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Abstract

This paper studies recurrence properties of autoregressive (AR) processes with “super-heavy
tailed” innovations. Specifically, we study the case where the innovations are distributed, roughly
speaking, as log-Pareto random variables (i.e., the tail decay is essentially a logarithm raised
to some power). We show that these processes exhibit interesting and somewhat surprising
behavior. In particular, we show that AR(1) processes, with the usual root assumption that
is necessary for stability, can exhibit null-recurrent as well as transient dynamics when the
innovations follow a log-Cauchy type distribution. In this regime, the recurrence classification
of the process depends, somewhat surprisingly, on the value of the constant pre-multiplier of this
distribution. More generally, for log-Pareto innovations, we provide a positive recurrence/null
recurrence/transience classification of the corresponding AR processes.
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1 Introduction

Autoregressive (AR) models are one of the most widely used stochastic models in existence, and

play a central role in many areas of research. For example, in the realm of time series modeling and

analysis, the focus has been on linear models, namely, autoregressive and moving average models

[see, e.g., Brockwell and Davis (1991)]. In signal processing applications, AR models have been
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used extensively in filter design, modeling noise processes and quantization effects, and spectral

analysis [see, e.g., Porat (1994)]. The simple structure of AR models has led to a good theoretical

understanding of various properties that pertain to stability, estimation, and representation of these

processes.

Despite the importance of this class of models, it turns out that the recurrence properties

of AR processes have not yet been fully worked out. To be concrete, consider the scalar AR(1)

process, X = (Xn : n ≥ 0), given by

Xn+1 = αXn + Zn+1, (1)

where (Zn : n ≥ 1) is a sequence of i.i.d. random variables independent of X0, often referred to as

the innovation process, representing additive noise. When α = 1, the Markov chain X corresponds

to a random walk, and the recurrence theory is well known. When α > 1, Xn tends to grow

geometrically with n, precluding recurrence (see Proposition 1 and related discussion). On the

other hand, when |α| < 1, the chain tends to “contract,” and we expect it to be positive recurrent.

The great majority of the literature on autoregressive processes therefore assumes |α| < 1, which

we shall henceforth refer to as the “usual stability condition.”

If, in addition to the usual stability condition, we assume that E log(1 + |Z1|) < ∞, then X

is a positive recurrent Markov chain [see Athreya and Pantula (1986, Proposition 1)]. The latter

moment assumption will be referred to as the “log-moment condition.” This raises an intriguing

theoretical question:

What are the recurrence properties of AR processes when one assumes the usual stability

condition (i.e., |α| < 1), and E log(1 + |Z1|) = ∞?

The above question essentially concerns the behavior of AR processes that are subject to

innovations that assume “very large” values. If Z satisfies the condition E log(1 + |Z1|) = ∞, we

say that its distribution has super-heavy tails. In this regime, the process has dynamics that are

contractive due to the magnitude of α, however this is potentially off-set by the extremely large

values introduced by the innovations. To illustrate the main point, observe that Xn can be written

as follows

Xn = αnX0 +

n−1
∑

i=0

αiZn−i, (2)

Note that in the super-heavy tailed regime, max{Zk : 1 ≤ k ≤ n} can grow roughly like exp(cn)

for some c > 0. We therefore anticipate that this growth can potentially cause the process to be

transient, or null-recurrent, in spite of the contraction caused by exponentially decaying weights.

The theory that we develop will be largely focused on the following sub-class of super-heavy

tailed distributions. We say that a non-negative random variable Z has log-Pareto tails if log(1+Z)
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is distributed Pareto with parameters (p, β), i.e., for some p > 0 and β > 0

P(log(1 + Z) > z) =
1

(1 + βz)p
(3)

when z ≥ 0. In the case p = 1, we shall refer to Z as having “log-Cauchy tails” with scale parameter

β > 0. By imposing a similar restriction on the left tail we can extend this to the case of random

variables taking on positive and negative values.

The main contributions of this paper are the following:

i.) We show that the known sufficient condition for positive recurrence, E log(1 + |Z1|) < ∞,

is also necessary (see Proposition 1). The latter generalizes in a straightforward manner to

vector AR processes (see Proposition 2).

ii.) We show that recurrence classification using return times to compact intervals is equivalent

to using the potential function (see Proposition 3). Necessary and sufficient conditions for

classifying recurrent/transient behavior are established using properties of the first exit time

of the “backward iterated process” from an interval (see Proposition 4). We also provide a

sufficient condition for recurrence that is more easy to verify in practice (see Lemma 1).

iii.) We obtain a complete characterization of transience/null recurrence/positive recurrence for

AR processes with log-Pareto innovations (see Theorem 1). We also derive a more general

sufficient condition for transience when the innovations are super-heavy tailed but are not

distributed as log-Pareto (see Proposition 5). Note that positive recurrence, transience, and

even null recurrence can all be exhibited by AR processes with |α| < 1.

iv.) We show that when positive recurrence fails and the innovations are not log-Pareto, no simple

moment condition appears to exist for differentiating between null recurrence and transience.

In particular, when E[log(1 + |Z|)]p = ∞ for some p < 1, then we can have either transience

or null recurrence, and therefore cannot differentiate the dynamics based on log-moments (see

Example 1).

When p = 1 in (3) above, the distinction between null recurrence and transience relies on the

pre-multiplier, β, in the corresponding log-Cauchy distribution of the innovations. This is another

indication that moment conditions are not sufficient for this type of classification.

Thus, the conclusions of this study are that log-Pareto tails can give rise to a surprisingly

broad range of possible dynamics, even in the presence of the usual stability condition |α| < 1.

Moreover, the moment-based classification that holds for log-Pareto innovations does not hold in

general. Thus, it seems that fine-grain properties of the tail are crucial in determining recurrence

properties in the super-heavy tailed regime.
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As mentioned previously, sufficiency of the log-moment condition for positive recurrence ap-

pears explicitly in Athreya and Pantula (1986). Vervaat (1979) investigates stability of linear

stochastic recursions under more general dependence conditions [see also Borovkov (1998)]. Re-

currence classification for a class of non-linear generalizations of AR processes is investigated in

continuous time by Brockwell, Resnick and Tweedie (1982) and in discrete time by Rai, Glynn and

Glynn (2002). The latter paper studies stochastic recursions of the form Xn+1 = Xn−aXb
n+1+Zn+1,

where Zn+1 represents the inflow and aXb
n+1 the outflow over the interval of time [n, n + 1). Note

that when b = 1 we recover an autoregressive sequence. Recurrence properties of Markov chains

are discussed more generally in Borovkov (1998) and Meyn and Tweedie (1993).

2 Main Results

Let us first define more rigorously what we mean by recurrence properties. Consider a Markov

chain X = (Xn :≥ 0) on a state space E ⊆ R
d. Let E = B(E) denote the associated Borel sigma-

field over E. Let Px denote the underlying probability measure conditional on X0 = x, and let

Ex[·] := E[·|X0 = x]. For any A ∈ E , put TA := inf{n ≥ 1 : Xn ∈ A} to be the hitting time of A.

Let ‖ · ‖ denote the usual Euclidean norm, where | · | denotes absolute value. In what follows, ‘⇒’

is used to denote weak convergence (i.e., convergence in distribution).

We will use the following notions of recurrence for a an E-valued Markov chain X.

Definition 1 (Recurrence)

i.) X is said to be recurrent if there exists a compact set A such that

Px(TA < ∞) = 1, for all x ∈ E

and transient otherwise.

ii.) X is said to be positive recurrent if there exists a compact set A such that

ExTA < ∞, for all x ∈ E

iii.) X is said to be null recurrent if it recurrent but not positive recurrent.

The definition of null recurrence, positive recurrence, and transience as defined above are not

generally a mutually exclusive partition of possibilities, however, this is true in the context of AR

processes [for a more general treatment the reader is referred to Meyn and Tweedie (1993)]. An
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alternative definition of recurrence uses the notion of potential. In particular, let

ηA =
∞

∑

n=1

I{Xn∈A} (4)

denote the occupation measure of the set A, where I{·} denotes the indicator function, and let

U(x, A) := Ex[ηA] =
∞

∑

n=1

Px(Xn ∈ A) (5)

denote the potential or mean occupation measure of the set A. We say that the chain X is recurrent

if U(x, A) = ∞ for every initial state x and compact set A. In what follows we establish an

equivalence between this characterization and the one given in Definition 1 (see Proposition 3).

2.1 Positive recurrence under log-moment conditions

Our first result concerns the necessity and sufficiency of E log(1 + |Z1|) < ∞, the log-moment

condition, for positive recurrence of the chain X.

Proposition 1 The process X is positive recurrent if and only if |α| < 1 and E log(1 + |Z1|) < ∞,

in which case X admits a unique stationary distribution, π, and Px(Xn ∈ ·) ⇒ π(·), as n → ∞.

Proposition 1 indicates that the stability condition |α| < 1 together with the finiteness of

the log-moment of the innovation process provide “sharp” conditions for positive recurrence. The

sufficiency of the log-moment condition appears in Athreya and Pantula (1986) and necessity for

the case where Z is nonnegative is given in Brockwell et al. (1982) and Rai et al. (2002).

We now briefly illustrate how the necessary and sufficient conditions for positive recurrence

given in Proposition 1 can be extended to the vector case. Consider the recursion

Xn+1 = AXn + Zn+1 (6)

where A ∈ R
d×d is nonsingular, and Xn and Zn takes values in R

d. Assume that the innovation

process Z = (Zn : n ≥ 1) is comprised of i.i.d. random vectors and the components of these vectors

are independent of each other. We also assume that Z is independent of X0. Let the spectral radius

of A be defined as follows

ρ(A) = max{|λ| : Av = λv, v 6= 0} .

Let ‖v‖ denote the Euclidean norm of a vector in v ∈ R
d. The following is an analogue of Proposition

1.
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Proposition 2 If A is non-singular, then X is positive recurrent if and only if ρ(A) < 1 and

E log(1 + ‖Z1‖) < ∞, in which case X admits a unique stationary distribution, π, and Px(Xn ∈

·) ⇒ π(·) as n → ∞.

The above result is clearly applicable to AR(d) processes. Specifically, consider the process

Xn+1 = α1Xn + α2Xn−1 + · · · + αdXn−d + Zn+1

where Z = (Zn : n ≥ 1) is a process of i.i.d. innovations independent of {X0, . . . , Xd−1}. (Implicit

here is the assumption that αd 6= 0.) Recasting this as a vector-valued Markov chain, let Yn =

(Xn, . . . , Xn−d+1)
⊤, then Yn+1 = AYn + Wn+1 where Wn = (Zn, . . . , Zn−d+1)

⊤ and

A =





















α1 α2 · · · αd−1 αd

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0





















d×d

We also set Y0 = (Xd−1, . . . , X0)
⊤. Applying Proposition 2 we have that the process Y = (Yn : n ≥

0) admits a stationary distribution if and only if E log(1+ |Z1|) < ∞ and P(z) = det(A−zI) has all

its roots strictly inside the unit disk in the complex plane. The latter condition can be simplified

by a more explicit description of P(z), namely

P(z) = zd − α1Z
d−1 − · · · − αd .

The sufficiency of these conditions can be found, e.g., in Athreya and Pantula (1986, p.891).

2.2 Recurrence classification with super-heavy tailed innovations

As mentioned previously, our goal here is to investigate what happens when the log-moment con-

dition is violated, in particular, our main objective is to illustrate the range of behavior that AR

processes can exhibit in this super-heavy tailed setting. To this end, we will restrict attention

to non-negative innovation processes and 0 < α < 1 in order to reduce technical complications.

(Clearly if α = 0 the classification is vacuous.)

The next result establishes a correspondence between the properties of the first hitting time

of an interval A = [0, c], TA, and the potential function, U(x, A), for the process started at X0 = x.

Proposition 4 asserts that the notion of recurrence articulated in Definition 1 is equivalent to

non-finiteness of the potential function.
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Proposition 3 Let X be an AR(1) process with nonnegative innovations and α ∈ (0, 1). Then,

setting A = [0, c] we have that for all x ≥ 0

U(x, A) = ∞ if and only if Px(TA < ∞) = 1 . (7)

For the class of models we are concerned with in this paper it is quite natural to focus on

recurrence conditions that are driven by the study of dynamical systems, viewing Markov chains as

iterated random maps [cf. Duflo (1997) and the recent survey by Diaconis and Freedman (1999)].

In particular, for the scalar AR process (1) we define the backward iterated process S = (Sn : n ≥ 1)

associated with X to be

Sn = αnX0 +
n

∑

i=1

αi−1Zi . (8)

To better understand the terminology “backward iterated,” contrast this with (2) and observe that

Sn is derived from Xn by essentially substituting Zi for Zn−i in the latter. While Sn has the same

distribution as Xn for all n, it is also clear that the backward process S has very different behavior

from the forward process X. In particular, under regularity conditions that ensure “stability,”

the backward process converges almost surely (as n grows to infinity) to a limit random variable

whose distribution is the unique stationary distribution of the chain X, while the forward process

converges in distribution to the same limiting random variable. [For further details on the requisite

conditions see Theorem 1 in Diaconis and Freedman (1999).]

For the purpose of recurrence classification of AR processes, one can use the first exit time of

the backward process S from an interval A = [0, c] defined as follows

τ(c) = inf{n ≥ 1 : Sn > c} . (9)

The key observation, stated informally, is that a “finite” exit time rules out positive recurrence, and

the precise definition of “finite” stands in one-to-one correspondence with a null-recurrent/transient

classification.

Proposition 4 Let X be an AR(1) process with nonnegative innovations and α ∈ (0, 1). Then,

i.) the chain is positive recurrent if and only if for some c > 0, P0(τ(c) = ∞) > 0;

ii.) the chain is null-recurrent if and only if for some c > 0, E0τ(c) = ∞ and P0(τ(c) < ∞) = 1;

iii.) the chain is transient if and only if for some c > 0, E0τ(c) < ∞.

For the next result we impose the additional assumption that the innovations are distributed

log-Pareto in the sense of (3). While this may seem quite restrictive at first glance, Example 1
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clearly indicates that in the super-heavy tailed regime it is necessary, in some sense, to have more

control over the precise characteristics of the tail of the innovations distribution.

Theorem 1 If α ∈ (0, 1) and the innovations have log-Pareto distribution as in (3) with parame-

ters (p, β), then

i.) if p > 1, the chain is positive recurrent;

ii.) if p < 1, the chain is transient;

iii.) if p = 1 and β log(1/α) < 1 then the chain is transient, and if p = 1 and β log(1/α) ≥ 1, the

chain is null-recurrent.

The results described in Proposition 1 and Theorem 1 indicate that a “general” recurrence

classification theory under the usual stability condition might look roughly as follows: (i) if E(log(1+

|Z1|)) < ∞ then the chain is positive recurrent, (see Proposition 1); (ii) if Z1 has log-Cauchy

tails, both transient and null-recurrent dynamics are possible according to the classification result

in Theorem 1; and, (iii) if sup{p : E(log(1 + |Z1|))
p < ∞} < 1 then the chain is transient.

Unfortunately, it turns out that only parts (i) and (ii) of the “general theory” hold, and the

transience implication in (iii) is generally false. In fact, if E(log(1 + |Z1|))
p = ∞ for some p < 1,

the chain could still be null-recurrent as the following example illustrates.

Example 1 (Null recurrence and insufficiency of log-moment conditions) Our construc-

tion uses the following auxiliary lemma that provides a relatively simple way to establish recurrence.

Lemma 1 Let X be an AR(1) process with non-negative innovations and α ∈ (0, 1). If for some

δ > 0
∫ ∞

0

exp

{

−(1 + δ)

∫ t

0

P (log(1 + Z1) > y)

}

dt = ∞ ,

then X is recurrent.

Let Z be such that E[log(1 + Z1)]
p = ∞ for some p < 1. Put W := [log(1 + Z1)] and note that

EW = ∞. We now construct a distribution for W such that its mean is infinite, yet the integral

above diverges for δ = 1. This will imply that the AR chain is null recurrent by Lemma 1 and

Proposition 1.

We will specify two nonnegative sequences tn ր ∞ as n → ∞, and pn decreases to zero as

n → ∞. We then specify the distribution of W through its tail values as follows:

P(W > y) = pn+1 for y ∈ [tn, tn+1).
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Note that in order to guarantee the divergence of EW , we simply impose the constraint that

pn+1(tn+1− tn) = 1/(n+1) for each n ≥ 1. The construction now proceeds recursively. For brevity,

set

ψ(t) := exp

{

−2

∫ t

0

P(W > y)dy

}

.

Suppose that at t = tn, we have ψ(tn) = an. We then have for t > tn, that

ψ(t) = an exp

{

−2

∫ t

tn

P(W > y)dy

}

.

But now use the fact that P(W > y) = pn+1 over y ∈ [tn, tn+1) to get that

ψ(t) = an exp {−2pn+1(t − tn)} .

Thus, we can integrate ψ(t) over t ∈ [tn, tn+1) to give

∫ tn+1

tn

ψ(t)dt =
an

2pn+1

(1 − exp{−2pn+1(tn+1 − tn)})

First, note that by construction pn+1(tn+1 − tn) = 1/(n + 1), thus as n → ∞ we have that

(1 − exp{−2pn+1(tn+1 − tn)}) ∼
2

n

where xn ∼ yn if xn/yn → 1 as n → ∞. Thus,

∫ tn+1

tn

ψ(t)dt ∼
an

npn+1

.

To make the whole integral diverge we set pn+1 = min{an, pn, 1/n}, so that an/pn+1 ≥ 1. (We set

pn+1 as above to comply with the constraint pn ց as n → ∞.) Consequently,
∫ ∞
0

ψ(t)dt diverges

and the chain must therefore be null recurrent in spite of the fact that E[log(1 + Z1)]
1/2 = ∞.

The above example demonstrates that we cannot expect in general to distinguish between

null recurrence and transient behavior of AR processes based on simple moment conditions. This

observation also emphasizes the surprising “sharpness” of Proposition 1, namely, that the log-

moment condition is necessary and sufficient to determine positive recurrence. The reader may

wonder what is the intuition behind the counter example described above. The construction gives

rise to a distribution with support on a sequence tn that is increasing very rapidly with probabilities

that are decaying very rapidly. In particular, the behavior of the maximum of the Zi’s will not

exhibit “smooth” monotonic increasing behavior, rather, it will tend to be constant on long stretches

of time, and then jump. This is due to the recursive construction of the distribution above, namely,

one must go farther and farther “out into the tail” to encounter the next mass point. Since it

is extremely unlikely that up to time n the Zi’s take on values that are in the far tail (quantile

≫ 1− 1/n), the maximum over time blocks of length n will tend to be almost constant, and finally

9



will jump only when the time that elapsed is long enough so that the next support point in the

tail is more likely to give rise to a value of Z. Thus, the Zi’s are effectively bounded over long

time intervals, and therefore the contraction due to α < 1 will imply that the chain returns to a

compact set before the next jump in the value of the Z’s is encountered. This, in turn suggests

that the chain ought to exhibit recurrent rather than transient behavior.

While it turns out that E[log(1+Z1)]
p = ∞ for some p < 1 does not imply transience, we can

guarantee the latter if we strengthen the moment condition as follows.

Proposition 5 If α ∈ (0, 1) and the innovations are such that

lim inf
z→∞

(log z)p
P(Z1 > z) ≥ c

for p < 1 and some finite positive constant c, then the chain associated with the AR(1) process is

transient.

3 Proofs

Proof of Proposition 1. Sufficiency of these conditions for positive recurrence and the exis-

tence and uniqueness of a stationary distribution, as well as the weak convergence asserted in the

proposition, is proved in Athreya and Pantula (1986, Proposition 1). To prove necessity, we use

convergence properties of random series. Theorem 2.7 (ii) in Doob (1953, p. 115) asserts that if Wi

is a sequence of independent r.v.’s, then Sn =
∑n

i=1
Wi ⇒ S, if and only if, Sn → S almost surely.

To this end, observe that

Xn = αnX0 +
n−1
∑

i=0

αiZn−i,

thus, Xn is equal in distribution to the “backward process” Sn = αnX0 +
∑n

i=1
αi−1Zi. Consider

first the necessity of |α| < 1, in particular, suppose that |α| ≥ 1. Then, for any ǫ > 0 we have that

P(|αiZi| > ǫ) ≥ P(|Z1| ≥ ǫ), for all i. Thus,
∑

i P(|αiZi| ≥ ǫ) < ∞ for all ǫ > 0 if and only if Zi = 0

for all i. By Kolmogorov’s three series theorem [see, e.g., Billingsley (1995, Theorem 22.8, p. 290)]

this is necessary for the almost sure convergence of Sn and thus [by Doob (1953, Theorem 2.7, p.

115)] for the weak convergence of Sn. Consequently it is also necessary for the weak convergence

of Xn. The only matter left is the necessity of the log-moment assumption. To this end, note that

E log(1 + |Z1|) = ∞ implies that

∞
∑

n=1

P(|Zn| ≥ α−n) = ∞ ,

and thus by the second Borel-Cantelli lemma we have that Zn ≥ α−n, for infinitely many n, almost

surely. Consequently, Sn is almost surely not convergent, and therefore, by the aforementioned
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result on random series, Xn cannot admit a stationary distribution, in particular, it is not positive

recurrent. This concludes the proof.

Proof of Proposition 2. The necessity of the stability condition ρ(A) < 1 follows as in the

proof of Proposition 1. The remainder of the proof is split into two parts.

Sufficiency: To argue sufficiency note that

Xn = AnX0 +
n−1
∑

i=0

AiZn−i

and the first term on the right hand side converges to zero almost surely as n → ∞, since ρ(A) < 1

implies ‖Am‖ < 1 for some m < ∞ (indeed ‖An‖1/n → ρ(A) as n → ∞). Here ‖A‖ := sup{‖Ay‖ :

‖y‖ = 1}. Thus, it suffices to consider the case where X0 = 0. Then, the second term equals in

distribution Sn :=
∑n

i=1
Ai−1Zi (the backward iterated chain). Now, the log-moment condition

ensures, by the Borel-Cantelli lemma, that ‖Zn‖ ≤ exp(cn) for all c > 0 and sufficiently large n,

almost surely. Thus, since ρ(A) < 1 we have that

∞
∑

i=1

‖Ai−1Zi‖ < ∞

almost surely, and therefore Sn converges almost surely to S∞ =
∑∞

i=1
Ai−1Zi. The latter defines

the (unique) stationary distribution for X, and also establishes that Xn ⇒ X∞, where X∞ has the

same distribution as S∞.

Necessity: To argue necessity note that we may apply Theorem 2.7 (ii) in Doob (1953, p.

115) component by component since each coordinate of Sn is expressed as the sum of i.i.d. random

variables. Therefore, the ith component converges weakly if and only if it converges almost surely.

Now, observe that

‖Zn‖ =
∥

∥(An)−1AnZn

∥

∥ ≤
∥

∥(An)−1
∥

∥ ‖AnZn‖,

and consequently ‖AnZn‖ ≥ ‖Zn‖‖(A
n)−1‖−1 ≥ ‖Zn‖‖A

n‖. Now, if E log(1 + ‖Z1‖) = ∞ then

‖Zn‖ ≥ exp(c1n) for all c1 > 0, infinitely often, almost surely, by the second Borel-Cantelli lemma.

Thus, since ‖An‖ ≥ c2ρ
n for some c2 > 0 and ρ ∈ (0, 1) it follows that lim supn→∞ ‖AnZn‖ = ∞,

almost surely. There will therefore be at least one component of the vector AnZn (since there are

only finitely many components) on which the above limsup is infinite. Since the aforementioned

component of Sn does not converge almost surely, it follows [by Doob (1953, Theorem 2.7, p.

115)] that Sn does not converge in distribution. Thus, it must be that Xn does not converge in

distribution and consequently X does not admit a stationary distribution. Therefore the chain

cannot be positive recurrent, and the proof is complete.

Proof of Proposition 3. We need to prove the equivalence between the behavior of the

potential and probability of the return time to compact intervals TA = inf{n ≥ 1 : Xn ∈ A}.
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Suppose first that Px(TA < ∞) = 1. Consider the case where Z1 has bounded support, where

we may have Px(TA = 1) = 1 for the particular choice of x. If this holds for all x ∈ A then

clearly the chain never leaves A and the proof follows, otherwise there exists x′ > x in A such that

Px′(TA = 1) < 1. Thus, assume without loss of generality that Px(TA = 1) < 1. Conditioning on

the chain at time 1, gives the expression

Px(TA < ∞) =

∫

y∈A
P (x, dy) +

∫

y∈Ac

Py(TA < ∞)P (x, dy)

thus, by assumption that Px(TA < ∞) = 1 there must exist y’s in Ac such that the probability of

hitting A in finite time is one. But for each such y, stochastic monotonicity guarantees Pz(TA <

∞) = 1 for all z ≤ y. Thus, it follows that the return probability to A must be 1 for all initial

states x ∈ [0, y], and repeating the argument above we have that the hitting time of A is finite,

almost surely, for all initial states. Hence, the chain returns to A infinitely often and therefore,

U(x, A) = ∞ for all x. Conversely, suppose that there exists an x ∈ A for which Px(TA < ∞) < 1.

Then, from the above argument, it follows that

p := P0(TA < ∞) < 1.

Hence, a “geometric trials” argument establishes that

P0(ηA = n) ≤ pn,

and consequently U(0, A) =
∑∞

n=1
P0(ηA = n) < ∞. By stochastic monotonicity of X we have

that U(x, A) ≤ U(0, A) for all x ≥ 0 and therefore the expected occupation measure is sigma-finite.

This concludes the proof.

Proof of Proposition 4. Note that because Xn = αnX0 +
∑n−1

i=0
αiZn−i and α ∈ (0, 1), it

follows that the recurrence properties of X do not depend on its initial value X0 = x. It suffices

therefore to consider the case X0 = 0. Fix c > 0 and A = [0, c]. Now, using the definition of the

backward process given in (8) and the first exit time of that process from A given in (9) it follows

that

E0ηA = E0τ(c) − 1 .

That is, the expected value of the occupation measure of a set A = [0, c] is equal to the expected

value of the first exit time of that set by the backward iterated process, minus one. It therefore

follows that E0τ(c) = U(0, A) + 1. Case (iii) in the proposition now follows because U(0, A) < ∞

defines transience and conversely U(0, A) = ∞ defines recurrence by Proposition 3. Now, the key

to determining null-recurrence and distinguishing this behavior from positive recurrence hinges on

P0(τ(c) < ∞). To this end, let En = {Sn ∈ A}, where Sn =
∑n

i=1
αi−1Zi is the backward process

started at zero. Since Sn is P0-almost surely non-decreasing, we have that {∩nEn} = {τ(c) = ∞}.
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Thus,

P0(τ(c) = ∞) = P0(∩nEn)

= lim
n→∞

P0(Sn ∈ A)

= lim
n→∞

P0(Xn ∈ A) ,

since Sn is equal in distribution to Xn for all n. Now, if P0(τ(c) = ∞) > 0 then it follows that

limn→∞ P0(Xn ∈ A) > 0 which implies that X cannot be null recurrent since in that case the above

limit must be zero for any interval [0, c]. Conversely, if X is positive recurrent then, by Proposition

1 we have that P0(Xn ∈ A) → Pπ(X1 ∈ A) as n → ∞, and the latter must be positive for some

c > 0. This concludes the proof.

Proof of Theorem 1. Our proof uses the necessary and sufficient conditions given in Propo-

sitions 1 and 3.

Case i.) p > 1: This follows since the log-moment condition of Proposition 1 is satisfied.

Case ii.) p < 1: Fix c > 0 and let A = [0, c]. Fix x ∈ [0, c]. Since the potential is given in

this context by

U(x, A) =
∞

∑

n=1

Px(Xn ≤ c)

the key is to bound the rate at which the probabilities on the right hand side decay to zero. To

this end, note that U(x, A) ≤ U(0, A) for all x > 0. Thus, we may take x = 0. To this end, observe

that we have the following inclusion of events in the underlying sigma-field

{Xn ≤ c} ⊆ {Zn−i ≤ cα−i, i = 0, . . . , n − 1}

for all c ∈ R+. To see why this holds, note that if Zn−i ≥ cα−i for some i, then Xn =
∑n

i=1
αiZn−i ≥

c. Thus,

Px(Xn ≤ c) ≤ P(Zi ≤ cα−i, i = 1, . . . , n)

=

n
∏

i=1

[

1 − P(Z1 > cα−i)
]

= exp

{

n
∑

i=1

log
[

1 − P(Z1 > cα−i)
]

}

≤ exp

{

−
n

∑

i=1

P(Z1 > cα−i)

}

, (10)

where the first step follows from the above set inclusion, the second step uses independence of the

innovations, and the last step uses the inequality log(1 − y) ≤ −y. Now, using the assumption on

the distribution of Z1 we have

P(Z1 > cα−i) = (1 + β log(1 + cα−i))−p ≥ C1

1

ip
,
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for some finite positive constant C1 and for sufficiently large i. Thus,

n
∑

i=1

P(Z1 > cα−i) ≥ C2(1 + n1−p),

for sufficiently large n, and therefore

U(x, A) =
∞

∑

n=1

Px(Xn ≤ c) < ∞ .

Since c was arbitrary, the chain is transient.

Case iii.) p = 1: Fix c > 0, let A = [0, c] and fix x ∈ A. There are two subcases to deal

with.

1. β log(1/α) ≥ 1: We use the following set inclusion

{Xn ≤ c} ⊇ {Zn−i ≤ (c/2)(b/(i + 1)2)α−i, i = 0, . . . , n − 1}, (11)

which holds for all n > max{⌊log(2x/c)/| log α|⌋, 1}. Here b := (
∑∞

i=1
i−2)−1 = 6/π2. Note that

the lower bound on n ensures that xαn ≤ c/2. Observe that if Zn−i ≤ (c/2)(b/(i + 1)2)α−i for

i = 0, . . . , n − 1 then,

Xn ≤ c/2 +
n−1
∑

i=0

αiZn−i ≤ (c/2)

(

1 + b
n

∑

i=1

1

i2

)

≤ c .

Similar to the derivation in case ii.), we now have that

Px(Xn ≤ c) ≥ P(Zi ≤ (c/2)(b/i2)α−i, i = 1, . . . , n)

= exp

{

n
∑

i=1

log
[

1 − P(Z1 > (c/2)(b/i2)α−i)
]

}

≥ C1 exp

{

−

n
∑

i=1

P(Z1 > (c/2)(b/i2)α−i) −

n
∑

i=1

(

P(Z1 > (c/2)(b/i2)α−i)
)2

}

=: C1 exp {−Rn − Qn} , (12)

where we have used the inequality log(1− y) ≥ −y− y2 which holds for all 0 ≤ y ≤ 1/2, and where

C1 is a finite positive constant. Using the assumption on the distribution of Z1, we have

P(Z1 > (c/2)(b/i2)α−i) ≤ P(log(1 + Z1) > log(cb/2) − 2 log i + i log(1/α))

≤
1

iβ log(1/α) − 2β log i
,

assuming without loss of generality that c is chosen such that c > 2/b. This implies that

Qn <
∞

∑

i=1

(

P(Z1 > (c/2)(b/i2)α−i)
)2

< ∞ .
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To evaluate the magnitude of Rn we use the following relation which is readily verified,
∫ n

a

1

x − k log x
dx = log(x − k log x)|na +

∫ n

a

k/x

x − k log x
dx .

(We are grateful to the referee for suggesting this approach.) Here a > 1 is such that x−k log x > 0

for all x ≥ a. Note that
∫ ∞

a

k/x

x − k log x
dx < ∞ .

Setting k := 2β(β log(1/α))−1 we can use the above integral relation to get

Rn ≤ C2 +
1

β log(1/α)

∫ n

a

1

x − k log x
dx

≤ C3 +
1

β log(1/α)
log n ,

which holds for all n sufficiently large and finite positive constants C2, C3. Combining the above

with (12) we conclude that
∑

n Px(Xn ≤ c) diverges when β log(1/α) ≥ 1.

2. β log(1/α) < 1: In this case we have that

P(Z1 > cα−i) =
1

1 + β log(1 + cα−i)

≥
1

C4 + iβ log(1/α)
,

for some C4 > 0 and for i sufficiently large. It then follows that

n
∑

i=1

P(Z1 > cα−i) ≥ (β log(1/α) + ǫ)−1 log n,

for n sufficiently large and ǫ ∈ (0, 1 − β log(1/α)). Thus,

∞
∑

n=1

exp
(

(β log(1/α) + ǫ)−1 log n
)

< ∞ ,

and using the bound derived in (10) we have that

∞
∑

n=1

Px(Xn ≤ c) < ∞ .

Thus, if β log(1/α) < 1 the chain is transient, while if β log(1/α) ≥ 1 it is null-recurrent (by

Proposition 1 it cannot be positive recurrent). This concludes the proof.

Proof of Lemma 1. Fix c > 0, let A = [0, c] and fix x ∈ A. We use the same set inclusion

used in (11) in the proof of Theorem 1. In what follows we fix δ > 0 and let Ci be finite positive

constants that may depend on δ. Then, using (12) we have that

Px(Xn ≤ c) ≥ C1 exp

{

−(1 + δ)
n

∑

i=1

P(Z1 > (c/2)(b/i2)α−i)

}

.
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The RHS of the above can be lower bounded in turn to yield

Px(Xn ≤ c) ≥ C1 exp

{

−(1 + δ)
n

∑

i=1

P(log(1 + Z1) > log(cb/2) − 2 log i + i log(1/α))

}

≥ C2 exp

{

−(1 + δ)
n

∑

i=1

P(log(1 + Z1) > i)

}

.

Since U(x, A) :=
∑

n Px(Xn ≤ c), we have that X is recurrent if the sum over n of lower bound

above diverges. Note that ϕ(n) =
∑n

i=1
P(log(1 + Z1) > i) is monotone non-decreasing in n and

thus ψ(n) = exp(−ϕ(n)) is monotone non-increasing in n. We therefore have that the convergence

and divergence of the sum over n of the RHS above is equivalent to that of its “integral version”

given in the lemma. In particular,

U(x, A) = ∞ if

∫ ∞

0

exp

{

−(1 + δ)

∫ t

0

P(log(1 + Z1) > y)

}

dt = ∞ .

Finally, by assumption there exists a choice δ∗ > 0 for which the aforementioned integral diverges.

Since A and x ∈ A were arbitrary, the chain is recurrent.

Proof of Proposition 5. The proof follows straightforwardly from the proof of case ii.) in

Theorem 1.

4 Concluding Remarks

The two main messages in the paper are: (1) AR processes that are “stable” in terms of the roots

of their characteristic polynomial can still exhibit transient and even null recurrent dynamics that

are due to the nature of the innovation process; and, (2) one cannot determine whether an AR

process is null recurrent or transient based on a simple moment condition on the innovations. Re-

call that the log-moment condition is necessary and sufficient for positive recurrence in both the

scalar and vector cases. In contrast, it seems that transience and null recurrence are determined

by finer properties of the distribution of the innovations. For example, under a more precise tail

decay assumption one can classify the exact nature of the Markov chain associated with the AR

process. Further study is needed to determine what are the necessary and sufficient conditions on

the innovations that support a complete recurrence classification theory.
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