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Abstract

We study the information flows that arise among a set of agents with local knowledge
and directed payoff interactions, which differ among pairs of agents. First, we study
the equilibrium of a game where, before making decisions, agents can invest in pairwise
active communication (speaking) and pairwise passive communication (listening). This
leads to a full characterization of information and influence flows. Second, we use our
equilibrium characterization to derive a game-theoretic microfoundation of a widely used
centrality measure: when the coordination motive dominates the adaptation motive,
the influence of an agent on all his peers is approximately proportional to his Invariant
Method index. Third, we use our results to explain organizational phenomena such as:
the emergence of work cliques; the adoption of human resources practices that foster
communication (especially active communication); and the discrepancy between formal
hierarchy and actual influence.

1 Introduction

Communication is one of the defining characteristics of humans. A large part of our day
is spent on various media, ranging from having informal conversations to writing formal
reports, from exchanging email messages to participating in social media. This is true in
private context as well as on the workplace. Corporate leaders spend upward of 80 percent
of their work time in communication-centered activities (Mintzberg 1973, Kanter 1977,
Bandiera et al. 2009)

The endogeneity of communication patterns should lie at the center of a theory of
organization (Arrow 1974). We have some control on whom we decide to speak to, email, or
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telephone. As communication requires time, we are selective and instrumental in how much
we invest in communicating with different agents. As Simon (1986) noted: “If we record the
frequency of communication between different nodes, we [will] find that the pattern is not
uniform but highly structured. In fact, the pattern of communication frequencies [should]
reflect, approximately, the pattern of authority.”The objective of this paper is to develop a
model of endogenous costly communication and to use it to understand influence patterns.

Although, since its inception, information economics has understood the importance
and endogeity of communication, there is no tractable micro-founded model of costly com-
munication among an arbitary set of agents. A large body of research considers strategic
information transmission in settings where communication is costless but non-directly ver-
ifiable (see Sobel (2011) for a survey). In particular, two recent contributions study cheap
talk on networks (Hagenbach and Koessler 2010, Galeotti et al 2009). A number of au-
thors have studied network problems where the intensity of links between players is costly,
endogenous and strategic (see the related literature section for more references). These
works do not, however, model information explicitly and their interpretation in terms of
information economics is not obvious.

This paper is closest to a small set of papers, which study costly, endogenous commu-
nication between two parties (Dewatripont andTirole 2005, Dessein and Santos 2006). Our
main contribution is to study arbitrary sets of agents with arbitrary interactions. On the
substantive level, the presence of more than two agents generates interesting “indirect”ef-
fect that bring organizational economics closer to the sociology of organizations (Gibbons,
2005): we will relate our work to existing results on: work cliques, the bias against ac-
tive communication, human resources management practices, and the discrepancy between
formal hierarchies and actual influence. On the theoretical level, going beyond two agents
allows us to uncover a systematic relation between influence in incomplete information set-
ting and the Invariant Method, a graph-theoretic measure widely used in computer science
including in Google’s PageRank argument.

This first step towards a model of endogenous and costly communication among an
arbitrary number of agents is made within the classical normal-quadratic local information
model that was introduced by team theory (Marschak and Radner 1972) and that has
found wide application in the study of contracts and organizations.1 One advantage of
the quadatic approach is that it makes it easy to disentangle coordination and adaptation.
Unlike team theory, in our baseline case agents are self-interested. One of our goals is to
see what kind of ineffi ciencies we should expect to arise in a world were communication and
influence are chosen by individuals.

The model can be sketched as follows. There are a number of agents who face local
uncertainty (for simplicity, local states are assumed to be mutually independent). Each
agent observes the realization of his local state and must take an action. The payoff of
each agent depends on his local state, his own action, and the action of other agents.
The pattern of payoff interactions among agents is described by a directed graph that
encompasses two dimensions of heterogeneity: the interdependence on individual actions
and the pairwise intensity of these interdependencies. While our setup encompasses both
negative and positive payoff interactions, in most of the paper we restrict attention to

1Our linear-quadratic problem with endogenous information bears some similarities to the macroeconomic
literature on rational inattention initiated by Sims (2003).
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positive complementarities only.
Before choosing his action, an agent can engage in communication. He can inform other

agents about his own state of the world and he can gather information about other agents’
state of the world.2 Formally, the agent selects a vector of active communication intensities
and a vector of passive communication intensities. The precision of the communication of
one agent to another is then determined by how much the sender invests in active commu-
nication (talking) and how much the receiver invests in passive communication (listening).
Both types of communication are costly, and the cost is an increasing and convex function
of communication intensity.

At this point, we face two alternative modeling choices. Agents may choose commu-
nication intensities before or after they learn about their own state of the world. This
depends on whether we think of communication investment as long-term or short-term. As
we shall see, the advantage of the classical normal-quadratic setting explored here is that
both versions of the model have the same equilibrium.3

One of the advantages of our modeling approach is that the intensity of communication
and influence (how much an agent’s state influences another agent’s action) is represented
by continuous variables. This is useful because, as it has been recognized by sociologists for
a long time (Granovetter, 1973), the strength of interpersonal ties should not be thought
of as a 0-1 variable. We keep the analysis tractable by abstracting from the possibility of
information manipulation on the part of active communicators.4 This allows us to give a
clean answer to the problem of moral hazard in direct communication intensity, as identified
by Arrow (1974).5

Our analysis is divided in three parts. We first characterize communication patterns
and individual decisions in equilibrium. We show that games in the class we consider have
a unique equilibrium in linear strategies, namely one where the action of each agent is a
linear function of his own signal and the signal that he receives from other agents.

These games feature various levels of strategic interaction. Active communication, pas-

2 In our set-up, which allows for one round of communication only, there is no loss of generality in assuming
that communication only relates to the observed state of the world. Things would be different if we allowed
for more than one round.

3The example of a short-term investment could be a visit. A firm invites representatives from another
firm to visit their plants, as a chance for the visitors to learn more about the host firm. The active com-
munication cost is sustained by the host firm (hospitality, time devoted to visitors, etc...), while the passive
communication cost is sustained by the visitors (travel costs, time spent on visit, etc...). As a visit can be
planned in a matter of weeks, it is conceivable that the decision to organize a visit is taken after the two
parties learn their respective states of the world (demand, production costs, etc...). Instead the example
of a longer term communication investment could be the appointment of a liaison offi cer. A firm invites
another firm to second one of their employees to the first firm. The liaison offi cer would then be in a good
position to report information about the host firm as it arises. Here, again, the host sustains an active
communication cost while the liaison offi cer’s firm sustains a passive communication cost. A secondment of
this kind appears to require a longer time horizon and it is likely that both firms will receive new information
after the investment is made.

4Strategic communication within organizations is explored by Alonso et al. 2007, Rantakari 2007.
5While the non-manipulability assumption is strong, it is plausible for certain types of communication.

For instance, it is standard for a host firm to allow visitors to sample randomly from their product stock
(e.g. food products, geological samples, test trials, etc.). The cost of active communication is given by the
amount of product sampled, while the cost of passive communication relates to the quality of the analysis
performed by the visitors. The signal visitors receive is an unbiased estimator of the product characteristics.
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sive communication, and decision influence are strategic complements. Alice invests in
talking to Bob, because she hopes that Bob will invest in listening to her and will use the
information he has received to coordinate his action’s with Alice’s state, something that
would benefit Alice. Bob is influenced by the signal she receives from Alice because he has
invested in listening and he thinks that she has invested in active communication; hence the
signal should be valuable in coordinating his action with hers. With more than two agents,
these interactions may be indirect. Alice and Carol are not interested in coordinating their
actions per se, but they both want to coordinate with Bob. In equilibrium they might invest
in communicating with each other, in the knowledge that Bob’s action will be affected by
their states.

One way of finding the fixed point of this set of interactions is to proceed iteratively, at
each step taking into account a higher level of interactions. Our equilibrium corresponds to
the limit of this iterative process. In equilibrium, a simple linear relation describes active
and passive communication from one agent to the other as a linear function of how much the
latter is influenced by information he receives. In turn, influence coeffi cients are determined
jointly for all agents as a linear system. This tractable equilibrium characterization is useful
to draw lessons on patterns of communication and influence.

In the second part of the paper we use the main characterization result to explore
patterns of communication and influence. As one would expect, we can prove that com-
munication flows and influence relations between two agents, if these agents have stronger
exogenous interaction ties. Less obvious are indirect effects, namely how communication
between two agents changes when other interaction ties change. Suppose the exogenous
ties between a subset of workers become stronger: in the labor sociology language, a work
“clique” forms.(Dalton, 1959). We show the existence of an insularity effect, pushing the
clique members to reduce their interest in talking to the outside world, and an opposite re-
inforcement effect, whereby outsiders are keen to understand what goes on inside the firm.
Active and passive communication go in opposite direction. The overall effect on influence
from the clique to the outside is positive at first when the clique has relatively weak ties,
but it turns to negative when the ties get suffi ciently strong.

In our non-cooperative set-up, communication and influence is generally ineffi ciently
low. Agents do not internalize the benefit that investment in communication generates for
other agents. This is true for both active and passive communication. However players
tend to under-invest, in relative terms, more on active communication relative to passive
communication. To see this, suppose that active and passive communication have the same
cost. A planner would choose the same level of active and passive communication. Yet,
with n > 2, agents spend less on active communication. The benefit of listening is direct:
the receiver incorporates the information in his decision-making. The benefit of speaking is
indirect: the sender hopes that the receiver will incorporate the information he receives in his
decision-making. We relate these results to the evidence on the effect on firm performance
of introducing innovative Human Resources Management (HRM) practices (Ichniowski and
Shaw, 1997).

In the third and last part of the paper we ask which agents are most influential overall
and we uncover connections with concepts used in sociology and computer science. The
global influence of an agent is the aggregate effect that a marginal change in the agent’s
local state has on other agents’actions. In our setting global influence is an equilibrium
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variable, which is in turn jointly determined by three other equilibrium phenomena: active
communication, passive communication and decision-making.

In recent years, a particular graph-theoretic measure of influence has become extremely
prominent. Following the key economic reference in this area (Palacios-Huerta and Volij
2004), we refer to it as the Invariant Method. The influence of node i is defined as a sum of
the influences of the other nodes each of which is weighted by the strength of the directed
link between it and node i. As this definition applies to all nodes, we have a fixed point
problem, whose solution corresponds to the minimal positive eigenvector of the directed
link matrix. The Invariant Method underpins the PageRank algorithm used in the Google
search engine (Page et al ?) and it is used by the more sophisticated scientific impact factor
analyses (cite). It is also attractive at a theoretical level: Palacios-Huerta and Volij (2004)
show that it is the only graph-theoretic measure that satisfies a number of natural axioms.
Economists have recently begun to use to study supply networks and the transmission of
volatility (Acemoglu et al) and to analyze email communication patterns among sets of
workers (Palacios-Huerta and Prat 2010).6

We provide the first game-theoretic microfoundation of the Invariant Method. In the
quadratic setting we study, each agent cares about adaptation (fitting his action to his own
local state) and coordination (fitting his action to other agents’actions). We show that, as
the coordination motive becomes more and more important, the vector of global influences
defined above tends to the vector of Invariant Method indices (with a correction factor when
some agents’interaction coeffi cients are larger in aggregate).

This can be seen as an approximation result. In a game where coordination is much more
important than adaptation, the relative global influence of every agent is well approximated
by his Invariant Method index. Given the simplicity of the Invariant Method, our result is
useful for characterizing the asymptotic properties of the games we study.

We use our result to study influence in hierarchical structures. Weber’s top-down view
of optimal bureaucracies came into question when empirical studies started showing that,
in the presence of conflicts of interest, the most influential members of an organization are
often found at mid-level rather than at the top. Armed with the asymptotic correspondence
between influence and Invariant Method, we first show that the Weberian view holds in a
regular hierarchy, namely one where exogenous interaction patterns repeat themselves at
every level. In the equilibrium of our communication game, a superior and his subordinates
invest in reciprocal communication. Because of the tree-like nature of the hierarchy, this
implies that the global influence of an agent is larger, the higher the agent is in the or-
ganization. However, Weber’s monotonicity breaks down when there are groups of agents
with stronger ties. In that case, as Dalton predicted, the most influential members of the
organization are the top people within their “clique”. The complementarity between inter-
action, communication, and influence mean that the head of the clique is more influential
not only towards his subordinates, but also towards his superior. This corresponds to Dal-
ton’s observation that the most influential agents are often low-level managers in charge of
well-defined processes.

6This measure is also known as Katz centrality (Katz 1953). Although Leo Katz deserves the credit, we
refer to it as Invariant Method to avoid potential confusion with another centrality index which sometimes
bears Katz’s name too (Jackson, 2010, Chapter 2). We return to these distinctions in more detail in Section
5.
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The rest of the paper is organized as follows. Section 2 introduces the model. Section 3
presents the first main result of the paper: the equilibrium characterization theorem. Section
4 uses the characterization theorem for comparative statics and welfare analysis, with an
emphasis on the role of complementarities, both between communication and decisions,
and between active and passive communication. Section 5 reports the second main result,
the asymptotic equivalence between agent’s influence and the Invariant Method index, and
applies it to Dalton’s hierarchies. Section 6 concludes by relating our work to the existing
literature in organizational economics and network economics and by suggesting future
avenues of research. All proofs are in Appendix.

Also available is a Supplementary Material section with an array of robustness checks
and additional results: alternative timeline, equilibrium uniqueness, ban on communication
between certain links, broadcasting (as opposed to pairwise communication), corner solu-
tions, and additional comparative statics. These extensions are referenced in the text in
informal terms and proven formally in the supplementary section.

2 Model

Consider a set of n agents. Agent i faces a local state of the world

θi ∼ N (0, si) ,

where si denotes the precision of θi, i.e. si = 1/V ar (θi). The local states of different agents
are mutually independent. Agent i observes only θi.

All agents engage in, pairwise, communication activity.7 Agent i receives message yij
from agent j, such that

yij = θj + εij + ηij ,

where εij and ηij are two normally distributed noise terms

εij ∼ N (0, rij) , (1)

ηij ∼ N (0, pij) , (2)

and rij (resp. pij) is the precision of εij (resp. ηij). We interpret εij as the noise associated
with passive communication (listening to a presentation, reading a report, visiting a plant,
appointing a liaison offi cer) and ηij as the noise associated with active communication
(preparing a presentation, writing a report, hosting a visit, hosting a liaison offi cer).

Agent i chooses how much to invest in speaking with and listening to other players.
Namely, he selects:

• The precision of the active communication part of all the signals he sends: (rji)j 6=i,
for which he incurs cost k2

r

∑
j 6=i rji, where kr ≥ 0 is a parameter.

7We assume that there exist channels to engage in communication among any two members inside the
organization, and hence that all these channels are potentially used. While we believe this makes sense in
a setup to analyze organizations, it is an strict assumption when dealing with other social arrangements,
such as friendship networks. In Appendix E we show that in this last case linearity of equilibrium would be
preserved and hence a similar analysis could be performed.
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• The precision of the passive communication part of all the signals he receives, (pij)j 6=i,
for which he incurs cost k2

p

∑
j 6=i pij , where kp ≥ 0 is a parameter (p is mnemonics for

passive)

We also assume that each precision term is bounded below by a very small number ξ:
rji ≥ ξ, pij ≥ ξ. This avoids dominated equilibria where i does not speak to j because he
does not expect j to listen and viceversa.8

After observing the local state θi and the vector of signals (yij)j 6=i, agent i chooses an
action ai ∈ (−∞,∞).

This setup contains two implicit assumptions. First, agents do not observe the commu-
nication intensities chosen by other agents directly (i.e. the agent does not see how much
effort the others put into writing their reports or into reading his reports; the opportunity
cost of sending/hosting a particular liaison offi cer is unobservable). Second, when engaging
in active communication, the agents cannot manipulate the signal they send (the report
may be more or less clear but it cannot contain lies; the liaison offi cer cannot be bribed).
While costly signaling and strategic misrepresentation are important aspects of organiza-
tional economics, the present paper must restrict attention to direct and non-manipulable
information flows in order to keep the analysis tractable.

The payoff of agent i is quadratic:

ui = −

dii (ai − θi)2 +
∑
j 6=i

dij (ai − aj)2 + k2
r

∑
j 6=i

rji + k2
p

∑
j 6=i

pij

 , (3)

where the term dii measures the importance of tailoring i’s action to the local state and
the term dij represents the interaction between the action taken by agent i and the action
taken by agent j. For the rest of the paper we assume that the interaction terms are positive
(dij ≥ 0 for all i and all j). However, all of our results are valid, as stated, if some —or even
all —of the interaction terms are negative, as long as the dii’s are positive and suffi ciently
large.9

For now, we study a game where agents invest in communication before observing their
local state. Namely, the timeline is:

1. Agents simultaneously select their active and passive communication intensity vectors
(rji)j 6=i and (pij)j 6=i.

2. Agents observe their local state of the world θi.

3. Agents receive signals from other agents (yij)j 6=i.

4. Agents select their actions ai.

8A natural question is whether in this model speaking and listening are strategic complements. The
answer to this question is not straightforward at this stage and we postpone it to the discussion that follows
the main result: Theorem 1 on page 10).

9 In our notation, whenever a variable has two agent indices, such as yij or dij , the first index denotes
the agent that is “directly affected”, such as the receiver of a signal or the owner of the payoff.

7



We refer this game as Γ (D,k, s), where D = (dij)i,j , k = (kr, kp) and s = (si)i.
One can think of a different timing, in which agents invest in communication after

observing their local state, in which case stages 1 and 2 in the timeline above are inverted.
Under this alternative timing, the investment in active and passive communication may
depend on agents’local states. For the rest, the game is identical and we denote it with
Γθ (D,k, s). (the notation is mnemonics for the fact that communication intensities are
chosen after the θ is observed). In the next section, we will discuss an equivalence result
between these two versions of the game.

The two main assumptions of our model —quadratic payoffs and normal distribution of
signals —are standard in the organizational economics literature inspirred by team theory
(Marschak and Radner 1972).10 They are usually justified as limiting results. Quadratic
payoffs can be thought as second-order local approximation of any differentiable utility
function. 11 In our case, the normal distribution of signals can be seen, with the use
of the central limit theorem, as the limiting distribution in a scenario where information
comes from many small and independent binary pieces of information that are transmitted
satisfactorily, or otherwise are meaningless, with some probability and where the receiver
averages all the pieces he receives from a sender.

3 Communication and Decisions in Equilibrium

In this section we study how agents invest in communication and make decisions in equilib-
rium. Before stating the formal result, it is useful to provide a semi-formal discussion of the
equilibrium structure. As mentioned in the introduction, this game has a complex array of
interaction effects.

The game is solved by backward induction. In the second stage, agents know their own
communication intensities and have a conjecture about other agents’ intensities. On the
basis of this, they use the signals they receive to choose their actions. Given the linear-
quadratic structure of the game, it is easy to see that the optimal action for agent i is given
by

Dia
∗
i (yi) = diiθi +

∑
j 6=i

dijE
[
a∗j | yi

]
(4)

In what follows we denote the sum of his interaction parameters for agent i with

Di =

n∑
j=1

dij ,

and the normalized interaction parameter between i and j as

ωij =
dij
Di
.

10See Garicano and Prat (2011) for a survey.
11While we focus in the paper on a specific form of quadratic games, with a particular adaptation-

coordination structure, our results can easily be extended to any quadratic utility function where, as below
in text, the cross-effects in individual actions would determine the interaction matrix we use.
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The first-order condition (4) is thus

a∗i (yi) = ωiiθi +
∑
j 6=i

ωijE
[
a∗j | yi

]
(5)

which contains a directly observable term (θi) and a first-order expectation.(the other
agents’actions)

Combining the first-order conditions of the form (5) generates iterated expectations.
For instance, one additional round yields

a∗i (yi) = ωiiθi +
∑
j 6=i

ωijE

ωjjθj +
∑
k 6=j

ωjkE [a∗k | yj ] | yi

 (6)

which contains a directly observable term (θi), a first-order expectation on the other agents’
local states, and a second-order expectation.(the other agents’actions). The good news is
that expectations on other agents’local states can be represented in a simple linear form,
for any order. For instance, the first-order expectation term of i on j’s state is

i→ j : ωijE [ωjjθj | yi] = ωijωjj︸ ︷︷ ︸
second order coord. concern

× pij + rij
sj + pij + rij︸ ︷︷ ︸ ×
information extraction

yij

The information extraction ratio is the classical formula for the expected value of an un-
observed normally distributed variable (the local state θj in this case) given an observed
normally distributed signal (the signal from j to i,, yij). The ratio is decreasing in the
precision of the local state, sj , and increasing in the precision of the signal, the sum of the
speaking investment rij and the listening investment pij .

In the next round, the second-order expectation term of i on k’s state, mediated by j’s
signal, is

i→ j → k : ωijωjkE [E [ωkkθk | yj ] | yi] = ωijωjkωkk︸ ︷︷ ︸
third order coord. concern

× pij + rij
sj + pij + rij

pjk + rjk
sk + pjk + rjk︸ ︷︷ ︸

info. extr. about k

× yik

and so on...
In the proof of Theorem 1 we show that expectations converge and we can always find

an equilibrium of the form
a∗i (yi) = biiθi +

∑
j 6=i

bijyij (7)

Furthermore the b-coeffi cients are uniqueand they can be characterized in a relatively simple
way as a function of the the communication intensities that are chosen in the first stage,
the p’s and the r’s.

With these conditions in mind, we can now move to the first stage of the game, where
agents make communication investments. Recall that agent i’s loss, net of communication
costs, is given by

dii (ai − θi)2 +
∑
j 6=i

dij (ai − aj)2 (8)
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If communication is poor, agent i suffers in two ways: his own action ai contains an addi-
tional noise and the other agents’actions, the aj’s, contain additional noises. By 7, we can
write

V ar (a∗i ) = biiV ar (θi) +
∑
j 6=i

bijV ar (yij) ,

which, combined with (8), implies that the marginal benefit of an investment in passive
communication pij yields expected marginal benefit Dib

2
ij and a marginal investment in

active communication rji yields dijb2ji. Given our assumptions on communication costs,
equilibrium communication intensities must be given by

pij =

√
Dibij
kp

and rji =

√
dijbji

kr
. (9)

Now, as shown in the proof, we can close the analysis by plugging equilibrium intensities
in the second stage decision coeffi cient b’s. To provide a complete characterization, we
introduce one last piece of notation:: for any pair of individuals i and j we define

hij =

ωjj if i = j

−sj
(

kp√
Di

+ kr√
dji

)
, otherwise.

Then we can show:

Theorem 1 For any (D, s), if kr and kp are suffi ciently low, the game Γ̃ (D,k, s) has a
unique pure-strategy equilibrium:

(i) Decisions are given by

b·j = (I −Ω)−1 · h·j for all j;

(ii) Active communication is

rij =

√
djibij

kr
for all i 6= j;

(iii) Passive communication is

pij =

√
Dibij
kp

for all i 6= j

The theorem offers a simple equilibrium characterization. Conditions (ii) and (iii) cor-
respond to (9) and express each communication intensity as a linear function of just one
decision coeffi cient.

Condition (i) is based on a characterization of b that is particularly tractable because:
(a) It does not depend on communication intensities (it only depends on primitives); (b) It
can be split into n systems of equations, one for each agent; (c) It is linear; (d) It uses a
coeffi cient matrix that is the same for all n agents.
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While system (i) does not contain r and p, one should not think that it captures only
decision considerations. As the presence of communication parameters kr and kp indicates,
(i) also embodies communication considerations. Specifically, each subsystem in condition
(i) determines all the coeffi cients (bij)i=1,...n that relate to decisions taken by the n agents
with respect to information originating from a certain agent j: namely, the signal yij if
i 6= j and the local state θj if i = j.

The matrix (I −Ω)−1 admits a simple interpretation. Since Ω is, by definition, a
contraction we can write

(I −Ω)−1 = I + Ω + Ω2 + Ω3 + · · · =
∑
l≥0

Ωl

And the entries of the powers of this matrix gather all higher-order coordination concerns:
the entry ij of Ωl is the sum of all products of nornalized coordination concerns of chains
of all possible chains of l connected agents that start on i and finish on j; hence, the entry
ij of (I −Ω)−1 is equal to the sum of all direct and indirect coordination concerns derived
from all chains, of any length, that start on i and finish on j.

Under this light, the coeffi cients in the linear equilibrium actions can be interpreted as
follows: each coeffi cient bij is a weighted average of the coordination concerns of i versus all
other agents, in such a way that the weight assigned to the coordination concern of i versus
j is positive, while the rest of weights are negative. The positive weight of the coordination
concern versus j is larger when djj/Dj is large, namely, when his adaptation concern is
large compared to his coordination concerns. That shows a natural effect: if j’s adaptation
concern is strong, j’s action is going to be close to his local, private, information; knowing
this, agent i reacts by increasing his weight in the message he receives from j, and this
reaction is stronger the more he cares to coordinate (directly, or because other individuals
he cares about want to coordinate with j) with j. On the other hand, each other weight
is negative and are directly proportional to sj , the precision of the common prior about
j’s local information. The weights decrease, and therefore bij decreases, when sj is larger
because the incentives to communicate with j lower down if the prior about j’s information
is more precise.

The matrix (I −Ω)−1 is the same for all subsystems because the propagation of inter-
action effects across agents goes through the same payoff matrix: a change in any part of
j’s decision function affects i through coeffi cient dij .

A number of remarks are in order:

1. There is an asymmetry between (i) and (ii): investment in active communication
depends on one interaction parameter (dji) while investment in passive communication
depends on the sum of all parameters (Di). This asymmetry reflects a difference in
the individual benefit of learning from others and the individual benefit of informing
others. This strategic asymmetry between listening and speaking will be discussed at
length in section 4.2.

2. What happens if, instead of assuming that communication investments are made
before learning the local states, we assume the opposite? Recall that we defined
Γθ (D,k, s) as a game that is identical to Γ (D,k, s) except that the order of the first
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two stages is reversed. In Γθ, agents invest after they observe their θ. In general we
would expect the set of equilibria to be different because the incentive of agents to
invest in active and passive communication may depend on the value of their local
states. This in turn could create a signaling issue. However, we can prove that Game
Γθ (D,k, s) has a perfect Bayesian equilibrium that corresponds to the pure-strategy
equilibrium of Γ (D,k, s). The intuition for this result has to do with the assumption
that payoff functions are quadratic. The choice of ai does of course depend on the
value of θi. However, the marginal benefit of additional information is the same
whether the agent knows the actual value his local state, as in Γθ, or only its expected
value, as in Γ. Strange signaling outcomes are also prevented by use of a probability
distribution with a full-support. This result is stated and proven in section 1 of the
Supplementary Material.

3. Is the equilibrium in theorem 1 unique? First, the assumption that communication
intensities are bounded below by ξ rather than zero prevents the existence of equilibria
based on pure mis-coordination. Second, there could be non-linear equilibria. In
the equilibrium that we describe the actions of agents are linear functions of the
signals they receive.Within this class, it is immediate to see that our equilibrium is
unique This is a common assumption in the literature that uses the normal-quadratic
approach, but, while there are no known counterexamples, it is not obvious to show
that only linear equilibria are possible (e.g. Angeletos and Pavan (2009), Dewan
and Myatt (2008)). In section 2 we consider a truncated version of our game, where
agents’action are bounded below and above. We show that this game has a unique
equilibrium and that such equilibrium tends to ours as the bound goes to infinity.

4. Theorem 1 requires that kr and kp are suffi ciently low. If this condition fails, the non-
negativity constraint on communication intensities may be violated. In that case, the
equilibrium involves corner solutions, whereby some or all of the p’s and r’s are equal
to the minimal value ξ. This possibility is explored in section 5 of the Supplementary
Material. However, for any (D, s), there always exist values of kp and kr that are
suffi ciently low to guarantee an interior solution.

5. A characterization similar to theorem 1 obtains even under different assumptions
on the structure of communication costs. For instance, rather than having pairwise
communication, we could imagine that the agents “broadcast” their signals. Thus,
each agent sustains the cost of active communication only once. This possibility is
explored in section 4 of the Supplementary Material section.

6. One may also think that in reality communication can only occur between certain
nodes. Namely, information transmissions is impossible on certain edges of the graphs.
Our equilibrium characterization can be modified to accommodate this additional
constraint (section ?? of the Supplementary Material).

4 Complementarities in Communication and Influence

As it became apparent in the equilibrium characterization result, there are strategic com-
plementarities between active communication, passive communication and decision-making.
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This section builds on Theorem 1 to explore two aspects of these complementarities. It
first studies indirect effects of the interaction parameters on communication and decisions,
namely what happens to bij , rij , and pij when dij stays constant but other interaction
parameters change. As we shall see, there are subtle non-monotonic effects. The second
part of the section focuses on ineffi ciencies arising from the complementarity between com-
munication and decision-making. In particular, we will see that underinvestment in active
communication is particularly acute and we will argue that in real organizations, this form
of ineffi ciency is contrasted by management practices that encourage active communication.

4.1 Indirect Effects

As we mentioned earlier, how Alice influences Bob does not only depend on the direct
interaction between the Alice and Bob, but potentially on all the interactions among agents.
Let us first deal with the direct effects, which go exactly as one would expect. Agents
direct their communication efforts toward agents with which they have higher interaction
parameters. Formally:

Proposition 2 Starting from a symmetric interaction matrix,12 an increase in dij com-
pensated by an equal decrease in dik (where i, k, and j are distinct integers) leads to an
increase in bji, rji, pji and a decrease in bki, rki, pki, while other variables are unchanged.

When we slightly perturb a symmetric situation, in which all pairwise interaction co-
effi cients coincide, and slightly increase the coordination motive of agent i with respect to
agent j, counterbalanced by a decrease of same magnitude in the coordination motive of
agent i with respect to agent k, the comparative statics are clear: agent j, resp. k, cares
more (resp. less) about the information received from agent i in the action he undertakes,
he pays more (resp. less) attention to this information, and agent i is going to put more
(resp. less) effort in communicating accurately his local information.

Instead the analysis of indirect effects is less straightforward. The following example is
the simplest way to illustrate the kind of non-monotonic effects that can arise. Consider
three agents with the following interaction matrix

D =

 d q 1
q

q d 1
q

1 1 d

 with q ≥ 1

When q = 1, the three agents are symmetric. As q increases, a “clique”—to borrow a
term used by labor sociologists (Dalton 1959) —forms between the first two agents to the
exclusion of the first.

What happens when the clique becomes stronger? As clique members care less about
the outsider, communication and influence from the outside to is reduced. The effect on

12A symmetric interaction matrix is one in which

dij =

{
d if i 6= j
D if i = j

for some positive d and D.
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communication and influence in the other direction is instead monotonic. First, there is an
clique insularity effect : the clique members care less about the outsider, and hence they
invest less in talking to him: active communication variables r13 and r23 decrease (figure 1a).
Second, the outsider is affected by the clique reinforcement effect. As the clique members
communicate and coordinate more with each other, the local state of one clique member
also affect the actions of the others. The outsider more interested in learning local states
of clique members and invests in passive communication, at least for low values of q (figure
1b). When q is suffi ciently high, the insularity effect must dominate. As clique members
talk less and less to the outsider, the outsiders begins to invest less in listening. Therefore,
the overall pattern of influence is monotonic (figure 1c).13

It is also interesting to note that the ratio between active and passive communication
is decreasing in q throughout, confirming that the presence of a stronger clique causes
an increasing imbalance between the desire of outsiders to obtain information and the
willingness of the clique to provide it.14

13The plot uses the following parameters: d = 5, s1 = s2 = s3, kp = kr = 0.01.
14Cliques can damage the agents that are excluded from them. Section 3 if the Supplementary Material

presents a three-agent example where a player is better off if communication between the other two players
is prohibited
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1a: Active Communication by the Clique (r13/r23)
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1b: Passive Communication by the Outsider (p13/p23)
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1c: Influence of a Clique Member on the Outsider (b13/b23)
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.

4.2 Underinvestment

The presence of complementarities among agents is likely to lead to ineffi ciently low invest-
ment in communication. To verify this claim, we must first define the “effi cient”benchmark,
and there are two candidates. One can compare the equilibrium outcome to the outcome
that would arise if communication intensities were chosen by a planner, while decision func-
tions were still be delegated to agents. Or one can use as a benchmark the case where
the planner is also responsible for choosing decision functions. Here, we analyze the first
case, as we are particularly interested in ineffi ciencies that derive from underinvestment in
communication.

Reconsider the symmetric-information static game Γ̃ (D,k, s). Keep the same payoff
functions ui defined in (3), but now assume that each agent i solves

max
{b∗ij}nj=1

E [ui]

while a planner solves

max
{p∗ij}i,j ,{r∗ij}i,j

n∑
i=1

E [ui]

The planner moves first, but —as in the rest of the paper —we assume that agents do not
observe communication investments directly.15 Call this new game Γ∗ (D,k, s).

We can offer an equilibrium characterization that mirrors the one of Theorem 1:

Proposition 3 The decision network and communication network that arise in equilibrium
are given by:

b∗·j = (I −Ω)−1 · h∗·j for all j

r∗ij =

√√√√ n∑
k=1

dik +

n∑
k 6=i

dki
b∗ij
kr

for all i 6= j

p∗ij =

√√√√ n∑
k=1

dik +
n∑
k 6=i

dki
b∗ij
kp

for all i 6= j

with

h∗ij =

{
ωjj if i = j

−sj kp+kr√
Di+

∑n
k 6=j dkj

otherwise

Communication creates positive externalities that players do not internalize in the non-
cooperative game. Comparing Proposition 3 with Theorem 1, we see that there are two

15 In another conceivable version of the planner’s problem communication investments could be publicly
observable. This will generate an additional discrepancy between the baseline game and the planner’s
problem.
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channels that generate ineffi ciency. first, for any given vector of decision coeffi cients b,
communication intensity vectors r̂ and p̂ are larger in the planner’s solution, namely, for
any given pattern of influence, agents under-invest in communication. Second, the h∗ji are
smaller in the planner’s solution, meaning that there is an additional feedback effect that
goes through influence. In the planner’s solution, agents expect communication intensities
to be higher and hence they are more influenced by signals they receive. As both effects go
in the same directions, this proves the following:

Proposition 4 In the equilibrium of Γ∗ (D,k, s) all the decision coeffi cients and commu-
nication intensities are larger than in the equilibrium of Γ̃ (D,k, s).

Now that we know that communication investment is too low, we can ask whether
underinvestment is more of a problem for active or for passsive communication. Namely,
for any directed link between two agents, is the ratio rij/pij higher in the baseline case or
when the planner chooses communication intensities? From Proposition 3 and Theorem 1,
we see that:

Proposition 5 In the planner’s solution the active/passive ratio ratio depends only on
relative cost

rij
pij

=
kp
kr
.

Instead, in the non-cooperative solution of the ratio is

rij
pij

=
kp
kr

√
dji
Di

In general, we should expect Di > dji.16 For instance, if the problem is symmetric
(dij = d̄Q for all i 6= j and dii =

(
1− (n− 1) d̄

)
Q), we have

γij = d̄ for all i 6= j.

Consider the case in which active and passive communication are equally costly, i.e. kp = kr.
As d̄ < 1

n−1 , this means that the ratio between active and passive communication is bounded
above by 1

n−1 , implying that: (i) it is smaller than 1; (ii) it becomes lower as n increases.
The only case where passive communication does not have an intrinsic advantage is when
there are only two agents. Conversely, as the number of agents increases, the ratio tends to
zero.

As we mentioned after Theorem 1, there is strategic asymmetry between active and
passive communication, which favors passive communication. We should now offer a more
precise intuition for this result. consider two agents, i and j, and focus on communication

16Only in the case that agent i is particularly prominent and the interaction coeffi cient dji for another
agent j is larger than the sum of interaction coeffi cients Di that affect agent i, active communication can
be relatively more intensive than passive communication.
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from j to i, both i listening (pij) and j speaking (rij). The payoffs of the two agents, net
of communication costs, are given by

ui = −dii (ai − θi)2 −
∑
k 6=i

dik (ai − ak)2

uj = −djj (aj − θj)2 −
∑
k 6=j

djk (aj − ak)2

The signal that i receives from j, yij , affects i’s action. As our equilibrium is linear,

daij
dyij

= bij .

An increase in the precision of the signal yij increases the precision of the action aij , which
in turn is beneficial to our risk-averse agents because it eliminates unnecessary noise in the
decision. However, the expressions for ui and uj show that this effect is asymmetric. For
the receiver i, the effect is quite direct as it involves his action ai directly, and it affects all
the terms of his payoff:

dui
dyij

= Dibij .

Instead, for the sender j the effect is less direct as it does not involve his action aj directly
but just the receiver’s action:

dui
dyij

= djibij .

The asymmetryc captures the idea that passive communication has a more immediate use
than active communication because the receiver can control the action directly, while the
sender must reply on the receiver’s decision.

Our results imply that organizations —and in particular firms —should look for direct
and indirect ways to incentivize communication, and in particular active communication.
Indeed, companies often boast about their culture of internal communication. Many man-
agement methods introduce protocols that require workers to set aside time to communi-
cating with other agents. A case in point is Quality Function Deployment (QDF), a quality
management method that originated in Japan and is now widely used acroos the world
(Akao 1990). There is direct evidence that QFD operates by increasing communication
intensity beyond hierarchical lines (Griffi n and Hauser 1992). Another example of a struc-
tured way to encourage communication is provided by the use of “quality circles”in Total
Quality Management (TQM).

It is interesting to note that management methods such as the above cited QFD place a
great emphasis on giving a voice to all team members, encouraging them to communicate
their information independent of their hierarchical position. In our set-up, this can be seen
as an attempt to reduce the cost of active communication, which, has we have just seen,
would be particularly useful to the company, especially if it is a large one.

Ichniowski and Shaw’s (1997) influential study of the effect of the adoption of human re-
sources management (HRM) practices finds a positive effect of setting up meetings between
managers and workers. Ichniowski et al (2005) considers in particular the role of commu-
nication and show that the successful adoption of innovative (and performance-enhancing)
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HRM practices requires investing in workers’connective capital. The latter, however, comes
at a cost: “these investments in connective capital can be costly —involving higher training,
screening, and information sharing costs, and potentially higher wages.”Thus it appears
that moving towards the planner’s solution requires the organization to invest in a set of
tools and practices that encourage employees to communicate.

The result that underinvestment in active communication is more severe than underin-
vestment in passive communication depends on our assumption that communication has a
pairwise nature. In our set-up, there are no economies of scale in sending signals to multiple
agents or receiving signals from multiple agents. Phone calls and site visits are good exam-
ples of pairwise costs. However, other communication modes display economies of scale on
the active side. The cost of sending an email or updating a website is almost independent
from the number of recipents or readers. However such economies of scale are mostly absent
on the passive side. As one expects, this would re-adjust the balance between active and
passive communication.17 This observation does not invalidate the result that there is a
tendency to underinvest in active communication; it just implies that the tendency can be
offset by strong economies of scale in active, but not passive, communication.

5 How Influent Is an Agent?

In this section, we use the characterization in Theorem 1 to measure the overall influence
of agents on their peers. Influence has so far only been discussed in bilateral terms: how
much does agent i influences agent j? We now ask how influent an agent is with respect to
all other agents. The global influence of agent i will capture the marginal effect of a change
in i’s local state on the other agents. The assumption that local states are independent
guarantees that influence is purely due to communication and coordination, and not to
spurious correlation between actions due to correlation between states.

The global influence of agent k, that we denote by Ik, is

Ik =
n∑
j=1

bjk k = 1, . . . , n

In words, the global influence of agent k corresponds to the sum of the expected effects
of a change on the agent’s local state on all actions (including the agent’s own action).The
average action of the group conditional on the values of ~θ = (θ1, . . . , θn) is equal to18

E~θ

 1

n

∑
k

n∑
j=1

bjkyjk

 =
1

n

∑
k

n∑
j=1

bjkθk =
1

n

∑
k

Ikθk

Our notion of influence is an equilibrium concept. It depends on the communication
investment and decision strategy that the players in our game choose. In this section we will
first show that our game-theoretic concepts is linked to an influential axiomatic measure of

17 In section 4 of the Supplementary Material, we modify the baseline model to allow for economies of scale
on the active communication side and we show that the ratio between active and passive communication is
approximately one.
18We define yii = θi for all i.
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centrality: the Invariant Method. We then illustrate, through an example insipred by Dalton
(1959), how this correspondence can be used to understand and measure organizational
phenomena.

5.1 Invariant Method

There are numerous ways of measuring social influence. In recent years, a particular index
—often referred to as the Invariant Method —has gained prominence in a number of fields.
At a theoretical level, Palacios-Huerta and Volij (2004) show that this is the only centrality
measure that satisfies four axioms: invariance to reference intensity, weak homogeneity, weak
consistency, and invariance to splitting of nodes. At a practical level, the Invariant Method
is at the core of Google’s PageRank algorithm, where it is used to measure the importance
of websites by looking at the frequency of links from other websites. The method is also
used by a newer generation of impact factors, like Eigenfactor.com.19

Given a network described by an n-square adjacency matrix G, let G̃ be the normalized
version of the matrix, where all the gii’s are set to zero and every element g̃ij is defined as

g̃ij =
gij∑
k 6=i gik

The Invariant Method index is defined as the smallest left eigenvector of matrix G̃,
namely the smallest strictly positive vector ι that solves

ι = G̃′ι (10)

Since G̃ is by definition an stochastic matrix its largest eigenvalue is equal to 1, and therefore
1 is aso the largest eigenvalue of Γ′. The Perron-Frobenius Theorem ensures then that there
exists a non-negative eigenvector of Γ′ associated to this eigenvalue. The invariant centrality
vector is just a normalization of this vector. Note that the vector can always be normalized
so that its elements sum up to one. From now on, we always use this normalization.

Hence, one way of understanding this definition is to see G̃ as a Markov transition matrix
and ι as its ergodic state. Imagine an object that bounces probabilistically from one node
to the other according to G̃: the value of ιi denotes the percentage of time that the object
spends on average in node i.

Another way of understanding the Invariant Method is to think of the “importance”of
node i as defined by a weighted sum of the other nodes’“importances,”where the weights
are given by the g’s, namely

ιi =
∑
j 6=i

g̃jiιj

In other words, node i “receives”a percentage g̃ji of the importance of node j. If we repeat
this exercise for all nodes, we obtain the system (10). Thus, i is the fixed-point of this
importance-distribution procedure.

19We refer to this centrality notion as the Invariant Method to be consistent with Palacios-Huerta and
Volij (2004). This notion is related to Katz centrality (Katz 1953). See Palacios-Huerta and Volij (2004)
and Jackson (2010) for a discussion of centrality measures.
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To connect the Invariant Method to our game, fix D, s, kr and kp, and define the payoff
function:

ui (a) = −

dii (ai − θi)2 +
1

t

∑
j 6=i

dij (ai − aj)2 + tγk2
r

∑
j 6=i

rji + tγk2
p

∑
j 6=i

pij

 ,

where t ∈ (0,∞).
For every value of the parameter t we have a well-defined instance of our game, which we

can call G (D, s, kr, kp, t). A decrease in t has two effects: it reduces the relative importance
of adaptation over coordination, and it reduces the cost of communication (even faster).

For every (D, s, kr, kp), we have a definition of:

• Global influence. For every t > 0, Theorem 1 provides to a unique characterization
of the equilibrium in communication and decisions, which in turn results in a unique
vector of global influences. We let Ii (t) denote the global influence of agent i when
the parameter has value t.

• Invariant Method index. Let Γ be the matrix with entries γii = 0 for all i, and
γij =

dij∑
k 6=i dik

, and, based on the definition of Invariant Method above, define. Based

on the discussion above, the invariant-method index of agent i is ιi, defined as the
i-th component of the vector that solves:

ι = Γ′ι

and that satisfies
∑

j ιj = 1. Note that this definition only makes use of the interaction
matrix D, not of s, kr, and kp.

The two notions are related by the following:

Theorem 6 As t → 0, the relative global influence of agents converges to the ratio of
invariant-method indices weighted by an adaptation vs coordination ratio. Namely, for any
i and j,

lim
t→0

Ii (t)

Ij (t)
=
ιi
ιj

ιi
ιj

dii
D−i
djj
D−j

In particular, if dii = djj and D−i = D−j for all i, j ∈ N , then we obtain that

lim
t→0

Ii (t)

Ij (t)
=
ιi
ιj

A number of remarks are in order:

• The proof, reported in the appendix, consists of five steps. First, we show that the
global influence of an agent Ii (t) can be written as weighted sum of the Bonacich
centrality indices of all the agents (more about this below), where the weight on agent
i is positive and the weights on all the other agents are negative. This first step is
inspired by Ballester, Calvo-Armengol and Zenou’s (2006) result on network games
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with linear-quadratic utilities, but extends the framework to asymmetric information
and endogenous communication. The second step —the most technically demanding —
shows that limt→0 Ii (t) exists and it is different from zero: there is thus a discontinuity
a zero (more about that below). Third, we show the actual statement of the theorem.
Finally, we check that the non-negativity constraints on r and p, which we abtracted
from in the rest of the proof, are actually satisfied in the limit, thanks to the fact that
the communication cost tends to zero fast.

• There are two related but distinct families of centrality measures. One, which we call
Invariant Method, was defined above.20 Such index is sometimes referred to as Katz
centrality. The other measure, which we refer to as ‘Bonacich centrality,’is based on
counting the number of paths that reach a certain node.21 Our paper establishes an
asymptotic link between these two measures, but of course it relies on the particular
underlying game that we are using and on the way we take limits. An interesting
question, outside the scope of the present paper, is whether general connections can
be established between the two families of measures. Our focus is mainly on the
Invariant Method as it is quite intuitive and widely used.

• When t = 0, Ii (t) is not well-defined. That is because when t = 0 Theorem 1 cannot
be used for two reasons. First, if all adaptation terms dii’s are zero, the matrix (I −Ω)
is singular and b’s are not well-defined, which captures the fact that agents who care
only about coordination can achieve their goals by agreeing to select all the same
arbitrary action independent of the realization of local states. Second, if kr and kp
are zero, the expressions in (ii) and (iii) of Theorem 1 are not well defined, because
the agents would choose infinite precisions.

• The precision of agent i’s state, si, does not appear in Theorem 6. This is because Ii
is defined as the marginal effect of an increase in i’s state on all other agents actions.
Of course, the average influence of an agent on other agents will be greater if the
precision si is low.

• Theorem 6 can be understood as an approximation result. When agents are much
more interested in coordinating with other agents than adapting to their own state,
relative influence can be approximated by a weighted version of the Invariant Method
index. To see this, suppose that we are given a particular game G (D,k, s). Use the
the elements of the form dii in the interaction matrix D to build a vector q. Define D̃

20The Invariant Method can be extended in various ways. One of the most common is to introduce a
‘damping factor’κ. Then the relation

ιi =
∑
j 6=i

g̃jiιj

becomes
ιi = (1− κ)

1

n
+ κ

∑
j 6=i

g̃jiιj .

In our case, κ = 1.
21See Jackson (2010, Chapter 2) for a discussion of these two families of measures and for more biblio-

graphical references. Confusingly, Bonacich worked on both families of measures and his name is associated
with both.
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as D when all elements of the diagonal are set to zero. The game can now be written

as G
(
q, D̃,k, s

)
and the influence of agent i is Ii

(
q, D̃,k, s

)
. The Theorem says

that, if q is suffi ciently small and k is even smaller, then relative global influence is
approximately equal to the ratio of Invariant Method indices:

Ii
(
q, D̃,k, s

)
Ij
(
q, D̃,k, s

) ∼ ιi

(
D̃
)

ιj

(
D̃
)

To illustrate the point about approximation, consider the following numerical example.
Suppose that s1 = s2 = s3 = s4, and that the interaction matrix is given by:

D =


q 1 2 4
1 q 2 4
1 2 q 4
1 2 4 q


As this example satisfies the condition that dii and D−i are constant across agents, we
can use the simplified version of Theorem 1. Also suppose that kr = kp = 0.001q2. For
every positive value of q, one can use Theorem 1 to compute the communication-based
global influence of each agent. The relative influence is depicted in Figure 2 below as
Ii/ (I1 + I2 + I3 + I4).

The Invariant Method indices can be easily computed from D:

ι1 = 0.125, ι2 = 0.208, ι3 = 0.303, ι4 = 0.363.

Figure 2 compares the Invariant Method indices and the global influences for positive
values of q. As Theorem 6 predicts, when q tends to zero, the relative global influences tend
to the Invariant Method indices. One can also see that the Invariant Method index is a
good approximation even for relatively large values of q, in fact values that are larger than
any of the other interaction parameters.22

22 It is interesting to note that other simple graph-theoretic measures would not perform as well. Take
for instance one of the simplest measures of the value of a node, the (relative) in-degree, namely the sum
of the strength of interactions from other agents toward a particular agent (divided by the total strength of
interaction over the graph):

IDi =

∑
j dij∑
i,j dij

The result would be
ID1 = 0.107; ID2 = 0.178; ID3 = 0.285; ID4 = 0.428,

which is a much worse approximation for for all values of q on the range.
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Figure 2: Global Influence

5.2 Influence in Hierarchical Structure

Because of its extreme tractability, the Invariant Method allows us to obtain simple predic-
tions on which agents will be more influent. Instead of trying to characterize the comparative
statics of the whole game, we can focus our attention on the Invariant Method indices, which
are computed on coordination parameters (dij)i 6=j only. As proven in theorem 1, these pre-
dictions are only approximately correct and the validity of the approximation depends on
how strong the coordination motive is vis a vis the adaptation motive.

The range of applications is virtually boundless. One natural question, which we can use
to illustrate the scope of the theorem, has to do with influence in hierarchies. According
to Weber, effi cient bureaucracies take the form of hierarchies where naturally influence
emanates from the top. Dalton (1959) famously showed that the Weberian view was at
odds with extensive evidence from a US chemical plant. His top managers appear to be less
influential than mid-managers. The latter form “cliques”with workers and exert the actual
control on production: these arrangements are often motivated by personal goals, but they
also help make the firm run smoothly. While these issues are complex and deserve a much
more systematic treatment (Gibbons 2003), our set-up yields a simple benchmark result on
when we should expect middle managers to be more influential than top managers. We
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first show that hierarchies show an intrinsic bias toward making top agents in higher tiers
more influential. We then give an example of what has to happen in order for this bias to
be overcome.

Consider a set of agents grouped into K levels. At level 0, there is one agent. An agent
at level k has s ≥ 2 subordinates at level k−1. Every agent reports to exactly one superior.
The agents at level K have no subordinates. If i is a subordinate of j, then dij , then we
assume that dij = 1 (a normalization) and dji = a.23 We call the problem we have just
defined a regular hierarchy —because it looks the same at every level, except the top and
the bottom.

Dalton’s non-monotonic influence cannot occur in a regular hierarchy:24

Proposition 7 For any s ≥ 2 and any 2 ≤ k ≤ K − 1, the ratio between the influence of
an agent and his superior is

Ik+1

Ik
= a.

In a regular hierarchy Dalton’s anomaly cannot arise: global influence is monotonic in
the agent’s level — increasing if a > 1 and decreasing if a < 1. Given that superiors have
many subordinates, but subordinates have only one superior, the natural assumption is that
a < 1. In fact, one might assume that an agent cares as much about his superior as the set
of his subordinates: as = 1. In that case, the influence ratio is the reciprocal of the span:

Ik+1 =
1

s
Ik.

To understand the economic intuition behind this result, go back to the non-cooperative
communication and influence game. In equilibrium, agents invest in communication mostly
along hierarchical lines. Agents will also invest in communicating laterally and skipping
levels (e.g. to coordinate with his superior’s action, an agent wants to know his supe-
rior’s superior’s state). However, these investments are much lower. Hence, influence too
follows hierarchical lines: the local state of a superior affects her subordinates’decisions
and the local states of inferiors affect their superior’s action. However, one superior affects
many subordinates while one subordinate only affects one superior. This multiplier effect
determines monotonicity in influence.

To find a situation à la Dalton where influence is non-monotonic, we abandon the as-
sumption that the hierarchy is regular. For instance, we can assume that interaction terms

23For any other two agents, we assume dij = 0. For a generic game, the presence of zero interaction
coeffi cients could lead to binding non-negativity constraints. However, in the asymptotic case under consid-
eration, the cost of communication becomes a negligible fraction of the coordination gains. As we show in
the proof of Theorem 6, nonnegativity constraints are not binding in the limit.
24This ratio does not apply at the top and at the bottom. At the bottom, monotonicity holds a fortiori.

At the top, there is a potential problem because the agent at level 0 interacts with only s agents and hence
he is at a disadvantage. For the top two levels,

I1
I0
= a+

1

s

The assumption that an agent cares equally about his superior and the set of his subordinates (as = 1)
guarantees monotonicity at the top.
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are stronger at lower levels than at higher levels. Suppose that K = 3 and s = 2. First,
consider a regular hierarchy where dij = 1 and dji = 1

2 for all superior-subordinate pairs.
The proposition above is confiemd: the Invariant Method indices increase monotonically
with the agent’s rank:

I0 = I1 =
8

48

I2 =
4

48

I3 =
1

48

Now modify the hierarchy above, by assuming that, if i belongs to k = 3 and j belongs
to k = 2, dij = 4 and dji = 2. For this irregular hierarchy, the Invariant Method yields:

I0 = I1 =
4

48

I2 =
5

48

I3 =
2

48

Hence, now agents at tier 2 are more influential that agents in the top two tiers.
What breaks the Weberian influence monotonicity in this example is that the two bottom

levels have strong ties to each other. They invest a lot in communicating with each other
and they influence each other. These strong ties do not extend to the top two levels and
agents at the two bottom level are not very influenced by the local states of top managers.
In Dalton’s language each level-2 manager with his two level-3 workers constitutes a vertical
symbiotic clique: a two-way tie between an offi cer and his subordinates that represents the
“most common and enduring clique in large structures”(Dalton, 1959, p.59).

The results in this section —both the proposition and the counterexample —are approx-
imations that were obtained by looking only at coordination coeffi cients of the form dij ,
with i 6= j. The analysis was much simpler than if we had tried to operate directly on the
equilibrium of the non-cooperative game. But we also know that the approximations are
valid, at least locally. For values of the adaptation coeffi cients dii and the communication
parameters k that are suffi ciently low, Theorem 1 guarantees that the relations that we have
uncovered for Invariant Method indices are reflected in similar relations for global influence.

6 Related Literature and Conclusions

We conclude with a discussion of the related literature and possible future lines of research.
This paper makes two original contributions. It is the first to analyze costly micro-

founded communication among an arbitrary set of agents. While it does so under a set of
specialized assumptions, the results can be used to understand a number of phenomena in
organizational economics. The second contribution is that it provides a first game-theoretic
microfoundation of the Invariant Method index.

Our contribution relates to two strands of literature: organizational economics and the
economics of networks.
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In the first strand of literature, there are a number of papers which study endogenous
communication in a variety of settings. Our approach to multi-person decision making
under asymmetric information, as well as our normal-quadratic formulation, is inspired
by Marschak and Radner’s (1972) team theory. Some recent papers (Dessein and Santos
2006, Alonso et al. 2007, Rantakari 2007, Dessein et al 2006) explore decentralized decision
making within organizations. Besides sharing their normal-quadratic set-up, we are also
interested in the tradeoff between adaptation and coordination. We are closest to Dessein
and Santos (2006), who analyze the role of endogenous communication. In their model, an
agent can send a signal about his local state to the other agent, and the precision of the signal
is endogenous.25 They show the existence of complementarities between communication,
adaptation, and job description: in particular, when communication costs decrease, the
organization is more likely to adopt a new set of organizational practices that include broader
tasks and more adaptation. The present paper is complementary to this literature: while
it abstracts from a number of organizational dimensions, it provides a general framework
to study endogenous information flows, which allows to draw a number of lessons on what
communication networks we should expect to observe in a variety of complex organizational
architectures.

The present work is also close to Dewatripont and Tirole (2005), who analyze a model
of endogenous costly communication between a sender and a receiver. As in our model,
both active and passive communication are endogenous and costly, and there are positive
externalities (it takes two to communicate). Dewatripont and Tirole’s communication model
has a number of features that are absent here, such as the presence of signaling and the
possibility of sending “cues”— information about the sender’s credibility. Obviously, our
contribution is to extend endogenous communication to complex architectures. While our
representation of pairwise communication is simpler, we believe it still captures Dewatripont
and Tirole’s insight about moral hazard in communication. For instance, their comparative
statics results on congruence find a partial parallel in our Proposition ??.

Our work is also related to Van Zandt (2004), a model of endogenous costly communica-
tion where several agents can transmit information at the same time. This leads to screen-
ing costs on the part of receivers and the potential for “information overload”. Van Zandt
examines possible mechanisms for reducing overload —an important problem in modern or-
ganizations. Our paper abstracts from information overload, by assuming that receivers do
not face a screening problem (they can always choose not to listen to a particular sender).

Following the seminal work of Radner (1993), the literature of organizational economics
has also studied the role of networks in minimizing human limitations in information process-
ing. The works of Bolton and Dewatripont (1994), Van Zandt (1999a), Garicano (2000),
Guimerà et al. (2003), and Dodds et al. (2003) highlight the importance of hierarchies,
and more general network structures, to diminish the costs related to processing informa-
tion that flows through the network of contacts. This literature is surveyed by Van Zandt
(1999b) and Ioannides (2003). Our work is complementary to this one, and analyzes how
individual payoff complementarities shape both the network structure of communication
and the equilibrium actions.

25One technical difference is that Dessein and Santos’(2006) signals are either fully informative or unin-
formative, and precision is defined as the probability that the signal is informative. Here, instead, signals
are normally distributed and the precision is the reciprocal of the variance.
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Cremer, Garicano, and Prat (2007) formalize Arrow’s (1974) idea of coding: the medium
of communication used by a group of people (the organizational language) is endogenous
and it determines communication costs. For analytical tractability, in the present model the
communication medium is not modeled explicitly but it is represented by a communication
cost function.26

Related work can also be found in political economy. Dewan and Myatt (2007) analyze
the role of communication in the interplay of leaders and activists in political parties. Lead-
ers are heterogeneous in two different skills: their ability to interpret which is the correct
policy to promote, and the clarity of communication of his ideas to the activists. Activists
seek to advocate for the correct policy by listening with different intensities to the party
leaders. The authors show that, generally, clarity in communication is the leader’s ability
that induces higher influence on activists’opinion. Their interpretation of communication is
close to the one we propose in our work: in a bayesian game with quadratic payoff functions
and normally distributed signals, that represent the messages send and received, agents can
affect the precision of these signals. On the other hand, the communication protocols and,
therefore, the strategic effects of communication are different in the two models, as well as
the questions that are analyzed.

In the second strand of literature — network economics — the closest contribution is
Calvó-Armengol and de Martí (2009), which considers a normal-quadratic team-theoretical
set-up and studies the effect of communication among agents. The authors provide a full
characterization of the decision functions and the equilibrium payoffs given a communication
structure. Calvó-Armengol and de Martí also study what the best communication struc-
ture is when the overall number of links among agents is bounded: they provide suffi cient
conditions for the optimal communication network to be a star or the maximum aggregate
span network. However, the only choice between two nodes is no communication or full
communication, so the kind of communication intensity analysis that we perform here is
absent.

Morris and Shin (2007) also consider a normal-quadratic setup. In their model, with a
continuum of agents, they allow for partial communication among predetermined groups.
They analyze the welfare effects of public and semi-public information (derived from partial
communication), complementing their previous analysis on the value of public information
(Morris and Shin, 2002).

This paper also adopts a normal-quadratic specification, close to the one in Calvó-
Armengol and de Martí. The key innovation here is of course that communication is en-
dogenous. We also move away from a team-theoretical framework (now a special case, when
all agents belong to the same team), we introduce the idea of communication intensity and
we distinguish between active and passive communication.27

Hagenbach and Koessler (2008) and Galeotti, Ghiglino and Squintani (2009) also con-

26Cremer (1993) and Prat (2002) study costly endogenous information collection in a team-theoretic
setting. Hellwig and Veldkamp (2008) examine optimal information choices in a strategic setting. The
present paper is complementary in that it endogenizes communication rather than information collection.
27The literature of information sharing in oligopoly has also considered a normal-quadratic setup. See, for

example, Vives (1994), Gal-Or (1985, 1986), and Raith (1996). Vives (1999) surveys this literature. While
the setup in these papers bears some resemblance with our one, there are several differences in the analysis,
both because communication is public and hence there is no network component and because the focus is
quite different (industry competition rather than organization economics).

28



sider, as we do, strategic endogenous communication in a network game. However, their
focus is on costless, non verifiable information (cheap talk) when agents may have biases
as in Crawford and Sobel (1982). Our set-up is different in that we focus on costly and
verifiable information. The kind of issues we ask is thus entirely different (and complemen-
tary).28

With regards to the literature on the formation of (communication) networks, Bloch and
Dutta (2007) study the creation of communication networks with endogenous link strength.
In their model, agents have a fixed resource, for example time, and have to decide how
to allocate it to create connections with others. The benefits of a connection depends on
the exposure decisions of both agents involved in it. Furthermore, in the spirit of the
connections model introduced in Jackson and Wolinsky (1996), an agent obtains benefits of
indirect connections through the more reliable path connecting them with each one of the
agents in the society. In their setup, both the equilibrium and the effi cient networks are
star-shaped, i.e., with one agent connected to all the rest of the population and all the rest
connected only to this center.

Rogers (2007) analyzes another network formation game in which all agents have a
limited resource available to spend building links with the rest of agents, but differs with
the work of Bloch and Dutta in the structure of benefits. In Rogers (2007) the utility of
an agent depends on the utility of each other agent with which he is directly connected.
This recursive definition of utilities generates indirect effects that spread through indirect
connections of any length. The author analyzes two games, one in which the dependency
expresses that each agent gives utility to his connections, and another one in which the
dependency expresses that each agent receives utility from his connections. In both cases,
the Nash equilibria are characterized.

Our paper is also linked with the growing literature on games played in a network, in
which players’payoffs are intimately related to the geometry of relations among them.29

Ballester et al. (2006) analyze a class of complete information games with quadratic payoffs
and pairwise dependent strategic complementarities. They show that in the equilibrium of
these games the effort exerted by each agent strongly depends on his position of the network
of relations. In particular, this effort is proportional to his Katz-Bonacich centrality mea-
sure (Bonacich, 1987), that measures his prominence derived from the direct and indirect
connections in which he is involved. While our setup differs in a number of ways with theirs
one, we also establish a close connection of individual decisions with the Katz-Bonacich
centrality measure.

Chwe (2000) studies a collective action problem with communication. In particular,
agents are connected in a network and they communicate to their neighbours their willing-
ness to participate in an activity. The analysis provides a neat picture of how the network
shapes individual decisions and helps or precludes coordination. Our work also analyzes
a coordination game with incomplete information and communication, but in our case the

28A point of overlap with Hagenbach and Koessler (2008) is their result that, when information is fully ver-
ifiable, agents will want to communicate all they know. This corresponds to our set-up when communication
costs go to zero.
29We analyze an incomplete information game played in a network. However, as usual in the literature,

we assume full knowledge by all players on the realized network structure. For some facts about network
games with incomplete information on the network structure we refer the interested reader to Galeotti et al.
(2007).
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sources of incomplete information and the specification of the coordination game are differ-
ent and communication is endogenous.

Goyal and Galeotti (2008) is among the few works that analyze, as we do, at the same
time the network formation process and the play of a game that depends on the network
formed. The authors study a game in which payoffs depend on the, costly, information
they acquire and gather from their neighbours in a network of relations. The analysis
of this game in a fixed network is performed in Bramoullé and Kranton (2008), in which
a set of varied possible equilibria are presented. The novelty in Goyal and Galeotti is
that they allow agents to choose their connections. They show that the introduction of
endogenous network structures induce a simpler core-periphery structure in the equilibrium
formed. In particular, equilibrium networks show a core-periphery pattern in which a set
of few individuals are highly connected with a high number of poorly connected agents.
While their setup is different from ours, we share Goyal and Galeotti’s goal of studying
endogenous network formation (in our case, the formation of communication networks) and
games played on networks (in our case, the choice of actions at the last stage) in a unified
framework.

The present paper is a step towards modeling equilibrium endogenous costly information
flows among multiple agents, but much work remains to be done. Of course, it would be
interesting to know what happens beyond the normal-quadratic set-up —and to show under
what conditions the normal-quadratic is a good approximation of other settings. Other
communication structures are explored in the Supplementary Material section (broadcast-
ing and alternative communication protocols). However, it would be interesting to take a
more general approach and perform comparative statics on communication modes, for in-
stance asking how communication and influence change when the communication technology
changes.

Does our model have the potential to be used for empirical work? What kind of data
could identify the model? Suppose that we observe the information flows among nodes of
a network (e.g. what amount of resources each firm spends for liaising with other firms)
but not the underlying interaction matrix, communication cost parameters, local state un-
certainty, or decision functions. The potential for identification is there. If the number of
agents is at least four, Theorem 1 supplies a number restrictions that is at least as large as
the number of primitive variables to be estimated.30

A similar identification potential exists in the other formulation of the problem, which
is explored in the Appendix. This observation, although preliminary, appears to indicate
that data on information flows could be a fruitful avenue for investigating organizations
empirically, if combined with a model —not necessarily the present one —of endogenous
communication in network games (Garicano and Prat 2011).

Finally, we have considered and static setup and, although this seems a natural starting
point for our inquire, it would be interesting to analyze dynamic communication protocols
in a similar environment. Information would then come from direct communication and
from learning of the past activity of some, or all, agents in the organization. This relates
to a recent literature on social learning in networks (see for example, Bala and Goyal, 1998

30The Theorem consists of system of n (3n− 2) equations in 2n2 + n+ 2 variables (b’s, d’s, s’s, and k’s).
There are at least as many equations as variables if n ≥ 4.
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and Acemoglu et al., 2008) and we plan to pursue this analysis in future research.

7 Appendix A. Proofs [We need to separate the proof of the
Equivalence result from the proof of the equilibrium result]

Proof of Theorem 1:

Agent i’s payoff gross of communication costs is given by

ui = −

dii (ai − θi)2 +
∑
j 6=i

dij (ai − aj)2


As is well-known for quadratic games, the action that maximizes i’s expected payoff is

ai = diiθi +
∑
j 6=i

dijE [aj ] .

In the conjectured equilibrium, in the second stage of the game agent i knows that he has
chosen (r̃ji)j 6=i and (p̃ij)j 6=i (which may be different from the equilibrium values). He as-
sumes that the other agents have chosen communication intensities according to the equilib-
rium values and that they will choose actions according to the equilibrium linera strategies.
His payoff gross of communication costs is given by. The optimal action is then

ai = diiθi +
∑
j 6=i

dijE

bjjθj +
∑
k 6=j

bjkyjk


= diiθi +

∑
j 6=i

dijE

bjjθj +
∑
k 6=j

bjk (θk + εik + ηik)


The solution to this classical signal extraction problem is a linear function

ai = biiθi +
∑
j 6=i

bijyij

where coeffi cients are defined by

Dib̃ii = dii +
∑
j 6=i

dijbji (11)

Dib̃ij =
rij p̃ij

sjrij + sj p̃ij + rij p̃ij

∑
k 6=i

dikbkj for all j 6= i (12)

Now consider the first stage of the game. While precisions yield more compact final
expressions, the first part of this proof is more readable if we use variances. We denote by
σi = 1/si the variance of θi, ρij = 1/rij the variance of εij , and πij = 1/pij the variance of
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ηij (the omission of the square sign is intentional: σ, ρ and π are variances not standard
deviations). The payoff for agent i in Γ (D,k, s) is given by

ui = −

dii (ai − θi)2 +
∑
j 6=i

dij (ai − aj)2 +
∑
j 6=i

k2
r

(
1

ρji

)
+
∑
j 6=i

k2
p

(
1

πij

) ,

Given the strategies to be used in the second stage:

−ui = dii

(b̃ii − 1
)
θi +

∑
k 6=i

b̃ik (θk + εik + ηik)

2

+
∑
j 6=i

dij

∑
k

(
b̃ik − bjk

)
θk +

∑
k 6=i

b̃ikεik +
∑
k 6=i

b̃ikηik −
∑
k 6=j

bjkεjk −
∑
k 6=j

bjkηjk

2

+
∑
j 6=i

k2
r

(
1

ρji

)
+
∑
j 6=i

k2
p

(
1

πij

)
which can be re-written as

−ui = dii

((b̃ii − 1
)
θi

)2
+ 2

((
b̃ii − 1

)
θi

)∑
k 6=i

b̃ik (θk + εik + ηik)

+

∑
k 6=i

b̃ik (θk + εik + ηik)

2
+
∑
j 6=i

dij

(b̃ii − bji) θi +
∑
k 6=i

(
b̃ik − bjk

)
θk +

∑
k 6=i

b̃ikεik +
∑
k 6=i

b̃ikηik −
∑
k 6=j

bjkεjk −
∑
k 6=j

bjkηjk

2

+
∑
j 6=i

k2
r

(
1

ρji

)
+
∑
j 6=i

k2
p

(
1

πij

)
The expected payoff of i is:

−E [ui] = dii

(b̃ii − 1
)2
σi +

2∑
k 6=i

b̃2ik (σk + ρik + πik)

 (13)

+
∑
j 6=i

dij

∑
k

(
b̃ik − bjk

)2
σk +

∑
k 6=i

b̃2ik (ρik + πik) +
∑
k 6=j

b2jk
(
ρjk + πjk

)
+k2

r

∑
j 6=i

1

ρji
+ k2

p

∑
j 6=i

1

πij
.

By the Envelope Theorem, we can disregard effects of the form db̃ik/dρik. The first-order
conditions are:

−∂E [ui]

∂ρji
= dijb

2
ji + k2

r

(
1

ρji

)2

= 0 (14)

−∂E [ui]

∂πij
= Dib̃

2
ij + k2

p

(
1

πij

)2

= 0. (15)
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Now replace precisions in (14) and (15) and combine them with (11) and (12) for all
agents to obtain a system of equations which characterize the equilibriium:

Dibii = dii +
∑
j 6=i

dijbji for all i (16)

Dibij =
rijpij

sjrij + sjpij + rijpij

∑
k 6=i

dikbkj for all i, j 6= i (17)

√
djibij

kr
= rij for all i, j 6= i (18)

√
Dibij
kp

= pij for all i, j 6= i (19)

Restrict attentionon a particular i. Plugging (18) and (19) into (17), we obtain(
sjkp

√
djibij + sjkr

√
Dibij +

√
dji
√
Dib

2
ij

)
Dibij =

√
dji
√
Dib

2
ij

∑
k 6=i

dikbkj for all j 6= i

which simplifies to(
sj

kp√
Di

+ sj
kr√
dji

+ bij

)
Di =

∑
k 6=i

dikbkj for all j 6= i

and can be re-written as

bij −
∑
k 6=i

dik
Di

bkj = −sj

(
kp√
Di

+
kr√
dji

)
for all j 6= i. (20)

Also note that (16) can be re-written as

bii −
∑
k 6=i

dik
Di

bki =
dii
Di

(21)

Using the definitions of ωij and hij , the system composed of (20) and (??) becomes

bii −
∑
k 6=i

ωikbki = hii

bij −
∑
k 6=i

ωikbkj = hij for all j 6= i

which in matrix notation corresponds to:

(I −Ω) b·j = h·j ,

with solution
b·j = (I −Ω)−1 · h·j .

The last expression, combined with (18) and (19), constitutes the statement of the
theorem.
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Proof of Proposition 2:

Let M = (I −Ω)−1, and let a denote the increase (resp. decrease) in dij (resp. dik). We
have

d

da
b·i =

d

da
M · h·i +M · d

da
h·i

Note that

d

da
M =

d

da

(
(I −Ω)−1

)
= −

(
(I −Ω)−1

)′ d
da

(I −Ω) (I −Ω)−1

=
(

(I −Ω)−1
)′ d
da

Ω (I −Ω)−1

We will evaluate the effect of a change of dij and dik starting form a symmetric situation,
namely dij = d for all i and j and si = s for all i. Then we have

I −Ω =


1 −ω · · · −ω
−ω . . . . . .

...
...

. . . . . . −ω
−ω · · · −ω 1


with inverse

M = K


1− (n− 1)ω ω · · · ω

ω
. . . . . .

...
...

. . . . . . ω
ω · · · ω 1− (n− 1)ω


where K is a constant that depends on w. We also have

hji =

{
1− (n− 1)ω if i = j

−s
(

kp√
nd

+ kr√
d

)
otherwise

We have

d

da
M =

 1− (n− 1)ω · · · ω
...

...
ω · · · 1− (n− 1)ω

 d

da
Ω

 1− (n− 1)ω · · · ω
...

...
ω · · · 1− (n− 1)ω


But note that d

daΩ contains zeros everywhere except a 1 in ij and a -1 in ik. Hence it is
easy to see that d

daM = 0. Thus d
dab·i = M · ddah·i. Now note that

d
dah = 0 everywhere

except for
d
dahji = −s dda

(
kp√
D

+ kr√
dji

)
= dh > 0

d
dahki = −s dda

(
kp√
D

+ kr√
dki

)
= −dh
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Then note that

d

da
b·i =

 1− (n− 1)ω · · · ω
...

...
ω · · · 1− (n− 1)ω

 · d
da
h·i

=


0 if

(1− nw) dh for bji
− (1− nw) dh for bki

So the only b’s that change are bji (up) and bki (down). All the others are unaffected.
The only communication intensities to be affected are

rji =

√
dijbji

kr

rki =

√
dikbki
kr

pji =

√
Dbji
kp

pki =

√
Dbki
kp

Proof of Proposition 3:

The agents’best responses in the second round, given communication intensities and other
agents’strategies are the same as in the baseline case, namely (16) and (17). Instead, of
course, the first-order condition for communication intensities given the b’s has changed.
The planner solves:

− ∂

∂ρji

n∑
k=1

E [uk] =

 n∑
k=1

dik +

n∑
k 6=i

dki

(b∗ij)2 − kr ( 1

ρji

)2

= 0

− ∂

∂πij

n∑
k=1

E [uk] =

 n∑
k=1

dik +
n∑
k 6=i

dki

(b∗ij)2 − kp( 1

πij

)2

= 0

which can be re-written as

r∗ij =

√√√√ n∑
k=1

dik +
n∑
k 6=i

dki
b∗ij
kr

for all i 6= j

p∗ij =

√√√√ n∑
k=1

dik +

n∑
k 6=i

dki
b∗ij
kp

for all i 6= j

The values of h∗ are obtained by replacing p∗ and r∗ in (16) and (17).
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Proof of Proposition 4:

We have that h∗ji > hji for all j 6= i and that h∗ii = hii. This immediately implies that
b∗ji > bji for all i, j and, therefore, that r∗ij > rij and p∗ij > pij for all i, j because

∑n
k=1 dik +∑n

k 6=i dki > dji and
∑n

k=1 dik +
∑n

k 6=i dki > Di.

Proof of Theorem 6

The proof consists of five steps.

Step One

Bonacich Centrality, developed in sociology (Bonacich 1987) and applied to economics by
Ballester et al (2006) is defined as follows. Consider a network described by an n-square
adjacency matrix G, where gij ∈ [0, 1] measures the strength of the path from i to j. For
any positive scalar a (suffi ciently low), define the matrix

M (G, a) = [I− aG]−1 .

Each element mij of the matrix M can be interpreted as a weighted sum of the paths —
direct or indirect —leading from node i to node j. The parameter a is a decay parameter
that may put a lower weight on less direct effects. Let mij (G, a) be the ij element ofM .

The Bonacich centrality measure of node i is defined as

βi (G, a) =
n∑
j=1

mij (G, a) .

The centrality of node i is determined by the weighted sum of paths to all nodes that begin
in i.

Global influence and Bonacich centrality are connected by the following result:31

Lemma 8 The global influence of agent i can be expressed as a weighted sum of all the
agents’ Bonacich centrality measures, computed on Ω′ with decay factor one, where the
weights are given by the h·i

Ii =
n∑
j=1

βj
(
Ω′, 1

)
hji.

The influence of agent i is a sum of weighted Bonacich measures, where the weights
on the agent’s own measure is positive (because hii = ωii) while all the other weights are
negative. Hence, an agent’s global influence depends positively on the centrality of that
agent and negatively on the centrality of all other agents.

31Compared to Ballester, Calvo-Armengol, and Zenou’s (2006) Theorem 1, there are three differences.
First, their result is based on symmetric information, while ours is based on asymmetric information and
endogenous communication. Second, their measure is a Bonacich index, while our is a weighted sum of
Bonacich indices. Third, their decay rate varies according to the model, while ours is always one. For all
these reasons, it is not easy to establish an intuitive connection between the two results.
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Proof. From Theorem 1, we know that, for all i,

b·i = (I −Ω)−1 · h·i.

We can write b1i
...
bni

 =


(

(I −Ω)−1
)

11
· · ·

(
(I −Ω)−1

)
1n

...
...(

(I −Ω)−1
)
n1
· · ·

(
(I −Ω)−1

)
nn

 ·
 h1i

...
hni



=

n∑
j=1

hji


(

(I −Ω)−1
)

1j
...(

(I −Ω)−1
)
nj

 =

n∑
j=1

hji


(

(I −Ω)−1
)′
j1

...(
(I −Ω)−1

)′
jn


so that

Ii =
n∑
k=1

bki =
n∑
k=1

n∑
j=1

hji

(
(I − Ω)−1

)′
jk

=
n∑
j=1

(
n∑
k=1

(
(I −Ω)−1

)′
jk

)
hji.

If we define the G matrix in the Bonacich measure to be the transpose of the Ω matrix
used in Theorem 1 and we let a = 1, we have

M (G, a) = M
(
Ω′, 1

)
=
[
I −Ω′

]−1
=
(

[I −Ω]−1
)′

and hence
n∑
k=1

(
(I −Ω)−1

)′
jk

= βj
(
Ω′, 1

)
,

so that

Ii =
n∑
j=1

βj
(
Ω′, 1

)
hji

Step Two

For any given t the matrix Ω(t) is equal to

Ω (t) =


0 d12

td011+
∑
j 6=1 d1j

· · · d1n
td011+

∑
j 6=2 d1j

d21
td022+

∑
j 6=2 d2j

0 · · · d2n
td022+

∑
j 6=2 d2j

...
...

. . .
...

dn1
td0nn+

∑
j 6=n dnj

dn2
td0nn+

∑
j 6=n dnj

· · · 0


Note that Ω(1)) = Ω and Ω(0) = Γ.
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For any t > 0 the Bonacich centrality vector associated to Ω (t) , that we denote β(t),
is the solution to the system (

I−Ω′ (t)
)
β (t) = 1

Note that the Bonacich centrality measure is well-defined iffthe determinant of (I−Ω′(t))−1

is different than 0, and in such a case the solution to the previous system is

β(t)=
(
I−Ω′(t)

)−1
1

The Invariant Method influence vector is related to the system(
I−Ω′(0)

)
x = 0

Let E be the set of solutions to this system. Since the largest eigenvalue of Ω′(0) is equal
to 1 the set E is equal to the eigenspace of this largest eigenvalue. The Invariant Method
influence vector, that we denote ι is the only element in this eigenspace that satisfies the
additional normalization condition

∑n
i=1 ιi = 1.

We are going to prove the following result:

Lemma 9 The limit of tβ(t) as t tends to 0 is a strictly positive vector, i.e. all its entries
are non-negative and at least one of them is strictly positive.

Proof. Let D−i =
∑

j 6=i dij and Di(t) = td0
ii +D−i. Define Ω̂(t) as the matrix with entries

ω̂ij(t) =
dij
Di(t)

for all i, j. (The difference with respect to Ω(t) is that it includes the elements
td0ii
Di(t)

in the diagonal.) Note that, by definition, Ω̂(t) is a stochastic matrix for all t. Also

define Diag(t) as the diagonal matrix diag(D1(t)
d011

, . . . , Dn(t)
d0nn

). It immediately follows that

Ω(t) = Ω̂(t)− tDiag−1(t)

Hence, we obtain that

I−Ω(t) = I− Ω̂(t) + tDiag−1(t)

=
(
I + tDiag−1(t)

)
I− Ω̂(t)

=
(
I + tDiag−1(t)

)
·
(
I−

(
I + tDiag−1(t)

)−1
Ω̂(t)

)
Therefore, we obtain that

(I−Ω(t))−1 =
(
I−

(
I + tDiag−1(t)

)−1
Ω̂(t)

)−1
·
(
I + tDiag−1(t)

)−1

The matrix
(
I + tDiag−1(t)

)−1
is again a diagonal matrix, with entries equal to

(
I + tDiag−1(t)

)−1

ii
=

1

1 +
td0ii
Di(t)

=
td0
ii +D−i

2td0
ii +D−i

Each of these diagonal entries tend to 1 when t tends to 0.

The matrix
(
I + tDiag−1(t)

)−1
Ω̂ is bounded from below (entry by entry) by

(
mini

td0ii+D−i
2td0ii+D−i

)
Ω̂
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and it is bounded from above by
(

maxi
td0ii+D−i
2td0ii+D−i

)
Ω̂. Since all these matrices are non-

negative, this implies that(
I−

(
I + tDiag−1(t)

)−1
Ω̂
)−1

=
∑
k≥0

[(
I + tDiag−1(t)

)−1
Ω̂(t)

]k
is bounded from below by

∑
k≥0

(
min
i

td0
ii +D−i

2td0
ii +D−i

)k (
Ω̂(t)

)k
and bounded from above by

∑
k≥0

(
max
i

td0
ii +D−i

2td0
ii +D−i

)k (
Ω̂(t)

)k
Remember that we want to show that the limit of t (I−Ω′(t))−1 1 as t tends to 0 is a
strictly positive vector (meaning that all its entries are non-negative and at least one entry
is strictly positive). An alternative expression of this vector is

t
(
I + tDiag−1(t)

)−1 ·
(
I− Ω̂′(t)

(
I + tDiag−1(t)

)−1
)−1

1

We have proved before that
(
I + tDiag−1(t)

)−1
tends to the identity matrix, so we have to

focus on the limit of
t ·
(
I− Ω̂′(t)

(
I + tDiag−1(t)

)−1
)−1

1

We have

t

∑
k≥0

(
min
i

td0
ii +D−i

2td0
ii +D−i

)k
Ω̂k

1 ≤

≤ t ·
(
I−

(
I + tDiag−1(t)

)−1
Ω̂
)−1

1 ≤ t

∑
k≥0

(
max
i

td0
ii +D−i

2td0
ii +D−i

)k
Ω̂k

1

Since Ω̂ is stochastic, we know that Ω̂k1 = 1 for all k ≥ 0. Therefore

t

 1

1− td0min+Dmin
2td0min+Dmin

1 ≤ t ·
(
I−

(
I + tDiag−1(t)

)−1
Ω̂
)−1

1 ≤ t

 1

1− td0max+Dmax
2td0max+Dmax

1

where we define Dmin and d0
min (resp. max) as the values of D−i∗ and d

0
i∗i∗ for the i

∗ that

minimizes (resp. maximizes) td0ii+D−i
2td0ii+D−i

. If we pre-multiply all vectors by 1′ and take limits

we get that

n
Dmin

d0
min

≤ lim
t→0

t1′ ·
(
I−

(
I + tDiag−1(t)

)−1
Ω̂
)−1
· 1 ≤ nDmax

d0
max
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Given an square matrix X = (xij) we have that 1′ ·X · 1 =
∑

i,j xij =
∑

i,j xij = 1′ ·X′ · 1.

Therefore the argument above shows that the limit of t1′ ·
(
I− Ω̂′

(
I + tDiag−1(t)

)−1
)−1
·1

as t tends to 0 is also bounded from below by the nDmin
d0min

and from above by nDmax
d0max

. This

means that the limit of t
(
I− Ω̂′

(
I + tDiag−1(t)

)−1
)−1
· 1 is an strictly positive matrix

and therefore the limit of t · Ω̂′
(
I−

(
I + tDiag−1(t)

)−1
)−1
·1 is an strictly positive vector,

as we wanted to show. (We are assuming here that Dmin is strictly positive; otherwise, the
equilibrium of the game would entail no communication).

Step Three

Lemma 10 The limit of tβ(t) as t tends to 0 is proportional to the Invariant Method index.

Proof. Now define
S0 = {t ∈ R s.t. det

(
I−Ω′ (t)

)
= 0}

Note that 0 ∈ S0.
We know from the previous lemma that limt→0 tβ(t) exists and is a well-defined strictly

positive vector. By definition, tβ(t) satisfies(
I−Ω′ (t)

)
tβ(t) = t1

for all t ∈ R\S0. We can take limits at both sides of this equation to obtain(
I−Ω′ (0)

) (
lim
t→0

β̂(t)
)

= 0

This means that the limit vector limt β̂(t) satisfies the condition that characterizes the
set E, and therefore is proportional to the invariant vector.

Step Four

From Lemma 8, we know that

Ii =

n∑
j=1

βj
(
Ω′, 1

)
hji.

By applying the definition of hji and the result in Step Two, we see that

lim
t→0
Ii = lim

t→0
βi(t)ωii(t)

We also have

lim
t→0

βi(t)ωii(t) = lim
t→0

βi(t)
tdii

tdii +D−i
= lim

t→0
tβi(t) lim

t→0

dii
tdii +D−i

=
(

lim
t→0

tβi(t)
) dii
D−i

We can now apply Lemma 3 to get the result:

lim
t→0

Ii(t)
Ij(t)

=

(
lim
t→0

tβi (t)

tβi (t)

) dii
D−i
djj
D−j

=
ιi
ιj

dii
D−i
djj
D−j
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Step Five

Theorem 1 requires that communication costs are suffi ciently low in order to have an interior
solution. In the previous four steps we operated under the assumption that non-negativity
constraints are not binding. In this last step we vindicate that assumption by showing
that when t approaches 0 we don’t hit any boundary in the actions and communication
intensities decisions.

Lemma 11 If the non-negativity constraints on bi, r−i and p−i are not binding for t = 1,
then they are not binding for any 0 < t < t̄, for some t̄ ∈ (0, 1).

Proof. Consider

ũi (a) = −

dii (ai − θi)2 +
1

t

∑
j 6=i

dij (ai − aj)2 + tk2
r

∑
j 6=i

rji + tk2
p

∑
j 6=i

pij


To prove that bis does not hit a boundary condition just note that when t tends to 0

the vectors hi(t) converge to a non-negative vector for all i. Since if djk > 0 for all j 6= k
the matrix (I−Ω(t))−1 is strictly positive for all t ∈ (0, 1), the vector (I−Ω(t))−1hj(t) is
non-negative if t is close to 0.

To prove interiority of active communication decisions, we can rewrite rij for each i, j
with i 6= j as

rij(t) =

√
dji

kr
bij

= (I−Ω(t))−1
ij

√
dji

kr

djj
Dj
− sj

∑
l 6=j

(I−Ω(t))−1
il

(
kp
kr

√
dji
Dj

+ 1

)

= (I−Ω(t))−1
ij

√dji
kr

djj
Dj
− sj

∑
l 6=j

(I−Ω(t))−1
il

(I−Ω(t))−1
ij

(
kp
kr

√
dji
Dj

+ 1

)
The first element (I−Ω(t))−1

ij tends to +∞ when t tends to 0. If γ is suffi ciently large,
the first term in the expression in brackets is positive and tends to infinity as t tends to 0,
while the second term in brackets, which is negative, is bounded below. The latter is due
to the following equality:

lim
t→0

(I−Ω(t))−1
il

(I−Ω(t))−1
ij

= lim
t→0

t(I−Ω(t))−1
il

t(I−Ω(t))−1
ij

This ratio is positive and bounded as a consequence of Lemma 9 and the fact that (I −
Ω(t))−1 is a non-negative matrix, and all its entries grow at the same rate if dij > 0 for all
i 6= j.

Altogether, this proves that rij(t) tends to +∞ when t tends to 0. A similar argument
applies for the case of passive communication. This finishes the proof of the Theorem.
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Supplementary Material
1 Equilibrium Equivalence

In the baseline version of the game, Γ (D,k, s), agents invest in communication before they
learn the value of their local state. In the alternative timeline, Γθ (D,k, s), mentioned
at the end of section 3, agents choose communication intensities after they observe their
local states. In this section, we show that both versions of the game have the same perfect
Bayesian equilibrium.

From Theorem 1 we know that the baseline game Γ (D,k, s) has an equilibrium in linear
decision functions

ai = biiθi +
∑
j 6=i

bijyij

we now show that the alternative version Γθ (D,k, s) has the exact same equilibrium:

Theorem 12 The games Γ (D,k, s) and Γθ (D,k, s) have the same equilibrium in linear
strategies

Proof. We are going to show that the both games have perfect Bayesian equilibria which
satisfy the same four sets of conditions, which in turn correspond to the ones used in the
proof of Theorem 1:

Dibii = dii +
∑
j 6=i

dijbji for all i (22)

Dibij =
rijpij

sjrij + sjpij + rijpij

∑
k 6=i

dikbkj for all i, j 6= i (23)

√
djibij

kr
= rij for all i, j 6= i (24)

√
Dibij
kp

= pij for all i, j 6= i (25)

First, note that the second stage is identical in the two versions of the game. Agent i
knows that he has chosen (r̃ji)j 6=i and (p̃ij)j 6=i (which may be different from the equilibrium
values). He assumes that the other agents have chosen communication intensities according
to the equilibrium values and that they will choose actions according to the equilibrium
linear strategies. The first-order conditions are therefore still given by (11) and (12), which
yield (22) and (23).

The only difference in the first stage is that i chooses (r̃ji)j 6=i and (p̃ij)j 6=i after observing

1



θi. It is easy to see that the expression for the expected payoff (13) is now:

−E [ui] = dii

(b̃ii − 1
)2
θ2
i +

2∑
k 6=i

b̃2ik (σk + ρik + πik)


+
∑
j 6=i

dij

∑
k

(
b̃ik − bjk

)2
σk +

∑
k 6=i

b̃2ik (ρik + πik) +
∑
k 6=j

b2jk
(
ρjk + πjk

)
+k2

r

∑
j 6=i

1

ρji
+ k2

p

∑
j 6=i

1

πij
.

The only difference is that the term
(
b̃ii − 1

)2
σi is now

(
b̃ii − 1

)2
θ2
i . But it easy to see

that this does not affect the first-order conditions for communication intensities as that
term is separate from (r̃ji)j 6=i and (p̃ij)j 6=i. Hence the first-order conditions are unchanged,
as in (24) and (25).

This equivalence rests on two assumptions. One is that agents’ payoffs are linear-
quadratic. While agent i’s incentive to coordinate with other agents depends on his local
state of the world θi, his incentive to reduce the variance of the actions of the other agents
does not. But, as the following proof shows, it isthe latter only that is affected by unilat-
eral deviations in communication investments. The other is that signals have full support.
While the normality assumption may not be essecntial, it is important that the support of
yij does not depend on communication investment. If it did, a deviation from the equilib-
rium communication investment could be detectable, and costly signaling may unavoidable
in equilibrium.

The question about uniqueness, which we mentioned for game Γ (D,k, s) and which we
discuss in section 2 of the Supplementary Material, is present here as well.

2 Uniqueness

One may wonder about the importance of the restriction to linear equilibria. Do Γ (D,k, s)
and Γθ (D,k, s) have equilibria where agents use strategies that are not linear in their
signals? A similar question has arisen in other games with quadratic payoff functions, such
as Morris and Shin (2002), Angeletos and Pavan (2007, 2009), Dewan and Myatt (2008),
and Calvó-Armengol and de Martí (2009).

Uniqueness in the team-theoretic setting is proven in Marschak-Radner (1972, Theorem
5).

Calvó-Armengol and de Martí (2009) show that Marschak-Radner’s line of proof extends
to a strategic setting if the game admits a potential. Unfortunately, this does not apply to
the game at hand (Γ (D,k, s) has a potential only in the special case where dij = dji for
all pairs ij).

Angeletos and Pavan (2009) prove uniqueness by showing that in their economy the set
of equilibria corresponds to the set of effi cient allocations. A similar argument is used by
Hellwig and Veldkamp (2008).

Dewan and Myatt (2008) prove uniqueness by restricting attention to strategies with
non-explosive higher-order expectations.
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For our game we can prove the following uniqueness result. Consider Γ (D,k, s) but
assume that local states and actions are bounded above and below. Namely assume that
ai ∈ [−ā, ā] and θi is distributed as a truncated normal distribution on [−kā, kā], where
k < 1. Call this new game Γā (D,k, s). We can show that, as the bound ā goes to infinity,
the set of equilibria of the game Γā (D,k, s) contains (at most) one equilibrium and that
this equilibrium corresponds to the linear equilibrium that we study here.

Consider the following variation of our game:

• payoffs are the same as before

• local information is bounded: θi ∈
[
−θ̄, θ̄

]
, with θ̄ ∈ R, follows a truncated normal

distribution32 with mean 0 and precision s.

• the set of possible actions is bounded. In particular, ai ∈ [−ā, ā] for all i, where
ā = cθ̄, for some c ≥ 1. Note that this implies that

[
−θ̄, θ̄

]
⊆ [−ā, ā].

• communication reports are defined as in text and, thus, are unbounded: yij = θi +
εij + ηij with

εij ∼ N (0, rij)

ηij ∼ N (0, pij)

Observe that as θ̄ → +∞ we converge to our initial specification of the model.

We define the following expectation operators: Ei [·] = E
[
· | θi, {yij}j 6=i

]
for every

i ∈ {1, . . . , n} .

Lemma 13 For any action profile (a1, . . . , an) we have that ωiiθi+
∑

j 6=i ωijEi [aj ] ∈ [−ā, ā]
for all i.

Proof. Just note that Ei [aj ] ∈ [−ā, ā] for all i, j. Since θi ∈
[
−θ̄, θ̄

]
⊂ [−ā, ā], the linear

combination ωiiθi +
∑

j 6=i ωijEi [aj ] must be in [−ā, ā].

Lemma 14 The matrix Ω with off-diagonal entries equal to ωij and diagonal entries equal
to 0 is a contraction.

Proof. Gerschgorin theorem says that all eigenvalues of a matrix M are in the union of
the following sets

Fi =

λ | |λ−mii| ≤
∑
j 6=i
|mij |

 .

In our case, ωii = 0 and
∑

j 6=i |ωij | = 1− dii
Di
, and hence all eigenvalues have absolute value

smaller than 1. This is the necessary and suffi cient condition for Ω being a contraction.

32See, for example, Patel and Read (1996).
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Proposition 15 Given θ̄, ā, and (rij , pij)i,j the game in which agents choose actions {ai}i
has a unique equilibrium.

Proof. Expected payoffs are

−Ei [ui] = dii (ai − θi)2 +
∑
j 6=i

dij
(
a2
i − 2aiE [aj ] + E

[
a2
j

])
− k2

r

∑
j 6=i

rji − k2
p

∑
j 6=i

pij .

Therefore, first order conditions with respect to actions are

−∂Ei [ui]

∂ai
= 2dii (ai − θi) + 2

∑
j 6=i

dij (ai − Ei [aj ]) = 0.

Given information sets {yi}i individual actions satisfy Kuhn-Tucker’s conditions. Thus, for
each i ∈ {1, . . . , n} either

ai = ωiiθi +
∑
j 6=i

ωijEi [aj ]

or
ai ∈ {−ā, ā} .

More precisely:

BRi (a−i) =


ωiiθi +

∑
j 6=i ωijEi [aj ] if ωiiθ1 +

∑
j 6=i ωijEi [aj ] ∈ [−ā, ā]

ā if ωiiθ1 +
∑

j 6=i ωijEi [aj ] > ā

−ā if ωiiθ1 +
∑

j 6=i ωijEi [aj ] < −ā

We can make use of Lemma 13 to show that, indeed,

BRi (a−i) = ωiiθi +
∑
j 6=i

ωijEi [aj ] for all i.

Hence, equilibrium conditions become

a∗i = ωiiθi +
∑
j 6=i

ωijEi
[
a∗j
]

i = 1, . . . , n. (26)

Nesting these conditions we get

a∗i = ωiiθi+
∑
j 6=i

ωijEi

ωjjθj +
∑
k 6=j

ωjkEj [a∗k]

 = ωiiθi +
∑
j 6=i

ωijωjjEi [θj ]︸ ︷︷ ︸
expectations on primitives

+
∑
j 6=i

∑
k 6=j

ωijωjkEiEj [a∗k]︸ ︷︷ ︸
strategic interdependence

(27)
The last term in this expression allows for a new level of nestedness that we obtain plugging
(26) in (27):

a∗i = ωiiθi +
∑
j 6=i

ωijωjjEi [θj ] +
∑
j 6=i

∑
k 6=j

ωijωjkωkkEiEj [θk]︸ ︷︷ ︸
expectations on primitives

+
∑
j 6=i

∑
k 6=j

∑
s 6=k

ωijωjkωksEiEjEk [a∗s]︸ ︷︷ ︸
strategic interdependence
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Observe that, again, this last interdependence term allows for adding another level of nest-
edness, and that we can keep repeating this nestedness procedure up to any level. In
particular, if we repeat this l times we obtain the following expression

a∗i = ωiiθi +
∑
k 6=i

ωikωkkEi [θk] + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkkEiEi1 · · ·Eil [θk]︸ ︷︷ ︸
expectations on primitives

(28)

+
∑
i1

· · ·
∑
il

∑
k 6=il

∑
s6=k

ωi,i1 · · ·ωil,kωksEiEi1 · · ·EilEk [a∗s]︸ ︷︷ ︸
strategic interdependence

(29)

where, i1, . . . , il are indices that run from 1 to n.
We want to show that as l → +∞ this expression converges and, therefore, that the

equilibrium is unique. We are going to show this in two steps:

(i) first, we are going to show that the limit when l → +∞ of expectations on primi-
tives is bounded above and below; this ensures that the expression of expectations on
primitives is well-defined at the limit;

(ii) second, we are going to show that the expression of strategic interdependencies van-
ishes when l→ +∞.

The proof of both steps relies on Lemma 14.
To prove (i), first note that all expectations Ei [θk] , EiEj [θk] , . . . , EiEi1 · · ·Eil [θk] are

bounded above by θ̄ and bounded below by −θ̄. Then, the expression∑
k 6=i

ωikωkkEi [θk]+
∑
j 6=i

∑
k 6=j

ωijωjkωkkEiEj [θk]+· · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkkEiEi1 · · ·Eil [θk]

is bounded above by

θ̄

∑
k 6=i

ωikωkk +
∑
j 6=i

∑
k 6=j

ωijωjkωkk + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkk


and bounded below by

−θ̄

∑
k 6=i

ωikωkk +
∑
j 6=i

∑
k 6=j

ωijωjkωkk + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkk

 .

We can apply now the following result: the entry (i, j) of Ωl, that we denote ω[l]
ij , is

equal to
∑

i1
· · ·
∑

il−1
ωi,i1ωi1,i2 · · ·ωil−2,il−1ωil−1,j . Hence

∑
k 6=i

ωikωkk +
∑
j 6=i

∑
k 6=j

ωijωjkωkk + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkk = ωkk

l∑
j=1

ω
[j]
ik
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The element
∑l

j=1 ω
[j]
ik is the (i, k) entry of the matrix

∑
1≤j≤l Ω

j . A suffi cient condition
for the infinite sum

∑
j≥1 Ωj to converge is that Ω is a contraction. Thus, by Lemma

14, ωkk
∑l

j=1 ω
[j]
ik is bounded when l → +∞ and hence the expression of expectations on

primitives is bounded too. This proves (i).
To prove (ii), first note that, trivially, EiEi1 · · ·EilEk [a∗s] is bounded above by ā and

below by −ā. Hence the expression∑
i1

· · ·
∑
il

∑
k 6=il

∑
s 6=k

ωi,i1 · · ·ωil,kωksEiEi1 · · ·EilEk [a∗s]

is bounded above by
ā
∑
i1

· · ·
∑
il

∑
k 6=il

∑
s 6=k

ωi,i1 · · ·ωil,kωks

and below by
−ā
∑
i1

· · ·
∑
il

∑
k 6=il

∑
s 6=k

ωi,i1 · · ·ωil,kωks.

Then, since
∑

i1
· · ·
∑

il

∑
k 6=il

∑
s 6=k ωi,i1 · · ·ωil,kωks =

∑
s 6=k ω

[l+1]
is and ω[l+1]

is → 0 when

l → ∞ for all s = 1, . . . , n,33 we can ensure that
∑

s ω
[l+1]
is → 0 when l → ∞. Therefore,

the upper and lower bounds of the strategic interdependencies term tend to 0 when l→∞.
This proves (ii).

Note that this proof does not require normality in our structure of communication
reports. Any other information structure would do not change the uniqueness result. Of
course, it would change the shape of this equilibrium.

Proposition 16 The unique equilibrium of the game when θ̄ → +∞ (and, therefore, ā →
+∞ too) is linear.

Proof. The previous proposition states that the equilibrium for any given θ̄ and ā is given
by

a∗i = lim
l→+∞

ωiiθi +
∑
k 6=i

ωikωkkEi [θk] + · · ·+
∑
i1

· · ·
∑
il

∑
k 6=il

ωi,i1 · · ·ωil,kωkkEiEi1 · · ·Eil [θk]

 .

(30)
We have to compute explicitly the expectations in the previous expression when θ̄ →

+∞. Observe that when θ̄ → +∞ all θis probability distributions tend to the normal
distribution with mean 0 and precision s. Bayesian updating with normal distributions
takes a simple linear form. To be more precise, in our setup, since the mean of all prior
distributions is equal to 0, we have that

Ei [θj ] = αijyij for all i 6= j

Ei [yjk] = βijkyik for all k 6= i 6= j 6= k

33This is, precisely, because
∑

l≥1Ω
l converges.
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with αij ∈ [0, 1] and βijk ∈ [0, 1] being constants that depend on the precisions (rij , pij)i,j
that are chosen at the first stage of the game. Observe that this immediately implies
that also higher-order expectations EiEi1 · · ·Eil [θk] are linear in {yij}j 6=i. In particular,
EiEi1 · · ·Eil [θk] = ϕ

[l]
ikyik where ϕ

[l]
ik is a product of one α (in particular, of αil,k) and l − 1

different βs. Note that ϕ[l]
ik ∈ [0, 1] for all i, k, l. Therefore

a∗i = ωiiθi +
∑
k

ωkk

+∞∑
l=1

ϕ
[l]
ikω

[l]
ikyik for all i. (31)

To show that this expression is well-defined we proceed in a similar way than in the
proof of Proposition 15. The expression

∑+∞
l=1 ϕ

[l]
ikω

[l]
ik is weighted below by 0 and above by∑+∞

l=1 ω
[l]
ik. This last infinite sum is the entry (i, k) of the matrix

∑
l≥1 Ωl that is well-defined

because Ω is a contraction. Thus, we conclude that the expression in (31) is well-defined

for all players and linear in
(
θi, {yij}j 6=i

)
for each i ∈ {1, . . . , n} .

3 Precluding Communication and Transfers

In this appendix we want to show up a possible strategic effect due to indirect interactions
between agents. Besides direct communication, another possible tool an agent could use
for his own purpose could be trying to exclude some possible ways of communication. For
example, an agent can inhibit a communication channel by paying some monetary transfer
to the agents that would be involved in it. With the use of a simple three-agent numerical
example we show that this incentive exists.

Consider an organization formed by three agents with interaction matrix

D =

0.3 0.3 1
0.3 0.3 1
1 100 1


and such that si = 0.1 for all i, kr = kr = 0.01. Agents 1 and 2 occupy an equivalent position
inside the organization, and they want primarily to coordinate with agent 3. Instead, agent 3
shows a severe coordination motive with agent 2, compared with any other payoffexternality.

When considering unrestricted communication, as we do in text, the final utilities of
each agent are

u1 = −7. 034 6, u2 = −3. 593 2, u3 = −17. 789.

If, instead, we consider a setup with inhibited communication in which agents 1 and 2
can not communicate with each other, some algebra shows that agents’utilities under this
communication restriction are

u1 = −11. 446, u2 = −6. 129 7, u3 = −16. 267.

Comparing utilities in both cases, one immediately observes that agent 3 benefits from
inhibited communication in the communication lines among agents 1 and 2, while this two
agents end up in a worst situation. This suggests that there is room in this model to analyze
monetary transfers among agents to limit information transmission. Of courses, this would
rise up other strategic considerations, such as the enforcement of the possible agreements
reached, something that would possibly displace the focus and aim of our analysis.
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4 Broadcasting

In our baseline game, communication is essentially bilateral. In particular, investment in
active communication are link-specifis. While this is true in certain circumstances, in other
cases there may be economies of scale in active communication. here we consider the polar
opposite, where the investment in active communication that an agent makes affects all his
links equally.

Each agent chooses a unique ri, a common precision for active communication with
the rest of individuals. This can be understood as an approximation to the analysis of
broadcasting. Agents exert the same effort in actively communicating with every else but
can freely choose to which messages they want to pay more attention. This could be the
case of e-mail lists, where the sender is allowed to send a unique message to the organization
as a whole, and it is at the discretion of each one of the receivers to attend to it. In our
model, when the agent chooses the precision ri, he determines the possible ambiguity in
the message: if the signal is very precise, everybody is going to receive essentially the same
common signal; if the signal is very noisy, the receiver needs to exert a high effort to decode
this message.

Before proceeding to present and prove the characterization of the equilibrium in the
broadcasting case we need to introduce additional notation. Given a vector λ·i Let

gji (λ·i) =

 ωii if i = j

−si
(

kp√
Dj

+ kr
λij

)
otherwise

With this notation in mind, we can prove a variant of Theorem 1 for the broadcasting
case:

Proposition 17 For any (D, s), if kr and kp are suffi ciently low, the game Γ̃ (D,k, s) has
a unique pure-strategy equilibrium:

(i) Decisions are given by

b·j = (I −Ω)−1 · g·j(λ·j) for all j;

where λ·j is an endogenously determined vector with positives entries that satisfy
∑

k 6=j djkb
2
kj =

λ2
ijb

2
ij

(ii) Active communication is

ri =
λijbij
kr

for all j;

(iii) Passive communication is

pij =

√
Dibij
kp

for all i 6= j
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Proof. If agent i chooses a unique ρi, the set of first-order conditions is equal to

−1

2

∂E [ui]

∂bii
= dii (bii − 1)σi +

∑
k 6=i

dij (bii − bji)σi = 0

−1

2

∂E [ui]

∂bij
= diibij

(
σj + ρj + πij

)
+
∑
k 6=i

dik
(
(bij − bkj)σj + bijρj + bijπij

)
= 0

−∂E [ui]

∂ρi
=

∑
j 6=i

dijb
2
ji + c′r

(
1

ρi

)
= 0

−∂E [ui]

∂πij
= Dib

2
ij + c′p

(
1

πij

)
= 0.

This set of first-order conditions is equivalent to

Dibii = dii +
∑
k 6=i

dijbji (32)

Dibij =
σj

σj + ρj + πij

∑
k 6=i

dikbkj (33)

√∑
k 6=i dikb

2
ki

kr
= ri (34)

√
Dibij
kp

= pij (35)

Since
rjpij

sjrj + sjpij + rjpij
=

σj
σj + ρj + πij

condition (33) becomes

Dibij =
rjpij

sjrj + sjpij + rjpij

∑
k 6=i

dikbkj

By permuting i and j in this last expression, we get

Djbji =
ripji

siri + sipji + ripji

∑
k 6=i

djkbki (36)

Since √∑
k 6=i dikb

2
ki

kr
= ri

we can define an endogenous value λji such that
√∑

k 6=i dikb
2
ki = λjibji for each j 6= i. In

particular, it is the unique positive number such that
∑

k 6=i dikb
2
ki = λ2

jib
2
ji. Then, the first

order condition associated to ρi can be rewritten as

λjibji
kr

= ri
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for any j 6= i. Plugging this expression and (35) in (36), we get that

bji −
∑
k 6=i

wjkbki = −si

(
kp√
Dj

+
kr
λji

)
for all i

or, equivalently, in matrix form

b·i = (I−Ω)−1 · g(λ·i)

Observe that the main difference of the equilibrium action in the broadcasting case
compared with the one in Theorem 1 is the change from the vector h to the vector g(λ·i).
The matrix that relates these vectors with the equilibrium actions b remains the same in
both cases.

A natural question that arises with the analysis of this new communication protocol is
whether we should expect that agents engage in more active communication than before or
not. The following result gives us an answer in terms of the ratio of passive versus active
communication already considered in a previous section.

Proposition 18 In the symmetric case, in which dij = d̄Q for all i 6= j and dii =(
1− (n− 1) d̄

)
Q, for some Q > 0, the ratio of passive versus active communication is

kp
kr

√
(n− 1) γij .

Proof. Because of symmetry, for all pairwise different i, j, k we have that bji = bki = b∗.
Therefore,

λji =

√∑
k 6=i

dik =
√

(n− 1) d̄Q

This implies that √
(n− 1) d̄Qb∗

kr
= ri

√
Qb∗

kp
= pij

The ratio between active and passive communication in this case is

ri
pij

=
kp
kr

√
(n− 1) d̄Q

Q
=
kp
kr

√
(n− 1) d̄ =

kp
kr

√
(n− 1) γij

Again, when active and passive communication are equally costly, i.e. kp = kr, the
upper bound for this ratio is 1. Observe also, that the ratio in the case of broadcasting
does not necessarily decreases when n increases. When d̄ = 1

n , we obtain that the ratio
of active versus passive communication is

√
(n− 1) /n, that increases and tends to 1 when

n increases. In clear contrast with the case of pairwise communication, active and passive
communication are almost equal when there are enough agents.
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5 Corner Solutions

It is natural to assume that communication intensities cannot be negative. In fact, we
assume a small but positive lower bound ξ, to prevent equilibria based on coordination
failure. The equilibrium characterization in Theorem 1 rests on the assumption that the
communication cost parameters, kp and kr, are suffi ciently low to guarantee that the lower
bound ξ is non-binding and the equilibrium can be described by unconstrained first-oreder
conditions.

This section allows some or all of the lower-bound constrainsts to be binding. As one
would expect, the solution of the unconstrained case can be extended with Kuhn-Tucker
conditions. The resulting set of conditions is more complex than the baseline case, but still
tractable —a fact that we illustrate through a numerical example.

We have to include formally in the analysis the inequality constraints

pij ≥ ξ for all i 6= j

rij ≥ ξ for all i 6= j

The relevant terms in the Lagrangian that incorporates i ’s ex-ante expected utility and
the restrictions are:

ûi = −Di

∑
j 6=i

b2ijπij −
∑
j 6=i

dijb
2
jiπji − k2

p

∑
j 6=i

pij − k2
r

∑
j 6=i

rji −
∑
j 6=i

λij (ξ − pij)−
∑
j 6=i

µji (ξ − rji)

= −Di

∑
j 6=i

b2ij(
1

sj
+

1

pij
+

1

rij
)−

∑
j 6=i

dijb
2
ji(

1

si
+

1

pji
+

1

rji
)− k2

p

∑
j 6=i

pij − k2
r

∑
j 6=i

rji −
∑
j 6=i

λij (ξ − pij)−
∑
j 6=i

µji (ξ − rji)

where λij and µij are the multipliers for the constraint that involve pij and and rij ,
respectively. It follows from the Kuhn-Tucker conditions that

Dib
2
ij

1

ξ2 ≤ k
2
p

whenever p∗ij = ξ, and

dijb
2
ji

1

ξ2 ≤ k
2
r

whenever r∗ji = ξ. Otherwise both inequalities become equalities, and we are in the case
considered in the main text, where all communication precisions are strictly larger than ξ.
We provide below suffi cient conditions for this latter case.

For each channel, from individual j to individual i, there are four different possibilities
depending on whether pij and/or rij are greater or equal than ξ. However, first-order
conditions at the second stage of the game determine that, in any case, the system of
equations that relates the bs is given by

bik =
pikrik

pikrik + sipik + skrik

∑
j 6=i

ωijbjk

First of all, we are going to check that the relation between bs that results from the four
different combinations of active and passive communication is in all cases linear. We know
it for the case where both precisions are strictly larger than ξ.
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If pik = ξ and rik > ξ we have that

bik =
ξ
√
dki
kr

bik

ξ
√
dki
kr

bik + siξ + si
√
dki
kr

bik

∑
j 6=i

ωijbjk

which after some rearrengement is equal to

bik = −si
ξ

ξ + si

kr√
dki

+
ξ

ξ + si

∑
j 6=i

ωijbjk

This again provides a linear relation.
When pik > ξ and rik = ξ we have that

bik =
ξ
√
Di
kp
bik

ξ
√
Di
kp
bik + siξ + si

√
Di
kp
bik

∑
j 6=i

ωijbjk

which leads to

bik = −si
ξ

ξ + si

kp√
Di

+
ξ

ξ + si

∑
j 6=i

ωijbjk

Again, we end up with a linear relation between the b·k terms.
Finally, if both pik and rik are exacly equal to ξ then

bik =
ξ2

ξ2 + 2siξ

∑
j 6=i

ωijbjk

which is clearly linear in the entries b·k.
We can gather all these different types of linear relations in a single compact matrix-form

expression. Formally, to check for corner equilibria we have to proceed as follows:

• according to the four different combinations, we can distinguish four types of commu-
nication links: Bidirectional (where both precisions are strictly larger than ξ), Only
Active (where just the active precision of the communication link is strictly larger
than ξ), Only Passive (where just the passive precision of the communication link is
strictly larger than ξ),and Mute (where both are equal to ξ);

• after some rearrangement, if necessary and wlog, we can rewrite the system in blocks
as follows:

bB·k
bOA·k
bOP·k
bM·k

 =


I − ΩB,B −ΩB,OA −ΩB,OA ΩB,M

− ξ
ξ+sΩOA,B I − ξ

ξ+sΩOA,OA − ξ
ξ+sΩOA,OP − ξ

ξ+sΩOA,M

− ξ
ξ+sΩOP,B I − ξ

ξ+sΩOP,OA I − ξ
ξ+sΩOP,OP − ξ

ξ+sΩOP,M

− ξ2

ξ2+2siξ
ΩM,B − ξ2

ξ2+2siξ
ΩM,OA − ξ2

ξ2+2siξ
ΩM,OP I − ξ2

ξ2+2siξ
ΩM,M


−1

·h·k

where individuals are partitioned according to the communication decisions between
theirselfs and individual k. The entries of hjk are the same ones as in the interior
case considered in the main text for the Bidirectional, −si ξ

ξ+si
kr√
dki
if the link is Only

Active, −si ξ
ξ+si

kp√
Di
if the link is Only Passive, and 0 if ij is Mute.
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• If the solution to the system satisfies the Kuhn-Tucker inequality conditions for Only
Active, Only Passive and Mute we have presented above, then we have found a corner
equilibrium.

We now provide an example of a network that generates a corner equilibrium.

Consider the following network
1↔ 2↔ 3

where coordination concerns are given by d12 = d32 = β, d21 = d23 = γ, and d13 = d31 = 0.
The adaptation concerns are d11 = d22 = d33 = 1. Intuitively, if Player 2 has strong interests
in coordinating with the rest but Players 1 and 3 have little interest in coordinating with
each other, it seems that there should exist an equilibrium where only Player 2 invests in
passive communication and nobody else invests in communication, meaning that they fix
all their communication decisions to ξ. Let’s see...

• With regards to agent 2, start considering communication with 1: (the case with 3
would be symmetric) in this case 2 is passive and 3 is mute.

 b11

b21

b31

 =

 1 − β
1+β 0

− ξ
ξ+s

γ
1+2γ 1 − ξ

ξ+s
γ

1+2γ

−0 − ξ2

ξ2+2siξ
β

1+β 1


−1

1
1+β

−s ξ
ξ+s

kr√
1+2γ

0



If kr = kp = 1, β = 0.1, γ = 1, ξ = s = 0.5 b11

b21

b31

 =

 1 −0.1
1.1 0

−1
6 1 −1

6
−0 −1

3
0.1
1.1 1

−1 1
1.1

−0.5
2

1√
3

0

 :

 0.909 76
7. 325 6× 10−3

2. 219 9× 10−4


Now for individual 2: in this case, nobody speaks or listens to him. All are mute. The

system is very simple:

 b12

b22

b32

 =

 1 −1
3

β
1+β 0

− γ
1+2γ 1 − γ

1+2γ

−0 −1
3

β
1+β 1


−1 0

1
1+2γ

0


In the numerical case considered before, this becomes b12

b22

b32

 =

 1 −1
3

0.1
1.1 0

−1
3 1 −1

3
−0 −1

3
0.1
1.1 1

−1 0
1
3
0

 =

 1. 030 9× 10−2

0.340 21
1. 030 9× 10−2


The case for Player 3 is symmetric to Player 1.
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The inequality Kuhn-Tucker conditions are

Dib
2
ij

1

ξ2 ≤ k2
p whenever p∗ij = ξ

dijb
2
ji

1

ξ2 ≤ k2
r whenever r∗ji = ξ

Given the numbers above, these are equivalent to

Dib
2
ij ≤ 0.25 whenever p∗ij = ξ

dijb
2
ji ≤ 0.25 whenever r∗ji = ξ

In particular, these apply to p12 :

1.1
(
1. 030 9× 10−2

)2 ≤ 0.25

(this one holds).
Also apply to p13 :

1.1
(
2. 219 9× 10−4

)2 ≤ 0.25

(this one also holds)
It should not hold for agent 2:

3 (0.909 76)2 > 0.25

(ok).
And apply to all active, since we are assuming the only communication larger than ξ is

that 2 passively communicates with the others:

dijb
2
ji

1

ξ2 ≤ k
2
r

With relations between 1 and 3 it is clear because d13 = d31 = 0. Between 1 and 2:
r21 : 0.1 (0.909 76)2 ≤ 0.25 (ok)
r12 : 1

(
1. 030 9× 10−2

)
≤ 0.25 (ok)

Therefore, all inequalities in the example above work and we get a case with a corner
equilibrium.

6 Adaptation, Coordination, and Communication

At least since Marschak and Radner (1972), organizational economics has highlighted the
tradeoff between adaptation and coordination. On the one hand, agents want to adapt to
local information. On the other one, they want to coordinate with the rest of the agents.
One of the advantages of the quadratic set-up adopted by mosty team-theoretic work is that
the relative strength of coordination and adaptation is represented in a simple parametric
way and can be used for comparative statics purposes (e.g Dessein and Santos 2006).
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A natural question in our setting is how communication investment varies with the rela-
tive importance of adaptation and coordination. As we shall see, the relation is monotonic:
communication is maximal when the two concerns are balanced.

In our model, adaptation and coordination concerns are captured, respectively, by dii
and dij (with i 6= j). We can thus analyze how different weights on these two concerns
affect communication and influence. As we shall see, the relation is non-monotonic. Define
d′ii = λdii and d′ij = (2− λ) dij for all j 6= i. Observe that:

• If λ → 0 then d′ii → 0 and d′ij → 2dij ≥ 0, and d′ii
d′ij
→ 0. Coordination outweighs

adaptation.

• if λ = 1 we have the initial vector of i’s interaction terms d.

• If λ→ 2 we obtain d′ii = 2dii > 0 and d′ij → 0, and d′ii
d′ij
→ +∞. Adaptation outweighs

coordination.

Proposition 19 If λ→ 0 or λ→ 2 agent i does not engage in active communication, and
no agent passively communicates with him, i.e. rji = pij = ξ for all j.

Proof. (i) If λ = 0 then ωii = 0, and this immediately implies that we hit a boundary
equilibrium in which bji = 0 for all j. This implies that agent i is not going to put effort
in actively communicating with agent j, and that agent j is not going to exert any kind of
effort in passive communication to learn about agent i’s state of the world.

(ii) If λ → 2 the matrix Ω tends to Ω′, where Ω′ is equal to Ω except that row i’s
entries in Ω′ are equal to 0. Also

h′ji =

 w′ii → 1 if i = j

−si
(

kp√
Dj

+ kr√
d′ij

)
→ −∞ otherwise

It is easy to see that the non-negative matrix (I −Ω′)−1 satisfies that all entries in row i are
also equal to 0, except for (I −Ω′)−1

ii = 1. Hence, following our equilibrium characterization,
the elements b′ji in equilibrium actions would satisfy that, when λ → 2, b′ii → 1 and
b′ji → −∞ if j 6= i. But this implies that we hit an equilibrium in the boundary that
satisfies b′ji = 0 for all j 6= i. Therefore, again there is neither passive communication by
agent j nor active communication by agent i.

The reasons why communication vanishes when we approach the two extreme situa-
tions is different in each case. When coordination motives outweigh the adaptation motive,
communication engagement is null because there is a natural focal point that resolves co-
ordination problems: agents, according to prior information, fix their actions to be 0. This
trivially resolves coordination and does not affect the decision problem that right now is of
negligible magnitude. Local information is unnecessary.

On the other hand, when adaptation outweighs coordination, agents primarily want to
resolve their respective local decision problems. The obvious way is to fix their action close
to the local information they possess. In this case, prior information is redundant.
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