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Abstract

People choose where to live and how much to invest in housing. Traditionally,
the �rst decision has been the domain of spatial economics, while the second has been
analyzed in �nance. Spatial asset pricing is an attempt to combine equilibrium concepts
from both disciplines. In the �nance context, we show how spatial decisions can be
framed as an expanded portfolio problem. Within spatial economics, we identify the
consequences of hedging motives for location decisions. We characterize a number of
observable deviations from standard predictions in �nance (e.g. the de�nition of the
relevant market portfolio for the pricing of risk includes homeownership rates) and
in spatial economics (e.g. hedging considerations and the pricing of risk a¤ect the
geographic allocation of human capital).
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1 Introduction

Two strands of literature examine the demand for real estate assets. The urban economics

literature provides insights into the determinants of the allocation of households and eco-

nomic activity over space and the determinants of the cross-sectional distribution of land

rents. The �nance literature has focused primarily on real estate assets as a single asset �

housing �emphasizing some key characteristics such as the transaction costs associated with

the adjustment of housing ownership and the complementarity between the consumption of

housing and other commodities.

So far, these two literatures have evolved independently. The urban economics literature

abstracts from the stochastic nature of returns to land over time, the investment demand for

land, and any risk premium built into land prices. The �nance literature abstracts from the

spatial dimensions of real estate assets, the unique function of real estate as an �enabler�for

human capital, and hence the endogenous determination of the cross-sectional distribution

of real estate dividends, namely, rents.

Here, we explore the gains from merging the two literatures. We bring portfolio choice

and asset pricing considerations to bear on location choice and the determination of real

estate rents, and vice versa. The results reveal an interaction between spatial equilibrium

and asset pricing, hence �spatial asset pricing.�

We design a tractable model with closed-form solutions that are comparable to well-

established results in both �elds. We build on the standard spatial equilibrium assumption of

urban economics: Access to a location�s amenities including earning opportunities requires

consuming one unit of local land. We set this spatial equilibrium problem within a CARA-

normal portfolio choice and asset pricing framework.

In equilibrium, the spatial allocation of households is determined together with local

rents and the volatility of rents. The spatial allocation of households also determines the

weights of each location-speci�c real estate asset in the market portfolio that is relevant for

the pricing of systematic risk. This portfolio does not include all assets in the economy;

the endogenously determined quantity of real estate assets used by households for hedging

purposes is not part of this portfolio. The spatial allocation of households therefore a¤ects

the pricing of all assets.

At the same time, the pricing of assets in the economy matters for the spatial allocation

of households and thus the rents generated by real estate assets in each location. Therefore,

the cross-sectional distribution of rents re�ects not only the cross-sectional distribution of

the bene�ts of each location but also the risk exposure of households in each location and

the price of risk.
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Our �ndings indicate it is not appropriate to summarize housing as a single aggregate

asset class for the pricing of housing and other assets, as is common in the �nance literature.

It is also inappropriate to assume rents re�ect the amenities of a location and ignore the

risk exposure of local households and the contribution of the location to systematic risk, as

is common in the urban economics literature.

Merging the two literatures yields a number of novel insights with regard to determinants

of the allocation of households across location, the cross-sectional and time series variations

of households�portfolios, and the cross-sectional variation of returns to housing.

The model. There are four classes of assets: a risk-free bond, stocks, residential properties

in a number of locations, and non-transferrable human capital. As in standard asset pricing

models, agents may lend and borrow at the risk-free bond rate without any constraint.

Agents may also invest in stocks, de�ned as claims over exogenous stochastic streams of

dividends. The dividend stream of residential properties, however, is determined endoge-

nously. Residential properties provide access to a stochastic production technology that is

speci�c to their location. An agent�s human capital determines the expected level of his

or her earnings at each location and the covariance of earnings with the location-speci�c

production technology. The distribution of individual characteristics across the population

is expressed in a general form.1

Properties di¤er only in their location. The supply of houses is �xed in every location

but one, the countryside, where the supply is unlimited. Houses can be rented at the local

equilibrium market rate. They can be purchased or sold (even fractionally) at the local

equilibrium price. Agents may buy residential properties in every market. They also may

buy a home in their city, in which case they are homeowners.

There are no frictions on any of the asset markets; e.g., no credit constraints, no trans-

action costs for buying or renting, no limits to fractional ownership.

We want to obtain closed-form solutions and expressions that are comparable to standard

results obtained from mean-variance asset pricing models, so we assume an overlapping

generations structure with �nite life and constant population size. Agents have constant-

absolute risk-aversion preferences with in�nite elasticity of intertemporal substitution, and

both city-productivity and stock-dividends stochastic shocks are normally distributed. We

do not impose any restrictions on the covariances between the stochastic processes driving

stock dividends and city-speci�c technology shocks.

1 In most of this work, we interpret local productivity as labor-related and hence translated into labor
earnings, but the model has an equivalent interpretation in terms of leisure, where productivity is understood
as the ability of the agent to enjoy local amenities. We also assume that there are no spillover e¤ects across
agents; that is, the productivity of an agent depends on its location but not on who else lives in that location.
Later, we show that our characterization extends to a model with generic economies of agglomeration.
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Agents choose where to live at the beginning of their life. Living in a location requires

consuming one unit of housing in this location. While all investment decisions can be

revisited in every period, the location choice is irreversible (moving costs are in�nite).2

Location security. Each location can be represented as a free �location security� com-

posed of two parts: (1) a unit of location-speci�c, agent-speci�c human capital, which yields

a stream of stochastic bene�ts, understood as wages or enjoyment of local amenities, and (2)

a unit of local housing , which requires a stream of stochastic rent payments, and satis�es

the local housing consumption requirement.

The location decision and the portfolio allocation problem of an agent can therefore be

examined within the same dynamic optimization framework. Choosing a location amounts

to solving an expanded portfolio problem; that is, besides choosing �nancial assets, each

household must pick one unit of one location security. This characterization re�ects the

discreteness of the choice of location.

It should be obvious that when an agent moves to a city, he or she considers more

than the expected level of after-rent income; agents also take into account the amount of

systematic risk assumed upon choosing the combination of location-speci�c human capital

and housing consumption. And, systematic risk depends on the equilibrium allocation of

agents across locations.

Spatial allocation. In equilibrium asset prices are relevant to the spatial allocation.

The reverse is true as well; the spatial allocation is relevant to asset prices. Rents are

determined by the productivity of marginal residents. Marginal residents are households

that are indi¤erent between two or more locations. We demonstrate that our model admits

a set of hyper-marginal residents: households indi¤erent among all locations, whether city

or countryside. These households are all age 1 as location choice takes place at age 1, once

and for all.

That a set of hyper-marginal households exists is due to the assumption that the dis-

tribution of personal characteristics has full support. Given an agent with particular char-

acteristics and a particular city, one can always �nd an agent with similar characteristics

but a slightly stronger or weaker preference for that given city. This continuity argument

implies that, given an equilibrium vector of prices and rents, there must be a hyper-marginal

agent.3

2The assumption that people cannot move is useful for tractability of analysis, but the assumption is not
necessary for results about the role of housing as a hedge. Sinai and Souleles (2009) provide evidence of the
empirical relevance of this phenomenon, accounting explicitly for US household moving patterns.

3A ancillary contribution of our work is to show existence in a spatial general equilibrium model with
an in�nite number of types of agents. Available existence results in the literature use a di¤erent approach
based on a �niteness (Grimaud and La¤ont, 1989).
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Determining the set of hyper-marginal households is a key step to characterize the

equilibrium with stationary allocation of households across locations, linear housing rents

and asset prices. We conjecture a functional form for rents and prices and we verify the

validity of our guess. We build our guess by adapting standard results obtained in CARA-

normal portfolio choice frameworks.

It is through the hyper-marginal residents that productivity shocks are transmitted to

rents. A productivity shock in any location a¤ects the expected utility of the hyper-marginal

residents if they move to that location, and hence a¤ects the local rent. As in equilibrium

these residents are indi¤erent among all locations, a local rent adjustment occurs to keep

them indi¤erent. The indi¤erence condition of the hyper-marginal resident pins down the

relative level of rents in di¤erent locations. The fact that one location (the countryside) has

an unlimited supply of land determines the absolute level of rents.

The location decision of any agent is determined by comparing that agent�s location-

speci�c set of productivity parameters with that of the hyper-marginal residents. By aggre-

gating the investment demand functions of all agents, we obtain the asset pricing formulas

both for real estate in di¤erent locations and for stocks.

We are then in a position to verify that the initial conjecture about the hyper-marginal

resident is correct and that this it is indeed an equilibrium. We thus prove the existence of an

equilibrium where prices can be expressed as linear functions of the underlying parameters,

and the allocation of households across location remains constant over time. Uniqueness

can be proven in speci�c cases.

Portfolio choice. Because we assume households choose their location at birth, marginal

residents are newborn households. As households age, we do not put any restriction on

the covariance of their current income with their income at birth. A changing covariance

exposes households to the risk that shocks to their income may not provide full insurance

for local productivity shocks that a¤ect their housing costs.

The optimal investment portfolio of every agent is characterized as a combination of two

components: (1) An investment in local real estate that depends on the agent�s exposure

to local productivity shocks, and (2) a portfolio of stocks and residential properties, with

identical weights across agents. The �rst component is a manifestation of home bias. An

agent who does not own property in the city of residence is vulnerable to a combination of

local productivity shocks and rent �uctuations (determined endogenously). This risk can be

hedged away by an appropriate holding of local real estate. This hedging demand depends

on the covariance between the agent�s earnings and local equilibrium rents.

Asset pricing. All households are able to fully insure themselves with some ownership
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stake in their local housing markets. Conditional on this purchase, they are all identical

with regard to risk. Hence they all have the same investment demand for the remaining

securities in the economy: the portfolio made up of all stocks and residential properties

in the economy minus the homes held for hedging purposes. Let us call this portfolio the

adjusted market portfolio.

Equilibrium requires that the price of all assets in the economy be such that total

investment demand (beyond the hedging demand for homes) equals the adjusted market

portfolio. All assets are therefore priced in this adjusted market portfolio.

The fact that the quantity of homes in each location in the adjusted market portfolio

is determined endogenously, adds a channel whereby the spatial allocation of households

a¤ects the prices of all assets. The spatial allocation of households does more than determine

the stochastic properties of the rents in each location; it also determines what assets are

part of the portfolio that is relevant to pricing systematic risk in equilibrium.

The adjusted market portfolio includes all �nancial assets and housing in every location.

The prices of stocks are therefore determined not only by how their dividends co-vary with

those of other �nancial assets but also by how they co-vary with earnings of the hyper-

marginal residents in each location. Note that the relevant information for asset pricing

related to the presence of housing in the economy cannot be represented by a single aggregate

housing good.

Implications. Our portfolio choice and asset pricing expressions specify only objects �

such as prices and covariances �that are in principle observable. We can thus develop a

number of empirical questions linking spatial and �nancial variables:

Home bias. In our model, agents face no transaction costs and can invest in real estate

anywhere in the world. Still, they tend to invest a large fraction of their wealth in local

real estate for the hedging reasons that we have noted. A simple numerical exercise shows

that the home bias can lead to purchase of up to 40% of a housing unit. The home bias

in real estate is usually attributed to transaction costs, tax distortions, or psychological

components. Our model shows that more of a hedging motive may be signi�cant and

provides a simple tool to compute its e¤ect.

Homeownership over the life-cycle. Under reasonable assumptions, our model yields a

hump-shaped demand for ownership over the life-cycle. Suppose that, as agents get older,

their income covaries less with the income of newcomers to their city. This implies that

agents need to purchase an increasing amount of local housing for hedging purposes as they

get older. Counter to this e¤ect is the fact that as agents get older, the time left to live
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is shortened and so their demand for insurance declines. We show that the combination of

these two e¤ects can yield an inverted U-shape.

Cross-sectional dispersion of housing returns. Di¤erences in real estate returns across

locations depend on di¤erences in the average within-location covariance of the income of

each resident with the income of the current and future marginal residents. For instance, in

a one-company town, wages of all cohorts are highly correlated with rents; residents there

do not demand local housing for hedging purposes, and prices are depressed.

Allocation of agents across cities. The allocation of agents across cities does not maximize

aggregate expected production. When they choose a location, agents trade o¤ expected

net earnings opportunities (expected wage minus expected rents) against risk exposure

(volatility of income minus rent). Agents therefore do not necessarily choose the location

that maximizes their output. They may prefer a location with lower expected earnings

minus rents if their income in that location is less correlated with rents. In such a location,

the purchase of local housing provides insurance bene�ts. Nevertheless, they earn a risk

premium on the local housing because it is priced by outsiders to whom the volatility of

housing returns is a risk, not an insurance. An obvious corollary is that people are reluctant

to move to a one-company town.

Asset pricing errors. We can construct and price aggregate indices of stocks and real estate

assets. It is also possible to quantify the error that we make if we price stocks according to

a classic beta (taking into account only the covariance with other stocks), rather than the

correct beta, which is based on stocks and the portion of housing assets not demanded by

local residents, and on the covariance of stock dividends with labor earnings of the marginal

residents in every city.

Extensions. The analytical results we obtain for the benchmark model support two useful

extensions in the modeling of locations and housing assets.

First, the benchmark model can be extended to encompass economies of agglomeration

and other forms of externalities among residents. The equilibrium characterization of the

benchmark model remains valid, but the presence of direct externalities ampli�es the possi-

bility of equilibrium multiplicity. If the agglomeration economies are strong enough, there

will be multiple linear stationary equilibria corresponding to di¤erent allocations of talent

across cities. This means we may be able to create links between real estate �nance and

the vast literature on agglomeration e¤ects.

Second, the benchmark model assumes the ownership of real estate is perfectly divisible.

Households are allowed to buy exactly the amount of local housing they need to perfectly
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hedge their risk in income minus rent. A number of frictions are likely to lead household

away from the perfect hedge investment; e.g., a preference for homeownership, preferential

tax treatment of homeownership, housing transaction costs, housing property indivisibilities.

Any such impediment to obtaining a perfect hedge with local housing leads households to

resort to exploiting the covariance between their local risk and each of the �nancial assets.

Agents in di¤erent location therefore purchase a di¤erent portfolio of housing and stocks.

This hedging demand for stocks ends up a¤ecting stock prices. As a case in point, we

propose explicit solutions for stock prices when all households are required to own their

home.4

The paper is organized as follows: Section 2 reviews the related literature. Section

3 sets out the model. Section 4 presents the main equilibrium characterization result,

through three propositions corresponding to: portfolio allocation (Proposition 1), asset

pricing (Proposition 2), and location choice (Proposition 4). Section 5 uses the main result

to discuss a number of related issues. Section 6 concludes. All proofs are in the Appendix.

2 Related Literature

This is �to the best of our knowledge �the �rst asset pricing model where location choices,

housing rents, and asset prices are endogenous.

Our work is perhaps closest in spirit to that of DeMarzo, Kaniel, and Kremer (2004).

They consider an economy with multiple communities and local goods as well as a global

good. In this dynamic setting, some agents (the laborers) are endowed with human capital

that will be used to produce local goods in future periods, but they are currently subject to

borrowing constraints. Other agents (the investors) own shares in �rms that produce the

global good.

This approach yields a number of powerful results. Investors care about their relative

wealth in the community because they bid for scarce local goods. This generates an exter-

nality in portfolio choice, which leads to the potential presence of multiple equilibria (in the

stable equilibria, investors display a strong home bias). And, if there is a behavioral bias,

this externality ampli�es the bias through the portfolio decisions of rational investors.

Our model di¤ers from DeMarzo et al. (2004) in a number of important dimensions:

(1) Our local good does not produce utility directly, but it enables agents to realize their

human capital potential; (2) our spatial allocation is endogenous; and (3) there are no credit

4Other extensions yield similar predictions with regard to home bias. Suppose households enjoy more
utility from the same property if they own it than if they rent it. Such an assumption implies that their
investment in local housing is not driven purely by hedging considerations. Households are willing to
�distort�their housing investment because of consumption bene�ts. It then becomes optimal to use stocks
to deal with any residual risk in income minus rent not canceled with local housing investment.
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constraints. We do share their goal of studying the properties of portfolio choice and asset

pricing under uncertainty in the presence of community e¤ects. As in their model, a home

bias arises in equilibrium because of a hedging motive.5

Our contribution to the real estate �nance literature, lies in endogenizing both price and

rent in a dynamic model with multiple locations.6

Grossman and Laroque (1991) characterize optimal consumption and portfolio selection

when households derive utility from a single durable good only and trading the durable

require payment of a transaction cost. They show that CAPM holds in this environment,

but CCAPM fails because consumption of housing is not a smooth function of wealth due

to transaction costs.

Flavin and Nakagawa (2008) expand on the Grossman and Laroque framework by as-

suming that households derive utility not only from housing but also from numeraire con-

sumption. They show that when housing asset returns do not co-vary with stock returns,

the CCAPM holds. In equilibrium, all households hold a single optimal portfolio of risky

�nancial assets. Depending on their holding of housing, households vary in how much of

their wealth is invested in this portfolio but not its composition.

An extensive literature has explored the e¤ect of housing consumption on households�

life-cycle overall consumption and investment behavior. An early paper by Henderson and

Ioannides (1983) considers an optimal consumption and saving problem when a household

chooses whether to own or rent, and a wedge arises endogenously between the cost of renting

and the cost of owning. Henderson and Ioannides show that the consumption demand for

homeownership distorts households�investment decisions.

Goetzmann (1993) and Brueckner (1997) explain how this distortion a¤ects households�

portfolio choice. Flavin and Yamashita (2002) compute mean-variance optimal portfolios

for homeowners using U.S. data on housing and �nancial asset returns.7 Cocco (2004) also

computes optimal portfolios but in a calibrated dynamic model of household consumption

and portfolio choice. Housing consumption is constrained to equal housing investment in

the two papers above.

Yao and Zhang (2005) introduce discrete tenure choice (rent or own total housing con-

5Our results on home bias are also related to the international �nance literature on the home bias
puzzle (Stockman and Dellas, 1989), but we di¤er in our focus on real estate and in that location choice is
endogenous in our model.

6A review of the empirical literature on the cross-sectional dispersion of housing prices is beyond the
scope of this paper. For recent evidence emphasizing variations in housing price premiums see Campbell et
al. (2009).

7Englund, Hwang, and Quigley (2002) report similar computations for Sweden, Iacoviello and Ortalo-
Magné (2003) for the U.K., and LeBlanc and Lagarenne (2004) for France. Note that every one of these
papers considers the stock market as a whole and so ignores the covariance between housing and speci�c
stocks.
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sumption) in a similar environment. They show the sensitivity of households� portfolio

choice to tenure mode; owning a house leads households to reduce the proportion of eq-

uity investment in their net worth (a substitution e¤ect). At the same time, households

choose stocks more than bonds in their portfolio because homeownership provides insurance

against equity returns and labor-income �uctuations (a diversi�cation bene�t).

All this research demonstrates that incorporating housing consumption in portfolio

choice models helps reconcile theoretical predictions and cross-sectional observations. Home

investment seems a key factor in explaining the very limited participation of the young in

equity markets. Credit constraints play a critical role in explaining the hump-shaped we

see in home ownership over the life-cycle.

Piazzesi, Schneider, and Tuzel (2007) study a consumption-based asset pricing model in

which housing rents and prices are determined endogenously; the quantity of housing follows

an exogenous stochastic process. Agents can invest in both housing and stocks. The focus

of their analysis is on the composition risk related to �uctuations in the share of housing in

the households�consumption baskets. Piazzesi et al. show that the housing share can be

used to forecast excess returns of stocks �a prediction that appears to be borne out by the

data.

Lustig and Van Nieuwerburgh (2007) propose a mechanism whereby the amount of

housing wealth in the economy a¤ects the ability of households to insure idiosyncratic

income risk and thus shifts the market price of risky assets, housing included. In Lustig

and Van Nieuwerburgh (2005), the authors present empirical evidence of the relevance of

the ratio of housing wealth to human wealth for returns of stocks. We share with Piazzesi

et al. (2005) and Lustig and Van Nieuwerburgh (2005, 2007) a focus on the equilibrium

properties of housing rents and the risk premiums.

Lustig and Van Nieuwerburgh (2010) consider risk sharing across regions. Empirical

evidence indicates that the amount of housing wealth in a region a¤ects the sensitivity

of local consumption to local income. This paper is particularly close to ours in that it

considers multiple locations. Lustig and Van Nieuwerburgh, however, assume exogenous

location choice and that housing supply is perfectly elastic in all locations (and hence rents

depend only on aggregate shocks).

Our approach to the modeling of housing as access to a location is in the tradition of

urban economics. Our location choice model follows the standard multi-cities framework of

Rosen (1979) and Roback (1982), where residential properties provide access to the local

labor market, and locations are di¤erentiated by potential surplus. As in Rosen and Roback

and the many more recent papers that build on this framework (e.g., Gyourko and Tracy,

1991, Kahn, 1995, Glaeser and Gyourko, 2005), we assume households face a unit housing
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consumption requirement and derive utility from consumption of numeraire only.

Because we are concerned with portfolio choice in a dynamic environment, we assume

households are risk-averse. Risk aversion in the face of stochastic streams of income and rent

provides a motivation for ownership of local residential properties �homeownership �in our

model. This approach builds on the work of Ortalo-Magné and Rady (2002), Hilber (2005),

Sinai and Souleles (2005, 2009), and Davido¤ (2006) and others who provide evidence of

the relevance of such motivation for housing investment.

We do not here review the vast literature concerned with the determinants of housing

prices. Typically in this literature, real estate prices are determined by a perfectly elastic

supply function (Lustig and Van Nieuwerburgh, 2008) or by a perfectly elastic demand

function (Davis and Heathcote, 2005, Davis and Ortalo-Magné, forthcoming, Gyourko,

Mayer and Sinai, 2006, Kiyotaki, Michaelides and Nikolov, 2007, Van Nieuwerburgh and

Weil, 2007).

3 Model

Consider an overlapping generation economy where a mass 1 of agents is born in every

period. Each agent in the t-cohort is born at the beginning of period t, lives for S periods,

and dies at the beginning of period t + S. Hence, at every time t, there are a mass S of

agents alive in the economy.

3.1 Geography

There are L cities, denoted by index l = 1; :::; L and a countryside denoted by index l = 0.

City l has an exogenously given mass of houses. Let nl be the mass of houses per cohort

that will be active on the housing market so that total supply of housing in city l equals

S � nl. We assume that housing supply is scarce in cities:

LX
l=1

nl < 1

but it is abundant once we include the countryside:

LX
l=0

nl > 1:

Each house accommodates exactly one agent.
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3.2 Production

The income of a person who lives in the countryside is (normalized to) zero. Productivity

in city l follows the process

ylt = y
l
t�1 + �

l
t

where � lt is a random variable, independently and identically distributed across time.

At birth, each agent draws:

� A vector of city-speci�c endowment surplus, " = ["l]l=1;:::;L, with "l 2 (�1;1).

� A matrix of city- and age-speci�c insulation parameters: � = [�ls]
l=1;:::;L
s=0;:::;S:, with

�ls 2 [0; 1]. Assume �l0 = 0 for all l.

The parameters (";�) are i.i.d. across generations. Their joint distribution within a

generation takes the general form � (";�), with the only requirement that it should be

continuous and have full support.

At time t + s, the income of an agent living in city l, born at time t, with parameters

(";�) is

ylt;t+s

�
"l;�l

�
= ylt�1 + "

l +
sX

m=0

�
1� �lm

�
� lt+m

for s = 0; :::; S � 1 (note the di¤erence between ylt, a city-wide variable, and ylt;t+s
�
"l;�l

�
an individual speci�c variable).

Hence, the income of each agent can be decomposed into a permanent part, which

captures the initial productivity of the agent in a location and a time-dependent part,

which is determined by the local productivity shocks in the city and that agent�s sensitivity

to the city�s shocks. We call "l the city-agent e¤ect and �ls the shock insulation e¤ect.

We represent below the income earned by an agent born at time t, living in city l, for

each of the �rst three years of life:

ylt;t

�
"l;�l

�
=

city-agent e¤ectz}|{
"l +

city-cohort e¤ectz}|{
ylt ;

ylt;t+1

�
"l;�l

�
=

city-agent e¤ectz}|{
"l +

city-cohort e¤ectz}|{
ylt +

year 1 innovationz }| {�
1� �l1

�
� lt+1;

ylt;t+2

�
"l;�l

�
=

city-agent e¤ectz}|{
"l +

city-cohort e¤ectz}|{
ylt +

year 1 innovationz }| {�
1� �l1

�
� lt+1 +

year 2 innovationz }| {�
1� �l2

�
� lt+2:

Similar formulations determine the agent�s earnings until reaching age S�1.8 At age S, the
8The structure of " and � could be more complex and still be amenable to analysis in our mean-variance

set-up. For instance, we could say that the city-agent e¤ect is not constant over the life of the agent but
rather it follows a random walk. Also, we could assume that the extent to which a shock that occurs at age
s a¤ect future incomes depends on the age of the agent.
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agent does not earn anything. It is mathematically convenient to set �S = 0 for all agents

even if it is irrelevant to the agents�earnings.

The city-agent e¤ect, �l, is a standard object in multi-city models with heterogeneous

agents. Depending on their human capital, agents face di¤erent earning opportunities in

di¤erent locations.

The shock-insulation e¤ect, �l, captures two economic phenomena. First, agents may be

exposed to a technological cohort-speci�c e¤ect (documented by Goldin and Katz, 1998).

The human capital of certain people, especially the young, may be more �exible. When a

technological innovation appears, the income of certain agents will be more a¤ected than

the income of others.

Second, certain agents �like senior workers and public sector workers �may be part of

an implicit labor insurance agreement. Their wages are more insulated from productivity

shocks.

It is reasonable � but not necessary for the analysis � to assume that the insulation

parameter, for a shock that occurs at a given age, increases with in the age of the agent:

�ls+1 > �
l
s. The two extreme cases are full insulation (�

l
s = 1) and full exposure (�

l
s = 0).

9

For concreteness, we interpret ylt;t+s as monetary income, but there is an alternative

interpretation in terms of non-monetary bene�ts that is equivalent from a mathematical

standpoint. The term ylt;t+s can be viewed as a money-equivalent of the utility a¤orded by

the amenities present in location l. The utility can be decomposed in turn into an agent-

city e¤ect (a preference for that particular location) and a shock component (perhaps an

environmental or a social risk) multiplied by the agent�s sensitivity to that type of shock. Of

course, the model can also be interpreted as a mix of monetary and non-monetary bene�ts.

An agent who lives and thus produces in city l, must rent exactly one unit of housing

in city l.

3.3 Housing market

The housing market is frictionless. There are no transaction costs associated with renting,

buying, or selling property. There is no di¤erence between living in an owned or a rented

house.

At birth, every agent chooses in what city (or the countryside) to live. The agent

cannot move afterward. Living in city l at time t entails paying the market rent, on a unit

of housing, rlt. Rents are determined in equilibrium.

9We �nd it natural to restrict �ls to be between zero and one, but our mathematical analysis is valid
even if �ls > 1 (the agent�s productivity is negatively correlated with local shocks) and �

l
s < 0 (the agent is

overexposed to local shocks).
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Agents may invest in divisible shares of any city�s housing stock and revise their decision

at every period. Let alt;t+s denote the amount of housing of city l owned by an agent born

at time t of age s.

The market price of a unit of housing in city l at time t is plt. The agent revises his or her

housing investment at the beginning of every period. For accounting purposes, imagine that

the agent liquidates all housing assets and then buys the desired amount in each period.

At the beginning of period t + s, the agent acquires alt;t+s units in city l at total cost

alt;t+sp
l
t+s. During period t, the agent collects rent on the housing investment for a total of

alt;t+sr
l
t+s. At the beginning of the next period, the agent liquidates the housing investment

and receives alt;t+sp
l
t+s+1. We denote at;t+s the vector of the agent�s housing investments,

at;t+s =
�
alt;t+s

�
l=1;:::;L

.10

3.4 Stock market

Besides housing, there is another class of securities called stocks. These are claims on

productive assets, that �as in regular asset pricing models �produce an exogenous stochastic

stream of income. There are Szk units of type-k asset, with k 2 f1; :::;Kg and zk > 0. A
unit of stock k produces dividend dkt at time t. The dividend follows the stochastic process:

dkt = d
k
t�1 + �

k
t

where � is i.i.d. across time with probability distribution as below.

As is the case for housing, every agent can buy units of every stock and revise port-

folio allocations in every period. The market price of stock k at a particular time is qkt .

At the beginning of period t + s, the agent acquires bkt;t+s units of stock k at total cost

bkt;t+sq
k
t+s. During period t+ s, the agent receives dividends on investment in k for a total

of bkt;t+sd
k
t+s. At the beginning of the next period, the agent liquidates the stock investment

and receives bkt;t+sq
k
t+s+1. We denote bt;t+s the vector of the agent�s stock investments,

bt;t+s =
�
bkt;t+s

�
k=1;:::;K

.

3.5 Distribution of random shocks

There are two sources of exogenous shocks in our economy: a vector � of local productivity

shocks, and a vector � of dividend shocks. The shocks are independently and identically

distributed over time, according to a normal distribution with mean 0 and covariance matrix

�: (� t;�t) � N (0;�).
10Given the frictionless nature of the housing market, derivative securities would be super�uous. In

particular, Case-Shiller home price indices for our cities (a security bought at time t which pays a price plt+1
at time t+1) would be equivalent to purchasing housing for one period, net of the �rent coupon.�Given the
random-walk nature of all our shocks, long-term securities are also redundant because they can be replicated
by sequences of short-term investments. This includes long-term rentals or futures on real estate.
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We do not impose any restriction on the correlation between local productivity shocks

and dividends. One industry may be more a¤ected by shocks in a certain market, and

vice versa. We also do not impose any restriction on the correlation of productivity shocks

across cities.

3.6 Consumption and savings

As our goal is to develop a closed-form expression for asset prices, we assume that agents

derive CARA utility � exp (�w) from wealth at the end of their life, w, where  is the

standard risk-aversion parameter.

Agents face no credit constraints and can borrow and lend freely at discount rate � 2
(0; 1). For simplicity, we assume that agents are born with no wealth (this does not a¤ect

their decisions, given that they have CARA preferences).

3.7 Non-negativity constraints

Asset pricing models with normally distributed shocks su¤er from a well-known technical

problem. As the value of dividends can become negative, agents may want to dispose of

assets they own. If they could, the distribution of asset values would no longer be normal,

and the model would not be tractable. Hence, all models in this class assume, implicitly

or explicitly, that agents cannot dispose of assets. Typically, this assumption is unrealistic

because in practice both agents and �rms are protected by limited liability. Instead, in the

model stocks can have negative prices, and their owners must pay to get rid of them.

Our CARA-normal framework inherits this non-negativity problem. That is, produc-

tivity in a city could become negative, and house prices there may be negative.11

The usual response to this criticism, which applies here as well, is that the unconstrained

model should be viewed as an approximation of the model with non-negativity constraints,

as long as the starting values are su¢ ciently far from zero.

3.8 Timing

The order of moves for an agent born at time t is as follows:

1. At birth, the agent chooses in which location l to spend the rest of his or her life.

2. At the beginning of each period t + 0; :::; t + S, the agent learns the values of the

random shocks for that period, �t+s and � t+s.

11We assume homeowners have an obligation to rent their property (they pay a �ne if it is vacant).
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3. For s = 0; :::; S�1, the agent revises housing and stock investments (at;t+s and bt;t+s),
pays rent rlt+s for one unit of housing in the chosen location and collects dividends

and rents on the assets owned.

4. At time t+S, the agent liquidates all investments (at;t+S�1 and bt;t+S�1) and consumes

all wealth before death.12

4 Analysis

An equilibrium is an allocation of households across cities, a vector of optimal portfolio

holdings of housing and stocks for each agent, housing rents and prices for each city, and

stock prices such that: (1) The location choice and portfolio holdings solve the agents�

problem; (2) the housing markets (space and ownership) in each city clear; and (3) the

stock markets clear.

A stationary equilibrium is an equilibrium where the mass of agents of a generation t

who live in a given city l is the same across generations.13

A linear equilibrium is an equilibrium where stock prices, rents, and house prices can

be expressed, respectively, as:

qkt =
1

1� �d
k
t � �qk (1)

rlt = ylt + �r
l (2)

plt =
1

1� � r
l
t � �pl (3)

where �q =
�
�qk
�k=1;:::;K

and �p =
�
�pl
�l=1;:::;L

are price discounts; and �r =
�
�rl
�l=1;:::;L

is a rent

premium to be determined in equilibrium. The rent is equal to local productivity plus a

local constant. House and stock prices are equal to the discounted value of a perpetuity

that pays the current rent or dividend minus an asset-speci�c discount.

Price discounts can also be interpreted as expected returns of zero-cost portfolios.14

Throughout the analysis we describe �pl and �qk as price discounts or expected returns,

depending on the context.

12The agent does not work or pay rent in the last period of life (t+ S) but rather consumes all wealth at
the beginning of the period before death.
13A non-stationary equilibrium be structured as follows. As agents cannot move after they locate to city

l, the stock of rented accommodation used by the t-cohort will not become available until members of the
t-cohort die at the end of t+ S. Hence, if the t-cohort is, say, overrepresented, the t+ S + 1-cohort will be
equally overrepresented. The non-stationary equilibria are characterized by cycles of length S + 1.
14For instance, the expected return of a zero-cost one-unit portfolio invested in housing in city l (evaluated

in today�s dollars) is

E
h
�plt+1 �

�
plt � rlt

�i
=

�

1� � r
l
t � ��pl �

�

1� � r
l
t + �p

l = (1� �) �pl:
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Our strategy for �nding equilibria is as follows. We start by conjecturing that we are in

a stationary linear equilibrium. We postulate a feasible allocation of agents to cities, and

we solve the portfolio problem of a generic agent living in a given city. As it turns out,

solving this agent problem is enough to characterize stock prices and house prices up to a

vector of city-speci�c constants. With this information, we compute the expected utility

of every agent, conditional on city choice. We determine aggregate location demand, given

any price vector by comparing expected utilities across cities.

Finally, we consider the marginal residents. We show that for every vector of city-

speci�c constants there are a set of agents who are indi¤erent among all locations (the

hyper-marginal residents), while all others have strict preferences. The characteristics of

the hyper-marginal residents are monotonic in the vector of city-speci�c constants, and we

can identify the hyper-marginal residents so that the mass of agents who move to each city

equals the local housing supply in each city. This proves that our initial conjecture on linear

prices is correct.15

As agents have CARA preferences. their lifetime utility can be decomposed into:

E
h
ult

i
= E

h
wlt

i
� V

h
wlt

i
:

Proposition 1 re-writes the two components of the agents utility and uses them to compute

his optimal portfolio choice and his expected utility.

In what follows we focus on one agent and we drop the argument representing the

agent-speci�c characteristics: (";�). All proofs are in appendix.

Proposition 1 (Portfolio Allocation) Suppose that prices and rents are given by equa-

tions (1), (2), and (3), with given �r, �q and �p. Consider any allocation of agents to cities.

Consider an agent born at period t characterized by a vector " and a matrix �. If this agent

lives in l and chooses investment pro�les [at;t+s; bt;t+s]s=0;:::;S�1, the expectation and the

15 It is tempting to consider the two �rst parts of the analysis (portfolio choice and asset pricing) in
isolation, but they are valid only if the third part is present too. If one assumes a di¤erent location model
or an exogenous allocation of agents to cities, the three price processes in equations (1), (2), and (3) would
be di¤erent, and Propositions 1 and 2 would no longer hold. For instance, if agents could move between
cities during their lifetime, it is not clear that the rent the price in city l would depend only on productivity
in city l.
We see this as both a weakness and a strength of spatial asset pricing. On the one hand, one cannot have

a meaningful discussion about real estate prices in multiple locations without an underlying spatial model.
On the other hand, this opens the door to a wealth of testable implications related to spatial and �nancial
variables.
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variance of the agent�s end-of-life wealth can be written, respectively, as:

E [wt] =

S�1X
s=0

�s�S

0@"l � �rl + (1� �)
0@�1� �S�s�1� �ls+1�pl + LX

j=1

~ajt;t+s�p
j +

KX
k=1

bkt;t+s�q
k

1A1A
V ar [wt] =

�2

(1� �)2
S�1X
s=0

�2(s�S)V ar

24 LX
j=1

~ajt;t+s�
j
t+s+1 +

KX
k=1

bkt;t+s�
k
t+s+1

35
where

~ajt;t+s =

(
alt;t+s �

�
1� �S�s�1

�
�ls+1 if j = l

ajt;t+s otherwise
:

The agent�s optimal investment pro�le is given by�
~at;t+s
bt;t+s

�
=
(1� �)3

2�s+2
�S��1

�
�p
�q

�
;

for s = 0; :::; S � 1, and expected log-utility is

U l =
1

�S

S�1X
s=0

�s
�
"l � �rl + (1� �)

�
1� �S�s�1

�
�ls+1�p

l
�
+ S

(1� �)4

4�2

�
�p
�q

�0
��1

�
�p
�q

�
:

Proposition 1 says that the optimal portfolio of any agent can be decomposed into:

� Demand for real estate in the city where the agent lives,
�
alt;t+s � ~alt;t+s

�
, driven by

a desire to hedge shocks to disposable income due to rent �uctuations. As the price

of a house is linear in the rent, a house in a certain city is a perfect hedge against

rent �uctuations in that city. The hedging demand is given by
�
1� �S�s�1

�
�ls+1.

Hence, the hedging demand depends on how well the agent is insulated from local

productivity shocks at time t. The hedging demand varies across agents and across

time for a given agent, but it does not depend on the expected return of real estate in

that city (if a city has a high return, that will be re�ected in the mutual fund share

only).16

� Investment in a mutual fund includes all stocks and houses in all cities, with weights
(~a; b). The mutual fund is the same for all agents. All agents within a cohort buy

the same amount of mutual fund shares (but older agents buy more shares, purely

because of the discount rate �). Given a vector of expected returns (which for now is

still exogenous), the weights (~a; b) that the mutual fund puts on various stocks and

real estate assets are given by a standard CAPM allocation. The portfolio puts more

weight on an asset if its returns are less correlated with other assets and have a higher

expected value.
16Davis and Willen (2000) obtain a related result (their Proposition 1) in decomposition of the optimal

portfolio of agents who face labor risk into a speculative component and a hedging component.
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Now that we have solved the portfolio allocation problem for any given vector of pre-

miums, we solve for the equilibrium expected returns. Denote any (measurable) allocation

of agents to cities with the indicator function I l";�, which takes a value of 1 if agents with

personal characteristics " and � locate to city l, and zero otherwise (such that
PL
l=0 I

l
";� = 1

for all " and �).

Proposition 2 (Asset Pricing) Suppose that rents are given by equation (2), with given

�r. Consider any allocation of agents over space so that all cities are populated. Then, prices

are given by equations (1) and (3) with discounts:"
�p
�q

#
= 2S

�

(1� �)2
�
1� �S

�� � n�R
z

�
;

where R =
�
R1; :::; Rl; :::; RL

�0
and

Rl =
1

S

S�1X
s=0

�
1� �S�s�1

� Z
"

Z
�
I l";��

l
s+1� (";�) d"d�:

Houses and stocks are priced according to their contribution to systematic risk by a

classic CAPM formula. Proposition 2 �nds the correct de�nition of systematic risk for this

model. The weights of stocks in the market portfolio correspond to the quantity of stocks

available, as in the regular CAPM. The weights of real estate, however, are reduced by the

total hedging demand. Namely, the weight of houses in city l is equal to the mass of homes

nl minus the integral of the hedging demand by residents of l: Rl.

To explore the pricing expressions in Proposition 2 further, de�ne the adjusted market

portfolio M as a portfolio allocation that includes

nl �Rl
Q

units of housing in city l for every city l; and

zk

Q
units of stock k for every stock k

where Q =
PL
l=1

�
nl �Rl

�
+
PK
k=1 z

k. The mutual fund that all agents buy is the adjusted

market portfolio.

Denote the expectation and the variance of the adjusted market portfolio, respectively,

by �pM and V ar (M). De�ne Cov (l;M) as the covariance between the return of real estate

in city l and the return of M . For every stock k, de�ne Cov (k;M) similarly. Then:

Corollary 3 The expected return of real estate in city l is given by

�pl =
Cov (l;M)

V ar (M)
�pM
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and the expected return of stock k is

�pk =
Cov (k;M)

V ar (M)
�pM :

The expression in the Corollary is akin to the classic CAPM pricing formula where
Cov(l;M)
V ar(M) is a beta-factor for housing in city l. The main innovation lies in identi�cation of

the adjusted market portfolio, for which this formula is true.17

Propositions 1 and 2 are really intermediate results. They rest on a speci�c conjecture

about the stochastic process that determines local market rents, described in equation (2).

But rents are not primitives, and we must now check that for the location model used here

the conjecture is in fact correct. It is useful to reiterate that the conjecture would in general

not extend to other location models, implying that Propositions 1 and 2 are valid only if

accompanied by the speci�c spatial allocation model that we have chosen.

Besides closing the �xed-point argument, we also need to determine the vector of rent

premiums �r, and to �nd the vector of hedging demands R.

For an agent with personal characteristics (";�), the log-utility of locating in city l is

given by U in Proposition 1, where now �p and �q are de�ned in terms of primitives through

Proposition 2. For every (";�), let

�ul (";�) � "l + (1� �)
2

1� �S
�pl

SX
s=1

�
1� �S�s�1

�
�ls: (4)

with the utility of being in the countryside: �u0 (";�) = �u0.18

Also let
�U = S

(1� �)4

4�2

�
�p
�q

�0
��1

�
�p
�q

�
:

Then, we can write the utility of locating in city l as:19

U l = �U +
1

�S

�
1� �S

1� �

�
�ul (";�)� �rl

��
:

Namely, the agent�s utility can be decomposed into a component that is common to all

agents (and depends on investment in the mutual fund) and an agent-speci�c component

that depends on the city-agent e¤ect "l and the shock-insulation vector �l that the agent

faces if the choice is to locate in city l.
17For instance, if one de�nes the market portfolio without the �R correction, such a beta representation

would not be valid.
18Assuming that "0 = 0 is without loss of generality. If it was not, one could rede�ne all the " as di¤erences

with "0.
19To see this, note that:

S�1X
s=0

�s
�
"l + (1� �)

�
1� �S�s

�
�ls+1�p

l
�
=
1� �S
1� �

 
"l +

(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s+1

�
�ls

!
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A given agent locates in city l if and only if U l = maxm Um. For every L-vector r̂, we

can write the aggregate demand for location l as

�l (r̂) =

Z
(";�):�ul(";�)�r̂l=maxm(�um(";�)�r̂m)

� (";�) d (";�) :

We obtain:

Proposition 4 (Location Choice) A linear stationary equilibrium exists. In it, an agent

with personal characteristics (";�) locates in city l if and only if

�ul (";�)� �rl = max
j=0;:::L

�
�uj (";�)� �rj

�
and �r is the unique value of the vector r̂ such that �l (r̂) = nl in all cities.

The equilibrium rent in city l is

rlt = y
j
t + �r

l:

Proposition 4 validates the conjectures that allowed us to obtain Propositions 1 and 2.

The most important step in Proposition 4 is determination of the identity of hyper-marginal

residents (the agents who are indi¤erent among all locations including the countryside). As

we argue below, a key property of our set-up is that the characteristics of the hyper-marginal

residents are constant over time. The indi¤erence conditions for these agents determine

market rents. This means that the local rent processes are the same, but for a constant

term, as the local productivity processes. This validates the linearity assumption for the

rent process built into equation (2).

Let us retrace, at an intuitive level, the steps that lead to Proposition 4. Despite the

fact that the payo¤ of an agent in a given city is determined by S+1 parameters ("l plus the

vector �l), the expected utility U l of the agent in that city can be condensed into a simple

expression including �ul (";�). For any possible vector of rents r̂, the demand function �l (r̂)

establishes how many agents will live in each location.

Hence, for every vector of rent constants r̂, we identify a set of measure zero of hyper-

marginal residents such that their expected utility is the same in every city and in the

countryside:

�ul (";�)� r̂l = �u0 for all l:

Note that this correspond to multiple personal characteristic pro�les: all the vectors (";�)

that yield the same �ul (";�). One can show that the vector of expected utilities of the

hyper-marginal resident in di¤erent location is monotonic in the rent constant vector r̂.

This means that the mapping can be inverted. Given the identity of the hyper-marginal
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resident, there is only one vector of rents that guarantees that the hyper-marginal residents

are indeed indi¤erent across all locations.

The assumption that the distribution of individual characteristics � (";�) has full sup-

port guarantees that the demand function is continuous. As the hyper-marginal residents

determine the vector of location demands, one can �nd a set of hyper-marginal residents

that guarantees that demand equals supply in every location. This set is associated with

the rent constant vector �r.

In equilibrium, we have that housing demand equals housing supply on the space market

in every city:

� (�r) = n;

and that the identity of the hyper-marginal residents is given by the set of values (";�) so

that, given the equilibrium rent vector, their expected utility is the same in every city and

in the countryside:

�ul (";�)� �rl = 0 for all l:

A key feature of our location equilibrium is that the characteristics of the hyper-marginal

resident are cohort-invariant. It is this feature that guarantees that the rent process is linear

and that our equilibrium characterization is valid. If, for instance, agents could change city,

the time-invariance property would not hold, and the rent process would not be linear. As

a result, the properties of portfolio allocation and asset prices would di¤er.

We view this as a strength of spatial asset pricing models. The underlying geographic

model �which we can potentially observe through demographic and labor data �a¤ects

equilibrium in the asset market.

The issue of uniqueness is complex. Obviously, there can be non-linear and/or non-

stationary equilibria. Given an allocation of residents to cities, there is only one linear

stationary equilibrium. There could be multiple spatial equilibria, however. The agent�s

expected utility in equation (4) includes a multiplicative term �pl�ls. As Proposition 2 shows,

the real estate return �pl depends on Rl and hence on who lives in city l, which creates a non-

trivial �xed-point problem. The (economically interesting) possibility remains that there

are multiple allocations of residents to cities that give rise to linear stationary equilibrium.

Uniqueness can be achieved under certain functional assumptions, as some examples

illustrate.

While we obtained closed-form solutions for portfolio decisions and asset premiums,

Proposition 4 does not express rents in closed form. This is natural as the probability

distribution over individual characteristics, � (";�), is left in a general form. By making

speci�c assumptions over personal characteristics and geography, one can obtain closed-form

expressions for all variables, as the following example illustrates.
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Assume that:

� Agents in each cohort draw city-speci�c endowments " from a uniform distribution

de�ned over [0; 1]L.

� At each age, all agents face the same city-speci�c insulation parameter
�
~�ls
�l=1;:::;L
s=0;:::;S

.

� All cities are of the same size: nl = 1
LN for every l, with N 2 (0; 1).

Proposition 5 An agent with human capital " locates in city l if: (1) "l = maxm "m; and

(2) "l � (1�N)
1
L . The equilibrium rent in city l is

rl = (1�N)
1
L +

(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s�1

�
~�ls:

If there are only two cities (L = 2), we can provide a two-dimensional representation of

the equilibrium allocation. If, for instance, we assume that n1 = n2 = 1
3 (and hence n

0 � 1
3),

we have the situation depicted in Figure 1. The agents who locate in the countryside are

those with a low "1 and a low "2 (the bottom left square region). Those who locate in city

1 have "1 � (1�N)
1
2 and "1 � "2 (bottom right trapezoid). Those who locate in city 2

have "2 � (1�N)
1
2 and "2 � "1. The marginal resident is found at the intersection of those

three regions.

We can also see what happens when cities have di¤erent sizes. The general characteri-

zation is more complex than the one in Proposition 5, but one can work out examples. For

instance, if n1 = 2
9 and n

2 = 4
9 (and a measure

1
3 of agents still locate in the countryside),

the allocation is depicted in Figure 2. The city-1 region is now smaller and the city-2 region

is larger. The hyper-marginal residents are now to the southeast of the hyper-marginal

residents of Figure 1.

eps 1

eps 2

City 2

Countryside

City 1

Figure 1

eps 1

eps 2

Countryside

City 2

City 1

Figure 2
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Another simple case assumes there is only one city, and agents di¤er on two dimensions:

" and �. Suppose both types are uniformly (and independently) distributed on [0; 1]. This

equilibrium allocation is represented in Figure 3.

eps

rho

Countryside

City

Figure 3

In Figure 3, there are values for � so that agents with a low � locate in the countryside,

and agents with a high � locate in the city. Agents with a high � are more insulated from

city-level technology shocks. They buy more housing for hedging purposes than agents

with a low �. They earn the risk premium on their housing investment although for them

it provides insurance. This bene�t that comes from living in the city is not available to

agents with a low � who purchase less housing for hedging purposes.

5 Discussion

Our spatial asset pricing model yields a rich set of implications linking spatial and �nan-

cial variables. We �rst discuss cross-sectional and life-cycle implications, and then talent

allocation across cities. We explore the pricing of portfolios of stocks and portfolios of real

estate. We conclude with a short discussion of how the model can be extended to include

economies of agglomeration and frictions in the housing market.

5.1 Returns on housing across cities

Our model yields predictions about the cross-sectional di¤erences in real estate returns

(Proposition 2 and Corollary 3). To get some understanding of those predictions, consider

a simple benchmark. Assume that shocks across cities are uncorrelated, and suppose there
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are no stocks. Let V ar
�
� l
�
= �2l . Proposition 2 yields

�pl = 2
�

(1� �)2
�
1� �S

��2l �nl �Rl� :
The expected return of housing in city l is an increasing function of the variance of shocks

in that city and of the outstanding real estate stock nl�Rl. In turn, the latter is a declining
function of the average housing demand for hedging purposes, Rl, in that city. The value

of Rl is determined in equilibrium.

If a location specializes in an industry and thus o¤ers low shock-insulation parameters.

All residents, whether old or young, are a¤ected by industry productivity shocks in the same

way. The residents have a low demand for housing for hedging purposes. The city�s home-

ownership rate is low, and so are prices. The opposite, a city centered around an industry

with high shock-insulation parameters �perhaps a high-tech industry where older workers

struggle to keep up with innovation or a highly protected sector, where older workers face

implicit insurance �will display a high hedging demand for housing, high homeownership

rates, and high housing prices compared to rents.

5.2 Home ownership over the life-cycle

The model yields intertemporal predictions on individual home ownership rates. We know

from Proposition 1 that housing demand for hedging purposes depends on the shock-

insulation parameter, which in turn varies with age. The hedging demand by someone

at age s anticipating a shock-insulation parameter the following period of �ls+1 is

Dls =
�
1� �S�s�1

�
�ls+1:

Suppose the parameters �ls are determined by a di¤erentiable function g (s) de�ned over

the positive real line. Suppose that the covariance of an agent�s earnings with the earnings

of the young marginal newcomers in that city declines with age; i.e., g0 (s) < 0. Then,

abusing notation for ease of exposition, we write the change in hedging demand for local

home ownership with age as follows:

d

ds
Dls =

�
1� �S�s�1

�
g0(s) + log � � �S�s�1g(s)

The �rst term represents the increasing insurance demand as the agent gets older due to �

declining with age. The second term is the e¤ect of the declining number of periods of life

as the agent gets older. The �rst term increases with age; the second term is declines with

age.

Next we ask under what conditions do the two e¤ects generate a hump-shaped pattern

for homeownership by looking at the second derivative:

d2

ds2
Dls =

�
1� �S�s�1

�
g00(s) + 2 log � � �S�s�1g0(s)� (log �)2 � �S�s�1g(s)
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A su¢ cient condition for this expression to be negative is that g00 (s) be negative.

Assume that the shock-insulation parameter can be written as �ls = k
s�1
S�1 , with k 2 [0; 1]

(implying �l1 = 0 and �
l
s linearly increasing with age). If � = 0:95, S = 60, and k = 1, the

hedging demand over the life-cycle is plotted in Figure 4.
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This result o¤ers another explanation �complementary to credit constraints �for why

home-ownership rates should be lower for younger people. Younger households do not

need much insurance against rent shocks because their earnings provides such insurance.

As they get older, earnings provide less insurance, and their hedging demand for home

ownership increases. Against this force is the fact that as an agent gets older, there are

fewer remaining periods of life, reducing the demand for insurance; this last point is made

by Sinai and Souleles (2005) who provide evidence of its empirical relevance.

5.3 Talent allocation

Does our market equilibrium have the potential to attain productive ine¢ ciency?

Let us begin by de�ning and characterizing productive e¢ ciency. The economy�s total

product at time t is

Yt =
LX
l=1

Z
(";�):�ul(";�)��rl=maxm(�um(";�)��rm)

ylt;t+s

�
"l;�l

�
� (";�) d (";�) :

Suppose a planner wishes to maximize the expected discounted sum of future total

products:

Y =

1X
s=0

�sE [Yt+s] :
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We begin by characterizing the solution of the production maximization problem:

Proposition 6 The allocation of agents to cities that maximizes Y depends only on ", not

on �. An agent with " locates in city l if "l � �"l = maxm "
m � �"m, where �" is the unique

vector that guarantees that the mass of agents in every city equals the housing supply.

We can show that productive e¢ ciency is typically not achieved, except in very special

circumstances:

Proposition 7 Exactly one of the following statements is true:

(1) For all cities, �pl = 0.

(2) The linear stationary equilibrium does not maximize Y .

Proposition 7 says that productive e¢ ciency is reached if and only if the expected return

on real estate is zero in every city. In that case, insurance against rent risk is available at

a cost of zero instead of a negative cost if the return is positive. Agents base their location

decisions exclusively on ", and output is maximized.

Expected returns on real estate are zero when: (1) The covariance matrix � is such

that there is no systematic risk; (2) the local productivity shocks are uncorrelated and

the number of cities goes to in�nity (there is still systematic risk coming from stocks).

Outside these restrictive conditions, the distribution of � matters for location choices, and

the equilibrium allocation does not maximize expected product.

Of course, productive ine¢ ciency does not imply overall ine¢ ciency. Our market equi-

librium may be constrained-e¢ cient, given the insurance options available in the model.

Full insurance is o¤ered only if local labor shocks � and hence local house prices � are

uncorrelated with systematic risk. Beyond that special case, local real estate prices carry

systematic risk, and location choices are a¤ected by the desire of agents to cash in on risk

premiums.20

To reinforce the point of Proposition 7, we fully solve an example in closed-form. For

ease of exposition, we let S = 2, and restrict the stock market to a single stock. We assume

agents enjoy a constant insulation parameter � over life. Each cohort is equally divided into

two types of agent: Type 0 agents have no insulation (� = 0), and type 1 agents have full

insulation, � = 1.21 The distribution of agent-city match parameter is independent of agent

type, ", and uniform over the unit interval.

20Proving welfare theorems in our case is di¢ cult because the allocation space includes a discrete variable,
the allocation of agents to cities.
21This example is not, strictly speaking, included in our model because it violates the assumption that the

distribution of types is continuous and has full support. It demonstrates that the full-support assumption
is su¢ cient but not necessary for equilibrium existence.
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An agent ("; �) locates in the city if and only if:

1

�2

1X
s=0

�s
�
"� �r + (1� �)

�
1� �1�s

�
��p
�
� 0:

The marginal city dwellers of type 0, "̂0, and type 1, "̂1, satisfy:�
"̂0 = �r

"̂1 = �r � (1��)2�p
1+�

:

The market clearing condition on the spatial market is (
1�"̂1+1�"̂0)

2 = n, which yields a

solution for the rent premium as a function of the housing price discount:

�r = 1� n+ (1� �)2

2 (1 + �)
�p:

The asset market clearing conditions are�
2n
2z

�
=

�
1 +

1

�

�
(1� �)3

2
��1

�
�p
�q

�
+

�
(1� �)

�
n� 1

2 +
�r
2

�
0

�
;�

1 +
1

�

�
(1� �)3

2
��1

�
�p
�q

�
=

�
2n
2z

�
�
�
(1� �)

�
n� 1

2 +
�r
2

�
0

�
;�

�p
�q

�
=

2�
1 + 1

�

�
(1� �)3

�

�
2n� (1� �)

�
n� 1

2 +
�r
2

�
2z

�
:

Let � =
�
�2h �hs
�hs �2s

�
. We now have

�p =
2�

1 + 1
�

�
(1� �)3

��
2n� (1� �)

�
n� 1

2
+
�r

2

��
�2h + 2z�hs

�
which yields

�p =
4� (1 + �)

(1� �)3
�
2 (1 + �)2 + �

�
��
2� (1��)

2

�
n�2h + 2z�hs

�
�2h

The last equation provides a solution for �p as a function of parameters only. It is then easy

to obtain �r and �q from the equations above. In particular,

�q =
2�

1 + 1
�

�
(1� �)3

��
2n� (1� �)

�
n� 1

2
+
�r

2

��
�hs + 2z�

2
s

�
:

We therefore obtain a full characterization of the equilibrium.

Assume numerical values � = n = z = ��hs = 0:5 and �h = �s =  = 1; the equilibrium
solution is �r = "̂0 = 0:65; "̂1 = 0:35; �p = 1:8; and �q = 3:1. Maximizing output would have

required "̂0 = "̂1 = 0:5.; i.e., not enough type 0 agents locate in the city (agents with

"0 2 [0:5; 0:65] are in the countryside instead of the city) and too many type 1 agents locate
in the city (agents with "1 2 [0:35; 0:5] are in the city instead of the countryside).
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5.4 Housing and stock indices

As in the CAPM, one can price any portfolio with respect to the market. In this model,

the relevant market is de�ned by the adjusted market portfolio M , discussed in Corollary

3.

We can price a housing-only index with weights n�R
1�[n�R] (called H) and a stock-only

index with weights z
1�z (called S). We have:

�pH =
Cov (H;M)

V ar (M)
�pM ;

�pS =
Cov (S;M)

V ar (M)
�pM :

Note that H can be interpreted as an index tracking the market portfolio of REITs. It is

the housing demand vector that is the same for all agents. It includes all houses that are

not owned by local residents for hedging purposes. The result in Corollary 8 is immediate

(by putting together the two return expressions above):

Corollary 8 The relative returns of the housing index and the stock index are given by

�pH =
Cov (H;M)

Cov (S;M)
�pS :

The corollary implies that, ceteris paribus, the di¤erence between real estate returns and

stock returns is related to home-ownership rates. The higher the percentage of residential

property owned by local residents, the lower the returns on real estate.

Our model can also be used for predictions on stock returns. Often, the return of a stock

is computed according to a CAPM formula that takes into account stocks only. Namely,

the return of stock k is assumed to be

~qk =
Cov (k; S)

V ar (S)
�pS :

In our setting, this expression is of course incorrect, because it does not take into account

the presence of housing. The correct expression is �qk = Cov(k;M)
V ar(M) �p

M . The ratio between the

wrong expression and the correct one is

~qk

�qk
=
Cov (k; S)

Cov (k;M)

V ar (M)

V ar (S)

�pS

�pM
:

5.5 Economies of agglomeration

So far we have assumed no production externalities (or amenity externalities, if one embraces

the amenity interpretation of our model). The model can be easily extended to incorporate

externalities. Most results still hold, except possibly uniqueness.
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Assume that the income of an agent if he or she locates in l is now given by

ylt;t+s

�
"l;�l

�
= ylt�1 + "

l
�
El
�
+

sX
m=0

�
1� �lm

�
� lt+m;

where El is the collection of "l of other agents living in city l.

It is easy to see that Propositions 1 and 2 hold as stated. Proposition 4 can be restated

as follows. For every
�
";�; El

�
, let

�ul
�
";�; El

�
= "l

�
El
�
+
(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s�1

�
�ls:

As before, an agent locates in city l if and only if U l = maxm Um.

An allocation of agents to cities is described by E =
�
E1; :::;EL

�
. Hold E constant.

For every L-vector r̂, the aggregate demand for location l is

�l (r̂;E) =

Z
(";�):�ul(";�;El)�r̂l=maxm(�um(";�;Em)�r̂m)

� (";�) d (";�) :

Proposition 9 An allocation E is part of a linear stationary equilibrium if and only if:

(1) for all (";�), an agent with personal characteristics (";�) locates in city l if and only if

�ul
�
";�; El

�
� �rl = max

m
(�um (";�; Em)� �rm)

and (2) �r is the unique value of the vector r̂ such that �l (r̂;E) = nl in all cities.

Thus, the equilibrium characterization part of Proposition 4 is still valid. Existence of

an equilibrium will depend on the properties of the functions "l (�). Moreover, as is well
known, agglomeration economies tend to lead to multiple equilibria.

5.6 Ownership only

In our frictionless model, there are no intrinsic advantages to owning or renting, and house-

holds are free to own any divisible amount of their home. Consider instead the extreme

case where renting is impossible. An agent can move to city l only if he or she buys one

house there. In this world, all houses are owned by residents, and all residents own exactly

one house. Agents can still invest in stocks.

Note that the covariance matrix can be written as

� =

�
��� ���
��� ���

�
:

We �rst characterize the optimal portfolio allocation:
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Proposition 10 Given a vector of stock premiums �q, the optimal portfolio allocation for

an agent with parameters (";�) is264 b
1
t;t+s
...

bKt;t+s

375 = ��1��
0B@ 1

H

264 �q1

...
�qK

375�
264 cov

�
�1; � l

�
...

cov
�
�k; � l

�
375!s ��ls+1�

1CA
where H = 2 �

s�S+2

(1��)3 and

!s

�
�ls+1

�
=
�
1� �ls+1

� �
1� �S�s�1

�
+ �S�s�1:

The expected utility of an agent with parameters (";�) if he or she locates in city l can be

expressed as

U l (";�) = �0 + �1�p
l + �2"

l +
SX
s=1

�s�
l
s + &s

�
�ls

�2
;

where �0, �1, �2, �s, and &s do not depend on (";�) or on �p
l, and �1 > 0, �2 > 0.

The optimal portfolio allocation is di¤erent from the allocation in the frictionless case.

Agents can no longer choose their real estate investment. They resort to stocks to insure

against the risk created by local productivity shocks. The extent to which stocks are helpful

in providing insurance depends on the covariance matrix �.

The amount of stock k that a certain agent demand is determined by two components:

� A classic speculative element (the same as in Proposition 1).

� A hedging element, which is a function of �cov
�
�k; � l

�
!
�
�ls+1

�
, where !s

�
�ls+1

�
is

a measure of hedging demand and �cov
�
�k; � l

�
determines the value of stock k as

a hedge for homes in city l. If dividend shocks are positively correlated with local

productivity shocks, the hedging demand is negative.

Proposition 11 characterizes asset pricing in the ownership only economy:

Proposition 11 For a given allocation of agents to cities, the excess return on stocks is

given by

�q = H���z +
H

S
���
;

where 
 =
�

1 � � � 
L

�0
and


l =

S�1X
s=0

Z
l̂(";�)=l

!s

�
�ls+1

�
� (";�) d (";�) :
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Our asset pricing characterization now refers only to stocks. As real estate investment

is fully determined by location decisions, nothing can be said about house prices until

location decisions are discussed. Stock prices have two components: a classic beta-pricing

element, H���z, and an additional part that depends on their use for hedging against local

productivity risk. This hedging component is proportional to ���
.

To understand the hedging component of the stock price, note that 
 is a vector of

aggregate hedging demands, one for every city. The total hedging demand 
l in city l

depends on the size of the city and how low the average shock-insulation parameter is for

residents of that city. The price of stock k depends on how its dividend shocks covary with

productivity shocks in all cities, weighted by the total hedging demand in every city.

To discuss the optimal location, let

�ul (";�) =
1

�1

 
�2"

l +
SX
s=1

�s�
l
s + &s

�
�ls

�2!
:

For every L-vector p̂, we can write the aggregate demand for location l as

�l (p̂) =

Z
�ul(";�)��pl=maxj=0;:::L(�uj(";�)��pj)

� (";�) d (";�) :

Then, we have

Proposition 12 There is a linear stationary equilibrium. An agent with characteristics

(";�) locates in city l if and only if

�ul (";�) + �pl = max
j=0;:::L

�
�uj (";�) + �pj

�
and �p is the unique value of the vector p̂ such that �l (p̂) = nl in all cities.

The equilibrium price in city l is

plt =
1

1� � y
j
t � �pl:

As in the frictionless case, the equilibrium housing price is ultimately determined by the

preferences of the hyper-marginal residents. As before, the expected utility of an agent who

locates in city l depends only on the value of parameters for city l (i.e. "l and �ls, for all

s).22 As in Proposition 4, there is a unique price vector for which aggregate demand equals

aggregate supply.

22However, now the expected utility of an agent who locates in city l takes a di¤erent form (quadratic in
�ls).
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6 Conclusion

Choosing where to live amounts to choosing a zero-net price combination of a positive stream

of dividends (income, access to local amenities) and a negative stream of dividends (housing

costs). With this insight in mind, we approach the pricing of residential properties with a

model that combines a standard spatial equilibrium framework with a standard portfolio

choice and asset pricing framework. Housing rents are determined by market clearing in

the space market; every home in a populated city. The pricing of homes in each city and

the pricing of all other assets in the economy are determined by market clearing in the asset

market; all assets are held by investors.

Our model highlights signi�cant interactions between the space market and the asset

market. For one, the location choice of households depends not only on expected income

minus rent (as in standard spatial equilibrium models) but also on the risk premium em-

bedded in the price of local homes and the risk each household faces as measured by the

covariance of its income with that of other city residents.

The pricing of assets depends on the location choices of the households. Who lives where

determines (1) the expected rents for residential properties everywhere, (2) their volatility

and covariance with other assets, and (3) the weight of residential properties from each

location in the adjusted market portfolio that is relevant for the pricing of all assets in the

economy.

Our results show the cost of ignoring the spatial nature of the economy when one

studies the allocation of households over space and the pricing of all assets. The theory

also generates new empirical questions with regard to the cross-sectional and time series

variations of households�portfolios and returns to housing, and invites further re�nements

to standard practices in the pricing of �nancial assets.

This represents just a �rst step toward a theory of spatial asset pricing. Our goal has

been to obtain a simple, tractable set-up to illustrate the links between location decisions

on the one hand and investment decisions and asset prices on the other. Future research

can explore, analytically or numerically, richer models of spatial asset pricing. Clearly, it

would be interesting to move beyond CARA utility functions. It would also be useful to

study real estate prices when moving costs are �nite. Finally, it would be useful to allow

for an elastic housing supply, perhaps even one that is determined endogenously through

the political process (see Ortalo-Magné and Prat, 2009, for a �rst step in this direction).
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Appendix

Proof of Proposition 1

The cash �ow at period t+ s for agent born at t, living in city l is

vt;t+s = ylt;t+s � rlt+s
�
X
j

��
pjt+s � r

j
t+s

�
ajt;t+s � p

j
t+sa

j
t;t+s�1

�
�
X
k

��
qkt+s � dkt+s

�
bkt;t+s � qkt+sbkt;t+s�1

�
for s = 0; :::; S � 1 and

vt;t+S =
X
j

pjt+Sa
j
t;t+S�1 +

X
k

qkt+Sb
k
t;t+S�1:

The end-of-life wealth of an agent born in t (evaluated at the beginning of his or her life) is:

wt =
1

�S

SX
s=0

�svt;t+s

Plug in the income process and the linear prices:

wt =
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�s

 
ylt�1 + "

l +

sX
m=0

�
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�
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!

+
1

�S

X
j

S�1X
s=0

�sajt;t+s

�
�
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j
t+s+1 + (1� �) �pj

�

+
1
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X
k
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1� � �
k
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=
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�
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� 1
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+
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�S

X
k

S�1X
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�
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k
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�
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because �l0 = 0. Note that

S�1X
s=0

�s
sX
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t+m =
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�
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�
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�
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Then,

wt =
S�1X
s=0
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��
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�
�ls+1

�

1� � �
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X
k
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k
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Hence,

E [wt] =

S�1X
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where ~alt;t+s = a

l
t;t+s �

�
1� �S�s�1

�
�ls+1 and ~a

j
t;t+s = a

j
t;t+s for all j 6= l.

In a matrix form, this is rewritten as
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The �rst-order conditions yield�
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Plug back into the utility function:

U =
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Proof of Proposition 2

The demands for assets beyond a hedging motive can be written as�
~at�s;t
bt�s;t

�
=
(1� �)3

2�s+2
�S��1

�
�p
�q

�
for s = 0; :::; S � 1. Since all agents have the same portfolio and there is a measure one of agents in
each cohort, the aggregate portfolio demand for assets (excluding the hedging motive), is

S�1X
s=0

"
~at�s;t
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#
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1
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#
=
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"
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#
:

The housing demand in city l by people with age s due to the hedging motive is�
1� �S�s�1

�Z
"

Z
�

I l";��
l
s+1� (";�) d"d�:

It is then easy to see that the total housing demand in city l due to the hedging motive is SRl,

where Rl is de�ned as in the proposition.
The supply of houses minus the hedging demand in every city is S (n�R). The housing market

clearing condition is therefore

1� �S

(1� �)�S�1
~at;t = S (n�R) :

Hence

~at;t = S
(1� �)�S�1�
1� �S

� (n�R)

and by analogy

bt;t = S
(1� �)�S�1�
1� �S

� z:

Plugging in the demand function yields a solution to the housing and stock risk premiums:

S
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Proof of Corollary 3

Note that
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1
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The expected return of a zero-cost market portfolio containing one unit of M is given by

�pM =

PL
l=1

�
nl �Rl

�
�pl +

PK
k=1 z

k�qkPL
l=1 (n

l �Rl) +
PK

k=1 z
k

=
1

Q

�
n�R
z

�0 �
�p
�q

�
= 2

�

(1� �)2
�
1� �S

�S 1
Q

�
n�R
z

�0
�

�
n�R
z

�
= 2

�

(1� �)2
�
1� �S

�SQV ar (M) :
Similarly
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Hence, we can write

�pl

�pM
=
Cov (l;M)

V ar (M)
:

The proof for k follows similar lines and is omitted.

Proof of Proposition 4

It is immediate to see that a solution to � (r̂) = n constitutes a linear stationary equilibrium; no

agent wants to change location, by de�nition rlt = y
j
t + �r

l, and the conditions for Propositions 1 and

2 are satis�ed.

To prove existence, note that �l (r̂) is continuous in r̂ and that limr̂l!�1 �
l (r̂) = 1 and

limr̂l!1 �
l (r̂) = 0.

To prove that prices and rents are uniquely determined given an allocation of agents to cities,
suppose that the system � (r̂) = n has two distinct solutions �r and �r0. Assume without loss of
generality that there are a non-empty set of cities ~L for which (�r0)l < �rl. The set of agents who
locate in a city in ~L is given by�

(";�) : max
l2~L

�
�ul (";�)� r̂l

�
� max

j =2~L

�
�uj (";�)� r̂j

��
Note, however, that this set must become strictly larger when �r is replaced by �r0, because all elements

�ul (";�) � r̂l on one side become strictly larger and all elements �uj (";�) � r̂j on the other side do

not become larger. Hence, more agents will want to locate in cities in ~L, but this is impossible as

the mass of agents who locate in ~L must sum up to
P

l2~L n
l in both solutions.

40



Proof of Proposition 5

Note that

�ul = "l +
1� �
1� �S

�
1� (S + 1)�S + S�S+1

�
�pl~�ls+1:

As ~�ls+1 are the same for all agents and the ~" are uniformly distributed, we write

�l (r̂) =

Z
~":~"l�r̂l=maxm(~"m�r̂m)

d~"

This problem is symmetric in l. Hence, the unique solution to �l (r̂) = 1
LN for l = 1; :::; L must

be symmetric in l, namely �rl = �r. This means that in every period, the mass of young agent who
locates in the countryside is �0 (r̂) = �rL. This implies �r = (1�N)

1
L . According to equation (4),the

equilibrium rent is given by

rl = �r +
(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s�1

�
~�ls:

Proof of Proposition 6

Consider any allocation of agents to cities. Suppose an agent with
�
"l; "m

�
is allocated to city l

and another agent with
��
"l
�0
; ("m)

0
�
is allocated to m. Swapping agents does not increase total

expected production if and only if

"l �
�
"l
�0 � "m � ("m)0 :

If this holds true for every agent, one can �nd a unique vector �" such that the condition in the

statement is satis�ed.

Proof of Proposition 7

According to Proposition 4, in a linear stationary equilibrium agents are assigned to cities according
to

�ul (";�) = "l +
(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s�1

�
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Suppose that an agent with a certain (";�) locates in city l. The next preferred city is m, and the
utility di¤erence between the two cities is given by

D = �ul (";�)� �um (";�) ;

where D is su¢ ciently low. Consider another agent with ("0;�0) that is identical to (";�) except

that ("0)l = "l + � and
PS

s=1

�
1� �S�s�1

�
(�0)

l
s =

PS
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�
1� �S�s�1

�
�ls � �. Given a positive �pl,

it is always possible to �nd � and � such that �ul ("0;�0) < �um ("0;�0). By the assumption that � has

full support, agents with (";�) and ("0;�0) exist. The sum of expected outputs of the two agents

would be higher if the agents switch cities.

The only time this cannot be done is when �pl is the same for all cities. In that case, it is easy

to see that agents choose location in order to maximize "l.
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Proof of Proposition 9

The �rst part is immediate. If E is an allocation and prices are linear, then every agent is using

�ul
�
";�; El

�
� �rl as a criterion to locate and rents must equate demand and supply. The argument

for the uniqueness of �rl (given E) is unchanged from the proof of Proposition 4.

Proof of Proposition 10

Consider an agent born in period t with parameters (";�) who locates in city l. His or her wealth
at the end of life is
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Note �
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The �rst-order condition for the optimal stock investment is
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1CA
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=
S�1X
s=0

�s�S
�
"l + (1� �)

�
�pl + �q0

��1��
H

�q � �q0��1�� hl!s
��

;

and

V ar [wt] =
�2

(1� �)2
S�1X
s=0

�2(s�S)

0B@V ar �� l�!2s + b0
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�
�1; � l

�
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�
�k; � l

�
375!s + b0���b

1CA
=

�2

(1� �)2
S�1X
s=0

�2(s�S)

 
V ar

�
� l
�
!2s +

�
��1��
H

�q � ��1�� hl!s
�0
hl!s

+

�
��1��
H

�q � ��1�� hl!s
�0
���

�
��1��
H

�q � ��1�� hl!s
�!

=
�2

(1� �)2
S�1X
s=0

�2(s�S)
�
V ar

�
� l
�
!2s +

1

H

�
hl
�0
��1�� �q!s �

�
hl
�0
��1�� h

l!2s

+
1

H2
�q0��1�� �q � 2�q0��1�� hl!s +

�
hl
�0
��1�� h

l!2s

�
:
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Note that

�1 =
S�1X
s=0

�s�S (1� �) = 1� �S

�S
> 0

�2 =
S�1X
s=0

�s�S =
1� �S

�S (1� �)
> 0

Proof of Proposition 11

The market clearing condition is

S

264 z1

...
zK

375 =

S�1X
s=0

LX
l=0

Z
l̂(";�)=l

264 b1t;t+s
...

bKt;t+s

375� (";�) d (";�)

=

S�1X
s=0

LX
l=0

Z
l̂(";�)=l

0B@��1��
H

264 �q1

...
�qK

375� ��1��
264 cov

�
�1; � l

�
...

cov
�
�k; � l

�
375! ��ls+1�

1CA� (";�) d (";�)

= S
��1��
H

264 �q1

...
�qK

375� LX
l=0

��1��

264 cov
�
�1; � l

�
...

cov
�
�k; � l

�
375 S�1X
s=0

Z
l̂(";�)=l

!
�
�ls+1

�
� (";�) d (";�)

= S
��1��
H

264 �q1

...
�qK

375� ��1�� LX
l=0

264 cov
�
�1; � l

�
...

cov
�
�k; � l

�
375
l

where


l =

S�1X
s=0

Z
l̂(";�)=l

!
�
�ls+1

�
� (";�) d (";�) :

Then, 264 �q1

...
�qK

375 = H���

264 z1

...
zK

375+ H
S

LX
l=0

264 cov
�
�1; � l

�
...

cov
�
�k; � l

�
375
l

= H���z +
H

S
���
;

where

 =

�

1 � � � 
L

�0
:

Proof of Proposition 12

Given a vector of housing premiums �p, and agent with (";�) locates in l if

U l = max
j=0;:::L

U j
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but this is equivalent to

�1�p
l + �2"

l +
SX
s=1

�s�
l
s + &s

�
�ls
�2
= max

j=0;:::L

 
�1�p

j + �2"
j +

SX
s=1

�s�
j
s + &s

�
�js
�2!

or

1

�1

 
�2"

l +
SX
s=1

�s�
l
s + &s

�
�ls
�2!

+ �pl = max
j=0;:::L

 
1

�1

 
�2"

j +
SX
s=1

�s�
j
s + &s

�
�js
�2!

+ �pj

!
:

The rest of the proof is similar to the proof of Proposition 4, and it is omitted. Note that in our

conjecture we treat �rl and �plasymmetrically, one with a positive sign, the other with a negative

sign. This explains the di¤erence in signs for each of these two terms between Proposition 4 and the

Proposition 12.
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