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Abstract

We consider a Markovian model of a multiclass queueing system in which a single large
pool of servers attends to the various customer classes. Customers waiting to be served may
abandon the queue, and there is a cost penalty associated with such abandonments. Service
rates, abandonment rates and abandonment penalties are generally different for the different
classes. The problem studied is that of dynamically scheduling the various classes. We consider
the Halfin-Whitt heavy traffic regime, where the total arrival rate and the number of servers
both become large in such a way that the system’s traffic intensity parameter approaches one.
An approximating diffusion control problem is described and justified as a purely formal (i.e.,
non rigorous) heavy traffic limit. The Hamilton-Jacobi-Bellman equation associated with the
limiting diffusion control problem is shown to have a smooth (classical) solution, and optimal
controls are shown to have an extremal or “bang-bang” character. Several useful qualitative
insights are derived from the mathematical analysis, including a “square root rule” for sizing
large systems and a sharp contrast between system behavior in the Halfin-Whitt regime versus
that observed in the “conventional” heavy traffic regime. The latter phenomenon is illustrated
by means of a numerical example having two customer classes.
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1 Introduction

The paper is concerned with dynamic control of a multi-class Markovian service system in which

one pool of servers attends to several customer classes. A schematic description is given in Figure

1. There are m customer classes indexed by i = 1, 2, . . . , m and a total of N servers staffing the

system, with identical capabilities that will be described below. Customers of each class arrive

from outside the system at rates λi and require a single service before they depart. The open-

ended rectangles in Figure 1 represent (infinite capacity) buffers in which customers of the various

classes reside as they await service, and we allow the possibility that customers abandon the system

if queueing delays are excessive. Abandonment is represented by the horizontal arrows in Figure 1,

with associated abandonment rate γi (per customer) for class i, and the circle represents the server

pool. Precise details of the arrival processes and abandonments will be provided in Section 2.

λ1 λ2 λm

1 2 mγ1
γ2 γm

µ1

µ2

µm

N

Figure 1: A schematic model of the system

Servers are capable of processing customers from any given class, and the service rate µi

depends on the class being processed. Because we assume throughout that customers are homo-

geneous within a given class, there is no loss of generality in assuming that they are served in the

order they arrive (FIFO). Thus there are m different processing activities available to the system

manager, each of which corresponds to a particular customer class being processed by a server. We

assume that customer arrivals are uncontrollable, and with regard to congestion-related costs, we

allow both abandonment penalties and linear holding costs. That is, we take as given parameters

pi > 0 and hi ≥ 0 for each class i, assuming that a penalty of pi is incurred each time a class

i customer abandons, and that holding costs are continuously incurred at rate hi for each class
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i customer who is waiting in the queue (but not for those being served). Roughly speaking, the

system manager wants to allocate servers to waiting customers in such a way that congestion costs

are minimized.

The main motivating example of such a queueing system is a telephone call center, where a

server pool (typically there are several such) consists of agents or operators that have a particular

combination of training and experience, and the customer classes correspond to different caller

streams that are distinguishable from one another upon arrival. The sorting of callers into different

classes may be accomplished by any of several means, including responses given to an interactive

voice response unit. In the context of call centers, and of customer contact centers more broadly,

abandonment rates are commonly cited as key measures of system performance, and short waits in

queue are obviously preferred to long ones, regardless of whether customers abandon; this serves

to motivate the cost structure assumed above.

In the call center context, the problem of dynamically allocating customers to server pools

is called skills-based routing, because the classes that agents in a given pool can process, and the

average rates at which they can process them, are reflective of those agents’ skills. The model that

we study here is suitable in situations where there is only one such agent pool. Although this is

rarely the case in most call centers, it is certainly an important first step in studying the skills-based

routing problem. Moreover, as we hope to demonstrate here, it is quite an interesting problem in

its own right.

Our analysis is mainly inspired by the work of Halfin and Whitt [13], and its extension in

a recent paper by Garnett, Mandelbaum and Reiman [12], henceforth referred to as GMR. GMR

consider a model that is similar to the one depicted in Figure 1, with just one customer class and

one server pool. This is considered as a simple operating model of a call center with one class of

customers and a single agent pool. In their model, as in [13], there are no scheduling decisions to

be made, but they allow customer abandonment. Assuming a Markovian model (that is, service

times, inter-arrival times and abandonment times are all exponentially distributed), they consider

the asymptotic regime where the number of servers N becomes large. Assuming that the customer

arrival rate is approximately balanced with the total processing capacity of the server pool, GMR

[12, Theorem 2] show that a normalized version of the queue-length process in their single-class

model is well approximated, as N becomes large, by a certain one-dimensional diffusion process.

This extends the pioneering work of Halfin and Whitt [13] on heavy traffic analysis of many-

server queueing systems (see also [29]), the extension being to incorporate customer abandonment.

Moreover, GMR show that this asymptotic analysis is useful in deriving certain rules of thumb

for system staffing that strike a good balance between abandonments and delays. In particular,

the analysis via diffusion approximations supports the well known “square-root rule” for safety
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staffing. The stationary distribution of the GMR Markovian model is known “explicitly” (the

associated queue length process is a birth-and-death process), but their diffusion approximation is

still useful because it yields such ready insights about the relationship between system staffing and

system performance.

The Halfin-Whitt regime has been studied recently in various contexts. Fleming et. al. [10] use

the Halfin-Whitt approximation in analyzing a wireless access network, while Fleming and Simon

[9] discuss load balancing and CDMA communications applications. In a recent paper, Das and

Srikant [8] develop approximations for performance of a congested communication link in a packet-

switched data network. Some extensions of the basic Halfin-Whitt model taking into account phase

type service distributions and static priorities have been studied recently by Puhalskii and Reiman

[24]. Recent work by Atar et. al. [1] and [2] also considers dynamic control in the Halfin-Whitt

regime; [2] which is the more recent of the two starts from an “exact” problem formulation which

is similar to the one in our paper. They also focus on a formal derivation of a diffusion control

problem, however they consider more general cost structures and derive asymptotic optimality

results for the controls derived from the (formal) limiting control problem.

Unlike the “conventional” heavy traffic parameter regime considered in [15], [16], [30] and

other recent papers, the Halfin-Whitt regime is one where high utilization goes hand-in-hand with

“small” waiting time. That is, high-quality service can be achieved together with high resource

utilization in the Halfin-Whitt regime. Whitt [29] has argued that this regime is the “right” one to

consider, for purposes of system design, in many large scale service operations, and the GMR [12]

extension to allow customer abandonment is crucial for modeling call centers.

What we develop in this paper is a multi-class version of the GMR diffusion model, in the

context of which one can undertake an approximate analysis of the multi-class scheduling problem.

The main contributions are the following.

1. With regard to system modeling, we describe a multi-class generalization of the GMR

model, one that incorporates a dynamic control capability, and justify it by means of a purely

formal heavy traffic limit.

2. With regard to mathematical analysis, we assume an infinite-horizon discounted cost

criterion for our diffusion control problem and prove that the associated Hamilton-Jacobi-Bellman

(HJB) equation admits a smooth (classical) solution, which is the value function (Theorem 1).

Moreover, it is shown that there exists an optimal control policy having an extremal or “bang-

bang” character: in each state the controller’s optimal action is to hold customers of at most one

class in the queue, but the class that is so distinguished is generally different in different states

(Theorem 2).
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3. With regard to qualitative insights, there are two findings worthy of note. First, in the

Halfin-Whitt heavy traffic regime where N and the total arrival rate become large simultaneously,

the amount of “excess capacity” required to achieve any given level of performance is of order√
N , as Whitt [29] and GMR [12] have observed for single-class models without dynamic control;

this less-than-proportional growth in required capacity is consistent with the general finding that

stochastic service systems are characterized by economies of scale. Second, the character of optimal

controls and associated system behavior is very different in the Halfin-Whitt heavy traffic regime

from what one sees in the “conventional” heavy traffic regime. In particular, one does not see

any degree of “asymptotic state space collapse” in the Halfin-Whitt regime, whereas such model

simplification is the hallmark of analogous control problems obtained as conventional heavy traffic

limits by Harrison and Lopez [16] and Kelly and Laws [18] among others. (For more on dynamic

scheduling in the conventional heavy traffic regime see the recent paper by Williams [30].) This

matter is discussed in Section 6 and illustrated by means of a numerical example in Section 7,

where one sees that solutions of control problems in the Halfin-Whitt limiting regime are not

simple priority rules of the kind occurring in “conventional” limiting control problems, such as the

classical cµ rule or the generalized cµ rule investigated by Van Mieghem [27].

The paper is structured as follows. Section 2 describes our “conventional” stochastic scheduling

problem with abandonment, as opposed to the approximating diffusion model emphasized later.

Section 3 discusses the natural parameter regime for diffusion approximations proposed by Halfin

and Whitt [13]. The proposed approximate diffusion control problem is formulated in Section 4,

which contains the main modeling contributions of the paper. We do not attempt to justify this

approximation by a rigorous limit theorem, but the limit theory developed by Halfin and Whitt [13]

and by GMR [12] in their more restrictive settings provide indirect support for our more complex,

multi-dimensional diffusion model. Section 5 contains the statements of the main analytical results:

the study of the HJB equation and the characterization of the optimal control policy. In section 6

we discuss the qualitative implications of that analysis and some insights that it provides. We do

not attempt to develop general numerical methods for solving our diffusion control problem, but in

Section 7 we undertake a numerical analysis of a simple example with two classes that illustrates

the form of the optimal policy. Finally, there are two appendices, one containing proofs of the main

results described above, and another containing proofs of auxiliary results.

2 Conventional Model Formulation

Customers of classes 1, . . . , m arrive according to independent Poisson processes, the arrival rate

for class i being λi > 0. Also, each class i customer is characterized by an exponentially distributed
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service time random variable with mean 1/µi and an exponentially distributed “patience” random

variable with mean 1/γi: a customer departs when either the total time it has spent “in service”

accumulates to equal the former random variable (the departure is then called a service completion),

or else the total time spent waiting accumulates to the latter random variable (the departure is then

called an abandonment). Thus we call µi and γi the service rate and abandonment rate, respectively,

for class i. It is assumed that µi > 0 and γi ≥ 0 for all i = 1, . . . , m. (Thus, we allow the case with

no abandonment for some or even all classes.) The service time random variable and “patience”

random variable for a customer are independent of one another, independent of those for other

customers, and independent of the arrival process.

The assumption that a customer’s decision to abandon is independent of the state of the

system is driven by the main motivating example we have in mind, namely, a telephone call center.

In these service operations queues are “invisible”, that is, customers waiting in the queue have no

access to state information. The assumption that customer “patience” is exponentially distributed

has only partial support in real call center data, but it greatly simplifies the analysis. (The recent

work by Puhalskii and Reiman [24] illustrates some implications of relaxing this assumption.)

In the interest of tractability, we assume that the service of any customer can be interrupted at

any time and resumed later (perhaps by another server) without penalty or loss of efficiency. This

assumption, of course, is unreasonable in most settings, however, one feels intuitively that optimal

policies would have similar structure with and without preemptions. Moreover, it is plausible

that the difference between the two problems with and without preemption should be negligible in

the heavy-traffic limit, and in fact such a result is proved in the recent work of Atar et. al. [2].

Given this assumption and the memoryless character of our arrival processes, service processes

and abandonment processes, the state of system at time t is adequately summarized by the vector

Q(t) = (Q1(t), . . . , Qm(t)), where Qi(t) is the number of class i customers then present in the

system, either waiting or being served. We denote by S := Z
m
+ the state space of the process

Q = (Q(t) : t ≥ 0), and by q a generic point in S. For each state q ∈ S we define an associated

action set A(q) as follows:

A(q) =
{
a ∈ Z

m
+ : a ≤ q and e · a = (e · q) ∧ N

}
, (1)

where e is the m-vector of ones, x ∧ y := min{x, y}, and x · y denotes the usual scalar product for

vectors x, y ∈ R
m. The ith component of the vector a in (1) is interpreted as the number of servers

assigned to process class i customers when the system is in state q; the two inequalities appearing

in (1) express the following constraints. First, one cannot assign to class i more servers than there

are customers of this class present in the system. Second, the total numbers of servers assigned

cannot exceed N , nor do we allow “idling” of servers when work is present in the system.

If the system is in state q at some point in time and action a ∈ A(q) is selected, then we have ai
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customers of class i “in service,” and qi − ai customers of that class waiting. Thus, the probability

of a class i service completion in the next t time units is aiµit + o(t) for small t, where f(t) = o(t)

if f(t)/t → 0 as t → 0. The corresponding probability of class i abandonment is (qi − ai)γit + o(t).

Of course, the probability of a class i arrival is λit + o(t) for small t. These transition intensities

completely specify the probabilistic structure of our dynamic control problem.

With respect to the problem’s economic structure, we shall assume an infinite-horizon dis-

counted cost criterion, the interest rate for discounting being α > 0. Given that objective, and the

stationary character of our problem data, attention will be restricted to stationary Markov policies.

That is, a policy is defined as a function π : S �→ Z
m
+ such that π(q) ∈ A(q) for all q ∈ S; in the

obvious way, one interprets π(q) as the action to be taken when the system is in state q. We denote

by Π the set of such stationary, Markov policies. Given the transition intensities described above,

we have the following relationships for any initial state Q(0) = q ∈ S and any policy π ∈ Π: if

π(q) = a, then for small t > 0,

E [Qi(t) − qi] = [λi − γi(qi − ai) − µiai] t + o(t) , (2)

and

E [Qi(t) − qi]
2 = [λi + γi(qi − ai) + µiai] t + o(t) , (3)

whereas

E {[Qi(t) − qi] [Qj(t) − qj ]} = o(t) for i �= j . (4)

Recall from Section 1 that hi and pi are the holding cost rate and abandonment penalty,

respectively, for class i. To avoid trivialities, it is assumed throughout that

ci := hi + γipi > 0 for all i = 1, . . . , m.

(If ci were zero, the system manager would have no motivation to ever serve class i, and so that

class would be dropped from the model.) Abusing notation somewhat, we shall use the letter c to

denote both the vector (c1, . . . , cm) and the instantaneous expected cost rate function

c(q, a) = c · (q − a) . (5)

From the discussion of transition intensities above, one sees that if state q is observed and the action

a ∈ A(q) is selected, then the expected cost incurred during the next t time units is c(q, a)t + o(t)

for small t > 0.

With the instantaneous expected cost rate defined above, the expected present value of the

total future costs under policy π, given an initial state q, is

J(q, π) := E
π
q

{∫ ∞

0
e−αtc(Q(t), π(Q(t)))dt

}
, (6)

7



where E
π
q {·} denotes the expectation with respect to the probability distribution on the path space

of Q that corresponds to initial state q and control policy π. Hereafter the function J(·, π) : S �→ R

will be called the cost function under policy π.

Now set

V (q) = inf
π∈Π

J(q, π) for q ∈ S . (7)

We call V (·) the system manager’s optimal value function, or simply value function; a policy π is

said to be optimal if it achieves the infimum in (7) for each q ∈ S.

It will be convenient for future purposes to define a small amount of additional notation. First,

let

zi =
(λi/µi)∑m

j=1 (λj/µj)
for i = 1, . . . , m. (8)

The sum appearing as the denominator on the right side of (8) represents the total workload input

rate to our server pool (that is, average time units of server work arriving per time unit), so

obviously zi is the fraction of that input attributed to class i; hereafter z = (z1, . . . , zm) will be

called the vector of relative workload contributions. Also, we define as usual the system’s traffic

intensity parameter

ρ = N−1
m∑

j=1

(λj/µj) . (9)

The problem described in this section is a continuous-time Markov decision process (MDP),

and as such is amenable to the method of dynamic programming; Bertsekas [5] provides a general

account of the mathematical theory associated with such problems, and Sennott [26] provides a

more specialized account focused on queueing models. At least in theory, our dynamic control

problem can be solved using methods described there, but the size of the problem and its fine-

grained structure (e.g., discreteness of the state space) make that task quite complicated; those

factors cause computational difficulty on the one hand, and overly-detailed characterization of the

optimal policies (assuming that such a characterization is even possible) on the other. Our analysis

will not pursue a “direct attack” on the above formulation. Rather, we propose an approximate

analysis of the scheduling problem to obtain more insight.

3 The Halfin-Whitt Asymptotic Regime

Let us consider now a sequence of models, each having the structure described in section 2, indexed

by N = 1, 2, . . ., attaching a superscript N to the notation established previously in order to

indicate the dependence of a parameter or process on N . (Accordingly, the absence of such a

superscript shows that the quantity in question is independent of N .) For maximum simplicity,
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we shall vary only one other model parameter as the number of servers N increases, that being

the total arrival rate; following the example set by Halfin and Whitt [13], we want to do this in

such a way that
√

N(1 − ρN ) → θ as N → ∞, where θ is a real valued constant representing the

server pool’s “excess capacity” in a suitable asymptotic sense. (If θ is negative, then its absolute

value represents a capacity shortfall, in a suitable asymptotic sense.) To minimize formulational

complexity, we shall construct our sequence in such a way that
√

N(1 − ρN ) is simply equal to a

fixed constant θ for all N , or equivalently,

ρN = 1 − θ/
√

N for all N = 1, 2, . . . . (10)

Given that both the average service rates µ1, . . . , µm and the relative workload contributions

z1, . . . , zm are to be held fixed, one can substitute in (10) the definition (9) of ρ so as to obtain the

following explicit formula for the arrival rates of each of the customer classes:

λN
i = ziµi

(
N − θ

√
N

)
for i = 1, . . . , m and N = 1, 2, . . . . (11)

It may appear at first glance that a more general analysis would be obtained by allowing a different

parameter θi for each class i in (11), but as we shall explain in Section 6, the added generality

is in fact illusory, and characterizing the asymptotic regime by means of a single excess capacity

parameter θ facilitates interpretation and application of the analysis.

Our “heavy-traffic” assumption (10) says that as N gets large, the total workload input equals

the total capacity N of the server pool plus a perturbation of order
√

N . To make connection

with the analysis of Halfin and Whitt [13] and GMR [12] it is useful to imagine that each class

i = 1, . . . , m is statically allocated Ni = ziN servers for its exclusive use (that is, servers are

dedicated to the various classes in numbers proportional to those classes’ relative workload inputs).

With this understanding, let a sequence of normalized vector processes XN = (XN
1 , . . . , XN

m ) be

defined as follows:

XN
i (t) :=

QN
i (t) − ziN√

N
(12)

for all t ≥ 0, i = 1, . . . , m and N = 1, 2, . . .. The following result is due to GMR [12, Theorem

2], extending the earlier analysis by Halfin and Whitt [13, Theorem 2] for systems without aban-

donments; see also [10]. Here and later, ‘⇒’ denotes weak convergence in the space D[0,∞), or

the associated product space Dm[0,∞), endowed with the usual Skorohod topology. Also, readers

should recall the definition (8) of z.

Proposition 1 If XN (0) ⇒ ξ ∈ R
m, then XN ⇒ X, where the limit X = (X1, . . . , Xm) is an

m-dimensional diffusion process with independent components. Specifically, X is the unique strong

solution of the following stochastic differential equation:

dX(t) = b(X(t))dt + ΣdW (t) ,

X(0) = ξ ,

9



where W = (W (t) : t ≥ 0) is standard Brownian motion in R
m, the infinitesimal drift function bi(·)

for the ith component is

bi(x) =

{
−µixi − µiθ xi ≤ 0

−γixi − µiθ xi > 0 ,

Σ := diag(σ1, . . . , σm), and σ2
i = 2µizi.

Each component of the limiting diffusion X in Proposition 1 is essentially obtained by “pasting

together” two Ornstein-Uhlenbeck processes; for further details on diffusions with piecewise linear

drift coefficients the reader is referred to Browne and Whitt [7]. The fact that the properly centered

and scaled occupancy process XN
i has a weak limit as stated in Proposition 1 has many important

consequences, and quite a bit of insight can be gleaned from it (for more details, we refer the

reader to [29] and to the more recent contributions of Fleming et. al. [10], and GMR [12]). One

important observation is that, in the many-server heavy-traffic regime identified by Halfin and

Whitt, the number of idle servers is either zero or else a positive quantity of order
√

N , and the

same statement applies to the total number of customers waiting for service. It follows (cf. [12])

that both average waiting times and abandonment rates are of order 1/
√

N in the Halfin-Whitt

regime, so large service systems can be designed to deliver both high quality service and high server

utilization. This is one of the main powerful messages delivered in Whitt’s paper [29], and further

pursued by GMR [12].

4 The Diffusion Control Model

The Halfin-Whitt scaling in (12), and the resulting diffusion limit appearing in Proposition 1, serve

to motivate the diffusion approximation proposed in this section for our “original” control problem

(see Section 2). In Section 6 we shall state as conjectures two heavy-traffic limit theorems which,

if true, would provide a rigorous justification for the proposed diffusion approximations, but the

argument provided here is purely formal.

To form a diffusion approximation for the original control problem, we first define the nor-

malized state and control vectors

XN (t) :=
QN (t) − zN√

N

and

UN (t) :=
AN (t) − zN√

N
,

where z is given in (8), and AN (t) denotes the allocation of servers under whatever policy πN is

selected for use in the Nth system; that is, AN (t) = πN (QN (t)) for all t ≥ 0. Note that elements

10



of the vector control UN express dynamic server allocation as (scaled) deviations from the nominal

server allocations z1N, . . . , zmN that were fixed in Proposition 1.

To motivate the proposed diffusion approximation, let us consider a fixed N and a fixed but

arbitrary policy πN for the Nth system, writing AN (t) = πN (QN (t)) as above. Let us also fix an

initial state q := QN (0) and set a := πN (q) = AN (0), then define xi := XN
i (0) = (qi − Nzi)/

√
N

and ui := UN
i (0) = (ai − Nzi)/

√
N for i = 1, . . . , m. Using the identity (11), readers can then

verify that (2) - (4) are equivalent to the following: for small t > 0 one has

E
[
XN

i (t) − xi

]
= [−θµi − γi(xi − ui) − µiui] t + o(t) , (13)

and

E
[
XN

i (t) − xi

]2
= N−1/2 [−θµi + γi(xi − ui) + µiui] t + 2µizit + o(t) , (14)

for i = 1, . . . , m, whereas

E
{[

XN
i (t) − xi

] [
XN

j (t) − xj

]}
= o(t) for i �= j . (15)

Taking a formal limit as N → ∞, we are then led to approximate our original MDP by a classical

diffusion control problem in which the infinitesimal drift function depends on the observed state

x and chosen control u exactly as in (13), and the infinitesimal covariance matrix is the limit as

N → ∞ of that computed in (14) - (15). That is, the infinitesimal drift function b(x, u) is given by

bi(x, u) = −θµi − γi(xi − ui) − µiui (16)

for all i = 1, . . . , m, while the infinitesimal covariance matrix is Σ2 = diag(2µ1z1, . . . , 2µmzm),

independent of x and u.

The state space for our diffusion control problem is all of R
m, and as above, we denote by x

and u a generic state and control, respectively. To determine for each state x ∈ R
m the associated

set of feasible controls U(x), one starts with the specification (1), then applies the same centering

and scaling that define UN (t) in terms of AN (t), and finally takes a limit as N → ∞ to arrive at

the following:

U(x) = {u ∈ R
m : u ≤ x and e · u = (e · x) ∧ 0} for all x ∈ R

m . (17)

As in Section 2, we shall restrict attention to stationary, Markov control policies, and the

letter π will be re-used in this setting to denote a generic policy. That is, in the context of our

proposed diffusion approximation, a policy is defined as a measurable function π : R
m �→ R

m such

that π(x) ∈ U(x) for all x ∈ R
m. Formalizing the conclusion reached immediately above about the

11



appropriate “infinitesimal parameters” for the diffusion control problem, the state dynamics under

an arbitrary policy π are specified in differential form as follows:

dX(t) = b(X(t), π(X(t)))dt + ΣdW (t) , (18)

where W = (W (t) : t ≥ 0) is standard Brownian motion in R
m. Again re-using notation employed

in Section 2, we denote by Π the set of all (stationary, Markov, measurable) control policies in our

diffusion context.

As above, let W = (W (t) : t ≥ 0) be standard Brownian motion in R
m, with t ∈ [0,∞) and

fix a reference complete filtered probability system (Ω,F , {Ft}, P), such that the Brownian motion

is adapted to Ft, and the filtration satisfies the usual conditions (cf. [17]). The state process

X solving (18) will be considered with respect to this probability system. Due to the structure

of the constraints in the feasible control set U(x), Girsanov’s theorem can be applied (as in [17,

Proposition 5.3.6]) even though the control set is not uniformly bounded; this yields the existence

of a weak solution. Moreover, the law of this solution is unique; see the proof of Theorem 2. For

the future purpose of proving our main contributions we would like to establish a stronger result,

namely, that the solution to (18) exists in a pathwise sense. (The proof of this result is technical

and is therefore given in Appendix B.)

Proposition 2 For any initial state X(0) = x and any policy π ∈ Π, the stochastic differential

equation (18) admits a strong solution.

Hereafter E
π
x{·} denotes expectation with respect to the probability distribution on the path

space of X that corresponds to the solution of (18) with initial state x and policy π. Using the same

centering and scaling of the state and control processes, we can now write the dynamic optimization

problem as a formal limit of the original one (6).

J (x, π) = E
π
x

{∫ ∞

0
e−αtc(X(t), π(X(t)))dt

}
, (19)

with c : R
m × R

m �→ R+ defined exactly as in (5). Note that J (·, π) is always well defined as an

extended positive real number. (As one might expect, any “reasonable” policy π ∈ Π will render a

finite cost).

The main goal is thus to solve the approximating diffusion control problem by seeking an

admissible policy that minimizes (19), with the associated value function given by

V (x) = inf
π∈Π

J (x, π) . (20)
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5 Analytical Characterization of Optimal Controls

Following standard practice, we proceed with the analysis of the control problem by formally

writing down the associated Hamilton-Jacobi-Bellman (HJB) equation The latter is a non-linear

partial differential equation that should have as its solution the value function V . If the solution is

sufficiently smooth then this should lead to a sharp characterization of the optimal control policy.

Since the economic framework we have introduced uses an infinite horizon discounted cost criterion

(19), the associated HJB equation is given by (cf. [11, §IV.5])

1
2

m∑
i=1

σ2
i

∂2V (xi)
∂x2

i

+ H(x,∇V (x)) − αV (x) = 0 . (21)

Here, H : R
m × R

m �→ R is the system Hamiltonian

H(x, δ) := inf {b(x, u) · δ + c(x, u) : u ∈ U(x)} , (22)

where b(x, u) is given by (16).

Unlike many stochastic control problems, our formulation poses several potential difficulties

in that: (i) the controls have pathwise state constraints; (ii) the feasible control set is not compact

or even bounded; (iii) the HJB equation is solved over all of R
m with no boundary conditions; (iv)

the cost function is not bounded. Consequently, more generic results, surveyed for example in [11],

[4], and [21] do not cover this case.

Before stating the main result we need the following definitions. Let C2(Rm) denote the class

of functions which are twice continuously differentiable over R
m, and set

C2 :=
{

f ∈ C2(Rm) : f ≥ 0 and sup
x∈Rm

f(x)/(1 + ‖x‖) < ∞
}

.

Note that if V ∈ C2, it is non-negative and can exhibit at most linear growth. The following are

our main results.

Theorem 1 The Hamilton-Jacobi-Bellman equation (21) has a unique solution in C2, and that

solution is the value function defined by (20).

Theorem 2 Let V ∈ C2 be as in Theorem 1, and define δ(x) = ∇V (x), x ∈ R
m. For each x ∈ R

m

let i∗(x) be the largest element i ∈ {1, . . . , m} that minimizes ci + (µi − γi)δi(x). The following

policy π∗ is optimal:

π∗
i (x) =

{
xi − [(e · x) ∨ 0] if i = i∗(x)

xi otherwise .
(23)

13



6 Discussion and Qualitative Insights

Construction and interpretation of the optimal control. To see that the policy π∗ defined

mathematically by (23) corresponds to the verbal description provided earlier in Section 1, recall

that the (scaled) queue length for class i in state x is xi − π∗
i (x). Thus the optimal policy π∗

maintains a positive queue for at most one class i, that being the “least costly” class i∗(x) identified

in Theorem 2.

Let us consider now the question of how to “interpret” the policy π∗ in the context of a single

system with N large and ρ near 1, taking as given the model data and derived quantities (like c, z,

and ρ) identified in Section 2. The first step is to calculate the data for our “approximating diffusion

control problem.” Inverting (10), the drift parameter θ is computed as θ =
√

N(1 − ρ), and then

the infinitesimal drift rate function b(x, u), covariance matrix Σ, and cost rate function c(x, u) are

as specified in Sections 2 and 3. Given this data plus the interest rate α, one can in principle solve

the approximating diffusion control problem to determine the gradient function δ(x) = ∇V (x) that

appears in the specification of our optimal policy π∗ (Theorem 2).

Given an observed state q ∈ S, one first determines the corresponding normalized state vector

x = (q−Nz)/
√

N , then determines for each class i the index κi := ci+(µi−γi)δi(x). Numbering the

classes so that κ1 ≥ . . . ≥ κm, the obvious way to implement π∗ is by giving class 1 highest priority,

. . . , and class m lowest priority in the allocation of servers. That is, one sets a1 = q1 ∧ N, a2 =

q2 ∧ (N − a1), . . . , and am = qm ∧ [N − (a1 + . . . + am−1)].

Asymptotic optimality. Given a family of models indexed by N = 1, 2, . . . that satisfy the

hypotheses of Section 3 (that is, a family of models approaching heavy traffic in the Halfin-Whitt

sense), let us denote by V N (·) the value function for the Nth model. Because of the simple way

in which we have specified our parametric family of models, with (11) determining the average

arrival rates in terms of a single parameter θ and all else fixed, our approximating diffusion control

problem is the same for every N ; let us denote by πN the implementation of its optimal policy

π∗ for purposes of the Nth system, as described in the two paragraphs preceding this one. Also,

let JN (qN , πN ) denote the cost function associated with the policy πN in the Nth system, and let

qN = QN (0) be the sequence of initial states such that

xN :=
1√
N

(
qN − Nz

) → x ∈ R
m as N → ∞ .

In the original version of this paper we conjectured the asymptotic optimality of our proposed

policy, as expressed by the following two statements:

1√
N

V N (xN ) → V (x) as N → ∞ , (24)
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where V (·) is the value function for the diffusion control model of Section 5, and
1√
N

[
V N (xN ) − JN (qN , πN )

] → 0 as N → ∞ . (25)

Together, (24) and (25) imply that the percentage deviation from optimal performance under our

proposed policy vanishes as N → ∞, because V (x) > 0. Subject to additional technical restrictions,

the above conjecture has been verified in subsequent work of Atar et. al. [2].

Scaling relations and capacity decisions. Assuming that they are true, (24) and (25)

extend to our dynamic control setting the important qualitative insights obtained in [13] and [12]

about “scaling relationships” in the Halfin-Whitt heavy traffic regime, as follows. First, the vector

Q of population sizes for the various classes varies about its “nominal value” of zN by amounts

of order
√

N , and because instantaneous expected cost rates are proportional to the queue lengths

in our formulation, the best achievable performance (in terms of expected discounted cost) is of

order
√

N as well. The conjectured asymptotic relationship (25) says that performance under our

proposed policy differs from the best achievable performance by an amount that is o(
√

N).

Of course, our whole theory is predicated on the crucial “heavy traffic” assumption (10),

which deserves further discussion. Taking the time unit to be hours for the sake of concreteness,

the quantity R = λ1/µ1 + . . .+λm/µm represents the average amount of work, expressed in server-

hours, that arrives per hour. In telecommunications it is said that R represents the offered load

(in Erlangs). Alternatively, one can describe R as the nominal capacity requirement (in servers) to

handle the incoming workload. We originally defined the traffic intensity parameter ρ as ρ = R/N ,

and assumption (10) says that ρ = 1 − θ/
√

N for each of the systems in our parametric family,

where θ is a fixed constant. Combining those two relationships, readers can confirm that N =

R + θ
√

R + o(R) in our family of models, which can be interpreted as follows: we are considering

systems in which capacity is set using roughly the square root rule advocated by Whitt [29]; that

is, the excess capacity N − R is taken to be approximately proportional to
√

R, but nothing has

been said thus far about how the constant of proportionality θ might be chosen.

In our limiting diffusion control problem (see Section 4), for any initial state x it is intuitively

clear that V (x) ↓ 0 as θ ↑ ∞, because for large θ the controlled diffusion process X can be very

nearly confined to the non-positive orthant (where congestion costs are zero). This suggests that

the value function in the “original system” (with large but finite N) can be made arbitrarily small

by the capacity choice N = R + θ
√

R with θ sufficiently large. In practice, the value of θ should

be chosen to optimize the tradeoff between congestion costs on the one hand and capacity costs on

the other. Assuming that the cost of capacity is proportional to the number of servers employed,

the analysis presented here suggests the following: if both static capacity decisions and dynamic

control decisions are made optimally, then both congestion costs and the cost of “excess capacity”

are asymptotically proportional to
√

R as R → ∞.
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Dynamic control in the Halfin-Whitt regime versus “conventional” heavy-traffic.

The diffusion control problem described in Section 5 is one of drift rate control, or “bounded

control”, as opposed to the “singular” diffusion control problems obtained as heavy traffic limits in

papers like [16]. In any given state x, the set of available controls U(x) is compact, so the rate at

which the system manager can drive state changes is locally bounded. In contrast, it is instructive

to consider a model exactly like the one laid out in Section 2 , except that there is a single server

who processes class i customers at rate Nµi (i = 1, . . . , m). Allowing the arrival rates λi to increase

with N according to (11) as before, and dividing all population sizes by
√

N (there is no need for

centering in this setting), one approaches a “conventional” heavy traffic limit without any scaling

of time; the acceleration of both arrival rates and service rates by a factor of N is equivalent to the

scaling of time that one usually sees in the conventional heavy traffic theory.

Even without considering in detail the limiting diffusion control problem obtained in this

alternate setup, one can readily see the distinction between the conventional heavy traffic regime

and the Halfin-Whitt regime. In each case there exists a total service capacity of order N , and in the

conventional regime it is concentrated in a “point source,” so the full service capacity can be applied

to a single non-empty buffer if the system manager so desires. The effect of such a deployment is

to drain the targeted buffer at a rate of order N , while other buffer contents increase at a similar

rate, because their input processes are no longer balanced against comparable capacity allocations.

Thus, the system manager in the conventional model can effectively exchange customers of one

class for customers of another class (the exchange rate depends on the ratio of the two classes’

average service rates) in a time span of order 1/N ; such exchanges can be effected instantaneously

in the limiting control problem, and so it is characterized by a dramatic “state space collapse” [14].

In the Halfin-Whitt regime considered here, the amount of service capacity that can be directed

to any one customer class is limited by the number of such customers present, so instantaneous

state changes cannot be effected, even in the limit as N → ∞, and the phenomenon of state space

collapse is absent.

Why is there a single drift parameter θ? Let us return now to the question of what

happens if we allow each class i to have its own “drift parameter” θi in the relationship (11) that

specifies average input rates for our parametric family of models. To avoid excessive complexity,

we shall again take the average service rates µi to be independent of N , but readers will readily see

how that restriction can be relaxed in the argument that follows. Also, we take as given a vector

z = (z1, . . . , zm) with zi > 0 and e · z = 1, interpreting its components as limiting relative workload

contributions for the various customer classes. Now for each N = 1, 2, . . . let λN
i be defined by

(11) with θi in place of θ, where θ1, . . . , θm are arbitrary scalars. Defining the “traffic intensity

parameter” ρN via the obvious extension of (10), it follows that
√

N(1 − ρN ) → θ̄, as N → ∞,
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where

θ̄ := z1θ1 + . . . + zmθm .

This parameter θ̄ represents, in a suitable asymptotic sense, the aggregate excess capacity of our

server pool, so it is precisely analogous to the single parameter θ used to construct a parametric

family of models in Section 3.

Now one constructs relative workload contributions zN
i for the Nth system by means of (8),

but using λN
i and λN

j in place of λi and λj , respectively. Defining vectors zN in the obvious way,

it is easy to check that zN → z as N → ∞. In defining the normalized processes XN and UN (see

Section 4), it is now natural to use NzN rather than Nz as the centering term. That is, for each

system N we express population sizes and server allocations as (scaled) deviations from nominal

values that reflect relative workload contributions for that particular system. After tedious, but

straightforward calculations, one then arrives at exactly the same limiting diffusion control problem

described in Section 4 except that, in the specification of the infinitesimal drift function (16) for

an arbitrary class i, θ is replaced by θ̄. That is, we arrive again at a limiting diffusion control

problem having the apparently special structure exhibited in Section 4; the individual parameters

θ1, . . . , θm, having been accounted for in the normalization, appear in the limiting problem only

through their weighted average θ̄.

To see this conclusion from a different perspective, suppose that we use Nz rather then NzN as

the centering term in defining XN and UN (that is, we center about nominal server allocations based

on limiting relative workload contributions). The limiting diffusion control problem eventually

obtained has −µiθi as the first term on the right side of (8), but it can be converted to the limiting

problem described immediately above by means of a simple transformation of state and control

variables (of course the translation involves θ1, . . . , θm).

A special symmetric case and a “greedy” heuristic. An illuminating special case of

our model is that where µ1 = . . . = µm = µ and γ1 = . . . = γm = γ. Given our restriction to

full-allocation policies (that is, policies which never have idle servers and positive queues simultane-

ously), the dynamics of the total population size e ·Q(t) are then independent of the policy chosen.

In the limiting diffusion control problem of Section 4 this translates as follows: defining the driftless

Brownian motion ξ(t) = e · W (t) and the normalized total “population size” Z(t) = e · X(t), one

has

dZ(t) = [−mµθ − µZ(t) − γZ(t) ∨ 0] dt + dξ(t) ,

independent of the policy chosen. Given that the instantaneous cost rate is c · X(t), it follows

that for every x ∈ R
m the designated class i∗(x) in Theorem 2 is simply that class i for which

ci is minimal. In the limiting diffusion control problem, this policy is actually optimal in the

pathwise sense, meaning that it minimizes total cost incurred up to time t for all t simultaneously
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(with probability 1). In terms of the original model, this is the greedy heuristic that minimizes the

instantaneous expected cost rate at each point in time, giving highest priority to the class i with

largest ci value, . . . , and lowest priority to the class with smallest ci value. As we shall see in the

example that follows, the greedy heuristic is not generally optimal, at least in the limiting diffusion

control problem.

7 Numerical Solution of a Two Class Model

Armed with the analytical characterization of the optimal policy developed in Section 5, the objec-

tive now is to explicitly compute it. This section discusses a simple two-class example, for which

the optimal policy is calculated numerically. We make no attempt to present a full exposition of

the numerical methods that are used, nor do we describe implementation details; these topics are

quite interesting in their own right, but both are well beyond the scope of this paper.

Because the optimal index rule described in Theorem 2 uses the gradient of the value function,

clearly the key is to calculate the latter. (All other parameters defining the optimal policy are

assumed to be known.) Our starting point is the non-linear partial differential equation (21). The

first task in computing the value function is to linearize this equation, for instance, by fixing an

initial “guess” of the optimal policy. The Hamiltonian (22) is consequently reduced to a linear

function of the gradient, and the resulting equation can now be solved numerically, leading to a

solution V 0 for the value function. This, in turn, is used to derive a revised estimate of the optimal

policy via Theorem 2, and the process repeats itself. These policy iterations (see, e.g., [5]) generate

a sequence of policies {πk} that, under reasonable conditions, should converge to an optimal policy,

that is, πk → π∗, in which case the associated sequence of solutions of (21) {V k} should converge to

the value function V . (Precise notions of convergence will not be rigorously addressed here.) The

only remaining algorithmic detail is the method by which the linearized version of (21) is solved.

To this end, we use the so-called finite element method (FEM), which is a standard numerical tool

in solving partial differential equations; for a general description of the method see, for example,

[3], and for recent work involving FEM in the context of numerical solutions to dynamic control

problems in queueing systems see [19]. An alternative method which is often used is the Markov

chain approach described in [22].

For a numerical example, consider a system with two customer classes and the following

parameter values: service rates µ1 = 1 and µ2 = 1.5; abandonment rates γ1 = 0.5 and γ2 = 1;

holding cost rates h1 = 1 and h2 = 1.5; abandonment penalties p1 = 1 and p2 = 1.5; interest rate

for discounting α = 0.1; and asymptotic excess capacity θ = 1. Given the characterization of the
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optimal policy in Theorem 2, we define

ψ(x1, x2) := c2 + (µ2 − γ2)δ2(x1, x2) − c1 − (µ1 − γ1)δ1(x1, x2) ,

where δi(x1, x2) = ∇iV (x1, x2) is ith component of the gradient of the value function and ci =

hi + piγi for i = 1, 2. The function ψ is the “test quantity” that determines the optimal action, as

follows:

• If x1 + x2 ≥ 0 and ψ(x1, x2) > 0 then class 1 gets priority; the resulting allocation is

π1(x1, x2) = x1 and π2(x1, x2) = −x1.

• If x1 + x2 ≥ 0 and ψ(x1, x2) ≤ 0 then class 2 gets priority; the resulting allocation is

π1(x1, x2) = −x2 and π2(x1, x2) = x2.

• If x1 + x2 ≤ 0 the system has excess capacity and there are no server allocation decisions to

make.

[PLACE FIGURES 2 & 3 HERE]

Figure 2 gives a plot of the test quantity ψ(x1, x2) as a function of the state. Recall that the

state corresponds roughly to the excess (or shortfall) of customers in the original system, relative to

the nominal (fluid scale) allocation of servers. Figure 3 depicts the corresponding optimal index rule,

which partitions the state space into three disjoint regions where the optimal action is prescribed.

This example shows that the optimal policy derived from our diffusion control problem is generally

not a static priority policy.

A Proof of the Main results

Proof of Theorem 1: Since the proof is somewhat lengthy and proceeds in several steps, we first

sketch briefly the main ingredients. The starting point is to apply a standard truncation idea (see,

e.g., [23]). This enables us to study a sequence of quasilinear PDE’s with a Dirichlet boundary

condition. The results given in Ladyzeskaya and Uralseva [20] describe the required regularity

which the PDE should posses for solvability. Essentially, this amounts to the Hamiltonian H in

(22) having proper Lipschitz regularity. We then take a sequence of Dirichlet problems such that

the boundary condition vanishes in the limit. The unique solutions to this sequence of truncated

problems, denote them by {Vn}, are smooth and moreover, we show that these functions along

with their first and second derivatives constitute an equicontinuous family. Hence they are pre-

compact in the class of continuous functions equipped with the topology of uniform convergence on
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compact sets. Consequently, we can extract a subsequence that converges uniformly on compact

with the limit being the sought value function which satisfies the original HJB equation (21). We

now proceed with the proof.

Step 1. We apply the aforementioned truncation argument, and consider properties of the

“truncated problem”. Fix n ∈ N and let B(0, n) = {y : ‖y‖ ≤ n}. Fix a policy π ∈ Π and an initial

condition X(0) = x ∈ B(0, n). We will be considering the diffusion X which solves (18) “killed”

at the boundary of B(0, n). Set T π
n = inf{t ≥ 0 : X(t) ∈ ∂B(0, n)}, where for a set S we let ∂S

denote its boundary. Where no ambiguity arises, we use Tn := T π
n for brevity. Let

Jn(x, π) := E
π
x

∫ Tn

0
e−αtc(X(t), π(X(t)))dt

and set

Vn(x) := inf
π∈Π

Jn(x, π) .

Lemma 1 Vn(x) is the unique bounded solution in C2(Rm) of

1
2

m∑
i=1

σ2
i

∂2W (xi)
∂x2

i

+ H(x,∇W (x)) − αW (x) = 0 (26)

W (x) = 0; x ∈ ∂B(0, n) ,

where H(·, ·) is defined in (22).

The proof, which is based on existence results for quasilinear PDE’s is deferred to Appendix B.

Fix r > 0, and set B(0, r) = {y : ‖y‖ ≤ r}; the ball of radius r in R
m. Then, for all n ≥ �r� + 1

we have by the standard interior estimates of Ladyzeskaya and Uralseva [20, p. 298-300] that

‖∇Vn(x)‖ ≤ C1, for all x ∈ B(0, r), where C1 is a constant depending on r but independent

of n. A similar estimate holds for Vn(x), which we make explicit using the following argument.

First, note that Vn(x) ≤ V (x), and the latter can be bounded using Fubini’s theorem as follows:

V (x) ≤ C
∫ ∞
0 E

π
x[‖X(t)‖] for some constant C independent of n. We now appeal to Lemma 2 which

asserts that E
π
x‖X(t)‖ ≤ C(1 + ‖x‖)(1 + t), thus we have V (x) ≤ C2(1 + ‖x‖) and this implies the

uniform bound on Vn(x).

Step 2. We consider a sequence of truncated problems, and their limit. The results stated so

far, imply that {Vn} and {∇Vn} are bounded uniformly on compact sets, independent of n. Since Vn

satisfies the HJB equation associated with the truncated problem, and the Hamiltonian is Lipschitz

(as established in the proof of Lemma 1), it follows that {∆σVn} is also bounded on compact sets,

independent of n. Here ∆σ(·) denotes the second order operator in the HJB equation, i.e., the Lapla-

cian operator, with weights σ2
i , i = 1, 2, . . . , m. Since {∆σVn} and {∇Vn} are uniformly bounded
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on B(0, r) it follows that both Vn and ∇Vn are Hölder continuous, in the ball B(0, r), uniformly in

n. Again, since the Hamiltonian is Lipschitz in its arguments, and since Vn satisfies the PDE with

boundary conditions, it must be that ∆σVn is also Hölder continuous uniformly in n. Hence, the

families {Vn}, {∇Vn} and {∆σVn} are equicontinuous and bounded. Consequently, Arzela-Ascoli

(see, e.g., Rudin [25]) establishes that for the former there exist convergent subsequences, denoted

for brevity still by subscript n. Standard results concerning interchange of derivatives and limits

establish the existence of a V ∈ C1 such that Vn → V , ∇Vn → ∇V , and ∆σVn → ∆σV uniformly

on B(0, r). Standard PDE arguments (cf. [20]) then give the improved smoothness of V . Now, Vn

satisfies the HJB equation with boundary condition and Vn → V uniformly on B(0, r). Since the

Hamiltonian (22) is Lipschitz (see the proof of Lemma 1) we can “pass” the above limits “through”

the truncated HJB equation to establish that V satisfies the original HJB partial differential equa-

tion equation on B(0, r). Since r was arbitrary, V must satisfy the original HJB equation (21) in

R
m. Now, observe that by definition of Vn and V , monotone convergence implies

Vn(x) ↑ V (x) = inf
π∈Π

E
π
x

∫ ∞

0
e−αtc(X(t), π(X(t)))dt .

Thus the proposed limit V is the value function of the original control problem. That V is finite

for all x follows from the bound established above, namely, V (x) ≤ C(1 + ‖x‖).

Step 3. The main task here is to to apply a verification argument for functions in the class C2.

Fix W ∈ C2, and a policy π ∈ Π. Now, application of the Itô differential rule to exp(−αt)W (X(t))

gives (see, e.g., the verification proof in [11, p. 173])

W (x) ≤ J (x, π) + lim inf
t→∞ e−αt

E
π
x [W (X(t))] . (27)

The following result is proved in Appendix B. (We note that the original proof of this lemma

contained an error that was pointed out to us by Rami Atar; the current proof is similar to one in

[2] but was developed independently.)

Lemma 2 For any x ∈ R
m and policy π ∈ Π

E
π
x [‖X(t)‖] ≤ C(1 + ‖x‖)(1 + t)

for some positive finite constant C.

Consequently, using W (x) ≤ C(1 + ‖x‖) we have that the last term on the right hand side of (27)

converges to zero. Thus, we have W (x) ≤ J (x, π), and since π ∈ Π was arbitrarily chosen, we have

W (x) ≤ V (x) where V is the value function. On the other hand, the optimal policy π∗ described

in Theorem 2 satisfies

π∗(x) ∈ argmin {b(x, u) · ∇W (x) + c(x, u) : u ∈ U(x)}
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for all x ∈ R
m, and is measurable. Thus for X solving (18) under the policy π∗ we have

π∗(X(t)) ∈ argmin {b(X(t), u) · ∇W (X(t)) + c(X(t), u) : u ∈ U(X(t))}

almost surely for all t. Applying Itô’s differential rule as before we have that W (x) = J (x, π∗).

Thus, W (x) ≥ V (x), and together with the previous bound establishes that W is the value function,

and π∗ is an optimal policy. This concludes the proof.

Proof of Theorem 2: In the proof of Theorem 1 we established that V (x) ≤ J (x, π) for all

π ∈ Π. It was also shown there that for a solution W ∈ C2 of the HJB equation (21), and policy

π∗ satisfying

π∗(x) ∈ argmin {b(x, u) · ∇W (x) + c(x, u) : u ∈ U(x)}

for all x ∈ R
m, we have V (x) = J (x, π∗). It is easy to check that the explicit expression for the

policy given in Theorem 2 is obtained by substituting the drift function b and feasible control set U

into the above optimization problem. The mapping defined by π : R
m �→ R

m is clearly measurable

(thus, we do not need to invoke a measurable selection theorem). Therefore, U∗(t) = π∗(X(t)) is

by construction an optimal control. The existence of a weak solution of the SDE (18) under the

policy π∗ follows from [17, Proposition 5.3.6]. Uniqueness in law follows from an application of the

Girsanov transformation as in [17, Propositions 5.3.10], given that we can show that for all T < ∞,∫ T
0 ‖b(X(t), π(X(t)))‖2dt is finite, Px almost surely. This, in turn, can be verified by applying Itô’s

lemma to the process X2, using the crude bound ‖π(x)‖ ≤ C‖x‖ and finally applying Gronwall’s

inequality. (The reader may also consult [17, Problem 5.3.15] for further details.) Thus, π∗ defines

an admissible stationary Markov policy, the associated (optimal) diffusion is well defined, and its

law is unique which suffices for defining the value function. This concludes the proof.

B Technical Proofs and Auxiliary Results

Proof of Proposition 2: Since the proof is rather technical, we first describe the main idea which

essentially relies on a localization argument. We first suitably truncate the drift function b(x, u)

in (18) to bn(x, u) which is bounded. We then consider the stochastic differential equation with

drift bn, the “truncated version” of the original problem, displayed below in (28). Existence and

uniqueness of a strong solution to the truncated version (28) is due to the drift being bounded (see,

e.g., [17, Proposition 5.5.17] and Veretennikov [28] for the multidimensional analogue). We then

restrict attention to a region in R
m such that the truncated drift is equal to the original drift (i.e.,

bn = b for x values in that region). The solution of the original problem (18) is then given as the

solution to the truncated problem up to a random “exit time” of the aforementioned region. That

is, the process solving (18) is defined as the solution to the truncated problem (28), up until the
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time it exits the bounded domain where the truncated drift bn is equal to the original b. Finally,

we prove that this exit time occurs eventually (a.s.) after time T , for any T < ∞, thus proving the

existence of a strong solution to the original problems (18) on [0,∞).

Step 1. For each n ≥ 1 we define the truncated version of (18) to be

dXn(t) = bn(Xn(t), π(Xn(t)))dt + ΣdW (t)

Xn(0) = x , (28)

with the drift coefficient truncated coordinate-wise as follows

bn
i (xi, ui) =

{
bi(xi, ui) if |bi(xi, ui)| ≤ n

n sign(bi(xi, ui)) if |bi(xi, ui)| > n

where sign(x) = 1 if x ≥ 0 and −1 if x < 0. Fix T < ∞, π ∈ Π, and note that for all x ∈ R
m the

truncated problem (28) admits a unique strong solution Xn = (Xn(t) : t ∈ [0, T ]) (see, e.g., [17,

Proposition 5.5.17]). Let us now define a region in R
m such that bn(x, u) = b(x, u), where b(x, u) is

the drift in the original problem (18). To this end, note that by definition of the drift function b and

the feasible control set U, there exists a positive constant R < ∞ such that |b(x, u)| ≤ R(1 + ‖x‖)
for all u ∈ U(x). Put Rn := n/R − 1, and consider the ball of radius Rn centered at the origin,

B(0, Rn). By construction, ‖b(x, u)‖ ≤ n for all x ∈ B(0, Rn) and u ∈ U(x). Fix n,  ∈ N such that

n ≥ , x ∈ B(0, R�), π ∈ Π, and let

T �
n := inf{t ≥ 0 : Xn(t) ∈ ∂B(0, R�)} (29)

denote the exit time of Xn from the ball B(0, R�). Define X(t) := Xn(t) for 0 ≤ t ≤ T �
n. Note

that X(t) is well defined since up to the exit time T �
n, Xn(t) is the unique strong solution to (28).

Moreover, note that bn is equal to b� in B(0, R�), so Xn(t) = X�(t) (a.s.) until the exit time from

B(0, R�), and T �
� = T �

n (a.s.) for all  ≤ n. But note that bn(Xn(t), π(Xn(t))) ≤ n (a.s.) for

0 ≤ t ≤ Tn := Tn
n . Thus, we have constructed a strong solution, X(t), to the original problem (18),

up to the “explosion time” T∞ := limn→∞ Tn. (Note that Tn ↑ ∞ as n → ∞ so the limit T∞ exists,

almost surely.)

Step 2. Our main objective here is to prove that Tn > T , eventually, Px-almost surely. First,

note that {Tn < T} ⊆ {supt∈[0,T ] ‖Xn(t)‖ ≥ Rn}. Now, we take the function g(x) = log(1 + ‖x‖2)

so that

∇g(x) =
2x

1 + ‖x‖2

1
2

m∑
i=1

σ2
i

∂2g(x)
∂x2

i

≤ C1m. (30)
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Here, and in what follows Ci are constants independent of n. By Itô’s formula we have

g(Xn(t)) = g(x) +
∫ t

0
Ang(Xn(s))ds +

∫ t

0
∇g(Xn(s))ΣdW (s)︸ ︷︷ ︸

Mn(t)

(31)

where An is the generator corresponding to the truncated problem (28). But note that by (30) and

the fact that ‖b(x, u)‖ ≤ R(1 + ‖x‖) we have that

Ang(x) =
1
2

m∑
i=1

σ2
i

∂2g(x)
∂x2

i

+ ∇g(x) · bn(x, π(x))

≤ C1m + C2
‖x‖2

1 + ‖x‖2
≤ C3 . (32)

Now, the quadratic variation of the stochastic integral Mn(t) is bounded almost surely, 〈Mn〉(t) ≤
C1(1 + t), which follows from the boundedness of ∇g. Thus, we also have EM2

n(t) ≤ C1(1 + t), and

therefore Mn = (Mn(t) : t ∈ [0, T ]) is an L2-martingale (with respect to the Brownian filtration

Ft). Moreover, note that for all κ > 0 we have supn E exp{κ〈Mn〉(t)} < ∞ for all t ≥ 0. Thus,

Novikov’s condition holds (see, e.g., [17, Proposition 3.5.12]) and therefore

M̃n(t, κ) := exp{κMn(t) − κ2

2
〈Mn〉(t)}

is a martingale, in particular, EM̃n(T, κ) = 1 . Going back to (31) we have

log(1 + ‖Xn(t)‖2) ≤ log(1 + ‖x‖2) + C1T + Mn(t) − (1/2)〈Mn〉(t) + (1/2)〈Mn〉(t)
≤ log(1 + ‖x‖2) + C2(1 + T ) + Mn(t) − (1/2)〈Mn〉(t),

almost surely for all t ∈ [0, T ]. Exponentiating both sides, taking the supremum over t ∈ [0, T ] and

taking expectations we have

Ex sup
t∈[0,T ]

‖Xn(t)‖2 ≤ C3(1 + ‖x‖2)eC4T
E

[
sup

t∈[0,T ]
exp {Mn(t) − (1/2)〈Mn〉(t)}

]
.

We now bound the expectation on the right hand side as follows. First, by Jensen’s inequality

E

[
sup

t∈[0,T ]
exp {Mn(t) − (1/2)〈Mn〉(t)}

]
≤


E

[
sup

t∈[0,T ]
exp {Mn(t) − (1/2)〈Mn〉(t)}

]2

1/2

,

and for the term on the right hand side we have,

E

[
sup

t∈[0,T ]
(exp {Mn(t) − (1/2)〈Mn〉(t)})2

]
≤ C1E exp {2Mn(T ) − 〈Mn〉(T )}

≤ C2E exp {2Mn(T ) − 2〈Mn〉(T )} exp{C3T}
= C2e

C3T .
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The first step above uses the L2-maximal inequality for martingales, the second step follows by

adding and subtracting 〈Mn〉(T ) in the exponent and using the previous bounds on this process,

and the third step follows on noting that exp {2Mn(T ) − 2〈Mn〉(T )} is a martingale (indeed, the

exponential martingale M̃n(t, κ) with κ = 2). Combining these arguments we have that

sup
t∈[0,T ]

‖Xn(t)‖2 ≤ Y 2
n

with

Y 2
n := C1(1 + ‖x‖2) exp{C2T} sup

t∈[0,T ]
exp {Mn(t) − (1/2)〈Mn〉(t)}

independent of t. Also, note that EY 2
n ≤ C1(1 + ‖x‖2) exp{C2T} independent of t and n.

Step 3. To finish the proof, let

An =

{
ω : sup

t∈[0,T ]
‖Xn(t, ω)‖ ≥ Rn

}

and note that ∞∑
n=1

P(An) ≤
∞∑

n=1

P(Yn ≥ Rn)

and the latter is finite by the above bounds on EY 2
n which assert that EY 2

n < C, independent of n.

Thus, an application of Borel-Cantelli yields that ‖Xn(t)‖ < Rn, for all but finitely many n, Px-

almost surely for all t ∈ [0, T ]. But, by definition of the exit time Tn, this implies that Tn ≥ T ,

eventually, Px-almost surely. Since Tn ↑ ∞ as n → ∞, it follows that Px(T∞ < T ) = 0. Since

T was arbitrary, this proves that the strong solution to (18), X(t), can be constructed on [0,∞).

This concludes the proof.

Proof of Lemma 1: We appeal to the general existence theory in Ladyzenskaya and Uralseva,

specifically, their Theorem 8.3 [20, p. 301] lists the conditions that one needs to verify for the

differential operator in the HJB equation, so that a smooth solution exists. In particular, the HJB

equation in our case is uniformly elliptic and the obvious solvability condition α > 0 holds. In

addition, the Dirichlet boundary condition is regular (recall, it is zero), and involves a smooth

boundary surface (the sphere of radius n in R
m). The only condition that requires verification

concerns the regularity of the Hamiltonian H(x, p) defined in (22). First we prove that H(x, ·) is

Lipschitz continuous. Fix p, q ∈ R
m, and x ∈ B(0, n). Then

|H(x, p) −H(x, q)| ≤ ‖p − q‖ sup
u∈U(x)

‖b(x, u)‖

≤ C2(1 + ‖x‖)‖p − q‖

which follows from the structure of the feasible control set U(x). We now show that H(·, p) is

Lipschitz continuous. To facilitate the following derivation, we make a change-of-variable and set
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wi = (xi − ui)/((e · x) ∨ 0), for i = 1, . . . , m, where e = (1, . . . , 1) ∈ R
m. Thus, u ≤ x implies

w ≥ 0, and (e · u) = (e · x) ∧ 0 implies e · w = 1. With this parameterization we have that

b(x, w) = −θµ−µx + (µ− γ)(w((e · x)∨ 0)), and c(x, w) = c ·w((e · x)∨ 0). The key observation is

that both b(x, w) and c(x, w) are Lipschitz continuous, uniformly in x and w. (This follows upon

observing that f(x) = (e · x) ∨ 0 is Lipschitz continuous.) Now, fix p ∈ R
m, and x, y ∈ B(0, n).

For any δ > 0 it is possible to choose a u∗ ∈ U(y) such that b(y, u∗) · p + c(y, u∗) ≤ H(y, p) + δ.

Alternatively, b(y, w∗) · p + c(y, w∗) ≤ H(y, p) + δ. Note that H(x, p) ≤ b(x, w∗) · p + c(x, w∗) is

obvious since the Hamiltonian is the infimum over all feasible w. Consequently, we have that

H(x, p) −H(y, p) ≤ b(x, w∗) · p + c(x, w∗) − (b(y, w∗) · p + c(y, w∗) − δ)

≤ C(1 + ‖p‖)‖x − y‖ + δ,

where C is a constant that is independent of x, y and p. The reverse inequality is obtained in an

analogous manner. Finally, since δ > 0 is arbitrary we may set it to zero to obtain the desired

result |H(x, p) −H(y, p)| ≤ C(1 + ‖p‖)‖x − y‖. Thus, H(·, p) is Lipchitz. Since x, y are restricted

to B(0, n), and the differential operator is uniformly elliptic, we also have that the gradient of

the solution is bounded (cf. [20, p. 296]), which implies boundedness of p, q. This, and the local

Lipschitz result above suffice to verify the remaining regularity conditions in [20, Theorem 8.3].

Thus, by the cited theorem we have existence of a C2 solution to the PDE. Standard arguments

yield that Vn, the value function for the truncated problem, is the unique bounded solution of

the truncated HJB equation; for details see, e.g., Fleming and Soner [11, pp. 172-174]. We omit

the details; more general arguments appear in the verification step (Step 3) used in the proof of

Theorem 1, and the proof of existence of optimal Markov policies (Theorem 2). This concludes the

proof.

Proof of Lemma 2: It suffices to seek upper and lower bounds on the individual coordinates of

the controlled diffusion, in terms of “nice” processes which yield the requisite growth rate stated in

the Lemma. To this end, let Iµ = {i ∈ {1, . . . , m} : γi ≤ µi}, and Iγ = {i ∈ {1, . . . , m} : γi > µi}
(allowing for the possibility that one of the two sets is empty). Note that for i ∈ Iµ we have for all

x ∈ R
m and admissible u ∈ U(x) that the drift of the controlled diffusion is bounded as follows

bi(x, u) = −θµi − γi(xi − ui) − µiui

= −θµi − γixi − (µi − γi)ui

≥ −θµi − µixi , (33)

where the inequality is a consequence of ui ≤ xi for all admissible u ∈ U(x). Similarly, we have

for i ∈ Iγ that bi(x, u) ≤ −θµi − µixi. Now, fix a complete filtered probability space and an

m-dimensional standard Brownian motion W = (W (t) : t ≥ 0) where W (t) = (W1(t), . . . , Wm(t)).
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Fix x ∈ R
m and let Yi = (Yi(t) : t ≥ 0) be the solution of the stochastic differential equation

dYi(t) = −(θµi + µiYi(t))dt + σidWi(t),

with Yi(0) = xi, for i = 1, . . . , m. Fix π ∈ Π and let X be a solution of the controlled diffusion

(18). Fix i ∈ Iµ, assuming this set is non-empty, and let ∆i(t) = Yi(t)−Xi(t). Then, we have that

∆i(t) =
∫ t

0
[−θµi − µiYi(s) − bi(X(s), π(X(s)))] ds .

Note that the drift ordering in (33) is policy independent and moreover does not depend on {xj :

j �= i}. Also, Yi has linear drift which does not depend on π. In this setting we can replicate the

comparison proof in [17, Proposition 5.2.18] yielding (∆(t))+ ≤ µi

∫ t
0 (∆(s))+ds, Px-almost surely

for all t ≥ 0. Gronwall’s inequality implies that (∆(t))+ = 0, thus Yi(t) ≤ Xi(t), Px-almost surely

for all t ≥ 0. The same argument yields Yi(t) ≥ Xi(t) for i ∈ Iγ , Px-almost surely for all t ≥ 0.

Observe that for any x ∈ R
m and u ∈ U(x), we have

∆b(x, u) := −
∑
i∈Iµ

bi(x, u)
µi

+
∑
i∈Iγ

bi(x, u)
(γi − µi)

=
∑
i∈Iµ

γi

µi
(xi − ui) +

∑
i∈Iµ

ui −
∑
i∈Iγ

γi

(γi − µi)
xi +

∑
i∈Iγ

ui

(a)

≥ −
∑
i∈Iγ

γi

(γi − µi)
xi +

m∑
i=1

ui

(b)
=


 −∑

i∈Iγ

γi

(γi−µi)
xi

∑m
i=1 xi ≥ 0

−∑
i∈Iγ

µi

(γi−µi)
xi +

∑
i∈Iµ

xi
∑m

i=1 xi < 0
, (34)

where (a) follows from xi ≥ ui, and (b) follows from the fact that
∑m

i=1 ui = (
∑m

i=1 xi) ∧ 0. Now,

fix a policy π ∈ Π, and an index j ∈ Iγ , assuming this set is non-empty. Then, for some finite

positive constants C1, . . . , C4 we have

Xj(t)
(γj − µj)

=
∑
i∈Iµ

Xi(t)
µi

−
∑

i∈Iγ ,i�=j

Xi(t)
(γi − µi)

−
∑
i∈Iµ

Xi(t)
µi

+
∑
i∈Iγ

Xi(t)
(γi − µi)

(c)

≥ −C1

m∑
i=1

|Yi(t)| − C2t +
∫ t

0
∆b(X(s), π(X(s)))ds −

∑
i∈Iµ

σiWi(t) +
∑
i∈Iγ

σiWi(t)

(d)

≥ −C1

m∑
i=1

|Yi(t)| − C2t − C3

∫ t

0

m∑
i=1

|Yi(s)|ds − C4

m∑
i=1

|Wi(t)| , (35)

where (c) follows from Xi(t) ≥ −|Yi(t)| for i ∈ Iµ and Xi(t) ≤ |Yi(t)| for i ∈ Iγ ; and, (d)

follows from (34). For i ∈ Iγ we already have the upper bound Xi ≤ Yi, where the processes

{Yi} are stable Ornstein-Uhlenbeck processes. In particular, Ex|Yi(t)| ≤ C5(1 + ‖x‖) for some

finite positive constant independent of t. Consequently, using (35) we have that for all i ∈ Iγ
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E
π
x|Xi(t)| ≤ C(1 + ‖x‖)(1 + t) for some finite positive constant C independent of x, t and the

policy π. For i ∈ Iµ we can derive a lower bound on −Xi(t)/µi by essentially repeating the above

arguments verbatim. This, in turn, yields an upper bound on Xi(t) that together with the lower

bound Xi ≥ Yi establishes that E
π
x|Xi(t)| ≤ C(1 + ‖x‖)(1 + t) for all i ∈ Iµ. This concludes the

proof.
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Figure 2: The test quantity ψ(x1, x2) as a function of state.
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Figure 3: Priority regions for the optimal index policy i∗(x1, x2).
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