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Abstract

The subject of this paper is autoregressive (AR) modeling of a stationary, Gaus-
sian discrete time process, based on a finite sequence of observations. The process is
assumed to admit an AR(∞) representation with exponentially decaying coefficients.
We adopt the nonparametric minimax framework and study how well can the process
be approximated by a finite order AR model. A lower bound on the accuracy of AR
approximations is derived, and a non-asymptotic upper bound on the accuracy of the
regularized least squares estimator is established. It is shown that with a “proper”
choice of the model order, this estimator is minimax optimal in order. These consid-
erations lead also to a non-asymptotic upper bound on the mean squared error of the
associated one step predictor. A numerical study compares the common model selection
procedures to the minimax optimal order choice.

1 Introduction

The standard methods for estimating parameters of time series are based on the assumption

that the observations come from an autoregressive (AR), moving average (MA), or mixed

(ARMA) model of known orders. This assumption can be rarely justified in practice,

and the less stringent assumption is that the time series data are observations from a

linear stationary process. A common approach to modeling linear stationary processes

is based on an AR approximation. In this framework a finite order AR model is fitted

to the observations. The order of the AR model should provide an “optimal” finite AR

approximation to the process, and it is usually chosen by selection procedures based on the

data. This nonparametric AR approach to modeling linear stationary processes has been

investigated by Shibata (1980), Bhansali (1981, 1986), An et al. (1982), and Hannan and

Kavalieris (1986).

Shibata (1980) considered the problem of predicting a Gaussian infinite–order AR pro-

cess by fitting a finite AR model. The notion of optimality for the model selection procedure
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proposed by Shibata (1980) is based on an asymptotic lower bound on the mean squared

prediction error. Specifically, the procedure is asymptotically efficient if it attains the lower

bound asymptotically. Shibata (1980) also established that the final prediction error (FPE)

[Akaike (1970)] and the AIC [Akaike (1974)] criteria are asymptotically efficient in the above

sense, provided that the linear process does not degenerate to a finite order autoregression.

A similar result has been obtained by Bhansali (1986) for the AR transfer function criterion

(CAT) proposed by Parzen (1974).

Another motivation for fitting an AR model is the estimation of the spectral density

function. Berk (1974) used AR approximation to estimate the spectral density of a linear

process. It was shown there that the order of the approximating AR model should increase

with the number of observations to ensure the consistency of the associated spectral density

estimator. Shibata (1981) suggested another definition of selection procedures optimality

which is based on an asymptotic lower bound for the relative integrated squared error

in estimating the spectral density function. It was shown there that the FPE and AIC

criteria are asymptotically efficient in this sense, provided that the linear process does not

degenerate to a finite order autoregression. Similar results for the CAT criterion have been

obtained by Bhansali (1986). Some recent results on AR approximation can be found in

Gerencsér (1992) and Bülmann (1995).

In spite of the fact that the FPE, AIC, and CAT criteria are asymptotically efficient as

described above, the finite sample behavior of these selection procedures is not so clear. The

definitions of optimality adopted in Shibata (1980, 1981) and Bhansali (1986) are essentially

asymptotic. The assumption that the underlying linear process does not degenerate to

a finite autoregression is also based on asymptotic considerations. If this assumption is

violated, the AIC and FPE overestimate the true model order, and a different penalty

term is called for. In particular, by penalizing each parameter by a factor of lnn, with

n being the sample size, one obtains the minimum description length (MDL) principle of

Rissanen (1983), and the BIC criterion of Schwarz (1978). These criteria lead to consistent

estimation of the model dimension in the case of an underlying finite order autoregression.

However, if the underlying process does not degenerate to a finite autoregression, they are

not asymptotically efficient in the aforementioned sense [cf. the discussion in Shibata (1980,

pp. 161)]. Moreover, even if the underlying “true” linear process does not degenerate to

a finite order autoregression, the coefficients in its AR(∞) representation can be small.

In these situations, effectively the model is “close” to being finite dimensional, and the

behavior of the asymptotic efficient procedures can be poor even for “large” sample sizes.

Several interesting questions arise in this context. Given a fixed number of observations

from a linear process, how well can the underlying process be modeled using a finite order
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autoregression? How can the finite sample behavior of selection procedures be assessed? It

is evident that another notion of optimality is needed in order to address these questions.

In this paper we propose to use the nonparametric minimax approach to measuring the

accuracy of an AR approximation. This framework is very common in nonparametric esti-

mation problems such as nonparametric regression, density estimation and spectral density

estimation. According to this methodology, we assume that the linear process belongs to

a certain class, and the quality of an approximating AR model (and the associated one

step predictor) is measured by its worst-case modeling (respectively, prediction) risk over

the class. Establishing non–asymptotic upper and lower bounds on the risk, one can assess

accuracy of an estimator. Throughout the paper we consider the class of linear processes

admitting an AR(∞) representation with exponentially decaying coefficients. The practi-

cal importance of the class follows from the fact that it includes (but is not limited to)

all causal invertible ARMA(p, q) processes. We derive a non–asymptotic lower bound on

the accuracy of an AR approximation, and show that the least squares estimator with a

“proper” choice of the order is minimax optimal in order. These considerations lead also

to a non–asymptotic upper bound on the mean squared error of the associated one step

predictor. Further, we present some numerical examples comparing common selection pro-

cedures (FPE, AIC and MDL) to the minimax optimal one. We note that our derivation

is based on an exponential inequality on deviations of the sample covariances from their

expectations; these results are of independent interest. The same technique has been used

in Goldenshluger (1998) for derivation of non–asymptotic bounds in estimating impulse

response sequences of linear dynamic systems.

The rest of the paper is organized as follows. In Section 2 we state formally the problem

of nonparametric AR approximation in the minimax framework. Section 3 describes the

construction of the estimator, and presents main results. In Section 4 we present our

numerical examples. Some remarks are collected in Section 5. The proofs are given in

Apendices A, B, and C.

2 Minimax framework and overview of results

Let (Xt)t∈Z be a real–valued, purely nondeterministic, Gaussian stationary process with

zero mean, E|Xt|2 = 1, spectral density function f(λ), λ ∈ [−π, π], and covariance function

γ(k), k ∈ Z. According to the Wold decomposition theorem, (Xt)t∈Z can be represented as

an MA(∞) process

Xt =
∞∑

j=0

ψjεt−j , ψ0 = 1,
∞∑

j=0

ψ2
j < ∞, (1)
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where {εt}t∈Z is a sequence of independent Gaussian innovations with Eεt = 0 and Eε2
t = σ2

ε .

Assume that the MA transfer function Ψ(z) =
∑∞

j=0 ψjz
j has no zeros in the unit disc

|z| ≤ 1, z ∈ C, and
∑∞

j=0 |ψj | < ∞; then the linear process (Xt)t∈Z can also be represented

as an invertible AR(∞) process

Xt =
∞∑

j=1

φjXt−j + εt, t ∈ Z, (2)

where the coefficients φj , j = 1, . . . ,∞ are given by 1/Ψ(z) = 1 −∑∞
j=1 φjz

j . Given ob-

servations X1, . . . , Xn from the process (Xt)t∈Z, we are interested in modeling (Xt)t∈Z and

predicting the future value Xn+1. The representation (2) motivates the use of AR approx-

imation to approach the problems of modeling and prediction.

Assume that the process (Xt)t∈Z belongs to a certain family, and the quality of an

approximating AR model (and the associated one step predictor) is measured by the worst-

case modeling (respectively, prediction) error over the family. The problem of modeling

the process (Xt)t∈Z by a finite order AR model is identical to estimating the corresponding

coefficient sequence φ = (φ1, φ2, . . .) in the AR(∞) representation of (Xt)t∈Z. More formally,

let H be a family of stationary Gaussian processes (Xt)t∈Z with zero mean and unit variance,

admitting an AR(∞) representation (2). Let φ̂ = φ̂(X1, . . . , Xn) be an estimator of the

sequence φ = (φ1, φ2, . . .); then quality of the estimator φ̂ is measured by its maximal risk

over H
Rm[φ̂,H] := sup

(Xt)∈H

[
E‖φ̂ − φ‖2

]1/2
,

where ‖ · ‖ is the standard �2 norm in the space of sequences. The minimax estimator

φ̂∗ = φ̂∗(X1, . . . , Xn) is the one minimizing the maximal risk

R∗
m[n,H] := inf

φ̂
Rm[φ̂,H] = inf

φ̂
sup

(Xt)∈H

[
E‖φ̂ − φ‖2

]1/2
,

where the infimum is taken here over all possible estimators. Typically, the minimax

estimators cannot be constructed, therefore, as usual in nonparametric estimation, we will

be interested in optimal in order estimators for which

Rm[φ̂,H] ≤ C(n)R∗
m[n,H], sup

n
C(n) < ∞. (3)

Similarly, in the problem of prediction of Xn+1 using observations X1, . . . , Xn we will mea-

sure the accuracy of a prediction method X̂n+1(X1, . . . , Xn) by its maximal prediction error

over H
Rp[X̂n+1,H] := sup

(Xt)∈H

[
E(X̂n+1 − Xn+1)2 − σ2

ε

]
.
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The minimax prediction error is defined as the infimum of the maximal prediction error,

over all possible prediction methods

R∗
p[n,H] := inf

X̂n+1

Rp[X̂n+1,H] = inf
X̂n+1

sup
(Xt)∈H

[
E(X̂n+1 − Xn+1)2 − σ2

ε

]
.

In what follows, we will be interested in optimal in order predictors for which (3) holds

with Rm replaced by Rp.

Throughout the paper we restrict attention to the following family Hρ(l, L) of stationary

Gaussian processes (Xt)t∈Z satisfying EXt = 0, E|Xt|2 = 1. For given finite real numbers

ρ > 1, 0 < l < 1 and L > 1, define Hρ(l, L) as

Hρ(l, L) :=
{
(Xt) : 0 < l ≤ |Ψ(z)| ≤ L, for |z| ≤ ρ

}
,

where Ψ(·) is the MA(∞) transfer function. In words, the MA(∞) transfer function of

the process (Xt)t∈Z ∈ Hρ(l, L) is analytic in an open set containing the disc |z| ≤ ρ, and

bounded from above and below by constants L and l, respectively. The class Hρ(l, L)

contains Gaussian stationary processes with spectral density function f(λ) bounded away

from zero and infinity, which can be continued analytically over the interior of the strip

{(x + iy) ∈ C : |y| < ln ρ} in the complex plane. The parameters l and L in the definition of

Hρ(l, L) guarantee uniform lower and upper bounds on the spectral density function. This,

in turn, implies uniform bounds on the eigenvalues of the covariance matrices of all orders

[cf. Grenander and Szegö (1984)]. Practical importance of the class Hρ(l, L) stems from

the fact that it contains causal invertible ARMA(p, q) processes with proper restrictions

on the magnitude of the coefficients. For example, all MA(1) processes with the coefficient

|ψ1| ≤ ρ−1 min{1 − l, L − 1} belong to Hρ(l, L). The processes from Hρ(l, L) admit AR(∞)

representation with uniformly bounded exponentially decaying coefficients.

Remark 1 We note here a simple imbedding relationship between classes Hρ(l, L) with

different parameters: Hρ(l, L) ⊆ Hr(l, L), ∀ρ ≥ r > 1. As we shall see, the only important

parameter for constructing a rate optimal AR estimator (predictor) is ρ.

Remark 2 The classes of analytic functions are quite standard in nonparametric estima-

tion problems. Our class is similar to those in Golubev and Levit (1996) and Golubev,

Levit and Tsybakov (1997). In the context of spectral density estimation, a closely related

class of processes was considered by Efromovich (1998).

The main contributions of this paper are the following. We study how well processes

(Xt)t∈Z ∈ Hρ(l, L) can be approximated by a finite order AR model, obtaining a lower
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bound on the minimax risk R∗
m[n,Hρ(l, L)]. We prove that if the sample size n is large

enough then

R∗
m[n,Hρ(l, L)] ≥ K(l, L)

(
ρ − 1

ρ

)
1√
ln ρ

√
lnn

n
,

where the constant K(l, L) depends on l and L only. A non-asymptotic upper bound on

the maximal risk of the regularized least squares estimator is derived. We show that the

least squares estimator associated with the order d∗ = 	(2 ln ρ)−1 lnn
 of the approximating

AR model is optimal in order in the sense of inequality (3). These results have immediate

implications for the prediction problem. In particular, we derive a non-asymptotic upper

bound on Rp[X̂n+1,Hρ(l, L)] for the corresponding one step predictor and argue that the

predictor associated with the order d∗, is essentially minimax optimal in order. The non-

asymptotic bounds we obtain are based on exponential inequalities on deviations of sample

covariances from their expectations; these results are of independent interest. Further,

through numerical examples we compare small samples behavior of some common order

selection procedures to the minimax optimal choice d∗. In particular, simulating an MA(1)

process, we found that for moderate values of ρ, i.e., when the zeros are not ‘too close’

to the unit disc, the AIC and FPE lead to an order selection that is comparable to the

minimax optimal one. However, if ρ is close to unity then the AIC and FPE tend to

select a smaller model order than the minimax optimal one. The MDL turns out to be

slightly more conservative than the other methods, with the differences becoming marginal

for larger values of ρ.

3 Main results

Consider the following estimate of the AR sequence φ = (φ1, φ2, . . .). Fix a natural number

d, and define

θd = (φ1, . . . , φd)′, Zt = (Xt−1, . . . , Xt−d)′.

We estimate θd by the regularized least squares method:

θ̂d =
(

1
n

n∑
t=1

ZtZ
′
t + n−1Id

)−1( 1
n

n∑
t=1

XtZt

)
, θ̂d = (φ̂1, . . . , φ̂d)′ , (4)

where Id is the identity d × d matrix. The corresponding estimate φ̂ of the sequence

φ = (φ1, φ2, . . .) is given by

φ̂ = (φ̂1, φ̂2, . . . , φ̂d, 0, 0, . . .) (5)

and the one-step predictor X̂d
n+1 based on φ̂ is defined by

X̂d
n+1 =

d∑
j=1

φ̂jXn+1−j . (6)
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The reason why we consider a regularized version of the least squares estimate is that

we are interested in a non–asymptotic upper bound on the expected value of the squared

modeling (prediction) error. For this purpose we have to control the norm of the random

matrix (n−1∑n
t=1 ZtZ

′
t)
−1. Without the regularization term the matrix n−1∑n

t=1 ZtZ
′
t can

be singular with non–zero probability for every fixed n. We note also that the vectors

Zt, t = 1, . . . , n defined above can involve Xt with t ≤ 0. In this case we suppose that the

corresponding components of the vectors in (4) are replaced by zero. It should be stressed

however that in our analysis we do not assume that Xt = 0 for t ≤ 0.

3.1 Accuracy of AR approximation

We are now ready to study the quality of an AR approximation of the stationary Gaussian

process (Xt)t∈Z ∈ Hρ(l, L).

Theorem 1 Let

M = 1 +
Lρ

l(ρ − 1)
, r = 1 +

1
ln ρ

. (7)

Suppose that n and d satisfy the following conditions:

n

(ln n)5
≥ c1d(rM)5,

√
n

lnn
≥ c2(L/l)2d2

√
rM, (8)

where c1 and c2 are absolute constants which can be specified explicitly. Then for the

estimate (4)-(5) one has

Rm[φ̂,Hρ(l, L)] ≤ K1(l, L)


 1

n(ρ − 1)
+

√
d

ρd(ρ − 1)
+

√
d

n


 , (9)

where K1(l, L) depends on l and L only.

Remark 3 Accuracy of the AR approximation is limited by two factors. First, we approx-

imate the process by a finite order AR model. The resulting approximating error (second

term in the right hand side of (9)) becomes smaller as the order d of the approximating

AR model increases. Second, we estimate parameters of the approximating model. The

resulting estimating error (third term in the right hand side of (9)) grows as the order of

the approximating model increases. The order d is viewed as a “smoothing parameter”

that controls a trade–off between the approximation and estimation errors. The first term

in the right hand side of (9) is due to the use of a regularized version of the least squares

estimator.

The following statement is an immediate consequence of Theorem 1.
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Corollary 1 Let n be large enough so that

n

(lnn)6
≥ c1r

6M5,

√
n

(ln n)5/2
≥ c2

(
L

l ln ρ

)2√
rM. (10)

Then for the least squares estimator (4)-(5) associated with the choice d∗
�
=
⌊
(2 ln ρ)−1 lnn

⌋
one has

Rm[φ̂∗,Hρ(l, L)] ≤ K2(l, L)
(

ρ

ρ − 1

)
1√
ln ρ

√
lnn

n
, (11)

where K2(l, L) depends on l and L only.

The next step in the analysis is to determine the limits of achievable accuracy for AR

approximation. The following theorem gives a lower bound on approximation of (Xt)t∈Z ∈
Hρ(l, L) by a finite order AR model.

Theorem 2 Let n be large enough so that for some constant K3 depending on l and L only

lnn ≥ K3(l, L) ln ρ. (12)

Then

R∗
m[n,Hρ(l, L)] ≥ K4(l, L)

(
ρ − 1

ρ

)
1√
ln ρ

√
lnn

n
. (13)

Theorem 2 and Corollary 1 imply that the least squares estimator (4)-(5) associated with

the order d∗ = 	(2 ln ρ)−1 lnn
 is optimal in order in the sense of inequality (3). It is

interesting to note that for the class of spectral densities corresponding to processes closely

related to the class Hρ(l, L), this choice of the order leads to the asymptotically minimax

spectral estimate [Efromovich (1998)].

3.2 Prediction via AR approximation

In this section we establish a non–asymptotic upper bound on accuracy of the one step

predictor which is based on AR approximation. To simplify analysis we assume that the

estimate φ̂ of the sequence φ is based on 	n/2
 first observations (X1, . . . , X�n/2�) only. The

assumption of this type is quite usual in investigating accuracy of prediction methods based

on the estimated parameters. For instance, Shibata (1980) assumed the more stringent

assumption that we have two independent realizations of the linear process: the first time

series is used for estimating parameters, and then the estimated parameters are used to

predict the second time series.

The associated one-step predictor is defined in (6). We note also that Theorem 1 remains

unaltered for the estimate in question with n replaced by n/2.
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Theorem 3 Let n > 4d and (8) hold with some absolute constants c1 and c2. Then one

has

Rp[X̂d
n+1,Hρ(l, L)] ≤

K5(l, L)
(

1
n2(ρ − 1)2

+
d

ρ2d(ρ − 1)2
+

d

n

)(
1 +

dρ−2d

(ρ − 1)2

)
,

(14)

where K5(l, L) depends on l and L only.

Now, choosing the model order d we obtain the prediction bounds.

Corollary 2 Let (10) hold with some absolute constants c1 and c2, and n(lnn)−1 ≥ 2(ln ρ)−1.

Then for the one-step predictor X̂d
n+1 associated with the choice

d∗ = 	(2 ln ρ)−1 lnn

one has

Rp[X̂d∗
n+1,Hρ(l, L)] ≤ K6(l, L)

(
ρ

ρ − 1

)2 ( 1
ln ρ

)
lnn

n
, (15)

where K6(l, L) depends on l and L only.

Referring back to (9), we see that the upper bound on prediction accuracy given in (14)

behaves as the square of accuracy of modeling. This is not surprising given the construction

of the one step predictor (6); clearly the resulting accuracy is determined by the quality

of modeling via the AR approximation. In fact, one can argue that the predictor Xd∗
n+1

is optimal in order. For the sake of simplicity assume as in Shibata (1980) that we have

two independent copies Y1, . . . , Yn and X1, . . . , Xn of the same linear process from Hρ(l, L).

Our goal is to predict Xn+1. Let X̂n+1 be an arbitrary prediction method for Xn+1 based

on the observations Y1, . . . , Yn. Then X̂n+1 can be decomposed into a sum of two random

variables X̂ ′
n+1 and X̂ ′′

n+1 such that X̂ ′
n+1 is the projection of X̂n+1 on sp{Xn, Xn−1, . . .},

and X̂ ′′
n+1 is orthogonal to sp{Xn, Xn−1, . . .}. Therefore

R∗
p[n,Hρ(l, L)] ≥ sup

(Xt)∈Hρ(l,L)
E

∣∣∣∣X̂ ′
n+1 −

∞∑
j=1

φjXn+1−j

∣∣∣∣2

= sup
(Xt)∈Hρ(l,L)

E

∣∣∣∣
∞∑

j=1

(φ̂j − φj)Xn+1−j

∣∣∣∣2 ,

where φ̂j , j = 1, 2, . . . are measurable functions of Y1, . . . , Yn. Hence

R∗
p[n,Hρ(l, L)] ≥ K7(l, L) sup

φ∈Hρ(l,L)
E‖φ̂ − φ‖2,

where the supremum is taken over all sequences φ = (φ1, φ2, . . .) that define, through the

AR(∞) representation, the linear processes from Hρ(l, L). Then the lower bound on the

minimax prediction risk follows from Theorem 2.
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4 Numerical examples

The choice of model order, d(n) = O(lnn), arises in Shibata (1980), and more recently in

Hannan, Kavalieris (1986) and Gerencsér (1992). In particular, Shibata (1980) showed that

the data-driven order selector based on the final prediction error (FPE) behaves asymptot-

ically as O(lnn) for the class of processes, similar to Hρ(m, L). To investigate the practical

impact of the above results, we compare the common model selection strategies (AIC, FPE,

and MDL) to the minimax optimal rule through a simple numerical example.

Consider the following MA(1) process

Xt = εt + ψ1εt−1

with {εt} a sequence of i.i.d. standard Gaussian random variables. We focus our atten-

tion on three particular cases, namely ψ1 = 0.1, 0.5, 0.9, and the corresponding ‘margin of

stability’ ρ = 10, 2, 1.1111. This range of values will illustrate the sensitivity of the order

selection methods to the moduli of the zeros of the transfer function Ψ(·). Suppose we

are given n consecutive observations X1, X2, . . . , Xn from the process (Xt). The selection

procedures are defined [following the definitions in Shibata (1980)] as

AIC(d) := (n + 2d)σ̂2
d

FPE(d) := n((n + d)/(n − d))σ̂2
d

MDL(d) := (n + d lnn)σ̂2
d

with

σ̂2
d :=

1
n − d

n∑
t=d+1


Xt −

d∑
j=1

φ̂jXt−j




2

.

Recall also the minimax optimal order choice from Corollary 1: d∗ = 	(2 ln ρ)−1 lnn
.

The experiment was conducted by simulating 100 sample paths from the process, for

each trial run a model order was selected using the three procedures, for sample sizes

n = 100, 500, 1000, 5000, 10000, 50000 and 100000. Finally, we averaged out the selected

orders over the 100 runs. The graphs in Figure 1 depict the behavior of the different order

selection procedures.

A close look at Figure 1 reveals that the AIC and FPE, which are known to be asymp-

totically equivalent, behave in an almost identical way also for small values of sample size.

The MDL leads to a choice that is more conservative than AIC and FPE, with this behavior

being more pronounced for the case of small ρ. For the case of large ρ, the all three criteria

are roughly the same as the minimax optimal choice. The case of moderate ρ depicts a
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Figure 1: Model order selected by different procedures plotted against the sample size (log

scale); (a) ρ = 1.1111, (b) ρ = 2, and (c) ρ = 10.
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behavior of AIC and FPE which is quite on par with the minimax optimal choice. However,

if ρ is close to unity, then the AIC and FPE tend to select a smaller model order than the

minimax optimal one. It is interesting to note that all procedures lead to an order selection

that exhibits logarithmic–like growth in the sample size, even for small sample sizes. This

behavior is consistent with the asymptotic logarithmic growth of the order selected by AIC,

and FPE [cf. Shibata (1980, Example 4.1)], and for MDL [cf. Gerencér (1992, Theorem 4)].

To summarize the results, we observe that an infinite order AR model that is closer

to a parametric (finite dimensional) model gives rise to an order selection that is “close”

to minimax optimal by all three methods. The case of more slowly decaying coefficients

(larger ψ and ρ closer to unity, respectively) reveals that AIC and FPE ‘underestimate’

with MDL being even more conservative. We note in passing that similar numerical results

were obtained for more complicated ARMA structures.

5 Discussion

1. The method of AR approximations is quite common for spectral density estimation

in time series analysis [see, e.g., Berk (1974), Shibata (1981), Parzen (1983) among many

others]. The minimax optimal model order (d∗ = 	lnn/(2 ln ρ)
) for the AR approxima-

tion is also the optimal choice for spectral density estimation, and gives rise to the same

convergence rates over the class Hρ(l, L). It is worth noting, however, that spectral density

estimation and AR approximation are not equivalent in the sense of comparison of exper-

iments. Specifically, assume that the process belongs to the class of all invertible MA(q)

processes whose MA–transfer function has no zeros inside the disc |z| ≤ ρ, ρ > 1. This class

is a subset of Hρ(l, L) with proper l and L. The spectral density of such a process can be

estimated with the parametric rate O(
√

q/n), while the accuracy of the AR approximation

is O(
√

lnn/(n ln ρ)). An important impilication of this fact is that even if a stationary

process is approximated by an AR model with high accuracy, the corresponding spectral

density estimate may be poor.

2. The nonparametric minimax approach, as applied to AR approximation, provides

a useful criterion for assessment of finite sample behavior of selection methods. Within

this approach, optimal selection methods are specified, and achievable lower bounds on

the estimation accuracy are calculated. Note, however, that implementation of the min-

imax optimal rule requires a priori information on the parameter ρ of the class Hρ(l, L).

Developing adaptive selection rules with good minimax properties remains a challenging

open problem. We conjecture that in the adaptive setting the rates of convergence for AR

12



approximation remain unchanged.

3. Throughout the paper we assume that the process (Xt)t∈Z is Gaussian. This as-

sumption is used to simplify the derivation of the exponential inequalities on the covariance

estimates (Lemma 2 below). In addition, it facilitates the evaluation of higher order mo-

ments. The main results of the paper can be obtained under moment growth restrictions

accompanied with some requirements ensuring exponential mixing properties of the pro-

cess (Xt)t∈Z.

4. The family Hρ(l, L) allows for the processes admitting AR(∞) representation with

exponentially decaying coefficients. It seems that the exponential decay of the coefficients

is essential for the exponential inequalities we derive. The techniques advocated in Lemma

6 and Lemma 7 below preclude polynomially decaying sequences. Thus, this restriction is a

direct consequence of the limitations of our machinery. An interesting problem is to study

rates of AR approximation for other classes of stationary, e.g., with polynomially decaying

AR coefficients.

A Preliminary results

We collect here several preliminary results which will be used repeatedly in the subsequent

proofs.

We start with establishing a relation between the properties of the sequences γ(k),

ψj , and φj to the class Hρ(l, L). Let us define Γd ≡ {γ(i − j)}i,j=1,...,d for every natural

number d.

Lemma 1 Let (Xt)t∈Z ∈ Hρ(l, L); then

|ψj | ≤ Lρ−j , |φj | ≤ l−1ρ−j , j = 1, 2, . . . (16)

In addition, we have

L−2 ≤ σ2
ε ≤ l−2, (17)

|γ(k)| ≤ (L/l)2
ρ2

ρ2 − 1
ρ−|k|, k ∈ Z, (18)

and for any d

(l/L)2 ≤ ‖Γd‖ ≤ (L/l)2, (l/L)2 ≤ ‖Γ−1
d ‖ ≤ (L/l)2, (19)

where ‖ · ‖ stands for the standard Euclidean norm of a matrix.

13



Proof By definition of the class Hρ(l, L), Ψ(z) is analytic in the open disc |z| < ρ, and

|Ψ(z)| ≤ L. Therefore the announced bound on |ψj | follows immediately from the Cauchy

estimates for the derivatives of Ψ(z) [see, e.g., Rudin (1964, pp. 229)]. Further, note that

L−1 ≤ |Φ(z)| = 1/|Ψ(z)| ≤ l−1, for |z| < ρ.

Again applying the Cauchy estimates we obtain (16).

Note that f(λ) = (2π)−1σ2
ε |Ψ(e−iλ)|2, and therefore

(2π)−1σ2
ε l

2 ≤ f(λ) ≤ (2π)−1σ2
εL

2. (20)

Taking into account that γ(0) = 1 =
∫ π
−π f(λ)dλ, we obtain (17). The inequality (18) is an

immediate consequence of the following evident inequalities

|γ(k)| = σ2
ε

∣∣∣∣∣∣
∞∑

j=0

ψjψj+|k|

∣∣∣∣∣∣ ≤ L2σ2
ερ

−|k|
∞∑

j=0

ρ−2j =
L2σ2

ερ
2

(ρ2 − 1)
ρ−|k|

and (17) (here we have used the bound on ψj established in (16)). The bounds on ‖Γd‖
and ‖Γ−1

d ‖ follow from the theorem on the eigenvalues of the Toeplitz forms [cf. Grenander

and Szego (1984)]. In particular, we have

l2σ2
ε ≤ λmin[Γd] ≤ λmax[Γd] ≤ L2σ2

ε ,

where λmin[·] and λmax[·] denote the minimal and maximal eigenvalues of a matrix respec-

tively. Applying (17) we obtain (19) which completes the proof.

A.1 An exponential inequality for sample covariances

Here we establish an exponential inequality on the deviation of sample covariances from

their expectations. This result is basic for our future developments; furthermore, it is

interesting in its own right.

Lemma 2 Let (Xt)t∈Z ∈ Hρ(l, L); then there exist absolute constants C1 and C2 such that

for every integer k one has

P

{∣∣∣∣ 1n
n∑

t=1

XtXt+k − γ(k)
∣∣∣∣ > δ

}
≤




exp
(
− δ2n

4C1Mk∗r

)
, 0 ≤ δ ≤

(
k∗r
n

)2/5(C3
1M3

C2

)1/5

,

exp
(
−1

4

[ δn

C2k∗r

]1/3
)

, δ ≥
(

k∗r
n

)2/5(C3
1M3

C2

)1/5

,

(21)
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where M and r are defined in (7) and k∗ = |k| whenever k �= 0, and k∗ = 1 whenever k = 0.

The constants C1 and C2 are specified explicitly in the proof of the lemma.

Remark 4 To establish the result of the lemma we use the general exponential inequalities

for weakly dependent random sequences found in Saulis and Statulevičus (1991). Several

other exponential–type inequalities for weakly dependent random sequences appear already

in the literature [cf., e.g., Doukhan (1994), Bosq (1996)], of which Bosq (Theorem 1.4, 1996)

deals with conditions that are probably most akin to our set up. However, the machinery

in Saulis and Statulevičus (1991) seems more suitable for our purposes, and leads to tighter

bounds, in particular since we use the moderate deviations regime in (21).

Proof See Appendix C.1.

B Proofs of main results

B.1 Proof of Theorem 1

In the below proof Ki, i = 1, 2, . . . stand for absolute positive constants (unless otherwise

specified), possibly different in different instances.

We first outline the main ideas in the proof. By straightforward algebra we have

θ̂d − θd = Q−1
(
−n−1θd +

1
n

n∑
t=1

Zt

∞∑
j=d+1

φjXt−j +
1
n

n∑
t=1

Ztεt

)
, (22)

where Q
�
= n−1∑n

t=1 ZtZ
′
t + n−1Id. Thus, to prove a bound on the �2 distance between

θd and θ̂d, we must bound the norm of the matrix Q−1, and of the vector multiplying it

from the right in (22). The latter bound involves straightforward algebraic manipulations,

therefore the real problem is to control the norm of Q−1. The key idea here is the following.

Partition the sample space into two sets. One set corresponds to the samples of (Xt)t∈Z,

for which the elements of Q are uniformly ‘close’ to their expectations. For the complement

of this set, ‖Q−1‖ does not grow faster then n. Exponential inequalities on the uniform

convergence of sample means to their expectations, in the spirit of Lemma 2, ensure that

the “bad” set essentially does not contribute to the overall bound. We shall now make

these statements rigorous.

10. First, proceed to bound ‖Q−1‖, where ‖ · ‖ denotes the standard Euclidean matrix

15



norm. Note that the i, j-entry Qij of the matrix Q with i �= j may be expressed as follows

Qij =
1
n

n∑
t=1

Xt−iXt−j

=
1
n

n∑
τ=1

XτXτ+j−i − 1
n

n∑
τ=n−j+1

XτXτ+j−i +
1
n

0∑
τ=1−j

XτXτ+j−i

�
= Q̂ij − Wij + Vij .

This, in turn, may be written as

Q = Q̂ − W + V + n−1Id = Γd

[
Id + Γ−1

d

(
Q̃ + n−1Id

)]
(23)

where Q̂ = (Q̂ij), W = (Wij), V = (Vij), i, j = 1, . . . , d, and Q̃
�
= V −W +Q̂−Γd. Observe

that Γd is non–singular for every d (this follows from Lemma 1). Thus, the task of bounding

‖Q−1‖ is reduced to establishing a bound on the norm of
[
Id + Γ−1

d

(
Q̃ + n−1Id

)]−1
Γ−1

d ,

where the only stochastic term is Q̃. The main idea is the following. Write

Q̃ = (V − E[V ]) − (W − E[W ]) + (Q̂ − Γd) ,

utilizing the fact that E[V ] = E[W ]. Note also that E[Q̂] = Γd. In addition, due to

Lemma 2 we can evaluate how close Q̂ to Γd is. Now, the key to bounding ‖Q̃‖, is to

establish non–asymptotic exponential bounds on the probability that each one of the terms

V, W , and Q̂ deviate from their expectations.

Lemma 3 Let (Xt)t∈Z ∈ Hρ(l, L). For any fixed i, j ∈ {1, . . . , d} we have

P {|Vij − EVij | > δ} ≤



exp

(
− δ2n

4C1d

)
, 0 ≤ δ ≤

[
dn−1C2

1C−1
2

]1/3
,

exp

(
−1

4

√
δn

C2d

)
, δ ≥

[
dn−1C2

1C−1
2

]1/3
,

(24)

where C1 and C2 are as in Lemma 2. The same relations hold for Wij.

Proof See Appendix C.2

20. Recall that by definition EVij = EWij , so that

Q̃ = (V − E(V )) + (E(W ) − W ) + Q̂ − Γd .
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Applying the results of Lemma 2 and Lemma 3 we bound the norm of the matrix Q−1. Let

us fix κ ∈ (0, 1) and define the event

Aκ =
{

ω ∈ Ω : max
i,j=1,...,d

|Q̃ij | ≤ Cκ

}
, (25)

where

Cκ = 6
√

C1rM

√
d

n
ln
(

6d2

κ

)
. (26)

Here, in and the sequel, Ω is the sample set of the underlying probability space (Ω,F , P ).

Lemma 4 Let (Xt)t∈Z ∈ Hρ(l, L) and for a fixed κ ∈ (0, 1) let d and n be such that

d−1n ≥
(

36C1rM ln(6d2/κ)
)5

, (27)

and

n−1 + dCκ ≤ 1
2
(l/L)2. (28)

Then P (Ac
κ) ≥ 1 − κ, and ‖ΓdQ

−1‖ ≤ 2 if the event Aκ holds, and ‖Q−1‖ ≤ n otherwise.

Proof See Appendix C.3.

40. Now, recall for completeness (22)

θ̂d − θd = Q−1
(
−n−1θd +

1
n

n∑
t=1

Zt

∞∑
j=d+1

φjXt−j +
1
n

n∑
t=1

Ztεt

)

= Q−1(I1 + I2 + I3) = Q−1I.

Having established a bound on ‖Q−1Γd‖ we proceed to bound E‖I‖.

Lemma 5 Let (Xt)t∈Z ∈ Hρ(l, L). Then,

‖I1‖ ≤ 1
nl(ρ − 1)(

E‖I2‖4
)1/2 ≤ K1dρ−2d

l2(ρ − 1)2(
E‖I3‖4

)1/2 ≤ K2d

l2n
,

where K1 and K2 are absolute constants.
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Proof See Appendix C.4.

50. Now we complete proof of Theorem 1. We will proceed to bound E‖θ̂d − θd‖2 by

evaluating the expectation over two disjoint subsets corresponding to the events Aκ and

Ac
κ. Let κ = 6d2n−6, Aκ be given by (25) with Cκ defined by (26) with κ in question. It

can be immediately checked that under (8) conditions of the Lemma 4 hold. Thus we can

write

E
[
‖θ̂d − θd‖21{Aκ}

]
≤ ‖Γ−1

d ‖2E
[
‖ΓdQ

−1‖2 ‖I1 + I2 + I3‖21{Aκ}
]

(a)

≤ 4‖Γ−1
d ‖2E

(
‖I1 + I2 + I3‖21{Aκ}

)
≤ 16‖Γ−1

d ‖2
(
‖I1‖2 + E‖I2‖2 + E‖I3‖2

)
(b)

≤ K3‖Γ−1
d ‖2l−2

(
1

n2(ρ − 1)2
+

d

ρ2d(ρ − 1)2
+

d

n

)

where (a) follows from Lemma 4, and (b) follows from the bounds established in Lemma 5.

Similarly, we have

E
[
‖θ̂d − θd‖21{Ac

κ}
]

≤ 4E

[
‖Q−1‖2

(
‖I1‖2 + ‖I2‖2 + ‖I3‖2

)
1{Ac

κ}
]

≤ 4n2
[
‖I1‖2P(Ac

κ) +
(√

E‖I2‖4 +
√

E‖I3‖4

)√
P(Ac

κ)
]

≤ K4n
2l−2

[
κ

n2(ρ − 1)2
+

d
√

κ

ρ2d(ρ − 1)2
+

√
κd

n

]
.

Substituting expression for κ and combining the two bounds above we have

[
E‖θ̂d − θd‖2

]1/2 ≤ K5‖Γ−1
d ‖l−1

(
1

n(ρ − 1)
+

√
d

ρd(ρ − 1)
+

√
d

n

)
, (29)

whence
[
E‖φ̂ − φ‖2

]1/2 ≤
[
E‖θ̂d − θd‖2

]1/2
+
( ∞∑

j=d+1

|φj |2
)1/2

≤ K5‖Γ−1
d ‖l−1

(
1

n(ρ − 1)
+

√
d

ρd(ρ − 1)
+

√
d

n

)
+

1
lρd(ρ − 1)

.

Applying (19) completes the proof.

B.2 Proof of Theorem 2

Proof of the theorem rests upon the standard technique for deriving lower bounds in non-

parametric estimation problems. In the proof below Ki, i = 1, 2, . . . denote positive con-

stants depending on l and L only.
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Let us fix a natural number N , and consider the following family P of the sequences

φ = (φ1, φ2, . . .): φ belongs to P if and only if

φj =

{ ±βρ−N , j = 1, . . . , N

0, otherwise,

where β is a positive number to be chosen. We complement P by the zero sequence

φ(0) = (0, 0, . . .). It is evident that there exists a choice of constant K1 (e.g., take K1 ≤
min{1 − L−1, l−1 − 1}), such that with the choice β = K1(1 − ρ−1) every φ ∈ P defines a

process (Xt)t∈Z from Hρ(l, L). In addition, cardinality of P is equal to 2N + 1. According

to the Varshamov–Gilbert lemma [see, e.g., Korostelev and Tsybakov (1993, pp. 79)] one

can choose a subfamily P ′ ⊂ P so that any two distinct sequences φ′, φ′′ from P ′ differ by

at least N/16 components, cardinality of P ′ is equal to 2�N/8� + 1 and φ(0) ∈ P ′. Thus, for

any φ′, φ′′ one has

‖φ′ − φ′′‖ ≥ K2

√
N(1 − ρ−1)ρ−N �

= s. (30)

Let φ̂n be an arbitrary estimate of φ based on the data {Xt}n
t=1; then

sup
(Xt)∈Hρ(m,L)

E‖φ̂n − φ‖ ≥ sup
φ∈P ′

E‖φ̂n − φ‖ ≥ s

2
sup
φ∈P ′

P
{
‖φ̂n − φ‖ ≥ s/2

}
. (31)

Now consider the problem of testing between 2�N/8� + 1 hypotheses Hj : φ = φ(j) using

observations {Xt}n
t=1; here φ(j), j = 0, . . . , 2�N/8� stand for the sequences from P ′. Define

the decision rule τ : (X1, . . . , Xn) �→ {0, . . . , 2�N/8�} as follows. Given the observations, we

compute φ̂n and check to which of the sequences φ(j) ∈ P ′ it is closer in ‖ · ‖–distance.

Then we have

sup
φ∈P ′

P
{
‖φ̂ − φ‖ ≥ s/2

}
= sup

j=0,...,2�N/8�
P{τ �= j|Hj}

and we should evaluate from below the probability of error under the decision rule τ . This

can be done using the Fano inequality [see, e.g., Ibragimov and Has’minskii (1981, pp.

323)]. Let gj(y), j = 0, . . . , 2�N/8� denote joint density of observations X1, . . . , Xn under

the hypothesis Hj . Denote by K(gi, gj) the Kullback–Leibler distance between the densities

gi and gj . Then we have for i �= j

K(gi, gj) ≤ sup
i,j

Ei ln
gi(X1, . . . , Xn)
gj(X1, . . . , Xn)

(a)
= sup

i,j
Ei

[
− 1

2σ2
ε

n∑
t=1

((
Xt −

N∑
k=1

φ
(i)
k Xt−k

)2 − (Xt −
N∑

k=1

φ
(j)
k Xt−k

)2)]

(b)
= sup

i,j

n

2σ2
ε

Ei

( N∑
k=1

(
φ

(i)
k − φ

(j)
k

)
Xt−k

)2

≤ n

2σ2
ε

sup
i,j

N∑
k,l=1

(
φ

(i)
k − φ

(j)
k

)(
φ

(i)
l − φ

(j)
l

)
Ei[Xt−kXt−l]

=
n

2σ2
ε

sup
i,j

(
φ(i) − φ(j)

)′
Γ(i)

N

(
φ(i) − φ(j)

)
,
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where Ei denotes expectation with respect to the distribution related to the hypothesis Hi,

and Γ(i)
N = {Ei[Xt−kXt−l]}N

k,l=1 is the N ×N covariance matrix under Hi. Here (a) follows

from the fact that (Xt) is a Gaussian process, and (b) is obtained by taking expectation

with respect to the density gi. Using the bounds established in Lemma 1 on σ2
ε and on the

maximal eigenvalue of the covariance matrix ΓN (which are uniform over the class Hρ(l, L)

and N) we have

K(gi, gj) ≤ nL2

2
(L/l)2 sup

i,j
‖φ(i) − φ(j)‖2 ≤ K3nNρ−2N .

Now set

N =
⌊

1
2 ln ρ

ln(K4n)
⌋

. (32)

then due to the Fano inequality we can choose a constant K4 so that under (12) probability

of the error under τ will be at least, say, 1/4. Combining (30), (31) and (32) we come to

the required statement.

B.3 Proof of Theorem 3

10. We have the following decomposition of the prediction error

Xn+1 − X̂d
n+1 =

d∑
j=1

(φj − φ̂j)Xn+1−j +
∞∑

j=d+1

φjXn+1−j + εn+1

�
= E1 + E2 + εn+1 .

Therefore

E(Xn+1 − X̂d
n+1)

2 = E(E1 + E2)2 + σ2
ε ≤ 2

(
E|E1|2 + E|E2|2

)
+ σ2

ε ,

where we have used the fact that εn+1 is independent of Xt, for t ≤ n.

We first establish a bound on E|E1|2. One clearly has

E1 =
d∑

j=1

(φ̂j − φj)Xn+1−j

=
d∑

j=1

(φ̂j − φj)εn+1−j +
∞∑

k=1

ψk

d∑
j=1

(φ̂j − φj)εn+1−j−k

�
= ηn+1 +

∞∑
k=1

ψkηn+1−k,
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where the second equality follows from the MA(∞) representation of the process (Xt)t∈Z,

and ηt
�
=
∑d

j=1(φ̂j − φj)εt−j . Thus, we have

E|E1|2 ≤ 4
[
E|ηn+1|2 + E

( d∑
k=1

ψkηn+1−k

)2
+ E
( ∞∑

k=d+1

ψkηn+1−k

)2]

= 4
[
E|ηn+1|2 +

d∑
k,l=1

ψkψlE[ηn+1−kηn+1−l] +
∞∑

k,l=d+1

ψkψlE[ηn+1−kηn+1−l]
]

= 4(E|ηn+1|2 + E11 + E12) .

Let Fn−∞ denote the σ–algebra on the common probability space (Ω,F , P ) that is generated

by the sequence (εn, εn−1, . . .). We have

E|ηn+1|2 = E
d∑

i,j=1

(φ̂i − φi)(φ̂j − φj)εn+1−iεn+1−j

= E

( d∑
i,j=1

(φ̂i − φi)(φ̂j − φj)E
[
εn+1−iεn+1−j |F�n/2�

−∞
])

= σ2
εE‖θ̂d − θd‖2, (33)

where the second equality follows from from the fact that φ̂ is F�n/2�
−∞ -measurable and

εn+1−i, i = 1, . . . , d are independent of F�n/2�
−∞ because n/2 > d. Further, applying the

same reasoning for k, l = 1, . . . , d we obtain

E[ηn+1−kηn+1−l] = E
d∑

i,j=1

(φ̂i − φi)(φ̂j − φj)εn+1−k−iεn+1−l−j

= E

( d∑
i,j=1

(φ̂i − φi)(φ̂j − φj)E
[
εn+1−k−iεn+1−l−j |F�n/2�

−∞
])

= σ2
εE

d∑
i,j=1, i=l+j−k

(φ̂i − φi)(φ̂j − φj)

≤ K1σ
2
εE‖θ̂d − θd‖2.

Here we again have used the fact that φ̂ is F�n/2�
−∞ -measurable, and εn+1−l−j , i, l = 1, . . . , d

are independent of F�n/2�
−∞ because n/4 > d. Therefore,

E11 ≤ K1σ
2
εE‖θ̂d − θd‖2

( d∑
k=1

|ψk|
)2

≤ K1σ
2
ε

L2

(ρ − 1)2
E‖θ̂d − θd‖2 (34)

(here we have taken into account that |ψk| ≤ Lρ−k).

To bound from above E12 note first that for k ≥ d+1 by the Cauchy–Schwartz inequality

E|ηn+1−k|2 = E

( d∑
i=1

(φ̂i − φi)εn+1−k−i

)2

≤
d∑

i=1

E
[
‖θ̂d − θd‖2ε2

n+1−k−i

]

≤ K2dσ2
ε

(
E‖θ̂d − θd‖4

)1/2

.
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Thus, one has

E12 ≤ K2dσ2
ε

(
E‖θ̂d − θd‖4

)1/2( ∞∑
k=d+1

|ψk|
)2

≤ K2dσ2
ε

(
E‖θ̂d − θd‖4

)1/2

ρ−2d L2

(ρ − 1)2
. (35)

Combining (35), (34) and (33) we come to the bound on E|E1|2

E|E1|2 ≤ K3σ
2
ε

[
E‖θ̂d − θd‖2 +

dρ−2dL2

(ρ − 1)2
(
E‖θ̂d − θd‖4

)1/2
]
. (36)

20. Our next step is to bound from above E‖θ̂d − θ‖4. Choose κ = 6d2n−10, and let Aκ

be given by (25) with Cκ for κ in question. Write

E‖θ̂d − θd‖4 = E‖θ̂d − θd‖41{Aκ} + E‖θ̂d − θd‖41{Ac
κ}.

It can be easily verified that under premise of the theorem the conditions of Lemma 4 hold.

Therefore,

E‖θ̂d − θd‖41{Aκ} ≤ 24‖Γ−1
d ‖4E

(
‖I1 + I2 + I3‖41{Aκ}

)
≤ K4‖Γ−1

d ‖4
(
‖I1‖4 + E‖I2‖4 + E‖I3‖4

)
.

Applying Lemma 5 we obtain

E‖θ̂d − θd‖41{Aκ} ≤ K5‖Γ−1
d ‖4l−4

(
1

n4(ρ − 1)4
+

d

ρ4d(ρ − 1)4
+

d2

n2

)
.

For the other term, involving the indicator of the event Ac
κ, the result follows the derivation

in the proof of Theorem 1. In particular, we now require bounds in Lemma 5 to hold for

(E‖Ij‖8)1/2 for j = 2, 3. It is straightforward to extend the results of the lemma; the details

are omitted. Thus, we obtain

E‖θ̂d − θd‖41{Ac
κ} ≤ K6n

4l−4

(
κ

n4(ρ − 1)4
+

d2√κ

ρ4d(ρ − 1)4
+

d2√κ

n2

)

and finally, substituting κ = 4d2n−10, and combining the above bounds we have

(
E‖θ̂d − θd‖4

)1/2

≤ K7(L4/l6)
(

1
n2(ρ − 1)2

+
d

ρ2d(ρ − 1)2
+

d

n

)
.

Thus, it follows from (36) and (29) that

E|E1|2 ≤ K8σ
2
ε(L

4/l6)
(

1
n2(ρ − 1)2

+
d

ρ2d(ρ − 1)2
+

d

n

)(
1 +

dρ−2dL2

(ρ − 1)2

)
.
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30. Now we complete proof of the theorem. We have the following upper bound on

E|E2|2

E|E2|2 = E

∣∣∣∣
∞∑

j=d+1

φjXn+1−j

∣∣∣∣2 ≤
( ∞∑

j=d+1

φj

)2

≤ l−2ρ−2d(ρ − 1)−2,

where we have used the fact that |φk| ≤ l−1ρ−k. Combining the above bounds on E|E1|2
and E|E2|2 we come to (14). This completes the proof of the theorem.

C Proofs of auxiliary results

C.1 Proof of Lemma 2

10. First observe that the process (Xt)t∈Z is strongly mixing. We recall definition of the

strong mixing condition [cf. Bradley (1986, pp. 169)]. For −∞ ≤ s ≤ k ≤ ∞ let Fk
s denote

the σ-algebra generated by (Xs, Xs+1, . . . , Xk). The process (Xt)t∈Z is said to be strongly

mixing if

αX(τ) = sup
s∈Z

α(Fs
−∞,F∞

s+τ ) → 0, as τ → ∞,

where

α(Fs
−∞,F∞

s+τ ) = sup
A∈Fs

−∞, B∈F∞
s+τ

|P (AB) − P (A)P (B)|.

Since (Xt)t∈Z is Gaussian and stationary, we have αX(τ) = α(F0−∞,F∞
τ ). The strong

mixing coefficient αX(τ) is bounded from above by the maximal correlation coefficient:

αX(τ) ≤ sup
ζ1,ζ2

E(ζ1ζ2), (37)

where the supremum in (37) is taken over all pairs of zero mean random variables (ζ1, ζ2)

such that ζ1 ∈ F0−∞, ζ2 ∈ F∞
τ , and E|ζ1|2 = E|ζ2|2 = 1. Further, let Eτ−1(f) denote the

error of the best approximation of the spectral density f(λ) by trigonometric polynomials

of the degree ≤ τ − 1 on the interval [−π, π] in the uniform norm. We have

Eτ−1(f) ≤ 1
π

max
λ∈[−π,π]

∣∣∣∣∣
∞∑

k=τ

γ(k) cos(λk)

∣∣∣∣∣ ≤ 1
π

∞∑
k=τ

|γ(k)|

≤ L2σ2
ερ

2

π(ρ − 1)2
ρ−τ , (38)

where the last inequality follows from (18). It is well–known [cf. Ibragimov and Rozanov (1978,

pp. 146)] that for a stationary process with continuous and strictly positive spectral density

the maximal correlation coefficient does not exceed
[
minλ∈[−π,π] f(λ)

]−1 Eτ−1(f). Taking

into account (20) we obtain

αX(τ) ≤ 2(L/l)2
(

ρ

ρ − 1

)2

ρ−τ . (39)
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Now fix integer number k and define

Ut,k =
1
n

XtXt+k − γ(k)
n

, t ∈ Z.

Without loss of generality we assume that k is non–negative integer number. Let Us
t,k

be the σ–algebra generated by (Ut,k, Ut+1,k, . . . , Us,k). Observe that U t
−∞,k ⊆ F t+k

−∞ and

U∞
t+τ,k ⊆ F∞

t+τ . This implies that the process (Ut,k)t∈Z is also strongly mixing with the rate

αU(τ) ≤ αX(τ − k), ∀τ > k.

For τ ≤ k we have the following trivial inequality αU(τ) ≤ 1.

20. To complete proof of the lemma we need the following two auxiliary statements,

adapted from Saulis and Statulevičus (1991, Theorem 4.17, Lemma 2.4).

Lemma 6 Let (Yt)t∈Z be a strongly mixing random process, Sn =
∑n

t=1 Yt, and cump(Sn)

be the p-th order cumulant of the sum Sn. For ν > 0 define the function

Λn[αY , ν] = max
{

1 ;
n∑

τ=0

[αY (τ)]1/ν
}

.

If for some µ ≥ 0, H > 0

E|Yt|p ≤ (p!)µ+1Hp, t = 1, . . . , n, p = 2, 3, . . . ,

then

|cump(Sn)| ≤ 2p(1+µ)+112p−1(p!)2+µHp {Λn[αX , 2(p − 1)]}p−1 n.

For definition of the cumulants see, e.g., Brillinger (1975, pp. 19).

Lemma 7 Let ξ be an arbitrary random variable with Eξ = 0. If there exist µ1 ≥ 0, H1 > 0

and ∆ > 0 such that

|cump(ξ)| ≤
(

p!
2

)1+µ1 H1

∆p−2
, p = 2, 3, . . . ,

then

P (|ξ| ≥ x) ≤




exp
{−x2/(4H1)

}
, 0 ≤ x ≤ (H1+µ1

1 ∆)1/(2µ1+1)

exp
{
−(x∆)1/(1+µ1)/4

}
, x ≥ (H1+µ1

1 ∆)1/(2µ1+1).

30. Using Lemma 6 we will derive upper bound on the cumulants of the sum
∑n

t=1 Ut,k,

and then applying Lemma 7 we will obtain the required exponential inequality. First, we
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verify the conditions of Lemma 6 in order to apply it to the process (Ut,k)t∈Z. Observe that

for any natural p we have

E|Ut,k|p ≤ 2p−1

np

(
|γ(k)|p +

[
E|Xt|2pE|Xt+k|2p

]1/2
)

≤ 2p−1

np
(1 + p!2p) ≤ 22pp!

np

where the second inequality follows from the fact that Xt is a Gaussian random variable,

|γ(k)| ≤ E|Xt|2 = 1, and E|Xt|2p ≤ p! 2p. Further,

Λn[αU , 2(p − 1)] ≤ k +
n∑

τ=k

[αX(τ − k)]1/(2p−2)

(a)

≤ k +
(

2Lρ

l(ρ − 1)

)2/(2p−2) n−k∑
τ=0

ρ−τ/(2p−2)

≤ k +
(

2Lρ

l(ρ − 1)

)1/(p−1) ρ1/(2p−2)

ρ1/(2p−2) − 1

(b)

≤ k +
(

2Lρ

l(ρ − 1)

)1/(p−1) (
1 +

2p − 2
ln ρ

)

where (a) follows from the bound in (39), and (b) follows from the elementary inequality

exp(x) − 1 ≥ x for x ≥ 0. Thus, one has

{Λn[αU , 2(p − 1)]}p−1 ≤ 2p−2
[
kp−1 +

2Lρ

l(ρ − 1)
(p − 1)p−1

(
1 +

2
ln ρ

)p−1]

≤ 2p−2kp−1
∗ (p − 1)!ep−1

(
1 +

2
ln ρ

)p−1(
1 +

2Lρ

l(ρ − 1)

)

≤ (4e)p−1p!(k∗r)p−1M,

where the inequality (p− 1)p−1 ≤ (p− 1)!ep−1 has been used, and k∗, r, and M are defined

in (7). Setting µ = 0, and H = 4n−1 we see that Lemma 6 applies for (Ut,k)t∈Z, and thus

∣∣∣∣cump

( n∑
t=1

Ut,k

)∣∣∣∣ ≤ 23p+1122p−2(p!)3(k∗r)p−1Mn−p+1. (40)

Now, to apply Lemma 7, put µ1 = 2, H1 = C1Mk∗rn−1, and ∆ = n(C2k∗r)−1, where C1,

and C2 are absolute constants (C1 = 210122, C2 = 23122). It is immediately seen that the

conditions of Lemma 7 hold for the parameters in question. Applying Lemma 7 completes

the proof.
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C.2 Proof of Lemma 3

The basis is the same argument as the one in Theorem 2. Recall the definition of Vij

Vij =
1
n

0∑
τ=1−j

XτXτ+j−i

we have EVij = jn−1γ(j − i), whence E|Vij | ≤ dn−1. Fix i, j ∈ {1, . . . , d} and define

Ut =
1
n

[XtXt+j−i − γ(j − i)] ,

then Vij − EVij =
∑0

t=1−j Ut. For any natural number p one has

E|Ut|p ≤ 2p−1

np

(
|γ(j − i)|p +

[
E|Xt|2pE|Xt+j−i|2p

]1/2
)

≤ p! 22pn−p

where the second inequality follows from the bound on E|Xt|2p established in step 4 of the

proof of Theorem 2, and the fact that |γ(k)| ≤ 1, ∀ k.

Taking into account the strong mixing property of the sequence (Ut)t∈Z and the fact

that Λj [αU , 2(p − 1)] ≤ j for 1 ≤ j ≤ d, we can apply Lemma 6 with µ = 0 and H = 4n−1.

Thus, ∣∣∣∣∣∣cump


 0∑

t=1−j

Ut



∣∣∣∣∣∣ ≤ 23p+112p−1(p!)2

dp−1

np−1
. (41)

It is immediately seen that the conditions of Lemma 7 hold with µ1 = 1, ∆ = n(C2d)−1,

and H1 = C1dn−1, and C1 and C2 may be chosen as in Theorem 2. The same argument is

valid for Wij . This completes the proof.

C.3 Proof of Lemma 4

(i). First we establish that P (Aκ) ≥ 1 − κ. We have

P (Ac
κ) ≤ P

{
max

i,j=1,...,d

(
|Vij − EVij | + |Wij − EWij | + |(Q̂ − Γd)ij |

)
> Cκ

}
≤ P

{
max

i,j=1,...,d
|Vij − EVij | > Cκ/3

}
+ P
{

max
i,j=1,...,d

|Wij − EWij | > Cκ/3
}

+P
{

max
i,j=1,...,d

|(Q̂ − Γd)ij | > Cκ/3
}

�
= P1 + P2 + P3.

It can be easily verified that under the condition of (27), Cκ ≤ (d/n)2/5. Thus we may

apply the results of Lemma 2 and Lemma 3 in the range of ’moderate’ deviations. Note
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that P3 can be bounded using the first inequality in (21) and the Toeplitz structure of the

matrix Q̂ − Γd,

P3 ≤ 2d exp
{
− C2

κ n

36C1drM

}
.

The probabilities P1 and P2 are bounded, in turn, using the first inequality in (24)

Pi ≤ 2d2 exp
{
− C2

κ n

36C1d

}
, i = 1, 2.

Thus using the fact that r ≥ 1 and M ≥ 1, we have

P (Ac
κ) ≤ 6d2 exp

{
− C2

κn

36C1drM

}
.

Now, it is straightforward to verify that the choice of Cκ is made so as to satisfy P (Ac
κ) ≤ κ.

(ii). Suppose that the event Aκ holds. Since Q̃ is a symmetric d × d matrix we have

‖Q̃‖ = λmax(Q̃) ≤ max
i

{∑
j

|Q̃ij |
}
≤ dCκ. (42)

Therefore (23), and the definition of Q̃ together imply that

‖Q−1Γd‖ ≤ 1
1 − ‖Γ−1

d (Q̃ + n−1Id)‖
, (43)

provided that ‖Γ−1
d (Q̃ + n−1Id)‖ < 1. This condition will subsequently be verified. Taking

into account (19) we have

‖Γ−1
d (Q̃ + n−1Id)‖ ≤ ‖Γ−1

d ‖
(
n−1 + dCκ

)
≤ (L/l)2(n−1 + dCκ) ≤ 1/2, (44)

where the last inequality follows from the condition imposed in (28). Thus, (44) along with

(43) imply statement of the lemma for the case where the event Aκ holds.

(iii). Now consider the case of ω ∈ Ac
κ. Independently of the event Aκ, the matrix Q is

positive–definite, λmin[Q] ≥ n−1 and whence λmax[Q−1] ≤ n. Since Q−1 is symmetric, we

obtain immediately that ‖Q−1‖ ≤ n. This completes the proof of the lemma.

C.4 Proof of Lemma 5

Upper bound on ‖I1‖ follows immediately from (16):

‖I1‖ = n−1‖θd‖ = n−1
( d∑

j=1

|φj |2
)1/2

≤ 1
nl(ρ − 1)

.
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Let us denote the kth component of I2 as

I2,k
�
=

1
n

n∑
t=1

Xt−k

∞∑
j=d+1

φjXt−j , k = 1, 2, . . . , d.

We have

E|I2,k|4 =
∞∑

j1,...,j4=d+1

φj1φj2φj3φj4E
[
γ̂(k − j1)γ̂(k − j2)γ̂(k − j3)γ̂(k − j4)

]
,

where γ̂(k−j) = n−1∑n
t=1 Xt−kXt−j . Applying repeatedly the Cauchy–Schwartz inequality

and taking into account that (Xt)t∈Z is Gaussian and stationary with E|Xt|2 = 1, we obtain

E
[
γ̂(k − j1)γ̂(k − j2)γ̂(k − j3)γ̂(k − j4)

]
≤ E|Xt|8 ≤ 105.

Therefore

E|I2,k|4 ≤ E|Xt|8
( ∞∑

j=d+1

|φj |
)4

≤ 105
ρ4dl4(ρ − 1)4

,

and thus

E‖I2‖4 = E
d∑

k,l=1

|I2,k|2|I2,l|2 ≤ 105d2

ρ4dl4(ρ − 1)4
.

Now we derive an upper bound on E‖I3‖4. Denote

I3,k
�
=

1
n

n∑
t=1

Xt−kεt =
Sn

n
, k = 1, 2, . . . , d.

To bound E|I3,k|4 = n−4|Sn|4 from above we note that {Si,F i−∞, 1 ≤ i ≤ n} is a martingale

(F i−∞ = σ(εi, ε−1, . . .) ). Therefore due to Burkholder’s inequality [see, e.g., Hall and

Heyde (1980, pp. 23)] we have

E|Sn|4 = E

∣∣∣∣∣
n∑

t=1

Xt−kεt

∣∣∣∣∣
4

≤ K1E

∣∣∣∣∣
n∑

t=1

(Xt−kεt)2
∣∣∣∣∣
2

,

where K1 is an absolute constant. Thus,

E|I3,k|4 ≤ K1

n4

n∑
t,τ=1

E
[
X2

t−kX
2
τ−kε

2
t ε

2
τ

]
≤ K1

n2
E|Xt|4E|εt|4 ≤ K2

σ4
ε

n2
,

and finally

E‖I3‖4 ≤ K2
d2σ4

ε

n2
≤ K2

d2

l4n2
,

where the last inequality follows from (17). This completes the proof.
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