends on two joint assumption of asymmetric

information and con�ict of interests. If either of these is missing, we can �nd

an exact solution in polynomial time. Absent asymmetric information, the

principal could condition contracts on t and o¤er the surplus-maximizing, fully

rent-extracting allocation for each t:

y� (t) 2 argmax
y
u(t; y)� c (y)

p� (t) = u(t; y� (t))� u(t; y0)

This would involve #Y �#T steps. Absent con�icts of interest �namely, if we
wanted to maximize the surplus u(t; y)� c (y) �it would be even simpler. The
principal would o¤er all alternatives, each of them at the cost of production.

The agent would select y� (t) 2 argmaxy u(t; y) � c (y). Solving this problem
would involve just #Y steps.

Given Conitzer and Sandholm�s negative result on polynomial-time exact al-

gorithms, we are interested in knowing whether there exists at least a polynomial-

time near-optimal algorithm. To the best of our knowledge, this problem has

not been solved for mechanism design problems, outside speci�c functional and

distributional speci�cations. As we will see, our approach can be useful.

The computation time for PPM is of the order of

#Y #S

and thus it is polynomial in the number of possible alternatives, #Y , indepen-

dent of the number of types #T , and exponential in the size of the stereotype

space #S.

Theorem 1 implies that through pro�t-participation pricing, this very sig-
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ni�cant reduction in computational time of the size can be achieved at an ap-

proximation cost of 4
p
2K". This means that our mechanism is particularly

successful in reducing the complexity of the type space. Once the principal is

satis�ed with, say, a 1% pro�t loss, her computation cost is independent of the

complexity of the type space.

We can formalize these properties of PPM. To do so, we adopt here the

de�nition whereby an algorithm is a polynomial-time approximation scheme

(PTAS ) if it returns a solution that is within a factor " of being optimal (AS)

and for every ", the running time of the algorithm is a polynomial function of

the input size (PT).

Proposition 1 PPM yields a polynomial-time approximation scheme that is

constant in T and polynomial in Y .

Proof. Consider S (P) and pick a stereotype set S such that the cardinality of
the stereotype set is minimal while the partition still satis�es the " maximal dis-

tance property. Let Q (") stand for the smallest cardinality of such a stereotype

set S: To �nd an upper-bound on Q ("), let us partition the minimal hypercube

which contains the type space into identical m-dimensional hypercubes with di-

agonal length ": Given such a partition, the maximal number of stereotypes we

need is:
�Q (") =

�
1

2"

�m
(9)

Note that this upper bound is tight if types are uniformly distributed on the

type space and the number of true types goes to in�nity.

We can now prove that the pro�t participation scheme is an approximation

scheme (AS). This is true because

lim
"!0

4
p
2K" = 0

To prove that PPM is polynomial in time (PT), �x an " > 0 and note that

the cardinality of the minimal stereotype set S here is

#S = �Q (") =

�
1

2"

�m
Thus, the total computation time of PPM is proportional to the number of

steps needed to compute the optimal mechanism for the stereotype set S. The
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Revelation Principle guarantees that this number is bounded above by

#Y #S

Hence, for any given ", the dimension of the stereotype space #S is �xed, and

the computation time of PPM is polynomial in the input size #Y �#T .13

The proposition is proven by showing that, for any ", it is possible to con-

struct a stereotype set such that every type is at most " away from a stereotype.

This bounds the exponent of the term #Y #S . The computation time then be-

comes polynomial in #Y and constant in #T . The stereotype set is constructed

by partitioning the whole type space in hypercube and selecting the mid point

of each cube as a stereotype.

The goal of this section is to show that PPM-based algorithms may be useful

in dealing with complex screening problems. The speci�c scheme we use in the

proof is based on a crude subdivision of the type space into cubic cells. In

practical instances, it can be greatly improved by partitioning the type space in

ways that are tailored to the problem at hand. Note also that the pro�t bound

identi�ed in theorem 1 applies cell by cell: if the maximal distance in cell i is

"i, the maximal pro�t loss is 4
p
2K"i. In speci�c instances, the principal can

achieve further improvements by partitioning the type space so that dense type

regions are assigned to small cells.

5.3 Sampling cost

Our analysis has an alternative interpretation in terms of sampling cost. Sup-

pose that the principal knows the set of possible types, T , and the set of

possible alternatives, Y , but does not know the payo¤ function of the agent:

u : T � Y ! < (but she knows that u satis�es the Lipschitz condition for K).
The principal can choose to sample as many types as she wants, but each sam-

pling operation entails a �xed cost 
. Sampling is simultaneous, not sequential.

The principal chooses a sampling set S ex ante. By equating the sampling set S

with the stereotype set, we can apply PPM, as de�ned above. Theorem 1 guar-

13A more stringent notion of approximation quality, fully polynomial-time approximation
scheme (FPTAS), requires the computation time to be polynomial not only in the input
size but also in the quality of the approximation, namely in "�1. It is easy to see that
this requirement fails here. A designer who wants to move from a 1% approximation to a
0.5% approximation, a 0.25% approximation, and so on, will face an exponentially increasing
computation time. However, it is known that many problems �all the �strongly�NP-complete
ones (Garey and Johnson, 1974) �do not have an FPTAS.
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antees that the resulting pricing scheme is an "-approximation of the optimal

pricing scheme.

5.4 Communication Cost

Our set-up can also be interpreted in terms of communication complexity faced

by the agent. (Kushilevitz and Nisan 1997). Mechanisms require the agent

to send information to the principal. If implementing the optimal solution

requires a large communication burden, the principal might turn to approximate

solutions that can be achieved with less communication (Nisan and Segal 2006,

Blumrosen, Nisan and Segal 2007).

In our case, a lower bound to the communication burden depends on the

number of allocations on the menu o¤ered by the principal. This is a best-

case scenario in that it assumes that the principal and the agent have already

established a common language to express the set of allocations on the menu

in an e¢ cient way, so that each alternative-price pair is now represented by a

natural number, just like numbered items on certain restaurant menus. For any

menu M , the communication burden is then log (#M).

The communication burden for the optimal mechanism is extremely high.

To implement the exact solution for the true type space, we may need a menu

with same cardinality as T . We can use our approximation scheme to reduce

this communication burden to any desired level while also putting a bound on

the corresponding pro�t loss.

Suppose we wish to use a menu with at most N allocations � generating

a communication burden of log (N). We can divide the type space into nm =

N identical hypercubes (assume for simplicity that N is such that N
1
m is an

integer). The maximum distance within each cube is " = 1
n . By theorem 1, the

pro�t loss is bounded above by

� = 4
p
2K"

The communication burden can then be expressed as

log (N) = m log n = m log

�
1

"

�
= m log

 
1
�2

32K

!
=

= m
�
2 log

�
��1

�
+ log (32K)

�
There are various notions of communication e¢ ciency for approximation
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schemes (Nisan and Segal 2006). A Polynomial Communication Approximation

Scheme (PCAS) in some parameters is a mechanism that achieves a loss of

at most � using a number of bits that is polynomial in the parameters. A

Fully Polynomial Communication Approximation Scheme (FPCAS) achieves a

loss of at most � using a number of bits that is polynomial in the parameters

and in ��1. Finally, the strongest notion of the three, a Truly Polynomial

Communication Approximation Scheme (TPCAS) achieves a loss of at most �

using a number of bits that is polynomial in the parameters and in ��1.14

The communication burden found above is polynomial in all the parameters

and in log
�
��1

�
. Hence:

Proposition 2 PPM is a TPCAS.

The optimal solution to a screening problem with a complex type space may

involve a large menu. If the type space is uncountable, the menu can be uncount-

able too � leading to an unbounded communication cost. We can reduce the

communication requirements drastically by operating with a coarse type space.

PPM bounds the pro�t loss generated by using an approximate discretization

of the type space rather than true type space. The bound is favorable in the

sense that the communication burden grows slowly (logaritmically) in the loss

bound.

5.5 Comparative Statics on Cognitive Resources

Assume now that there is some binding constraint either on the principal�s

computational time or sampling cost or on the communication burden. Let�s

denote this constraint by N . Then using PPM to solve the screening problem

gives rise to the following comparative static results with respect to N:

Corollary 1 If the principal uses PPM, then, as N decreases:

(i) #bY decreases (there are fewer items on the menu)

(ii) #S decreases (the type model is based on a rougher categorization)

(iii) � increases (the principal prices alternatives in more magnanimous way).

14An approximation scheme which is a TPCAS is then also a FPCAS and a PCAS. See
Nisan and Segal (2006) for further discussion.
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In words, as the thinking, searching or communication cost rises, a principal

who uses PPM to solve our problem, will use mechanisms that are simpler, as

measured in the number of distinct items o¤ered to the agent. Such simpler

menus will be derived from mechanisms that employ rougher categorizations of

true types into stereotypes and o¤er items at greater discounts relative to the

prices optimal for the stereotypes.

6 Alternative Mechanisms

Pro�t-participation mechanism is a valid approximation scheme, but will other

mechanisms �perform better�? To address this question, we �rst have to note

that the performance of any approximation scheme depends on the class of

problems to which it is applied. According to the No Free Lunch Theorem of

Optimization, elevated performance over one class of problems tends to be o¤set

by performance over another class (Wolpert and Macready 1997). The more

prior information the principal has, the more tailored the mechanism could be.

For more restrictive classes of problems (e.g. one-dimensional problems with the

standard regularity conditions), it is easy to think of mechanisms that perform

better than PPM. But a more pertinent question is whether there are other

valid mechanisms for the general class of problems we consider.

Since our results apply to a large class of multi-dimensional screening prob-

lems, de�ned only by the Lipschitz constant K and the approximation index ",

we shall now ask whether there are other mechanisms, besides PPM, that work

for this class of problems. We begin by de�ning the class of mechanisms that

are based on the principal�s model and modify prices given the optimal solution

of this model:

De�nition 5 A mechanism is model-based if it can be represented as a two-step
process where �rst one performs step (i) of the PPM and then, modi�es the price

vector p(y) according to some function

~p(y) = 	 (p(y); c(y);K; ") :

The function 	 obviously does not operate on the price of the outside option

y0, which is a primitive of the problem. We focus our attention on mechanisms

that return minimal exact solutions, namely solutions where all alternatives

o¤ered are bought with positive probability.
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The function 	 can encompass a number of mechanisms. In the naive one,

the principal takes the model seriously tout court, without modifying prices.

Example 1 In the naive mechanism,

	(p(y); c(y);K; ") = p(y)

In the �at discount mechanism, the principal acts magnanimously by dis-

counting prices, but her generosity is not related to stereotype pro�ts:

Example 2 In the �at discount mechanism

	(p(y); c(y);K; ") = p(y)� �

for some � > 0, which may depend on K and ".

Finally, we can also represent the PPM in this notation:

Example 3 In PPM

	(p(y); c(y);K; ") = (1� �) p(y) + �c(y)

for some � > 0, which may depend on K and ".

The following de�nition is aimed at distinguishing between mechanisms de-

pending on whether they contain an element of pro�t participation or not.

De�nition 6 A model based mechanism violates pro�t participation if for an

"true > 0, there exists �p > 0 and �c > 0 such that for all p0 < p00 � �p and c � �c

p00 �	(p00; c;K; ") � p0 �	(p0; c;K; ")

Under pro�t participation the principal shares her pro�ts and hence her price

discount that is strictly increasing in her pro�t. Pro�t participation is violated

when there is a price/cost region including the origin where an increase in the

principal�s pro�t does not translate into a strict increase in the absolute value

of the price discount.

The pro�t-participation condition is strong for two reasons: pro�t partici-

pation fails if a weak inequality is violated; it fails if the inequality is violated

for some prices and cost levels, not necessarily all prices and cost levels. As our
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theorem is negative, a strong condition means that we can exclude a largher

class of mechanisms.

It is easy to see that both the naive price mechanism and the �at-discount

mechanism violate pro�t participation (indeed, they violate it for all values of

p00 > p0 and c. Instead, with PPM, we have

p00 �	(p00; c) = �p00 + �c > �p0 + �c = p0 �	(p0; c) for all p00 > p0

and by construction, the PPM never violates pro�t participation. Given the

above condition, we can now show that unlike the PPM, mechanisms that violate

pro�t participation are not valid approximation schemes for the class of problems

considered here.

Theorem 2 For any K > 0, the upper bound to the pro�t loss generated by

a model-based mechanism that violates pro�t participation does not vanish as

"! 0:

Proof. Suppose that the mechanism is model-based but violates pro�t partici-

pation for some �p > 0 and �c > 0. Select

p0 =
1

2
�p

p00 2
�
1

2
�p;min

�
1

2
�p+

1

6
K; �p

��
Suppose that c = 0. For the p0 and p00 chosen above it must be that:

p00 �	(p00; 0;K; ") � p0 �	(p0; 0;K; ") (10)

De�ne h = p0 and q = p00 � p0. Consider the following problem:

T = [0; 2]

f (t) =
1

2
for all t 2 [0; 2]

Y = [1; 2] [ f�yg [ y0

u (t; y) =

8><>:
h+ q (t� 1� 2 jy � tj) if y 2 [1; 2]
h if y = �y

0 if y = y0

c (y) = 0 for all y
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In this screening problem, types below t = 1 prefer a �generic� alternative �y.

Types above t = 1 prefer a �personalized�alternative y = t.

It is easy to see that in the optimal solution of this screening problem types

below 1 buy �y at price h and each type t > 1 is o¤ered a personalized alternative

ŷ (t) = t at price h+ q (t� 1). The principal�s expected pro�t is h+ 1
4q.

Note that the K-Lipschitz condition is satis�ed by this problem. To see this,

note that u (t; y) is continuous in t for all y and that lim~t!t

�� @
@tu (t; y)

�� reaches
a maximum when y > t > 1, in which case, it is 3q. This means that u satis�es

a Lipschitz condition for 3q. Given the normalization that D = 1, T must be

halved to [0; 1], implying a Lipschitz condition with K = 6q. This is always

satis�ed because, given the de�nition of q,

6q = 6 (p00 � p0) � 6
�
min

�
1

2
�p+

1

6
K; �p

��
� 61

2
�p � K:

To show that the mechanism 	 does not yield a valid approximation, we

consider the following sequence of stereotype sets with associated stereotype

probability distributions:(
S0 = f0; 1; 2g
fS0 (0) = fS0 (2) =

1
4 ; fS0 (1) =

1
2(

S1 =
�
0; 12 ; 1;

3
2 ; 2
	

fS1 (0) = fS1 (2) =
1
8 ; fS1

�
1
2

�
= fS1 (1) = fS1

�
3
2

�
= 1

4

...

(
Sn =

�
0; 12n ; : : : ; 1; 1 +

1
2n ; : : : ; 2

	
fSn (0) = fSn (2) =

1
2n+2 ; fSn (s) =

1
2n+1 for all other s

...

Given the prior f , the true approximation index for stereotype set Sn is "ntrue =
1
2
1
2n =

1
2n+1 . We set "n =

1
2n+1 .

Hold n �xed. The exact solution of the screening problem for Sn involves

o¤ering �y at price p (�y) = h as well as a vector of alternatives identical to

the vector of types
�
1 + 1

2n ; : : : ; 2�
1
2n ; 2

	
, each of them priced at p (ŷ (s)) =

h+q (t� 1). The minimum price is h, while the maximum price is h+q. Hence,
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by our de�nition of h and q, all prices are between p0 and p00.

The mechanism returns the following prices:

~p (�y) = 	 (p (�y) ; 0;K; "n) = 	 (h; 0;K; "n)

~p (ŷ (s)) = 	 (p (ŷ (s)) ; 0;K; "n) = 	 (h+ qs; 0;K; "n)

Now recall that by de�nition 	(p; c) violates pro�t participation. Hence, for

any t 2 [1; 2],

h+ q (s� 1)�	(h+ q (s� 1) ; 0;K; "n) � h�	(h; 0;K; "n) (11)

Now take any type t 2 [1; 2] which is not a stereotype (a set of measure
1 for every Sn) and consider his choice between the allocation meant for any

stereotype s 2 [1; 2] modi�ed by 	 (ŷ (s) at price 	(h+ q (s� 1) ; 0 : K; "n))
and the allocation meant for stereotypes below t = 1 (�y at price 	(h; 0)). If he

buys ŷ (s) he gets payo¤

h+ q (t� 1� 2 js� tj)�	(h+ q (s� 1) ; 0;K; "n)

If he buys �y he gets utility

h�	(h; 0;K; "n)

He chooses ŷ (s) only if

q (t� 1� 2 js� tj)�	(h+ q(s� 1); 0;K; "n) � �	(h; 0;K; "n)

which, if one subtracts (11) from it, implies:

q (t� 1� 2 js� tj)� q (s� 1) � 0;

which can be re-written as

t� s � 2 js� tj ;

which is always false. Hence, all types that are not stereotypes choose �y rather

than a nearby personalized alternative. For any Sn, the expected pro�t of the

principal if she uses 	 is h.

Hence, the limit of the pro�t as n!1 ("n ! 0) is still h, which is strictly

lower than the pro�t with the maximal pro�t with the true type, which, as we
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saw above, is h+ q
2 .

The proof of the above Theorem 2 proceeds by constructing a relatively

straightforward class of problems with binding non-local constraints. In par-

ticular, we assume that the product space includes a generic inferior product

and a continuum of type-speci�c products. In the optimal solution, a non-zero

measure of types face a binding incentive-compatibility constraint between a

personalized alternative and the generic alternative. Hence, all types nearby

a stereotype strictly prefer the generic alternative to the stereotype�s optimal

allocation. This creates a non-vanishing loss for the principal.

The intuition behind the Theorem has to do with the knife-edge nature of

mechanisms that do not include pro�t participation. In the exact solution of

the principal�s model there is a binding constraint (IC or PC) for every alter-

native o¤ered. The pro�t-participation mechanism �and analogous schemes �

relaxe these constraints in the right direction. They add slack to constraints

that ensures that the agent does not choose alternatives with a lower pro�t.

Mechanisms without the pro�t-participation return a price vector that still dis-

plays binding constraints �or don�t even satisfy those constraints. When pro�t

participation is violated types near a stereotype might choose di¤erent alloca-

tions. If only local constraints are binding, the magnitude of such misallocations

vanishes as "! 0. In multi-dimensional screening problems, however, non-local

constraints will typically bind in optimum. Here, the magnitude of the misallo-

cation does not vanish even as "! 0.

Given the nature of the statement to be proven, the proof is by example.

One may object that the class of problems used in the proof is a zero-measure set

within the set of all possible screening problems. We chose this particular class

because it can be given a direct economic interpretation. However, all we need

is a class of problems where non-local constraints are binding for a positive

measure of types. As binding nonlocal constraints are an endemic feature of

multi-dimensional screening problems (Rochet and Choné 1998, Rochet and

Stole 2003), endless other examples could be found.

Theorem 2 says that if a mechanism performs at least as well as PPM, it must

be either very similar to PPM in that it relies on pro�t participation, or very

di¤erent in that it is not even model based. Hence, the theorem points to three

interesting questions that we leave for future research. Are there other pro�t-

participation mechanims that perform better than PPM? Are there non-model

based mechanisms that perform better than PPM? Are there not-too-restrictive

classes of screening problems where the Naive Mechanism is guaaranteed to be
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a valid approximation?

7 Conclusion

We consider a principal who faces a screening problem but is constrained to oper-

ate on the basis of an approximate type-space. We characterize the upper bound

to the expected loss that the principal incurs if she uses the pro�t-participation

mechanism. We show that the loss vanishes as the approximate type space tends

to the true one. We prove that this is not true for any similar mechanisms that

do not contain a pro�t participation element.

The economic insight of this paper is that a principal who operates on the

basis of an approximate type space cannot just ignore the mis-speci�cation error,

but she can �nd a simple way to limit the damage. It would be interesting to

know whether this insight holds beyond our set-up. Our analysis has a number

of limitations that future research could address. First, we assume that the

principal�s cost depend only on the product characteristics but not on the type

of the agent (as in insurance problems). Second, we assume that there is only one

agent (or a continuum thereof). It would be interesting to extend the analysis to

multiple agents. Third, we restrict attention to quasilinear mechanisms. Fourth,

it would be interesting to explore non-model based mechanisms.
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