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Abstract

We address the simultaneous determination of pricing, production and capacity investment

decisions by a monopolistic firm in a multi-period setting under demand uncertainty. We analyze

the optimal decision with particular emphasis on the relationship between price and capacity.

We consider models that allow for either bi-directional price changes or models with markdowns

only, and in the latter case we prove that capacity and price are strategic substitutes.

Short Title: Relationship between pricing and capacity decisions
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1 Introduction

1.1 Background and Overview of Main Findings

Recent years have witnessed an increased interest in the use of pricing in operations manage-

ment practices, with a particular focus on the integration of inventory control and dynamic (state-

dependent) pricing strategies. Concomitantly, studies focusing on the interface between capacity

investment and replenishment strategies have led to further understanding of capacitated inven-

tory systems and supply chains. A very useful qualitative insight in this context has been the

understanding that capacity and inventory are in essence strategic substitutes. Roughly speaking,
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decision variables are said to be strategic substitutes if increasing the value of one variable decreases

the return from increasing the other; a more precise definition will be advanced in section 4. One of

the main motivations for the present paper is to develop similar insights that pertain to pricing and

capacity decisions. As the literature review at the end of this section indicates, we are only aware

of a few papers to date that focus on the problem of joint capacity planning and pricing strategies,

and even less that go on to explore the three-way relationship between capacity, inventory and

pricing decisions.

In this paper we study a stylized problem in which a centralized monopolistic firm sells a

product over a finite selling horizon; the number of periods constituting this time horizon measure

the time elapsed from the first introduction of the product to the market, up until the point where

the firm terminates its production and sale. The firm reviews the state of the system periodically

and at the beginning of each period makes three decisions: i.) invest or disinvest in production

capacity; ii.) replenish inventory (constrained by production capacity); and iii.) fix a price for

the produced goods that will take effect in the following period. Subsequent to these decisions,

demand is observed. We first allow the firm to carry inventory from one period to the next, and

orders are allowed to be backlogged. Subsequently, we introduce a restriction that disallows carry-

over of inventory from period to period; the firm must then either satisfy inventory shortage using

emergency replenishment or by paying penalty fees. In the next stage, we also restrict the firm’s

pricing flexibility by only allowing markdowns, i.e., the price of the product can only decrease over

its life cycle.

The main contribution of this paper is in studying the relationship between pricing and ca-

pacity decisions in the context of a dynamic optimization problem that has capacity, inventory and

price as its variables. The analysis proceeds by first showing that the optimal capacity investment

policy in the presence of pricing and inventory decisions is of a target interval form (see Theorem

1). Given a fixed capacity level, the optimal joint pricing-inventory decisions are seen to follow a

modified base-stock list-price policy (see Theorem 2). These results serve as a basis for studying a

model where no inventory carry-over is allowed, and pricing is restricted to markdowns. In this im-

portant scenario we show that price and capacity are strategic substitutes both as decision variables

and as state variables (see Theorem 3); an important implication is that these levers can be used in

a complementary manner (see discussion in Section 6). Several numerical examples illustrate some
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of these findings.

This section concludes with a review of related literature and known results. Section 2 de-

scribes the model and sets up the dynamic optimization problem. Section 3 provides the first set

of results. Section 4 discusses the cases where no carry-overs are allowed and when pricing is re-

stricted to markdowns. Section 5 summarizes some qualitative insights that are gleaned from the

main results and also provides a simple example that illustrates the key findings. All proof are

collected in the appendix.

1.2 Literature review and positioning of the present paper

Given the voluminous literature on the topic of interest in this paper, we restrict our review to

work that is closely related in terms of thrust and problem formulation. For a recent survey and

further references on pricing, inventory and capacity decisions the reader is referred to Chan et. al.

(2004, Section 4.2).

Inventory decisions in capacitated systems. Federgruen and Zipkin (1987) consider a

single-item, periodic-review inventory model with uncertain demands. Under the assumption of

finite production capacity in each period, they show that a modified basic-stock policy is optimal.

Some extensions include Aviv and Federgruen (1997) that deals with non-stationary demand, and

Ozer and Wei (2004) that deals with information acquisition and replenishment costs.

Inventory and pricing decisions. Federgruen and Heching (1999) study the relationship

between price and inventory in an uncapacitated system with stochastic demand. They charac-

terize the structure of the optimal price-inventory policy, and show that inventory and price are

strategic substitutes. Further references in this stream of literature are surveyed in Elmaghraby

and Keskinocak (2003); a deterministic analysis of such problems dates back to Thomas (1974) and

Kunreuther and Schrage (1973).

Inventory and capacity decisions. Angelus and Porteus (2002) study capacity decisions

in cases where a firm can and cannot hold inventories. In the former case, they establish that

capacity and inventory are strategic substitutes. (For an example of an analysis of a deterministic

model see Rao (1976).) Eberley and Van Mieghem (1997) study a problem that can be viewed as

a generalization of the “no-carry-over” version of Angelus and Porteus (2002). They characterize

the optimal capacity policy when capacity is multi-dimensional and it is costly to reverse capacity
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investments. Duenyas and Ye (2007) generalize Angelus and Porteus’ (2002) “no-carry-over” model

by allowing fixed and variable costs in capacity adjustments.

Joint pricing, production and capacity decisions. Maccini (1984) studies the effects

of inventory dynamics and capital on pricing and capacity decisions from a macroeconomic per-

spective. He finds that excess capacity tends to cause prices to decrease below their acceptable

long run levels. Gaimon (1987) shows, by means of a numerical study, that upgrading capacity

lowers the firm’s per unit production cost and thus the prices it charges. Li (1988) introduces a

point process model of a production firm with intensities parameterized by production, capacity

and price, respectively. A distinction is made between static decision making (capacity levels are

set at time zero), and dynamic operating decisions (pricing and production). Van Mieghem and

Dada (1999) study different possible postponement strategies in a single period problem when firms

make three decisions: capacity investment, production (inventory) quantity, and price. (See also

Boyaci and Ozer (2007) for a study of information acquisition through advance selling.)

A notable entry absent from the above list is work focusing on joint pricing and capacity

decisions in an inventory setting, and the present paper indeed strives to fill that gap. In terms

of the model and analysis tools, our work is most closely related to that by Angelus and Porteus

(2003) and Federgruen and Heching (1999): the former studies the relationship between inventory

and capacity, and the latter discusses inventory and prices. Our research is intended to complement

theirs.

2 Problem Formulation

We consider a monopolistic firm that produces a single product whose capacity, inventory, and

price are reviewed periodically. At the beginning of each period the firm makes three decisions:

(i) capacity investment (or disinvestment); (ii) production level; and (iii) the price it will charge

for the product. We assume that capacity investments and produced goods become available

instantaneously. The life cycle of the product, and therefore the time horizon, is set to be T

periods. The sequence of events in each period, t = 1, . . . , T , is as follows:

1. Investment or disinvestment in capacity, setting it to a level equal to zt.

2. Production (if needed) to set the inventory level to yt.
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3. A price pt is set and held fixed up until period t + 1.

4. Demand is realized and satisfied if it is less than available inventory, or backlogged otherwise.

Backlog and holding costs are incurred.

Demand in period t, Dt, depends on the prevailing price which is given by a general additive

stochastic demand function

Dt = dt(pt) + ǫt, (1)

where

pt = price charged in period t,

ǫt = sequence of independent random variables.

Feasible price levels are confined to the interval
[
p, p

]
, where p and p are the highest and lowest

prices, respectively. (In Section 4 and Section 5 we indicate how the main results extend to more

general demand functions.) Let

xt = inventory level at the beginning of period t, before ordering,

yt = inventory level at the beginning of period t, after ordering.

The firm incurs two types of production and inventory costs: the end-of-period inventory carrying

(and backlogging) costs, and a variable production cost. Specifically,

ht(x) = inventory (or backlogging) cost incurred in period t with

terminal inventory level equals x,

ct = per unit purchasing or production cost in period t.

Let

Gt(y, p) = Eht(y − Dt) = Eht(y − dt(p, ǫt)), (2)

denote the single-period expected inventory and backlogging costs for period t, for a given price p

and an inventory level (after ordering) y, where the expectation here, as well as in the remainder

of the paper, is taken with respect to the distribution of the random noise term. We assume that:

(A1) E|ǫt| < ∞, for all t = 1, . . . , T ,
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(A2) ht(·) is convex for all t = 1, . . . , T .

(A3) dt(pt, ǫt) = at − btpt + ǫt where at, bt > 0, at/bt ≥ p, for all t = 1, . . . , T .

These assumptions ensure that the cost functions Gt(y, p) are well defined, finite, and jointly convex

in y and p for all t = 1, . . . , T .

Remark 1 The assumption of linear demand can be generalized to any demand function which is

continuous and strictly decreasing in the price variable, and for which the revenue rate dE(d−1
t (d, ǫt))

is concave in d, where d−1
t is the inverse function of dt for fixed ǫt. This assumption is rather benign

and quite standard in the revenue management literature; Ferguson et al. (2006) provide example

of a linear function and an exponential demand function that satisfy these conditions; see also Chen

and Simchi-Levi (2002) for further discussion. In that case, one would need to impose directly that

G(·, ·) is jointly convex; see Federgruen and Heching (1999) for conditions ensuring that this holds.

Let γt(y, p) denote the expected contribution in profits in period t, if the firm has y units at

the beginning of the period (i.e., post production) and it charges p per produced unit that is sold

on the market. That is, in period t

γt(y, p) = pE[dt(p, ǫt)] − cty − Gt(y, p). (3)

Let

zt = the capacity level at the beginning of period t, after adjustment.

We define three capacity related costs:

K = the cost of adding a unit of capacity,

k = the return from selling a unit of capacity,

hc = the capacity overhead cost per unit.

Hence hc amalgamates all costs that are associated with maintaining production, but are indepen-

dent of the production volume. We assume that K ≥ k which reflects the fact that capacity is

usually sold for less than the purchase price. Revenues and costs are discounted with a discount

factor α ∈ (0, 1]. We note that all capacity-related costs are taken to be time-homogeneous for

simplicity, and the analysis that follows can easily be adjusted to account for such temporal de-

pendency. We assume that a firm begins the life-cycle of the product with capacity level z0 and

6



inventory level x0 (allowing for the possibility of x0 = 0, z0 = 0). Note, that our work pertains

primarily to industries in which there is short long lead time for capacity changes, as well as low

fixed costs for capacity changes (apart for the friction of selling-buying). In industries, such as

medical devices, in which soft-tooling is being used, such quick capacity changes are possible.

Let ft(z, x) be the maximum expected present value of the total net profits that can be earned

in months t and on, given that the capacity level is z and inventory level is x at the beginning of

period t. That is,

ft(x, z) = max

{
γt(y, p) + ctx − C(z′ − z) − hcz

′ + αEft+1(y − dt(p, ǫt), z
′) :

z′ ≥ 0, x ≤ y ≤ x + z′, p ≤ p ≤ p

}
, (4)

for t = 1, . . . , T, where

C(z) =






kz if z ≤ 0

Kz if z > 0.
(5)

At the terminal period we assume that demand is satisfied and the remaining capacity is sold

immediately thereafter, that is, we set

fT+1(x, z) = kz − hT+1(x).

To recapitulate, at the beginning of each period t = 1, . . . , T , the firm must determine a

capacity investment level z′, an inventory level y, and a price p based on the initial inventory and

capacity, x and z. These decisions are held fixed throughout period t. The objective of the firm is to

maximize the sum of discounted profits over the time horizon T with respect to the abovementioned

decision variables; the maximum value of this dynamic optimization problem is given by f1(x, z).

For future purposes it will be convenient to rewrite ft(x, z) as follows (see Angelus and Porteus

(2002)):

ft(x, z) = max
z′≥0

[
ctx − C(z′ − z) − hcz

′ + Γt(x, z′)
]
, (6)

where

Γt(x, z) = max

{
at(y, p, z) : y ∈ [x, x + z], p ∈ [p, p]

}
,

at(y, p, z) = γt(y, p) + αEft+1(y − dt(p, ǫt), z), (7)

for all t = 1, . . . , T .
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3 The Optimal Policy and Key Relations

3.1 Main results

In this section we characterize the structure of a policy that maximizes the expected discounted

profits. The results are very much in the spirit of those in Federgruen and Heching (1999) (albeit

for a non-capacitated system) and Angelus and Porteus (2002) (for a model with exogenously given

prices).

Recall, the maximum value of this objective is given by f1(·, ·), where ft(·, ·) is defined in

(6). We will begin by analyzing the optimal capacity investment policy. Then, given the optimal

capacity at the beginning of a period, we will derive the optimal joint inventory-pricing policy. It is

important to note that the three decisions are made simultaneously; the optimal policy is described

in a sequential manner to allow for a more transparent representation.

To characterize the optimal capacity investment policy, we first describe a family of ISD

policies (Invest/Stay Put/Disinvest), often referred to as target interval policies.

Definition 1 A sequence {zt}
T
t=1 constitutes a target interval policy with respect to a sequence of

non-negative real number {Lt, Ut}
T
t=1, if:

(i) Lt ≤ Ut

(ii) Lt and Ut are independent of zt−1;

(iii) zt =






Lt if zt−1 < Lt,

zt−1 if Lt ≤ zt−1 ≤ Ut

Ut if zt−1 > Ut, for all t = 1, . . . , T

The upper and lower targets Lt and Ut can be functions of the state of the system (and past

information observed up until time t,) and the notation Lt(·) and Ut(·) will be used to indicate this

dependence; in the following theorem, both are functions of the initial inventory x.

Theorem 1 (Optimal capacity investment policy) The optimal capacity investment decision

follows a target interval policy in each period, with lower- and upper- capacity targets Lt(x) and

Ut(x) for each t = 1, . . . , T and each initial inventory level x ∈ R.
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Based on the optimal capacity investment, we will now show that the optimal joint production-

pricing decision takes the form of a modified base-stock list-price policy (we use the term “modified”

because of the capacity constraint on the production). This policy is characterized by a base-stock

level and a list-price combination (ŷt(x, z), p̂t(x, z)) which are given as a function of the initial

inventory and capacity (x, z); the former and latter functions are the optimal inventory position

and price levels, respectively, given that period t begins with capacity z and inventory level x, and

are derived as follows:

(ŷt(x, z), p̂t(x, z)) = arg max

{
at(y, p, z) : y ∈ [x, x + z], p ∈ [p, p]

}
.

The existence and uniqueness of ŷt(x, z) and p̂t(x, z) for given initial capacity and inventory levels,

x and z, are established in the proof of the Theorem 2. Note that the “hat” notation is used to

distinguish the optimal policy. For the purpose of the following theorem, we introduce the following

definitions.

Definition 2 Variables u, v ∈ R are said to be strategic substitutes with respect to a function

f(u, v) : R
2 → R, if f(u, v) is submodular in u and v.

For a definition of submodularity see, e.g., Topkis (1978), and for further discussion of economic

implications and interpretation see, e.g., Milgrom and Roberts (1990).

Theorem 2 (Optimal pricing-inventory policy)

(a) An optimal inventory-pricing policy is a base-stock list-price with base-stock ŷt(x, z) and list-

price p̂t(x, z), for t = 1, . . . , T . At period t ∈ {1, . . . , T} and given a capacity level z: if

x ≤ ŷt(x, z) ≤ x+ z, it is optimal to order up to the base-stock level ŷt(x, z) and to charge the

list-price p̂t(x, z); if x > ŷt(x, z), it is optimal not to order and to charge pt ≤ p̂t(x, z); and if

ŷt(x, z) > x + z, it is optimal to order z units and charge pt ≥ p̂t(x, z).

(b) For each period t ∈ {1, . . . , T} and fixed capacity and inventory state values x, z ∈ R, the price

and inventory decision variables (yt, pt) are strategic substitutes with respect to the function

at(·, ·, z) given in (7).

Remark 2 (discussion) The result of the theorem states that if the inventory level, x, is below

the base-stock level, it is increased to that value and the list-price is charged. If the inventory
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level is above the base-stock level, then nothing is ordered, and a price discount is offered, i.e.,

the price charged is below the list price. (The higher the excess in the initial inventory level, the

larger the optimal discount offered.) If the sum of inventory and capacity is below the base-stock

level, the maximum possible amount is produced (i.e., the production level equals the capacity

level), and the price charged is higher than the list price. No discounts are offered unless the

product is overstocked, and no higher-than-list-prices are charged unless the product is in shortage,

which happens when the current capacity is not sufficient to support the “desired” inventory level.

Numerical illustrations of this result are given in Section 5.

Remark 3 (structural results) The proof of the theorem establishes certain monotonicity results

for yt(x, z) and pt(x, z) with respect to the variables x and z. For example, Lemma 3 establishes

that yt(·, z) is non-decreasing. The results of Lemma 4 imply that pt(·, z) is non increasing. Similar

statements can be derived for the dependence on z for the post-adjustment capacity.

4 Joint Capacity Planning and Pricing

In this section we analyze a particular instance of the joint capacity planning and pricing problem

when inventory cannot be carried over from period to period and prices can only be decreased

throughout the time horizon. This situation arises when firms can not use inventory produced in

“off-peak” periods to absorb “peak-demand.” To this end, we assume that stockouts are satisfied

at the end of the period in which they occur; Federgruen and Heching (1999) describe such a

mechanism as emergency purchases or production runs.

4.1 Main results

Let fM
t (z, p) denote the maximum expected present value of the total profits that can be earned

in periods t up until T , given that period t starts with capacity z and price p. The optimality

equations for t = 1, . . . , T are given by

fM
t (z, p) = max

z′≥0,p′

{
γt(y, p) − C(z′ − z) − hcz

′ + αEfM
t+1(p

′, z′) : 0 ≤ y ≤ z′, p ≤ p′ ≤ p

}
,

fM
T+1(z) = kz.

The decision variables in the above equation are the price (p′) and capacity (z′) set in period t. We

then have the following result.
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Theorem 3 Assume a firm cannot carry inventories and increase prices from period to period.

Then, the following properties hold for all t = 1, . . . , T :

(a) fM
t (z, p) is submodular and jointly concave in the state variables (p, z).

(b) The decision variables p′ and z′ are strategic substitutes with respect to fM
t (·, ·)

(c) The optimal capacity policy is a target interval policy in each period. The capacity targets Lt(p)

and Ut(p) satisfy Lt(p) ≤ Ut(p) for each t = 1, . . . , T , and each initial price p.

(d) Lt(p) and Ut(p) are non-increasing in p for each t = 1, . . . , T .

Note that the upper and lower barriers Lt(·), Ut(·), t = 1 . . . , T are now functions of the

price in the beginning of the period, unlike the case where inventory carry-overs and bi-directional

price changes are allowed, in which case these barriers were functions of the inventory level in the

beginning of the period.

Remark 4 The model can be extended to treat non-linear demand functions by assuming that

pEdt(p, ǫt) is concave in p and that Gt(y, p) is jointly concave in (y, p), for all t = 1, . . . , T . The first

condition is easily satisfied for a broad family of demand functions. For a discussion of conditions

that ensure the joint concavity of Gt(·, ·) see Federgruen and Heching (1999).

5 Discussion and Qualitative Insights

5.1 An illustrative example of the Joint pricing-inventory-capacity model

A two-period problem with quadratic holding costs. To illustrate the relationship high-

lighted in Theorem 2, we analyze a two-period problem (one period in which a decision is being made

and a terminal period). The demand in period t = 1, 2 is given by dt(pt, ǫt) = at − btpt + ǫt and the

inventory holding cost is given by ht(x) = hx2. Thus we get that Gt(y, p) = h
[
σ2

t + (y − at + btpt)
2
]

and γt(y, p) = p(at − btp) − cty − hσ2
t − h(y − at + btp)2, where σ2

t = V ar(ǫt). Note that

fT+1(x, z) = kz − hx2. It is easy to show that

p̂T =
aT

2bT

+
cT

2
, and ŷT =

aT

2
−

cT

2

[
bT +

1

(α + 1)h

]
. (8)

Put φ ≡ bT + ((α + 1)h)−1. Then the optimal pricing-inventory policy (given capacity z) can be

described as follows:
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• if x < ŷT < x + z, order up to ŷT and set price to p̂T ;

• if ŷT > x + z, order z units and set price to p̂(x + z) = at (1/2 + φ/2bT ) /φ − (x + z)/φ;

• if x > ŷT , order no more units and set price to p̂(x) = at (1 + φ/bT ) /φ − x/φ .

One can observe that given the capacity level (after adjustment), z, the target inventory level

at the beginning of the period is independent of of the inventory level at the end of the previous

period, x if x < aT /2 − cT φ/2 < x + z. Otherwise, keeping the the capacity level fixed, the target

inventory level is increasing linearly in x. Note, that changing x, may affect the optimal capacity

level, and thus, indirectly affect the optimal inventory level. We next study the impact of the

optimal capacity on the optimal ordering policy. It is easy to see that unless aT /2− cT φ/2 > x+ z,

the optimal target inventory level is independent of z.

In order to find the optimal capacity policy we need to compute the boundary functions LT (x)

and UT (x). It is straightforward to show that

LT (x) =
K

bT /φ2 + 2 (1 − bT /φ)2 (α + 1)h
− x + M

UT (x) =
k

bT /φ2 + 2 (1 − bT /φ)2 (α + 1)h
− x + M,

where M is a constant that depends explicitly on the problem parameters.

Thus, the width of the inactivity band can be computed in closed form and we observe that,

as anticipated, the inactivity region increases with the difference between the cost of increasing

capacity, and the price for sold capacity. Moreover, we observe that as the initial inventory level

increases, both the upper level and the lower level of the inactivity region decrease, and thus as the

inventory level increases, the optimal capacity level (weakly) decreases.

Note that if the initial capacity level z0 ∈ (Lt(x), Ut(x)), the capacity level is independent

of the initial inventory. If this is indeed the case, the optimal inventory level depends on x only

directly, as was discussed above. Thus, an increases in the initial inventory increases the target-

inventory level unless x < aT /2 − cT φ/2 < x + z0. Note that in this region, the target inventory

level does depend on the initial capacity level, and it increases with the initial capacity level. In

all other regions, the target inventory level does not depend on the initial capacity level, but may

depend on the target capacity level.
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If, on the other hand, z0 > Ut(x), then z = Ut(x) ≡ Ût − x. Note that, then, an increase in

x, will decrease z, yet the sum of the two will remain constant. Since the target inventory level

depends only on the x + z, the target inventory level is independent of x, once x is above a level

such that z0 > Ut(x).

We observe that for fixed bT , as the holding cost h decreases to zero, the inactivity region

shrinks. Thus, capacity adjustments are always made if holding costs are negligible. At the same

time, for any given value of h, if the price sensitivity bT decreases to zero the inactivity region will

remain proportional to the holding cost. Thus, the higher the holding cost, the less likely that

capacity adjustments will be made. To summarize: as the holding cost increases or price sensitivity

decreases, the value of adjusting capacity decreases. As mentioned above, the inactivity region also

depends on the difference between the cost of purchasing capacity and its selling value. In many

firms, capacity changes are fairly costly. In these cases the difference between the costs will increase

the size of the inactivity region, thus allowing the firms to only modify price and inventory levels,

while keeping the capacity level unchanged.

Numerical illustration. Consider a firm that produces and sells a product during three

periods, and a fourth period being the terminal one in which the firm sells off its capacity. The

firm starts off with no capacity and zero inventory. Demand is anticipated to be low in the first

period, increase during the middle period, and then return to its initial level in the final period. To

encode this using our model parameters, we put a1 = a3 = 5 and a2 = 10 in the demand function.

We set b1 = b3 = 1 and b2 = 2. For purposes of this example, we take the error term ǫt to follow a

Poisson distribution with mean 1, independent for each period t = 1, 2, 3. The firm’s variable cost

of production is c1 = c2 = c3 = 1. We set the holding cost to h(x) = h+ max(x, 0) − h− min(x, 0)

where h−
t = 1.9, and h+

t = 1.5 for t = 1, 2, 3. The discount factor is α = 0.9.

Figure 1 depicts the target inventory levels and optimal capacity levels for different levels

of initial inventory. First, one can observe that in this case the optimal inventory level is a non-

decreasing function of the initial inventory level, and that capacity level is a non-increasing function

of the initial inventory. Note that the crosses line depicts the sum of the initial inventory and the

optimal capacity level. This allows us to identify three production regions. As long as the initial

inventory x is below 2, there is limited capacity and the firm sets the target inventory to x + z.

When the inventory is the interval 2 ≤ x ≤ 5, the optimal inventory level is set to ŷ, which is
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Figure 1: Optimal capacity and inventory levels as a function of initial inventory. The

solid line depicts the optimal capacity level, the starred line depicts the optimal inventory level,

and the crossed line depicts the sum of the initial inventory and the optimal capacity level.

independent of x and z. When the initial inventory level is greater than 5, the target inventory

is identical to the initial inventory, i.e. ŷ = x. The capacity policy is as follows: as long as the

initial inventory is below 6, the capacity is set to the upper limit, which decreases with the initial

inventory. Once the initial inventory reaches -4, the capacity level reaches the inactivity region, and

the capacity remains unchanged until the inventory level reaches -1. Note that due to the change

in the production region, the slope of the capacity function changes again around inventory levels 2

and 5. One can also observe that when z is below the lower limit (for example, when −7 ≤ x ≤ −4),

x+ z is kept constant, and thus the optimal inventory is independent of either, as predicted by the

analysis of the two-period model.

5.2 Illustrative examples of the joint capacity-pricing problem

Two period problem with quadratic holding cost. We again, analyze the two period model

with quadratic cost in order to gain insights into the structure of the solution of the joint capacity-
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pricig model with no carry overs. One can show that, if p < aT /2bT + cT /2, then

F (z, p) =






(p − cT )(aT − bT p) + c2
T /2h − hσ2

T + αkz if z > AT ,

p(aT − bT p) − cT z − hσ2
T − h(z − aT + bT p)2 + αkz otherwise,

where AT = aT /2−cT /2 (1/h + bT ). We observe that once the current price is below this threshold

level, it will remain at its current level. Note that if z > AT , the firm’s optimal capacity level is

AT , while if it is below we have to examine the upper and lower boundary functions. We observe

that LT (p) = aT −bT p− (cT −αk+K−hc)/2h, and UT (p) = aT −bTp− (cT −αk+k−hc)/2h. The

inactivity region is given by ((K−k)(1−α))/2h. Note that here (i.e., when p < aT /2bT +cT /2), the

capacity inactivity region is independent of price. Since the firm cannot use a price lever anymore,

the decision whether to use the other two decision variables depends only on the ratio between

the capacity cost difference (K − k) and the holding cost (h). If this ratio is “high” (i.e., cost

of adjusting capacity is high relative to the holding cost), we expect the firm to restrict use to

inventory in order to meet variability in demand.

In the region in which the initial price p > aT /2bT + cT /2, we have that if z is below a certain

level, and K ≫ k, then both price and capacity are kept fixed. Since capacity is below the level

AT , the firm cannot further reduce price without incurring excessive shortage costs, and thus it

will keep the price fixed. Capacity cannot change since related costs are too high. In this situation,

inventory is essentially the only useful lever.

A three period example illustrating the relationship between price markdown and

capacity investment decisions. We again, consider a firm that produces and sells a product

during three periods; the fourth being the terminal period in which the firm sells off its capacity.

The firm starts off with no capacity and zero inventory. Demand is anticipated to be low in the first

period, increase during the middle period, and then return to its initial level in the final period. To

encode this using our model parameters, we put a1 = a3 = 8 and a2 = 10 in the demand function.

We set bt ≡ 1, for t = 1, 2, 3. For purposes of this example, we take the error term ǫt to follow

a Poisson distribution with mean 1, independent for each period t = 1, 2, 3. The firm’s variable

cost of production is c1 = c2 = c3 = 1. To reflect the fact that the firm cannot carry inventory

and is thus inclined to resolve any excess demand within the period, we set h−
t = 3, h+

t = 1.5 for

t = 1, 2, 3. The discount factor is α = 0.9.

Figure 2 is concerned with three capacity investment irreversibility values: K/k = 2, 6, 8 (dot-
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ted, dashed, and solid lines, respectively). For each of these ratios we computed the optimal policy

that maximizes the average profit over the finite horizon using standard dynamic programming.

The figure depicts the optimal policy under a “typical” path which is obtained by setting the noise

variable ǫt to its mean value. We observe that as long as the ratio is lower than 6, the firm es-

sentially uses the same pricing scheme, charging $5, $4 and $3, and lowers the level of acquired

capacity. However, once the ratio increases above 8, the firm utilizes a different pricing scheme,

charging $6, $5 and $4 while lowering the capacity level it purchases. Since the firm can foresee that

it will not be able to absorb demand using a high level of production (and capacity), and since it

cannot increase its price in the middle of the product life cycle, it elects to charge a relatively high

price in the first period even though the demand in this period is not greater than other periods.

The firm then decreases prices in each subsequent period. In terms of capacity planning: the firm

always invests in capacity in the first period, may invest in the second period (to accommodate the

peak-demand anticipated in period 2), and “stays-put” in the third period (even tough demand is

expected to be lower than in the second period). The above may be viewed as an illustration of

complementarity between price and capacity. To wit, the first period commences with a relatively

high price, and a relatively low level of capacity, leading to a high utilization of this capacity. In

the second period, the firm increases capacity level to its maximum, and lowers price to increase

demand. In the third period, since the firm already has acquired a significant level of capacity,

it will again lower its price to allow for full utilization of the capacity, even though the expected

demand is lower than that in the middle period.

5.3 Additional discussion

Price and capacity as strategic substitutes. The fact that price and capacity are strategic

substitutes is equivalent to a complementarity relation between the level of capacity investment and

the level of price decrease (relative to the maximum price p). The notion of complementarity that

we are referring to is due to Edgeworth, according to which activities are considered complements

if increasing the level of any one of them results in an increase in the return of engaging more

in the other; see Milgrom and Roberts (1990, 1995) that summarize the principal results of the

theory of supermodular optimization which underlies the notion of complementarity. They describe

supermodularity as a way to formalize the intuitive idea of synergistic effects. In our example, a
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Figure 2: Optimal capacity and price levels for different capacity investment irreversibil-

ity ratios K/k. The left (right) panel depicts the optimal capacity (pricing) level over the planning

horizon for a “typical” demand path.

firm that coordinates sales planning and capacity investment has the potential to increase its profits

on the basis of the observed complementarity.

Benefits of capacity flexibility in the presence of restrictions on price changes

(Table 1). To explore further the importance of capacity flexibility, we compare the expected

profits of a firm in two configurations: (i) the firm sets its capacity level at the beginning of the

life-cycle; and (ii) the firm is capable of adjusting its capacity periodically. For each of these settings

we compute the optimal average profit function when beginning with zero inventory on-hand and

zero capacity, using standard dynamic programming. In both cases, the firm is only allowed to

markdown its prices, and cannot carry inventories from period to period.

We observe in Table 1 that when the cost of adjusting capacity (i.e., the ratio K/k) is low, the

value added from capacity flexibility is negligible. In particular, the firm can sell the capacity at

the end of the life-cycle without incurring any losses, and thus will probably invest in the maximum

required capacity.

Future research. In this note we have made several simplifying assumptions for purposes of

mathematical tractability and facilitating the analysis Among these, the most desirable extensions

include relaxing the stipulation of zero lead time for both procurement and capacity adjustment,

as well as verifying the applicability of the main results for more general demand models. Fixed
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K/k 1 2 6 8

Fixed capacity 44.5365 40.5018 28.0212 26.0132

Flexible capacity 44.8183 40.7027 30.0208 29.70307

Percentage increase 0.63 % 0.50 % 7.14 % 14.18 %

Table 1: Expected Profits: The value of capacity flexibility. The first row depicts expected

profits when capacity level is set at the beginning of the horizon. The second row depicts expected

profits when capacity can be adjusted periodically. The third row depicts percentage improvement

due to flexibility.

capacity investment costs will complicate the analysis in a significant manner, and lead to poten-

tially much more complex policy structures; some indication of this can be seen in Duenyas and Ye

(2007) in the more restricted setting of joint capacity and inventory control.
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6 Proofs of the Main Results

All notations in this appendix follows that in the paper. The proofs of auxiliary results are deferred

to Appendix B.

Proof of Theorem 1: Fix x. We first show that the solution can be expressed in terms of two

function Lt(x) and Ut(x) that satisfy the three conditions in Definition 1, and then solve

max
z′≥0

f(x, z) = max
z′≥0

{
Γt(x, z′) − C(z′ − z) − hcz

′
}

.

To this end, we need the following result whose proof is deferred to Appendix B.

Lemma 1 ft(x, z) is jointly concave for all t = 1, . . . , T .

Define

Lt(x) = arg max
z′≥0

{Γt(x, z′) − K(z′ − z) − hcz
′}

Ut(x) = arg max
z′≥0

{Γt(x, z′) − k(z′ − z) − hcz
′}

Let ∇zft(x, z) denote the subgradient of ft(x, z) at the point (x, z), i.e., ft(x, v) ≤ ft(x, z) +

∇zft(x, z)(v − z),∀v

Lemma 2 (Royden [38,p. 113]) For all t = 1, . . . , T , ft(x, z) is continuous and has non-increasing

left and right partial derivatives with respect to z which are equal almost everywhere.

Thus, the subgradient ∇zft(x, z) is unique and equal to the gradient of ft(x, z), except on a set

of Lebesgue measure zero. Since ft(x, z) is concave, the first order (sub)differential conditions are

sufficient. Thus, we can write
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Lt(x) =






0 if ∇zΓt(x, z′)|z′=0 < K − hc,

sup{z′ : ∇zΓ(x, z′) ≥ K − hc} otherwise,

Ut(x) =






∞ if ∇zΓt(x, z′) > K − hc∀z′ > 0,

inf{z′ : ∇zΓ(x, z′) ≤ K − hc} otherwise.

Since both Lt(x) and Ut(x) are independent of z, we can partition the space into the following

three regions: (i) z < Lt(x); (ii) Lt(z) ≤ z ≤ Ut(x); and (iii) z > Ut(x). In each of these regions we

will compare the three possible decisions: investing, disinvesting and staying put.

Region (i): if the firm decides to invest, by the definition of Lt(z), it is the optimal value.

If the firm decides to disinvest, then, since Ut(x) > Lt(x) > z, it is better to stay put. However,

staying put is inferior to investing in this region, since Lt(x) > z (if staying put were better, then

Lt(x) would equal z).

Region (iii): if the firm decides to disinvest, by the definition of Ut(z), it is be the optimal

value. If the firm decides to invest, then, since z > Ut(x) > Lt(x), it is is better to stay put.

However, staying put is inferior to disinvesting in this region, since Ut(x) < z (if staying put were

better, then Ut(x) would equal z.)

Region (ii): if the firm decides to invest, since z ≥ Lt(x), it is better to stay put. If the firm

decides to disinvest, since z ≤ Ut(x), it is better off staying put as well. Therefore it is optimal in

this region to stay put.

Thus, we have established the existence of two functions that satisfy the conditions of Defini-

tion 1, which completes the proof. �

Proof of Theorem 2: Fix t ∈ {1, . . . , T}. We will begin by analyzing the relationship between

the optimal inventory level after ordering, yt, and the starting inventory level xt.

Lemma 3 If x ≤ ŷt(x, z) ≤ x + z, it is optimal to order up to the base-stock level ŷt(x, z) and to

charge the list-price p̂t(x, z); if x > ŷt(x, z), it is optimal not to order, and if ŷt(x, z) > x + z, it is

optimal to order z units.

To prove that a base-stock list-price policy is optimal, it suffices to show that the optimal price

to be selected in any given period is non-increasing in the prevailing inventory level. In other

words, under higher starting inventory levels, a price is selected that is no larger than the optimal
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price under a lower starting inventory. Monotonicity of the optimal price level, pt, depends on the

submodularity of the function at(y, p, z).

We would like first to show that at(y, p, z) is submodular in (y, p). Since the sum of submod-

ular functions is submodular, it suffices to establish submodularity of each of the terms γt(y, p)

and Eft+1(y − dt(p, ǫt), z). To show submodularity of γt(y, p), it suffices, by definition, to show

supermodularity of Gt(y, p). Fix ǫt. Then, the function ht(y − dt(p, ǫt)) is supermodular in y and

p by the following lemma.

Lemma 4 If g(·) is a convex function and h(·) in a non-decreasing function, then g(u + h(v)) is

supermodular in u, v.

The stated supermodularity therefore applies to the function Gt(y, p) = Eht(y−dt(p, ǫt)), and thus

to the function γt(y, p). Since ft(x, z) is concave in x, by Lemma 4, for fixed ǫt, ft+1(y−dt(p, ǫt), z)

is submodular in y and p. Taking expectation preserves this property and hence completes the

proof of part (b), i.e., the submodularity of at(y, p, z) with respect to y and p.

The decision problem in period t, given capacity zt (after adjustments) can be viewed as

consisting of two stages. In the first stage, the inventory after ordering yt is chosen, and in the

second stage the corresponding price pt is set. The second stage thus has S = R as its state space,

and A = [p, p] as the set of feasible (price) actions. Since at(y, p, z) is strictly concave in (y, p), and

the feasible set is convex, the optimal price pt is unique. Since at(y, p, z) is submodular, it follows

from Theorem 8-4 in Heyman and Sobel (1984) that the optimal price pt is nonincreasing in the

state yt, and hence in x. The proof is complete. �

Proof of Theorem 3: fM
T+1

(z, p) = kz is clearly jointly concave and submodular in z, p. We

assume that fM
t+1(z, p) is submodular and jointly concave in (z, p), and prove that this implies that

for t ∈ {1, . . . , T}, ft(z, p) is submodular and jointly concave in (z, p). Note that

γt(y, p) = pEdt(p, ǫt) − cty − Gt(y, p)

was shown in the proof of Theorem 2 to be jointly concave and submodular in y, p, thus γt(y, p) is

supermodular and jointly concave in (−y, p). Define

gt(z, p) = max {γt(y, p) : y ≤ z} = max {γt(y, p) : −y ≥ −z}

We now use the following lemma.
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Lemma 5 if g(y, v) is jointly concave and supermodular in (y, v), then G(y, u) = max

{
g(y, v) :

v ≥ u, v ≤ v ≤ v

}
is jointly concave and supermodular in (y, u).

Consequently, gt(z, p) is jointly concave and supermodular in (−z, p), and therefore submod-

ular and jointly concave in (z, p). Let

Γt(z, p) := αEfM
t+1(z, p) + gt(z, p).

By the induction assumption, Γt(z, p) is submodular and jointly concave in (z, p), and thus jointly

concave and supermodular in (z,−p). Define

F (z, p) = max
{
Γt(z, p′) : p′ < p, p ≤ p′ ≤ p

}
= max

{
Γt(z, p′) : −p′ > −p,−p ≥ −p′ ≥ −p

}

By Lemma 5, F (z, p) is supermodular and jointly concave in (z,−p), and thus jointly concave and

submodular in (z, p). Let

F̂t(z
B , zA, p) = Ft(z

A, p) − hcz
A − C(zA − zB)

where zA and zB are the inventory levels after and before adjustment (investment / disinvestment),

respectively. Now, C(·) is convex, therefore by Lemma 4, C(zA − zB) is submodular in (zA, zB),

and therefore −C(zA − zB) is supermodular and jointly concave in (zA, zB). Since this function

is independent of p, it is (trivially) jointly concave and supermodular in (zA, zB ,−p). F (zA, p) is

supermodular and jointly concave in (zA, p), and since it is independent of zB , we can conclude

using the same reasoning that F̂ (zA, zB ,−p) is supermodular and jointly concave in (zA, zB ,−p).

We then write

fM
t (z,−p) = max

{
F̂t(z, z′,−p) : z′ ≥ 0

}
.

Since {z′ ≥ 0} is a lattice and a convex set, fM
t (z,−p) is supermodular in (z,−p), and its joint con-

cavity and supermodularity are immediate from the the preservation under maximization theorems

(Theorem 4.3 of Topkis (1978), and Proposition B-4 of Heyman and Sobel (1984), respectively).

Thus, fM
t is jointly concave and submodular in (z, p), which completes the induction proof and the

proofs of parts (a) and (b).

For the proof of part (c) define

Lt(p) =






0 if ∇zFt(p, z′)|z′=0 < K − hc,

sup{z′ : ∇zFt(p, z) ≥ K − hc} otherwise
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Ut(p) =






∞ if ∇zFt(p, z′) > K − hc, for all z′ > 0,

inf{z′ : ∇zF (p, z′) ≤ K − hc} otherwise.

Now repeat the arguments given in the proof of Theorem 1 to conclude that the optimal capacity

policy is a target interval policy with Lt(p) and Ut(p) as its barrier functions.

Since Lt(p) and Ut(p) are maximizers of submodular functions in (z, p), it follows (again, from

Theorem 8-4 in Heyman and Sobel (1984)) that both Lt(p) and Ut(p) are non-decreasing in p. This

completes the proof. �

7 Proof of Auxiliary Results

Proof of Lemma 1: fT+1(x, z) = kz − hT+1(x) is concave in (x, z) since hT+1 is convex in x.

Fix t ∈ {1, . . . , T}, and suppose that ft+1(x, z) is concave. We shall show that ft is concave. We

first prove that at(y, p, z) is jointly concave in (y, p, z). We will prove the concavity in each of its

two elements. Fix ǫt. Since dt(pt, ǫt) is linear in p, y − dt(p, ǫt) is an affine function of (y, p). By

the concavity assumption for ft+1(x, z), and since affine mappings preserve concavity (see Boyd

and Vandenberghe (2004) section 3.2.2), ft+1(y − dt(p, ǫt)) is jointly concave. (Note that concavity

is preserved under expectation with respect to the random variable ǫt.) We now establish that

γt(y, p) = pEdt(p, ǫt) − cty − Gt(y, p) is jointly concave. First, note that Gt(y, p) is jointly convex.

Thus, we are only required to show that pEdt(p, ǫt) is jointly concave in (y, p). Since dt(p, ǫt) is

linear and decreasing in p, it is straightforward that if we fix ǫt, pdt(p, ǫt) is concave in p. Again,

concavity is preserved under expectation with respect to ǫt. Now, note that the set

{(y, p, z, x) : x ≥ 0, z ≥ 0, x ≤ y ≤ x + z, p ≤ p ≤ p} (9)

is convex. Thus, by the concavity preservation under maximization theorem (see Proposition B-4,

Heyman and Sobel (1984)), Γ(x, z) is jointly concave in (x, z). Since C(·) is convex using again, the

concavity preservation under maximization theorem, ft(x, z) is jointly concave, which completes

the induction proof. �

Proof of Lemma 3: Fix t ∈ {1, . . . , T} and z ∈ R. Since at(y, p, z) is jointly concave in (y, p),

(ŷt(x, z), p̂t(x, z)) is the optimal decision pair when x ≤ ŷt(x, z) ≤ x + z, i.e., in this region it

is optimal to order up to the base stock level ŷt(x, z) and to charge the list price p̂t(x, z) if x ≤

ŷt(x, z) ≤ x + z. Similarly, it is optimal to choose yt = x if x > ŷt(x, z), i.e., not to produce.
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Now, if x > ŷt(x, z), and a decision pair (y, p′) is chosen with y > x, then for the pair (x, p′′) on

the line segment connecting (ŷt(x, z), p̂t(x, z)) with (y, p′), at(x, p′′, z) ≥ at(y, p′, z), using the joint

concavity of at(y, p, z). Using the same logic, we can show that if ŷt(x, z) > x + z, it is optimal to

set yt = x + z, namely, to produce the maximum possible amount. In particular, if ŷt(x, z) > xt

and a decision pair (y, p′) is chosen with y < x+ z, then for the pair (x+ z, p′′) on the line segment

connecting (ŷt(x, z), p̂t(x, z)) with (y, p′) we have that, at(x + z, p′′, z) ≥ at(y, p′, z), using the joint

concavity of at(y, p, z). We conclude that yt is nondecreasing in x. This completes the proof. �

Proof of Lemma 4: Assume without loss of generality that u1 > u2, and v1 > v2. Then,

g(u1 + h(v1)) − g(u2 + h(v1)) = g(u2 + h(v1) + (u1 − u2)) − g(u2 + h(v1))

≥ g(u2 + h(v2) + (u1 − u2)) − g(u2 + h(v2))

= g(u1 + h(v2)) − g(u2 + h(v2)),

where the inequality follows from the convexity of g and the fact that h is increasing. �

Proof of Lemma 5: Let v∗(y) denote the smallest maximizer of g(y, ·) on [v, v] (clearly the

function has a maximizer on a bounded interval). Since g(y, v) is concave in v, for a given y

G(y, u) =






g(y, v∗(y1)) if u ≤ v∗(y)

g(y, u) if v∗(y) ≤ u.
(10)

Since g(·, ·) is supermodular, v∗(y) is nondecreasing in y. Therefore, if y1 > y2, then v∗(y1) ≥ v∗(y2).

Thus, we can write

G(y1, u) − G(y2, u) =






g(y1, v
∗(y1)) − g(y2, v

∗(y2)) if u < v∗(y2) ≤ v∗(y1)

g(y1, v
∗(y1)) − g(y2, u) if v∗(y2) ≤ u ≤ v∗(y1)

g(y1, u) − g(y2, u) if v∗(y1) ≤ u.

(11)

If u ≤ v∗(y2) then the function is constant. Since for all u ≥ v∗(y2), g(y2, v
∗(y2)) ≥ g(y2, u) by

concavity, thus the function g(y1, v
∗(y1)) − f(y2, u) is non-decreasing. For u > v∗(y1), G(y1, u) −

G(y2, u) = g(y1, u) − g(y2, u) has increasing differences in view of g having increasing differences.

Joint concavity of G(·, ·) is immediate from the concavity preservation under maximization theorem

(see Proposition B-4, Heyman and Sobel (1984)). This completes the proof. �
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