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This paper investigates how the presence of product reviews can help inform a dynamic-pricing monopolist.
A salient feature of our problem is that the customers’ willingness-to-pay, and hence the demand function,
evolves over time in conjunction with the dynamics of the average rating generated by online reviews. The
monopolist strives to maximize its total expected revenue over a finite horizon by adjusting prices in response
to the evolving review dynamics. To formulate the problem in tractable form, we study a fluid model which
serves as a good approximation of the system dynamics when the volume of sales is large. This formulation
lends itself to key structural insights, which are leveraged to design a well-performing dynamic pricing policy
for the underlying revenue maximization problem. The proposed policy admits a closed-form expression for
price and its performance is near-optimal in a suitable asymptotic sense. We illustrate the effectiveness of
the proposed policy via simulation and counterfactual analysis in an online marketplace.
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1. Introduction
1.1. Overview of the Problem

Product review platforms have emerged as viable mechanisms for sharing opinions and experiences

on a wide range of products (or services) in online marketplaces. In these markets, the quality of

a newly launched product is initially uncertain, but the reviews generated by buyers help inform

subsequent customers. This form of social learning reduces the uncertainty pertaining to product

quality, and hence supports better-informed purchase decisions. Clearly this learning dynamic, and

said review process, affects the demand trajectory over time. The main question studied in this paper

is how to optimally set prices within the context of these dynamics.

To address this question, we formulate a stylized model of a marketplace where a monopolist sells

a single product to sequentially arriving customers. Customers are a priori not well informed about

the quality levels of the product, but they observe product reviews from previous buyers and use a

crude form of Bayesian learning to inform purchase decisions. (Throughout the paper, reviews mean

numeric ratings and we use the two terms interchangeably.) Buyers may report their ex-post quality
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perception after purchase, which in turn affects decisions of subsequent customers. This model gives
rise to a probability of purchase by the individual customer, which in aggregate form is often referred
to as the market demand function. As the review process progresses, the demand function evolves
dynamically (and stochastically) over time. The seller then uses the aforementioned demand function
to seek a pricing policy that maximizes revenue over a finite horizon.

The revenue maximization problem described above is formulated as a stochastic dynamic pro-
gramming problem, whose solution is difficult to characterize. In particular, in the setting we study
demand is affected by the quality of a product; this information is a priori unknown but is revealed
by reviews from previous buyers. The review process, in turn, is affected by changes in price over
time, which introduces the following intertemporal effect: prices affect the dynamics of the review
process, which in turn influence the demand and pricing decisions for subsequent customers. This
feedback mechanism is one of the key challenges in solving the dynamic optimization problem and
identifying an optimal pricing policy.

1.2. Summary of the Main Results

The paper contributes along three dimensions discussed below.
Demand modeling incorporating review information. We introduce a parsimonious stylized

model for customer-level purchase probability that incorporates the “strength” of signal from product
reviews at each time instant. The model is sufficiently tractable to enable construction of practically
implementable dynamic pricing policies, which is one of the main focal points of the paper. We
also present a small-scale illustrative empirical study to validate that the model passes basic “sanity
checks,” and highlights the practical significance of the proposed pricing policies derived from the
model.

Fluid approximation and structural insights. As indicated earlier, the inherent feedback gen-
erated by the presence of reviews significantly complicates the study of revenue maximizing policies.
To that end, we formulate a deterministic (and continuous) fluid approximation of the underlying
revenue maximization problem. The dynamics of reviews are described by ordinary differential equa-
tions in this so-called fluid model, and the solution can be expressed in closed form, which enables us
to investigate structural properties of optimal pricing strategies in a rigorous mathematical manner.
In particular, this allows to characterize the parameter regimes where dynamic pricing yields more
significant benefits vis-à-vis fixed-price strategies. As a result, our analysis provides some rough guide-
lines for practitioners regarding the choice of pricing strategies and in particular assessing whether
the benefits of (more complex) dynamic pricing are merited.

Near-optimal pricing strategies. We propose and study a class of pricing policies referred
to as Dynamic Fluid-Matching (DFM). We provide a theoretical bound on the performance of the
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DFM policy and show via simulation that it yields performance that is close to optimal. Further,
we test the DFM policy relative to a model calibrated with actual data in order to illustrate its
effectiveness in settings inspired by actual market operating characteristics. One key observation that
arises from our analysis is that DFM is highly effective during the “transient” phase where reviews
are “most informative.” In contrast, when this learning phase stabilizes, the DFM policy presents
only modest improvement over fixed price counterparts. Our analysis provides some characterization
of the boundary between the two phases within the selling horizon.

The remainder of the paper. The next section concludes the introduction with a review of
related work. In Section 2 we develop a demand model that incorporates directly the review platform
information and formulate a revenue maximization problem. In Section 3 we analyze a fluid version
of the aforementioned revenue maximization problem and discuss structural properties of its optimal
solution. In Section 4 we propose pricing policies, whose effectiveness is tested via simulation and
counterfactual analysis in Section 5. In Section 6 we examine several extensions to the basic problem:
first, we generalize our results to the case where customers’ review propensity is time-dependent; and
second, the single product results are generalized to a multiproduct setting. Appendix A contains
additional numerical results and proofs are collected in Appendix B.

1.3. Related Literature

This paper contributes to various streams of research.
Product reviews and social learning. Product review platforms, or reputation systems in a

broad sense, have gained growing attention as an important driver of product sales; see Dellarocas
(2003) for a comprehensive overview of reputation systems. Several papers have empirically investi-
gated the effect of product reviews on customers’ purchasing behavior. Representatively, Chevalier
and Mayzlin (2006) demonstrate that the difference in sales of books between Amazon and Barnes
& Nobles is positively correlated with the difference in reviews. Duan et al. (2008) examine movies’
daily box office performance to propose the importance of the number of reviews on sales. Li and
Hitt (2008) analyze book sales data in Amazon and report that early reviews demonstrate positive
bias due to a self-selection effect. Although the last result suggests the possibility of information
distortion, a common conclusion from these works is that product reviews have significant effect on
customers’ purchasing behavior. In a sense, this paper yields a conclusion similar to the preceding
papers: our stylized customer purchase model yields a significantly higher predictive power than
benchmark models that ignore product reviews.

Product reviews constitute a form of social learning, which has been an active research area in
economics. Seminal papers by Banerjee (1992) and Bikhchandani et al. (1992) consider agents who
observe a private signal, as well as the entire history of decisions by previous agents, and update
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their belief in a Bayesian manner. They show that this social learning process may lead to herding
behavior on bad decisions, despite the fact that agents are fully rational. Different papers have
considered similar issues in the context of product reviews. Studying a market where consumers
observe either the full history or some summary statistics of past reviews, Acemoglu et al. (2017)
prove that asymptotic learning may fail. Besbes and Scarsini (2018) show that if buyers report
perceived quality adjusted by their private signals and only observe the sample mean of past reviews,
customers tend to overestimate the underlying quality of a product in the long run. In contrast,
this paper assumes that customers are altruistic and thus report unbiased perceived quality for the
benefit of subsequent customers, which rules out the possibility of bias in learning. Moreover, while
price is not explicitly modeled in the preceding papers, this paper highlights the role of price in the
social learning process.

Dynamic pricing with product reviews. Recently, several papers have studied pricing in online
markets with uncertain quality, and various approaches to the modeling of product review platforms
as information aggregators. Crapis et al. (2016) study conditions under which the true quality of a
product is eventually revealed via reviews and propose a two-stage pricing policy that accounts for
social learning. They focus on the setting where customers report binary reviews (like/dislike) based
on their ex-post utility, which, in turn, depends on the price of the product. In our paper customers
report directly the experienced level of quality, which is the most useful information to subsequent
customers. The latter is a common assumption in Yu et al. (2015) and Papanastasiou and Savva
(2017).

Specifically, Yu et al. (2015) and Papanastasiou and Savva (2017) study two-stage pricing strategies
in the presence of strategic customers and product reviews that are modeled as independent and
identically distributed random variables. Interestingly, Yu et al. (2015) show that both the firm and
customers may be strictly worse off due to product reviews. Papanastasiou and Savva (2017) show
that dynamic pricing may alleviates the strategic behavior of customers, and hence, can be preferred
to preannounced pricing. This stands in contrast to other findings such as Aviv and Pazgal (2008).

He and Chen (2018) consider the review dynamics as a continuous-time stochastic process and
study how information externalities distort optimal pricing strategies. Yang and Zhang (2018) study
the joint pricing and inventory management problem in the presence of product reviews and show
that the structural properties of optimal pricing strategies are not affected by inventory dynamics
under base-stock policies. These studies focus almost exclusively on structural insights. Our paper
complements these by explicitly characterizing a near-optimal pricing strategy in closed form, which
supports further structural insights and allows the design of pricing strategies that are implementable.

In a more general setting of social learning, customers are subject to various forms of externalities.
Bose et al. (2006, 2008) and Ma et al. (2018) study pricing when customers make decisions based on
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the purchase history of previous customers, and highlight the role of dynamic pricing in balancing

immediate and future revenues. Candogan et al. (2012), Bloch and Quérou (2013), Ajorlou et al.

(2016) and Makhdoumi et al. (2018) consider optimal pricing strategies in a social network where

each customer’s action depends directly on the action of their neighbors in the network graph. They

characterize the optimal price as a function of the location in the network.

Fluid formulations. Deterministic and continuous (fluid) relaxations have become commonplace

in studying various dynamic pricing problems; see Gallego and van Ryzin (1994, 1997) for the incep-

tion point of this literature. A prevalent way to implement fluid solutions is via “re-solving” heuristics

that reevaluate the fluid policy as a function of the current state and time-to-go. In our paper we

propose a policy that is predicated on re-solving a fluid counterpart of the underlying problem, and

prove that this type of pricing policy is asymptotically optimal. We also show via numerical examples

that it outperforms other benchmark pricing strategies.

2. Problem Formulation
2.1. The Model

Overview of the model. A monopolist sells a single product over a horizon of length T . It will be

convenient to think of this planning horizon in terms of customer arrivals. To wit, customers arrive

sequentially and are indexed by t ∈ {1, . . . , T}, and it will be assumed henceforth that T is known

to the seller. Each customer purchases at most one product upon arrival and does not return to the

market. The monopolist can influence demand by varying the price it offers to different customers.

The demand also depends on the product’s quality, which is not known to customers upon their

arrival. Reviews reported by previous buyers provide public information about the product, and

customers use this information to evaluate the product’s quality. In what follows, we formalize the

functional relationships among the demand, price, and review outcomes.

Customers’ valuation and feedback. We assume that the value of a product to customer t is

defined by

xt =Qt + β−αpt. (1)

where pt ∈ [
¯
p, p̄], with

¯
p < p̄, is the price quoted by the monopolist to customer t. In (1), Qt represents

the quality experienced by customer t after purchase, which is taken to be a normal random variable,

Qt ∼ N(M,Σ2). The standard deviation Σ captures the degree of heterogeneity in post-purchase

quality perceptions. When a purchase happens, then with probability u∈ (0,1], the customer reports

a numeric rating equal to qt, where qt is the projection of Qt onto the interval [
¯
q, q̄]. We let µ= E[qt]

and σ2 = E[q2
t ]−E[qt]2 be the mean and variance of the truncated quality perception, respectively. The

parametric structure of the underlying distribution for qt is known to customers with the exception of
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its mean µ, which will be the objective of the customer learning process as described in the following
paragraphs.

Review mechanism. Upon arrival, customer t observes a summary of reviews from previous
buyers s < t: the number of reviews nt and the average rating rt =

∑nt
i=1 qt(i)/nt for t≥ 2, where t(i)

is the index of the ith reviewer. For t= 1, we let r1 = n1 = 0. We denote by (nt, rt) the state of the
review platform observed by customer t. If customer t purchases the product, she reports a rating of
qt with probability u∈ (0,1]. Then, the state of the review platform is updated as follows:

(nt+1, rt+1) =
{

(nt + 1,
∑nt+1
s=1 qt(i)/nt+1) if customer t purchases and reports,

(nt, rt) otherwise.
(2)

Belief update mechanism. Customers share a common prior belief, expressed in our model
through a normal random variable q̃0 ∼ N(µ0, σ

2
0). After observing the state (nt, rt) of the review

platform, customer t updates her belief according to Bayes’ rule. Specifically, the posterior belief over
µ is denoted by q̃t ∼N(µt, σ2

t ), where

µt = γntrt +µ0

γnt + 1 , σ2
t = σ2

0

γnt + 1 , (3)

and γ = σ2
0/σ̂

2 (see, e.g., DeGroot 2005). The ratio γ measures the degree of ex ante uncertainty rela-
tive to the uncertainty in individual product reviews; for example, γ = 0.1 implies that approximately
ten reviews from other customers are as influential to the posterior belief as their own prior belief.
Motivated by these observations, throughout the paper we will often refer to γ as the “learning rate”
of customers. Finally, customer t’s perceived value of the product before purchase is x̃t = q̃t+β−αpt.

Customers’ purchase decisions. Faced with the uncertain valuation x̃t, customers in our model
make purchasing decisions by maximizing the expected utility (e.g., Roberts and Urban 1988). In
particular, we assume that customers are endowed with a linear utility function. (This structural
assumption has no significant bearing on our results, but simplifies analysis and exposition.) The
expected utility χt of a purchase can be written as

χt = µt + β−αpt, (4)

and the expected utility of the no-purchase option is normalized to zero. We assume that there is an
additive error ξt associated with χt, which arises from measurement, situational factors, and idiosyn-
cratic individual behavior. The error ξt is a random variable distributed according to a standard
Gumbel distribution. In this manner, the resulting probability of purchase follows the familiar logit
model, hereafter referred to as the demand function, denoted by λ(pt, nt, rt), where

λ(pt, nt, rt) = `(χt) := exp(χt)
1 + exp(χt)

= exp(µt + β−αpt)
1 + exp(µt + β−αpt)

. (5)
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Note that pt ∈ [
¯
p, p̄] and µt ∈ [min(

¯
q,µ0),max(q̄, µ0)], and therefore, the demand function values lie

in a compact set, i.e., λ(pt, nt, rt) ∈ [
¯
λ, λ̄], with

¯
λ > 0 and λ̄ < 1. In particular,

¯
λ > 0 implies that,

even at the lowest possible average rating and the highest possible price, customers will choose to
purchase the product with a positive probability. Recalling that a customer posts a rating with
positive probability u after purchase, this ensures that the ratings accumulate in the review platform
at least at a constant rate so that the unknown quality µ is eventually revealed, i.e., µt→ µ almost
surely as t→∞.

2.2. The Revenue Maximization Problem

The seller controls the demand function using a non-anticipating pricing policy π = {pt | t= 1, . . . ,
T}. We denote by Π the set of all non-anticipating pricing policies such that pt ∈ [

¯
p, p̄] for each t,

and let (nt, rt) be the state variables at the time of arrival of customer t.
The total expected revenue is denoted by

JπT = Eπ
[
T∑
t=1

ptλ(pt, nt, rt)
]
, (6)

where Eπ is the expectation given that the seller uses policy π. The seller’s problem is to find a
pricing policy π ∈Π that maximizes the total expected revenue:

J∗T = sup
π∈Π
{JπT }, (7)

and the optimal solution is denoted by π∗.
It is quite difficult, if not impossible, to find an exact solution to the stochastic dynamic pro-

gramming problem (7) because of the following two major issues. First, there is an intertemporal
effect of price: specifically, the current price pt affects the state variables for all subsequent customers
{(ns, rs)}Ts=t+1, which in turn influences the demand and pricing decisions in the future. Second, the
state variables (nt, rt) evolve over t= 1, . . . , T in a stochastic, non-linear manner.

Numerical illustration of the optimal solution. For problems with a small number of cus-
tomers, one can approximate the optimal solution by using lattices of the price and state variables
and then solving the discretized problem numerically. In Figure 1, the price range [

¯
p, p̄] = [0,40] is

discretized with interval 0.5 and the range of the average rating, [1,5], is discretized with interval
0.25. The two panels in Figure 1 illustrate optimal price paths from the discretized problem with
T = 80, along with those of the average rating over the selling horizon. Figure 1 provides intuitive
properties of the optimal solution to the stochastic problem. When the average rating is initially
high relative to the true quality (left panel), the seller sets a high initial price to take advantage of
the high rating and slowly decreases the price as the average rating converges. On the other hand,
when the average rating is initially low (right panel), the optimal price starts from a low level to
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Figure 1 Sample paths of optimal prices for the discretized stochastic problem for T = 80 customers. The left
panel corresponds to the case with high initial rating, while the right panel corresponds to the case with low

initial rating. The parameters for the demand function are (α,β, γ) = (0.2,0,1); the mean prior belief is µ0 = 1.5;
the mean of a rating is µ= 3; and the probability of posting a review after purchase is u= 1.

accelerate information collection via the accumulation of customer reviews, and then it gradually
increases with the average rating. In both cases, we remark that the optimal price depends not only
on the average rating qt, but also on the number of reviews nt and time t; Figure 1 only shows the
former dependence.

For problems with a large number of customers, however, the solution using discretization poses
a significant computational issue. In what follows, we provide alternative methods to construct
tractable, well-performing pricing policies that are implementable in many applications with a large
number of customers.

2.3. Discussion of Modeling Assumptions

The modeling framework in the previous section is primarily chosen to facilitate delivery and provide
reasonable first order approximation to the structure observed in some practical applications. We
now briefly touch upon a number of modeling assumptions that can be classified into three categories:
asymmetric information; unbiased reviews; time-homogeneity. Later we will present a small scale
empirical study that indicates that this modeling framework has some grounding in observed data.

Asymmetric information. We assume asymmetric information between seller and customers.
In particular, the seller has a private information about the mean quality µ, which is not available
to customers. This is reasonable in the scenario where a manufacturer can retrieve this information
via product testing or market research prior to sales. Further, in the scenario where a manufacturer
sells indirectly through a retailer, the retailer may not have private information about quality but
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can truthfully infer its level through the strategic interaction with the manufacturer; for example,
the manufacturer’s wholesale price may serve as a signal of quality (Milgrom and Roberts 1986,
Judd and Riordan 1994). In either scenario, although the seller’s price may convey information to
customers about quality, we assume that they do not adjust their quality estimate in response to
that information. If customers actively learn quality through product reviews, which in the language
of our model means γ is high, reviews may convey a stronger signal than price, as opposed to the
case in traditional brick-and-mortar stores where pricing signals can be relatively strong.

Unbiased reviews. Our model assumes that a buyer reports their quality perception qt directly
to the review system, and not the net utility xt that takes into account the price they paid. The
assumption of price-independent reviews is widely used in the research community (e.g., Papanas-
tasiou and Savva 2017, Yu et al. 2015). This is true if customers are altruistic and report the most
useful information to subsequent customers, which is the (truncated) experienced level of quality
qt. Note that this assumption is aligned with the recent development of advanced review systems
(e.g., Amazon Vine program), where customers are incentivized through special offers and discounts
to post truthful reviews that reveal the quality. Further, if buyers are more likely (respectively, less
likely) to appreciate the product’s experience than non-buyers, there can be a positive (respectively,
negative) bias in the average rating (Li and Hitt 2008). This does not happen in our model since
the quality experience Qt and the idiosyncratic preference ξt are not correlated. Our assumption of
unbiased reviews helps us elucidate the key features of our problem in a simpler setting, but our
theoretical results do not rely on this assumption; all of our theoretical results remain true as long
as the average rating converges to any constant.

Time-homogeneity. In our model, customers’ purchasing behavior and review propensity are
independent of customer index t, i.e., the timing of their arrival along the sales horizon. This assump-
tion is, of course, somewhat restrictive. In particular, it does not account for a phenomenon of self-
selection; for example, a product may provide significantly higher value to a group of early adopters
than to the broader customer population. It would require a game theoretic formulation to fully
capture such a phenomenon. Although our main focus is on the model with time-homogeneous cus-
tomers, we also discuss a relaxation of such an assumption in Section 6.1 to demonstrate robustness
of our main results.

3. A Fluid Approximation and Qualitative Insights
To introduce our main ideas in a simple setting, this section studies a deterministic continuous coun-
terpart of the stochastic discrete problem (7), and leverages it to suggest a simple and implementable
pricing policy. We use the argument t in parenthesis to denote variables in continuous time; for
example, we use p(t) as a continuous counterpart of the price pt in the original discrete problem.



Authors’ names blinded for peer review
10 Article submitted to Management Science; manuscript no.

3.1. Formulation
Define ψ = {p(t) | t ∈ [0, T ]} as our control variable and let Ψ be the set of all piecewise continuous
paths of the control. In this formulation we ignore that each price p(t) is constrained in the interval
[
¯
p, p̄]; this constraint will be re-considered in Section 4.2, where we propose a pricing policy for

the main problem (7). We denote the state variables by {n(t), r(t) | t ∈ [0, T ]}, and let ṅ(t) be the
derivative with respect to time, i.e., ṅ(t) := dn(t)/dt. Then, n(t) satisfies the ordinary differential
equation:

ṅ(t) = uλ(p(t), n(t), r(t)), (8)

with the initial condition n(0) = 0. Further, we let r(t) be the counterpart of the average rating,
which is simply equal to the population mean µ for all t ∈ [0, T ]. The total revenue generated over
[0, T ] under policy ψ is denoted by

J̄ψT =
∫ T

0
p(t)λ(p(t), n(t), r(t))dt, (9)

and the seller’s problem is to maximize the total (fluid) revenue:

J̄∗T = max
ψ∈Ψ

J̄ψT

subject to ṅ(t) = uλ(p(t), n(t), r(t)), t∈ [0, T ]

r(t) = µ, t∈ [0, T ]

n(0) = 0.

(10)

In this manner, (9)-(10) are the fluid model counterparts of the original stochastic dynamic problem
defined in (6)-(7). Note that the maximum in (10) exists (Theorem 1), and hence the sup in the
stochastic formulation (7) can be replaced with a max in (37). We hereafter refer to the solution of
(10), ψ∗, as the (fluid) optimal dynamic pricing (ODP) policy. The corresponding state variables are
denoted by {(n∗(t), r∗(t)) | t∈ [0, T ]}.

3.2. Characterization of the Optimal Solution to the Fluid Problem
We begin with Pontryagin’s maximum principle to characterize necessary conditions satisfied by the
ODP policy. The Hamiltonian function is defined as H(p,n, r, θ) = (p+ uθ)λ(p,n, r), where θ is the
shadow price associated with the constraint ṅ= uλ(p,n, r) in (10). The shadow price represents the
net benefit of having the constraint ṅ = uλ(p,n, r) relaxed by one unit; that is, θ is the marginal
value of an additional single review. (In what follows we will eliminate t in the function arguments
where there is no confusion, in order to improve clarity.)

The maximum principle states that the optimal solution, if it exists, maximizes the Hamiltonian
at each instant t. The optimal price and state variables, (p∗, n∗, r∗), along with the shadow price, θ,
satisfy the following system of differential equations:

0 = ∂H(p∗, n∗, r∗, θ)
∂p

(maximum of H) (11a)
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θ̇=−∂H(p∗, n∗, r∗, θ)
∂n

, θ(T ) = 0 (shadow price) (11b)

ṅ∗ = uλ(p∗, n∗, r∗), n∗(0) = 0 (number of reviews) (11c)

r∗ = µ (average rating) (11d)

The first condition (11a) implies that

p∗ =− λ(p∗, n∗, r∗)
∂λ(p∗, n∗, r∗)/∂p −uθ. (12)

The first term on the right-hand side of the preceding equation resembles the classical static, revenue-

maximizing pricing rule, except the subtraction of uθ. Recalling that the shadow price θ represents

the marginal value of an additional review, one may interpret (12) as follows: If an additional review

tends to increase future demand, i.e., θ > 0, then there is an incentive to sacrifice profits now by

lowering price in order to benefit later. On the other hand, if an additional review would decrease

future demand, i.e., θ < 0, then the seller would rather realize more instantaneous benefit by raising

price, which simultaneously decelerates the accumulation of reviews. This trade-off between price

and shadow price will be articulated later in (21).

It is not hard to verify that the following characterization of the optimal and shadow prices, along

with the corresponding state variables, satisfies the first order conditions in (11a)-(11d):

p∗(t) = 1 + exp(z∗)
α

+ µ−µ0

α

( 1
γn∗(T ) + 1 −

1
γn∗(t) + 1

)
n∗(t) = u`(z∗)t,

(13)

where the constant z∗ is a solution to the following equation:

z+ exp(z) = µ+ β− 1 + µ0−µ
γu`(z)T + 1 . (14)

Note that along the path of the price given by (13), the demand function is constant for t∈ [0, T ].

It is important to note, however, that (11a)-(11d) only provide necessary conditions for optimality,

if an optimal solution exists. Therefore, further analysis is needed to guarantee the existence and

optimality of the solution characterized in (13). The following theorem shows that, under suitable

conditions, the closed-form expression in (13) is the unique optimal solution of (10).

Theorem 1 (Optimal solution to the fluid problem). An optimal solution to the fluid prob-

lem (10) exists. Further, if
γuT (µ−µ0)
4(1 + γuT ) < 1, (15)

then the price characterized in (13) is the unique optimal solution.
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Proof Sketch. To show existence, note first that in our model there is a one-to-one correspondence
between price and demand (Li and Huh 2011). Therefore, given state variables n and r, the demand
function λ(p,n, r) has an inverse, denoted p(λ,n, r). An equivalent formulation to the fluid problem
(10) is

max
λ(·)

∫ T

0
p(λ(s), n(s), r(s))λ(s)ds

subject to ṅ(t) = uλ(t), t∈ [0, T ].
(16)

Note that the instantaneous revenue p(λ(s), n(s), r(s))λ(s) in (16) is a concave function of λ(s).
(In the fluid problem (10), the instantaneous revenue p(s)λ(p(s), n(s), r(s)) is not concave in p(s).)
Combining concavitiy along with the compactness of λ(·) establishes the conditions required by
Theorem 1 of Cesari (1966) for the existence of an optimal solution for (16), which in turn guarantees
the existence of an optimal solution for (10). For uniqueness, it is sufficient to show the uniqueness
of the solution z∗ to equation (14). The condition (15) guarantees that the derivative of the function
g(z), defined as

g(z) = z+ exp(z)−µ− β+ 1− µ0−µ
γu`(z)T + 1 , (17)

strictly increases with z. Combined with the fact that g(z) ↓ −∞ as z ↓ −∞ and g(z) ↑∞ as z ↑∞,
we establish that g(z) crosses zero at a single point. �

Remark 1 (Sufficient conditions for Uniqueness). The condition (15) always holds
when customers overestimate the quality a priori (i.e., µ0 > µ). In the case of an underestimating
prior (i.e., µ0 <µ), it is straightforward to check that (15) holds if µ−µ0 ≤ 4, since

γuT (µ−µ0)
4(1 + γuT ) <

µ−µ0

4 . (18)

Remark 2 (Generality of the closed-form solution). From a practical perspective, we
remark that the condition (15) is not a significant restriction. Specifically, if (15) is violated, it can
be easily shown that there can be at most three solutions to equation (14) since g′(z) changes sign at
most at two points over the entire horizon. That is, there can be at most three candidate price paths
of the form (13), each of which corresponds to different values of z∗. In this case, one may choose the
value of z∗ that corresponds to a greater value of the objective function, which can be written in a
closed form as

J̄∗T = exp(z∗)T
α

+ (µ0−µ)
αγu

(
log(γu`(z∗)T + 1)− γu`(z∗)T

γu`(z∗)T + 1

)
. (19)

Given the optimal solution p∗ and the associated state variable n∗ specified in (13), the shadow
price can be uniquely determined as:

θ(t) = µ−µ0

uα

( 1
γn∗(T ) + 1 −

1
γn∗(t) + 1

)
. (20a)
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Since n∗(t) is a nondecreasing function, the sign of the shadow price is determined by the difference
between the mean prior belief µ0 and the true mean µ. When customers have low prior belief (µ0 <

µ), the shadow price is positive (since an additional review increases the quality perception of the
following customers) and non-increasing (since later reviews affect less customers). Conversely, when
customers have high prior belief (µ0 >µ), the shadow price is negative and non-decreasing. Further,
combining (13) and (20a), the relationship between the optimal price and the shadow price can be
described as follows:

p∗(t) +uθ(t) = 1
α(1− `(z∗)) , t∈ [0, T ]. (21)

This equation implies that the sum of the optimal price (i.e., the immediate benefit from selling
a single unit of the product) and the shadow price (i.e., the latent future benefit from having an
additional review) for each product is constant over time. For example, when the mean prior belief
µ0 is significantly lower than the true mean µ, additional reviews are highly beneficial for the seller
(i.e., high θ(t)) and the seller should decrease the price to accumulate reviews more quickly; that is,
the immediate benefit is sacrificed by charging a low price at time t, which is compensated by higher
revenue in the future.

3.3. The Value of Learning: Comparison with a Fixed-Price Policy

Theoretical characterization. The dynamic nature of the optimal solution described in the pre-
vious section reflects the time-varying demand process driven by customer learning. Despite the
presence of time-varying demand functions in many practical settings, it is still fairly common, both
in academic studies and in practice, to focus on fixed-price policies. In this section, we highlight the
role of dynamic pricing by characterizing the parameter regimes where dynamic pricing leads to a
significant improvement in revenue over fixed-price policies.

To this end, recall that the value of γ captures the speed of learning; the higher the value of γ
the faster customers’ belief converges. For the purpose of the following result we will consider an
asymptotic regime where we consider the behavior of γT , separating into three distinctive regimes:
(a) The “slow-learning” regime (γ� 1/T ), where customers update their beliefs slowly, so that the
bias |µ(t)−µ| remains significant at the end of the selling horizon T ; (b) the “fast-learning” regime
(γ� 1/T ), where customers quickly recover the true quality from reviews; and (c) the “intermediate”
regime (γ ∼ 1/T ). In each of the three regimes, we analyze the revenue loss when the seller decides
to use a fixed price as opposed to the optimal rating-dependent policy. This will be carried out by
varying the values of γT ; the dependence of relevant quantities on γ will be suppressed to avoid
cluttering the notation.

In the context of a fixed time horizon, which is our main focus in the paper, one can interpret
the above parametric regimes in terms of γ converging to zero (slow learning) and diverging to
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(a) γ � 1/T
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Figure 2 Characterization of the three regimes. Slow-learning and fast-learning regimes correspond to
operating regimes represented by the areas below and above the curve, respectively, while the intermediate

regime corresponds to the area around the curve.

infinity (fast learning), but further insight is gleaned when one considers this in relevant time scales.
As such, the next theorem formalizes the notion that 1/T is the critical rate separating the two
aforementioned regimes; this is what is referred to above (and below) as the intermediate learning
regime. To formulate this, let OFP denote the (fluid) optimal fixed-price policy, and denote by pOFP

and J̄OFP
T the price and (fluid) revenue of OFP, respectively. This will be compared with the fluid

optimal revenue J̄∗T which is the optimal value of the fluid problem (10).

Theorem 2 (Dynamic versus fixed-price policies). Assume µ0 6= µ and that the condition in
(15) is satisfied. Then,

1− J̄OFP
T

J̄∗T
→


0 as γT → 0 [(a) slow learning]
0 as γT →∞ [(b) fast learning]
∆(κ) as γT → κ∈ (0,∞) [(c) intermediate learning],

(22)

where ∆(κ)∈ (0,1) is a constant that depends only on κ∈ (0,∞).

The behavior of ∆(κ) is illustrated in Figure 4. Theorem 2 suggests that the value of dynamic
pricing relative to fixed-price policies depends on the learning dynamics over the time horizon, rep-
resented by the product of the learning rate (γ) and the time horizon (T ). In particular, when γT

is “small”, customers do not learn “enough” from product reviews due to a slow learning rate rel-
ative to the time horizon; in this regime, corresponding to the region below the curve in Figure 2,
dynamic pricing does not exhibit significant gains relative to fixed-price policies. On the other hand,
when γT is “large”, customers learn significantly from product reviews due to a fast learning rate
relative to the time horizon; in this regime, corresponding to the region above the curve in Figure 2,
dynamic pricing only has a significant impact over a relatively short interval. Consequently, in these
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two regimes, the seller can achieve near-optimal revenue using a fixed-price policy. However, a sig-
nificant loss in revenue can be incurred under OFP in the intermediate values of γT , depicted in the
proximity of the curve in Figure 2. It is in this parameter regime that the value of learning is fully
realized by the dynamic pricing policy.

To provide a more in-depth intuition behind the result of Theorem 2, we now state an immediate
corollary of this theorem. To state the corollary, let επ(t) be the relative error in mean belief at time
t under pricing policy π defined as:

επ(t) =
∣∣∣∣µπ(t)−µ
µ0−µ

∣∣∣∣ . (23)

That is, επ(t) ∈ [0,1] gives the normalized deviation between the customers’ quality belief and the
true quality at time t, expressed as a fraction of the initial bias (µ0 − µ). For instance, when επ(t)
is close to one, customers have learned almost nothing from product reviews, whereas when επ(t) is
close to zero, customers’ quality beliefs are close to the true quality.

Corollary 1 (Degeneracy in slow- and fast-learning regimes). Assume µ0 6= µ and that
the condition in (15) is satisfied. Then, for fixed T , p∗(t)−pOFP→ 0 for each t∈ [0, T ] as γ→ 0 or ∞.
Further,

επ(t)→
{

1 if γ→ 0 (slow learning)
0 if γ→∞ (fast learning)

(24)

for each t∈ (0, T ] under the ODP and OFP policies.

Discussion of learning in the three regimes. In the case with low initial belief (µ0 <µ), the
results of the preceding corollary are illustrated in Figure 3 in (a) slow-learning, (b) fast-learning,
and (c) intermediate regimes. We comment on each of the three cases below.

(a) Slow-learning regime. In this regime customers are marginally influenced by reviews. In partic-
ular, in Figure 3(a), µ∗(t) increases slowly from µ0 and customers do not eventually recover the true
quality from reviews. Reflecting the “sluggish” changes in the belief process, the optimal price p∗(t)
also increases slowly over time. More specifically, from (13) and (14) it can be seen that p∗(t)≈ p0 :=
arg maxp{p`(µ0 +β−αp)}, where p0 represents the optimal fixed price in the absence of reviews, or
equivalently, when γ = 0. Consequently, the optimal price path p∗(t) can be closely approximated by
a single price in this regime.

(b) Fast-learning regime. In this case customers recover the true quality µ very early in the selling
horizon; see the bottom panel of Figure 3(b). Using (13) and (14) once again, we can show that
p∗(t) ≈ p∞ := arg maxp{p`(µ+ β − αp)}, where p∞ is the optimal fixed price with perfect learning
from product reviews, or equivalently, when γ =∞. As a result, the optimal price path p∗(t) is in
the vicinity of a single price, except for the initial part of the horizon which becomes negligible as
γ→∞.
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Figure 3 Comparison of the price and mean belief processes under ODP and OFP. In the slow-and fast-learning
regimes, the paths of the price and mean belief are almost identical under ODP and OFP, whereas in the

intermediate regime, ODP leads to a significantly different price and learning dynamics than OFP. The parameters
for the demand function are (α,β,µ0, µ,u,T ) = (0.1,−1,2,4,1,100) for all cases and we vary γ ∈ {0.001,0.1,10}.

(c) Intermediate regime. In this setting customers are moderately influenced by reviews, and there-

fore, µπ(t) does not degenerate to µ0 or µ under both policies; see the bottom panel of Figure 3(c).

In other words, customers are actively learning from reviews over the entire horizon, and hence, the

dynamics of the mean belief depends significantly on the price path over time. Specifically, ODP

initially sets a low price to encourage learning, at the expense of immediate revenue, which allows

to collect the greater revenue in later periods. This intertemporal trade-off is not attainable with a

single price—hence the large gap between ODP and OFP.

Lastly, we remark that the revenue loss of OFP stands out when the bias |µ0−µ| is large. To see

this, recall from Theorem 2 that, for κ = γT , ∆(κ) measures the value of dynamic pricing relative

to the fixed one. Figure 4 illustrates that, for fixed κ, the revenue gap between OFP and ODP is

high for large bias |µ0− µ|. That is, the seller has more room to improve revenue using ODP when

customers’ average belief about product quality is significantly different than the truth. Also note

from Figure 4 that small and large values of κ correspond to slow- and fast-learning regimes, in which

cases ∆(κ) is close to zero.
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Figure 4 The revenue loss ∆(κ) of fixed-price policies . Each curve displays ∆(κ) in log-linear scale, where
κ= γT with T = 100 and we vary γ ∈ [0.01,36]. The parameters for the demand function are

(α,β,µ0, u) = (0.1,−1,0,1), where high, medium, and low biases correspond to µ= 3,2,1, respectively.

4. Proposed Pricing Policies: Asymptotic Efficiency and Finite-Time
Performance

This section proposes a set of pricing policies for the stochastic revenue-maximization problem (7)

using the structural insights from the closed-form characterization of the optimal solution in the

fluid formulation (Section 4.1). These policies are shown to be efficient in an asymptotic regime

where the number of customers grows to infinity (Section 4.2). With the aim of improving the

finite-time performance, we analyze the proposed policies through extensive numerical experiments

(Sections 4.3-5.2).

4.1. Proposed Pricing Policies

We discuss four pricing policies for the stochastic revenue-maximization problem.

Optimal Fixed-price (OFPS) policy. This static pricing strategy is a counterpart of OFP for the

fluid problem, defined in Section 3.3. This policy sets pt = pOFPS := arg maxp{E[
∑T
t=1 pλ(p,nt, rt)] | p∈

[
¯
p, p̄]} for each t= 1, . . . , T , where the pOFPS can be found numerically. This static pricing strategy

lacks the capability of corrective action against stochastic fluctuations.

One-step Look-ahead (OSLA) policy. For each stage t, this policy makes a pricing decision as if

there is only one more stage to go; in particular, pt = arg maxp{pλ(p,nt, rt) | p∈ [
¯
p, p̄]}. Although the

OSLA policy does not exploit the structural properties of the fluid model and ODP, it provides an

adjustment of price along the evolution of the review process and seems of practical interest.

Static Fluid-Matching (SFM) policy. This policy builds on the ODP policy ψ∗ = {p∗(s) | s∈ [0, T ]}.

Put pt = max{min{p∗(t), p̄},
¯
p} for each stage t = 1, . . . , T , and note that the resulting price path

does not update according to the realization of (stochastic) reviews over time.
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Policy 1: Dynamic Fluid-Matching (DFM)
for t∈ {0, . . . , T − 1} do

Update the number of reviews nt and the average rating rt. Calculate µt from (3).
Solve for zt in (27) to obtain the solution ψ∗t = {p∗t (s) | s∈ [t, T ]} from (26).
Offer price pt = max{min{p∗t (t), p̄},¯

p} for each product k.
Let t= t+ 1

end

Dynamic Fluid-Matching (DFM) policy. In each stage t of the DFM pricing policy, we re-solve a
fluid problem over the residual selling horizon [t, T ], where initial conditions for the state variables
are set according to the observed state in that stage:

max
ψt∈Ψt

∫ T

t

p(s)λ(p(s), n(s), r(s))ds

subject to ṅ(s) = uλ(p(s), n(s), r(s)), s∈ [t, T ]

r(s) = rtnt +µ(n(s)−nt)
n(s) , s∈ [t, T ]

n(t) = nt.

(25)

We let ψ∗t = {p∗t (s) | s ∈ [t, T ]} be the optimal solution to the modified fluid problem, with the
subscript t indicating the current stage. Also denote by {n∗t (s), r∗t (s) | s∈ [t, T ]} the path of the state
variables under ψ∗t . It is straightforward to adopt the characterization given in (13)-(14) to show that
an optimal solution to (25) can be characterized as

p∗t (s) = 1 + exp(z∗t )
α

+ γnt(rt−µ)
α

( 1
γn∗t (T ) + 1 −

1
γn∗t (s) + 1

)
n∗t (s) = nt +u`(z∗t )(s− t)

r∗t (s) = rtnt +µ(n∗t (s)−nt)
n∗t (s)

,

(26)

where z∗t is a solution z to the equation:

z+ exp(z) = β+µ− 1− γnt(rt−µ) + (µ0−µ)
γ(nt +u(T − t)`(z)) + 1 . (27)

Based on (26) and (27), we design the DFM policy which iteratively solves the modified fluid
problem (25) and use the solution ψ∗t to make a pricing decision in every stage t. The formal definition
of the DFM policy is given in Policy 1. Note that the DFM policy offers the initial value of the
optimal solution to the modified fluid problem (25), truncated to the interval [

¯
p, p̄]. The price pt =

max{min{p∗t (t), p̄},¯
p} in the DFM policy is called a fluid-matching price. The proximity between

the fluid-matching price and the optimal solution to (7) is illustrated in Figure 6; we delay detailed
discussion of the figure until Section 4.3.
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4.2. Asymptotic Performance of the Proposed Pricing Policies

This subsection offers an asymptotic characterization of the performance under the proposed pricing
policies, formalized in the following theorem. For the remainder of the paper, g1(x) = O(g2(x))
indicates that there exist M <∞ and x0 such that |g1(x)| ≤M |g2(x)| for all x≥ x0.

Theorem 3 (Asymptotic performance). For π ∈ {OFPS,OSLA,SFM,DFM}, J∗T − JπT =
O(
√
T ).

The preceding theorem asserts that all of the proposed pricing policies achieve near-optimal perfor-
mance, verifying their efficacy in an asymptotic regime where the number of customers grows large.
We outline the proof of Theorem 3 in two steps. First, we show that the optimal revenue in the fluid
formulation J̄∗T is close to the optimal revenue of the stochastic formulation J∗T for sufficiently large T
(see Lemma 1). Second, we analyze the asymptotic performance JπT of the four pricing policies with
respect to J̄∗T (see Lemma 2). A critical aspect of the proof is the convergence of the state variables
in the stochastic formulation, which in turn leads to the convergence of optimal prices to their fluid
counterparts.

Lemma 1. |J∗T − J̄∗T |=O(
√
T ).

Remark 3 (Proof Sketch and Intuition). It can be shown that the state variables of the
stochastic formulation (7) converge to the fluid counterpart; that is, nt→∞ and rt→ µ as t→∞.
Using standard concentration inequalities, the convergence rate of rt to µ can be characterized as
Eπ[(rt−µ)2] =O(1/t) for any π ∈Π (Lemma 4). Combined with the fact that the demand function
λ(·) is Lipschitz continuous with respect to the state variables, the desired result of the lemma
follows. �

Note that J∗T increases at least linearly in T because the expected revenue in each stage is bounded.
Hence, the preceding lemma implies that the difference between J∗T and J̄∗T becomes negligible relative
to J∗T for sufficiently large T . This, in turn, implies that the revenue loss of a policy π with respect
to J∗T is relatively small if the expected revenue JπT is “not too far” from J̄∗T . The latter statement is
proved in the following lemma.

Lemma 2. |J̄∗T − JπT |=O(
√
T ) for π ∈ {OFPS,OSLA,SFM,DFM}.

Remark 4 (Proof Sketch and Intuition). The main part of the proof is to show that
pπt for each π ∈ {OFPS,OSLA,SFM,DFM} is close to the fluid counterpart p∗(t) for sufficiently
large t. This is true for π = SFM by definition. Define λlim(p) := limt→∞ λ(p,nt, rt) and let plim =
arg maxp∈[

¯
p,p̄]{pλlim(p)}. Since nt→∞ and rt→ µ almost surely as t→∞, we have that λlim(p) =

`(µ+ β − αp). It can be seen that p∗(t) ≈ plim for sufficiently large t ≤ T . By construction of each
policy π ∈ {OFPS,OSLA,DFM}, we can show that pπt ≈ p∞ for sufficiently large t, which in turn
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implies pπt ≈ p∗(t). To be specific, the convergence rate of Eπ|pπt − p∗(t)| is governed by the expected
gap in the state variables, Eπ|rπt −µ|, which is O(1/

√
t) by standard concentration inequalities. Com-

bined with the Lipschitz continuity of the demand function λ(·), the convergence rate of |J̄∗T −JπT | is
governed by that of Eπ|pπt − p∗(t)|, from which we deduce the desired conclusion. �

Theorem 3 follows immediately from Lemmas 1-2 since J∗T − JπT ≤ |JπT − J̄∗T |+ |J̄∗T − JπT | by the
triangle inequality. Theorem 3 provides the effectiveness of the proposed policies in the asymptotic
setting. However, it is important to note that all of these policies are not necessarily competitive
over a finite horizon. As seen in Section 3.3, dynamic pricing strategies are more appropriate than
fixed-price policies for small T . In what follows, we compare the performance of the proposed policies
via simulation (Section 4.3) and counterfactual analysis (Section 5.2).

4.3. Simulation for Small-scale Problems
We conduct a simulation for problems with small number of customers T ≤ 160 to evaluate the
performance of the DFM policy with respect to the optimal revenue J∗T of the stochastic problem.
Since it is not numerically tractable to compute the exact value of J∗T , we report the optimal revenue
of the discretized stochastic problem, with the discretization being done in the same manner as in
Figure 1.

Figure 5 illustrates the average revenues per-customer under these pricing policies. The perfor-
mance of the DFM policy is surprisingly good; the revenue generated under the DFM policy is almost
identical to that from the optimal policy for the discretized stochastic problem, even with the very
small number of customers T = 20. Figure 6 shows sample price paths of the optimal pricing policy
along with the fluid-matching prices that are fabricated from DFM along the path of state variables
generated by the optimal pricing policy. The proximity between the two price paths suggests homol-
ogous review dynamics between the DFM and the optimal pricing policies—hence the near-optimal
performance of DFM. The performance of the SFM policy is relatively poor; the gap between the
DFM and SFM policies can be viewed as the loss due to ignoring uncertainties in the review pro-
cess. The OSLA policy also performs poorly compared to the DFM policy as the former ignores
the intertemporal effect of price. The OFPS policy captures neither the uncertainties in the review
process nor the intertemporal effect of price, and hence, its performance is relatively poor.

Note that the proposed pricing policies perform differently in the small-scale problems in Figure 5,
but they perform comparably in large-scale problems consistent with Theorem 3; see also Figure 7
in Appendix A.2.

5. Numerical Study
5.1. Validating the Demand Model
We show via empirical validation that our model serves as a good representation of online markets
operating with product reviews.
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Figure 5 The total revenues under different pricing policies for low and high prior beliefs: (a) µ0 = 0< 2.5 = µ

and (b) µ0 = 5> 2.5 = µ. In both cases, the model parameters are (α,β, γ,u,σq) = (0.1,−1,1,1,2) with price
bounds (p, p̄) = (0,40).The revenues of these policies are estimated by taking averages of 103 simulation trials.

The error bars represent standard errors.
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Figure 6 Sample paths of the optimal and fluid-matching prices for low and high prior beliefs: (a)
µ0 = 0< 2.5 = µ and (b) µ0 = 5> 2.5 = µ. In both cases, the model parameters are (α,β, γ,u,σq) = (0.1,−1,1,1,2).

5.1.1. Available Data. In order to validate the model developed in Section 2.1, we use data

collected from Amazon, one of the largest online retailers in the world. Our dataset includes a
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Table 1 Descriptive statistics for the reduced set of our data.

Mean Standard
deviation

10th
Percentile

50th
Percentile

90th
Percentile

Observation period (days) 471.9 79.1 376.4 461.5 596.0
Sales rank 15790.0 58968.9 181.8 1738.5 25151.5
Price 17.8 7.9 11.18 16.3 25.7
Daily price variation 0.0049 0.0022 0.0025 0.0044 0.0073
Daily price change frequency 0.92 0.51 0.32 0.75 1.70
Average rating 4.54 0.33 4.1 4.6 4.87
Number of reviews 888.2 1045.1 32.1 516.0 2142.8

thousand hardcover books released between January 2015 and December 2016 on Amazon. For each
product we collect sales rank, price, number of reviews, and average rating via web scraping on a
daily basis. Although we cannot observe sales directly, we can utilize the relationship between sales
rank and actual sales found by Schnapp and Allwine (2001) to estimate sales during the relevant
period: log(ImpliedSalesm) = 9.61− 0.78 log(SalesRankm), where m represents the number of days
elapsed after the product release; our qualitative conclusions are not affected by different coefficients
of the preceding relationship. We use the implied sales as a proxy to the actual sales in this paper.
Reviews posted on Amazon.com have single-valued integer ratings, ranging from 1 to 5. (In this
section, variables of course depend on the product but, for the sake of exposition, we suppress that
dependence.)

For the purpose of validating our demand model, we restrict our attention to products that satisfy
the following criteria: (i) the observation period is greater than 300 days; and (ii) daily price variations
for the product’s life cycle is greater than 10−3. Daily price variations are measured by

M−1∑
m=1

|Pricem+1−Pricem|
Pricem

, (28)

where Pricem represents the average daily prices on the mth day for each product. The criterion (i)
ensures sufficient amount variation in terms of the number of reviews and the average rating. There
are 72 products that meet these criteria in our data set; Table 1 summarizes descriptive statistics of
these products.

5.1.2. Estimation Procedure. Our data set does not include information about individual
users who visited products’ web pages; in particular, purchasing decisions of individual users are
not available in our data. Hence, we estimate the demand model using daily sales as follows. First,
we estimate the daily number of visitors for a product’s web page, denoted NumVisits, using the
relationship:

NumVisits =
∑M
m=1 ImpliedSalesm/M

CR , (29)

where CR represents the overall visit-to-purchase conversion rate throughout the sales horizon. Note
that we assume that NumVisits is constant over time. (This has no significant bearing on our results;
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in particular, we draw the same conclusions using time-adjusted NumVisits in Appendix A.) The
value of CR cannot be estimated from our data; in light of Monetate (2016) that reports CR is around
2.5-3% on Amazon in 2016, we use five scenarios of CR∈ {1%,2%,3%,4%,5%} in our estimation to
ensure robustness.

Given NumVisits for each product, the implied sales in day m follows binomial distribution as
follows:

ImpliedSalesm ∼Binomial(NumVisits, λm), (30)

where λm := λ(Pricem,NumReviewsm,AvgRatingm) with Pricem, NumReviewsm, and AvgRatingm
representing the average price, number of reviews, and average rating on day m, respectively. We
estimate the parameters of the demand function λ(·) using maximum likelihood.

5.1.3. Benchmark Models. We also estimate three benchmark models as follows.
1. Linear model. Instead of the logistic function in our base model, the demand function is given

by

λa(p,n, r) =


0, if φ< 0,

φ, if 0≤ φ< 1,

1, if φ≥ 1,

(31)

where φ= (γnr+µ0)/(γn+ 1) + β−αp.
2. Logistic price-only model. This model considers price as a single predictor with the logistic

function; that is, λb(p) = exp(β−αp)/(1 + exp(β−αp)).
3. Linear price-only model. The demand function is linear and the price is a single predictor; that

is,

λc(pt) =


0, if β−αpt < 0,
β−αpt, if 0≤ β−αpt < 1,
1, if β−αpt ≥ 1.

(32)

5.1.4. Out-of-Sample Testing Procedure. We use the parameters estimated from past data
to test the ability to predict sales in the future. The out-of-sample testing procedure for each product
is as follows.

Out-of-sample testing procedure.

1. Estimate NumVisits using (29).
2. For each day 200≤m≤M − 1:

(a) Calibrate parameters of a demand model using the data for first m days.
(b) Predict the sales on day m+ 1 as

PredictedSalesm+1 = NumVisits×λm+1. (33)

3. Estimate the correlation between {ImpliedSalesm}Mm=201 and {PredictedSalesm}Mm=201.
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Table 2 Estimation of predictive power measured by the correlation between the implied and predicted sales
over time. The values in the parenthesis represent the standard deviations across 72 products.

Conversion rate (CR)

1% 2% 3% 4% 5%

Base 0.709
(0.274)

0.743
(0.244)

0.747
(0.235)

0.753
(0.230)

0.759
(0.230)

Linear 0.496
(0.308)

0.566
(0.261)

0.623
(0.230)

0.654
(0.244)

0.669
(0.231)

Logistic price-only 0.440
(0.430)

0.443
(0.430)

0.445
(0.430)

0.448
(0.430)

0.450
(0.431)

Linear price-only 0.376
(0.479)

0.394
(0.489)

0.397
(0.493)

0.396
(0.493)

0.396
(0.493)

5.1.5. Predictive Power. The correlation between the implied and predicted sales captures

the proportion of variability in sales explained by model. Table 2 summarizes the correlations from

the out-of-sample testing procedure. In the scenario with conversion rate of 3%, the correlation is

estimated to be about 0.747 on average under our base model, while it is only 0.623 under the linear

model. Further, the correlations for the two price-only models are significantly lower than those that

involve product reviews. This conforms to analogous findings in previous literature (e.g., Chevalier

and Mayzlin 2006, Li and Hitt 2008). These observations are consistent for different scenarios of the

conversion rate.

5.1.6. Robustness of the Model. Our base model and the estimation procedure in Sec-

tion 5.1.2 allows one to demonstrate the predictive power of price and review variables when account-

ing for the sales in online markets. In Appendix A.1 we consider other variants of the demand model,

which take into account: (a) the number of visitors that varies with time; (b) the effect of being

listed in New York Times Best Seller list, widely considered as the preeminent list of best-selling

books in the US; and (c) the effect of price promotions. Repeating the out-of-sample testing that was

performed in this section, we demonstrate that these additional features do not necessarily improve

the predictive power of our base model.

5.2. Counterfactual Analysis

To generalize the simulation results in Section 4.3 to settings that are close to the actual markets,

we further conduct a simulation study based on the demand model calibrated to our data set. We

simulate the revenue of the policy π ∈ {OSLA,SFM,DFM} using the following procedure.

1. Set the number of customers T and the probability of posting a review u.

2. For each product k = 1, . . . ,72:

• Set t= 0 with n0 = 0 and r0 = 0.
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Table 3 Relative revenue performance of the OSLA, SFM, and DFM policies with respect to the OFPS policy,
measured by JπT /JOFPS

T . For each of the 72 products, the revenue is estimated from 103 simulation trials and the
standard error is less than 2% of its value.

T = 103 T = 106

OSLA SFM DFM OSLA SFM DFM

Min. 0.226 0.910 0.953 0.690 0.820 0.998
5% 0.757 0.963 0.984 0.872 0.999 0.999
25% 0.946 1.002 1.008 1.000 1.002 1.002
50% 1.001 1.014 1.033 1.006 1.007 1.008
75% 1.024 1.062 1.136 1.012 1.012 1.016
95% 0.129 1.358 1.889 1.030 1.306 1.519
Max. 1.535 1.729 2.173 1.311 1.644 1.871

Average 0.975 1.064 1.144 0.998 1.025 1.069
Std. dev. 0.164 0.148 0.268 0.088 0.145 0.184

• Offer price pt to customer t, where pt is determined by π. Customer t purchases the product
with probability eφt/(1 + eφt) with

φt = γntµ+µ0

γnt + 1 + β−αpt (34)

where α, β, γ, and µ0 are the calibrated parameters for product k and µ is the mean quality
for product k, estimated by the average rating on the last day of the sales horizon.
• In case customer t purchases the product, with probability u, she reports a review equal to
qt, where qt is randomly drawn from the set of actual ratings for product k.
• Let t= t+ 1, update state variables, and repeat until t≤ T .

3. Calculate total revenue collected from T customers.
The above procedure is repeated for the DFM policy as well as for three benchmark policies given in
Section 4.3. We assume that u is common across the products and set u= 6%, which is estimated by
dividing the total number of reviews by the total implied sales from our data set. We consider small
and large market sizes with T = 103 and T = 106, respectively.

Table 3 summarizes the simulation results. For each product and for each pricing policy, we estimate
revenue with the average over 103 simulation trials. In this table, the percentage standard error of
the estimated revenues is less than 2%, and it is thus omitted. We take the optimal fixed-price policy
as a baseline and estimate JπT /J

OFPS
T for π ∈ {OSLA,SFM,DFM}. Overall, the same qualitative

conclusions from the small-scale problems in Section 4.3 hold in our counterfactual analysis: The
DFM policy significantly outperforms the benchmark policies, while the SFM and OSLA policies
only exhibit mild improvement over the optimal fixed-price policy.

Specifically, when T = 103, the median ratio is 1.033 under the DFM policy, that is, the DFM
policy improves the revenue by 3.3% from that of the optimal fixed-price policy, while the SFM
and OSLA policies only provide 1.4% and 0.1% of improvement, respectively. The results are more



Authors’ names blinded for peer review
26 Article submitted to Management Science; manuscript no.

extreme in terms of lower and higher percentiles. The large gap between the DFM and the OSLA
policies suggests that the seller may incur a significant revenue loss if the intertemporal effect of
price is not properly accounted for. Further, the gap between the DFM and the SFM policies can be
considered as the value of taking into account the stochastic evolution of reviews.

When the market size is larger, i.e., T = 106, the DFM policy still outperforms other benchmarks,
but the improvement is not as substantial as in the case with T = 103. On the three right columns
of Figure 3, observe that the median ratio under the DFM policy is about 1.008, smaller than the
ratio of 1.033 in the case with T = 103. This is expected because, when the number of customers is
sufficiently large, a fixed price is close to optimal as seen in Section 3.3.

The preceding observations allude to an important aspect of the DFM policy: the most significant
benefit of the DFM policy comes from the transient portion of the product’s life cycle, a portion from
launch to stabilization of the average rating, which is consistent with our observation in Section 3.3.
In particular, if T is small and the fluctuation of µt is significant, there can be significant revenue
loss corresponding to a fixed-price policy. Hence, the DFM policy is more suitable for products with
short life cycles, such as fashion items, than for those with long life cycles, such as durable goods.

Lastly, we remark that, if our model differs significantly (i.e., is misspecified) relative to the under-
lying demand, the revenue performance of the DFM and benchmark policies in Table 3 could be quite
different, since the sales are generated using simulation based on our ground truth demand model.
Further, in practice sellers may not have full information on the parameters of the demand model,
in which case they cannot implement the DFM policy exactly. Hence, the performance of the DFM
policy in Table 3 must be viewed as a best-possible performance benchmark.

6. Extensions to the Basic Problem
6.1. Time-Varying Demand

In this section we assume that the demand function depends on time since the start of the selling
season. Assume further that dependence in time is given as a positive multiplicative factor g(t), so
the demand function is given as

λ̃(p,n, r, t) = g(t)λ(p,n, r) t∈ [0, T ]. (35)

For example, g(t) may be a convex, decreasing function in the scenario with early adopters that are
more likely to purchase the product than the broader population. Also, g(t) can be cyclical when
demand exhibits a periodic behavior; e.g., textbooks. In this case, a simple method introduced in
Gallego and van Ryzin (1994) can be used to transform the problem into one in which demand is
time homogeneous. Define

G(t) =
∫ t

0
g(s)ds, t∈ [0, T ] (36)
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Then it is not difficult to see that the fluid problem (10) is equivalent to

max
ψ∈Ψ

∫ G(T )

0
p̃(τ)λ(p̃(τ), ñ(τ), r̃(τ))dτ

subject to ˙̃n(τ) = uλ(p̃(t), ñ(t), r̃(t)), τ ∈ [0,G(T )]

r̃(t) = µ, τ ∈ [0,G(T )]

n(0) = 0.

(37)

The optimal solution with resepct to the original time scale can be recovered by p∗(t) = p̃∗(G(t)).
Further, it is straightforward to construct a variant of DFM, called DFM-t, which basically re-solves
the problem (37) for each t. Although the structural properties of the DFM-t pricing policy remain
unchanged from the case with constant review propensity, the performance can change significantly as
the time-varying review propensity affects how fast the average rating converges to true quality. In the
fluid formulation (37), the (stochastic) average rating rt is replaced with µ. Hence, the convergence
rate of rt to µ influences the proximity between the fluid problem (37) and its stochastic counterparts.
This intuition is formalized in the following corollary.

Corollary 2 (Performance of DFM-t). Suppose that the demand function is given as (35).
Then for π = DFM-t,

1− JπT
J∗T

=O
(

1
/√

G(T )
)
. (38)

Note that if g(t)→ 0 as t→∞, customers with large t are less likely to purchase and post reviews.
Specifically, if g(t)≈ c/tv with v > 1, then the average rating rt does not converge to the true quality
µ with positive probability. (See Lemma 4.) In this case, the bound in (38) does not converge to zero.
Conversely, if g(t)≈ c/tv with v ∈ [0,1], then the average rating converges to the true quality with
probability one and the optimality gap converges to zero at the rate of T (v−1)/2.

6.2. Multiproduct Case with Substitutable Demand

In this subsection we consider a seller that sells K distinct products for T customers. We adopt the
same notation as in the single-product case, but use the subscript k to denote variables particular
to product k. Denote by Pt = (p1t, . . . , pKt) the prices of the K products for each t and let Nt =
(n1t, . . . , nKt) and Rt = (r1t, . . . , rKt) be the vectors of the number of reviews and the average rating
for customer t, respectively. The value of product k for costumer t is βk + q̂kt − αkpkt, where q̂kt ∼
N(µk, σ2

k) the quality of product k as perceived by costumer t. Customers are aware of the distribution
of q̂kt except for the value of the mean µk and share a common prior belief over µk denoted by
q̂k0 ∼N(µk0, σ

2
k0). After observing Rt and Nt customer t has a posterior belief q̂kt ∼N(µkt, σ2

kt) where

µkt = γknktrkt +µk0

γknkt + 1 , σ2
kt = σ2

k0

γknkt + 1 , (39)
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and γk = σ2
k0/σ

2
k.

Each customer purchases at most one product. The vector of purchasing probabilities, or the mul-
tiproduct demand function, is denoted by Λ(Pt,Nt,Rt) = (λ1(Pt,Nt,Rt), . . . , λK(Pt,Nt,Rt)), where

λk(Pt,Nt,Rt) = exp(χkt)
1 +

∑K
i=1 exp(χit)

(40)

and χkt = βk +µkt−αkpkt.
The seller chooses a non-anticipating pricing policy π = {Pt ∈ [

¯
p, p̄]K | t= 0, . . . , T −1} to maximize

the total expected revenue given by

JπT = Eπ
[
T−1∑
t=0

Pt ·Λ(Pt,Nt,Rt)
]
, (41)

where A ·B =
∑K
k=1 aibi denotes the inner product of the vectors A= (a1, . . . , aK) andB = (b1, . . . , bK).

A fluid approximation of the multiproduct revenue maximization problem can be formulated as

J̄∗T = max
ψ∈Ψ

∫ T

0
P (t) ·Λ(P (t),N(t),R(t))dt

subject to Ṅ(t) = uΛ(P (t),N(t),R(t)), t∈ [0, T ]

R(t) = (µ1, . . . , µK), t∈ [0, T ]

N(0) = (0, . . . ,0),

(42)

where P (t), N(t), and R(t) are counterparts of the discrete variables Pt, Nt, and Rt, respectively.
We hereafter refer to (42) as the multiproduct fluid problem.

Applying the maximum principle to the multiproduct fluid problem, in Theorem 4 we show that
an optimal solution P ∗(t) = (p∗1(t), . . . , p∗K(t)), provided it exists, is characterized by

p∗k(t) = 1
αk

+
K∑
i=1

exp(z∗i )
αi

+ µk−µk0

αk

( 1
γkn∗k(T ) + 1 −

1
γkn∗k(t) + 1

)
n∗k(t) = uλk(P ∗(t),N∗(t),R∗(t)) = u`k(Z∗)t,

(43)

where N∗(t) := (n∗1(t), . . . , n∗K(t)) and R∗(t) := (µ1, . . . , µK) are, respectively, the trajectories of the
vectors of the numbers of reviews and of the average ratings induced by P ∗(t), and where `k(X) :=
exp(xk)/(1 +

∑K
j=1 exp(xj)). In the above relations, the vector of constants Z∗ = (z∗1 , . . . , z∗K) satisfies

z∗k +αk

K∑
i=1

exp(z∗i )
αi

= βk +µk− 1− µk−µk0

γku`k(Z∗)T + 1 , k = 1, . . . ,K. (44)

Notice that, similarly to the single-product case, the demand function for product k evaluated
over the optimal trajectory is constant and is equal to `k(Z∗). In particular, the constants z∗1 , . . . , z∗K
determine the product demand levels over the optimal price trajectory P ∗(t).

Our candidate solution P ∗(t) is the unique optimal solution to (42), provided that Z∗ is the unique
solution to (44). The following lemma provides the condition that guarantees the uniqueness of Z∗.
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Lemma 3. Let Z∗ be any solution to (44). Then, for any k, there exist lk and lk such that 0 <
lk ≤ lk(Z∗)≤ lk < 1. Moreover, assume that the following condition is satisfied

max
j=1,...,K

exp(βj − 1 + max(µj0, µj))
αj/

∑K
i=1αi

+
K∑

j=1,j 6=k

|µj −µj0|
1 + γjuljT

+ |µk−µk0|
4

γkuT

1 + γkuT

< 1. (45)

Then Z∗ is the unique solution of (44).

Building on the result of Lemma 3, we can now state the main result of this section.

Theorem 4 (Optimal solution of the fluid multiproduct problem). An optimal solution
to the multiproduct fluid problem (42) exists and can be characterized by (43). Further, if condition
in (45) is satisfied, then the candidate solution P ∗(t), defined in (43) is the unique optimal solution.

The result of Theorem 4 shows that optimal price paths can be characterized in closed form even
in the presence of multiple alternatives in the market. This robustness property also guarantees that
the main properties of the optimal price solution in the single product case carry over to the multi-
product case. In particular, by looking at (43), we notice that the optimal price path for product k is
strictly increasing over time if µk0 <µk, and it is strictly decreasing when µk0 >µk. This observation
highlights the presence of the same structural interdependence between the optimal pricing policy
and the review-driven information diffusion process, mirroring the one described in the single-product
case in Section 3.2.

The proof of Theorem 4 follows a natural generalization of the proof of Theorem 1 (the single
product case). The main difficulty in establishing this result is to provide the conditions under which
(44) has a unique solution, which, in turn, determines whether our candidate solution P ∗(t) is the
unique optimal solution to (42). Indeed, the monotonicity properties exploited in (14) of the single
product case fail to apply in the multi-product case, and, as a result, we need a more technically
involved analysis, which finally results in the condition stated in (45). This condition may seem too
restrictive and difficult to interpret. However, as the following proposition establishes, we can provide
an approximation for Z∗ in the case of large values of T . This approximation intuitively relates Z∗

with the solution Z∞ := (z∞1 , . . . , z∞K ) of (44) in the limit of T →∞, namely,

z∞k +αk

K∑
i=1

exp(z∞i )
αi

= βk +µk− 1, k = 1, . . . ,K. (46)

Proposition 1 (Rate of convergence to steady-state). Let Z∗ be any solution of (44).
Then Z∗ satisfies Z∗ =Z∞+O(T−2), where Z∞ is the unique solution of (46).

The preceding proposition suggests a heuristic method to find a near-optimal solution to the multi-
product problem by replacing Z∗ by Z∞ in (43). The corresponding price must be close to the optimal
price, since p∗k(t) is a continuous function of Z∗, and Z∞ is close to Z∗ for sufficiently large T by
Proposition 1.
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7. Concluding Remarks
We have shown how the revenue maximization problem with product reviews can be analyzed using
a fluid approximation. By analyzing the fluid version of the basic problem, we were able to obtain
structural insights into near-optimal policies, which are leveraged to design a well-performing pricing
policy. We have found that the proposed policy is not only asymptotically near-optimal with respect
to the underlying revenue maximization problem, but also practically implementable with almost
negligible computational cost, thanks to the fact that price under this policy can be expressed in a
closed form.

Most importantly, our results highlight the value of dynamic pricing: simple fixed-price policies
are strictly revenue-suboptimal in certain parameter regimes, while the proposed dynamic policy
achieves near-optimal revenue by judiciously balancing actual earnings from customers and benefits
due to information from product reviews. This is encouraging since ever-growing e-commerce systems
make the logistics of dynamic pricing much easier. In particular, pricing managers can now collect
valuable information, including product reviews, and process it in real time, which in turn allows
them to implement dynamic pricing strategies more easily and effectively.
Appendix A: Additional Results

A.1. Robustness of the Model

In this section we demonstrate the robustness of our model validation in Section 5.1. For this purpose we
use two variables that might be relevant to sales on Amazon: (a) NYTm = 1 if a product is listed in the New
York Times Best Seller list on day m and zero otherwise; (b) ThirdPartyPricem that represents the lowest
price from third-party sellers. As suggested by Sorensen (2004), the majority of book buyers use the New
York Times Best Seller list as a signal of what is worth reading. In our data, 11 out of 72 products had
appeared in the New York Times Best Seller list at least once between January 2015 and December 2016.
Also, third parties can sell the same book at their own prices and the sales through those sellers are counted
toward sales rank. In addition to the benchmark models in Section 5.1.3, we consider an extension of our
base model as follows:

λd(p,n, r,X) = `

(
γnr+µ0

γn+ 1 +β−αp+ ΓX
)
, (47)

where X denotes the vector of NYTm and ThirdPartyPricem.
Note that in Section 5.1 we assumed that the number of visits (NumVisits) is constant over time. In this

section we estimate NumVisitsm as a function of the number of days since release (m) in order to ensure
that we are not confounding our review measures with a simple time trend. To be specific, we first estimate
the coefficients (ρ1, ρ2) of the equation:

ImpliedSalesm = ρ1 exp(−ρ2m) + εm (48)

using the least squares method. In (48), εm represents the portion of sales that does not explicitly depend
on time. Then we estimate NumVisitsm as

NumVisitsm = ρ1 exp(−ρ2m)
CR , (49)
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Table 4 Predictive power (correlation) with time-dependent estimation model. The values in the parenthesis
represent the standard deviations across 72 products.

Conversion rate (CR)

1% 2% 3% 4% 5%

Base+NYT+3rd price 0.510
(0.380)

0.560
(0.361)

0.591
(0.359)

0.616
(0.332)

0.639
(0.313)

Base+NYT 0.674
(0.353)

0.697
(0.342)

0.704
(0.338)

0.703
(0.354)

0.700
(0.366)

Base 0.682
(0.350)

0.694
(0.343)

0.704
(0.338)

0.702
(0.357)

0.698
(0.365)

Linear 0.547
(0.320)

0.603
(0.288)

0.632
(0.288)

0.649
(0.295)

0.682
(0.287)

Logistic price-only 0.431
(0.498)

0.430
(0.497)

0.431
(0.497)

0.433
(0.498)

0.434
(0.498)

Linear price-only 0.382
(0.546)

0.388
(0.550)

0.388
(0.551)

0.386
(0.550)

0.388
(0.551)

where we vary the overall conversion rate CR ∈ {1%, . . . ,5%}. Then, given ImpliedSalesm and NumVisitsm,

we use the maximum likelihood method to estimate the parameters for demand λm:

ImpliedSalesm ∼Binomial(NumVisitsm, λm). (50)

Table 4 illustrates out-of-sample correlations using the time-dependent estimation model described above.

As in Table 2, the base model outperforms the three benchmark models discussed in Section 5.1.3. The base

model with the additional covariate NYTm does not improve the predictive power of the base model. Further,

the predictive power is significantly reduced under the base model with NYTm and ThirdPartyPricem, which

might be due to overfitting. This demonstrates that enriching our model with more information does not

necessarily improve the predictive power with respect to what established in Section 5.1.

A.2. Simulation for Large-scale Problems

In small-scale problems, the DFM policy significantly outperforms the other proposed policies, SFM, OSLA,

and OFPS, which is illustrated in Figure 5. However, all of these policies have an optimality gap of order
√
T asymptotically as T →∞ (Theorem 3). To illustrate the asymptotic performance of these policies, we

perform numerical experiments in the same settings as those in Figure 5, but with a longer sales horizon

T ∈ [20,1280]. Note that if JπT /T ≈ b for some b > 0, then the revenue is approximately linear in T with slope

b. Figure 7 illustrates that JπT /T approaches a constant b under the proposed policies. Each point in this

figure is obtained by averaging the revenues over 103 simulation trials. In this figure, (percentage) standard

errors of estimated revenues are less than 3%.

Appendix B: Proofs

B.1. Proofs of the Main Results

Proof of Theorem 1. To show existence, note first that there is one-to-one relationship between the price

and the demand function for any state variables. In particular, fix the state variables n(t) = n and r(t) = µ.
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Figure 7 The total revenues under different pricing policies for low and high prior beliefs: (a) µ0 = 0< 2.5 = µ

and (b) µ0 = 5> 2.5 = µ. In both cases, (α,β, γ,u,σq) = (0.1,−1,1,1,2). The revenues of these policies are
estimated by averaging over 103 simulation trials. The error bars represent standard errors.

Given a price p(t) = p, the demand is determined by λ(p,n, r) = `(β+µ−αp). Conversely, we can construct
a mapping from demand λ to price p(λ,n, r), where

p(λ,n, r) = β+µ+ log((1−λ)/λ)
α

. (51)

Therefore, the fluid optimization problem in (10) is equivalent to

max
λ(·)

∫ T

0
p(λ(s), n(s), r(s))λ(s)ds

subject to ṅ(t) = uλ(t), t∈ [0, T ].
(52)

In the reformulated fluid problem (52), we can replace maxλ(·) with maxλ(·)∈[
¯
λ,λ̄], for which the corresponding

price satisfies p(λ(·), n(·), r(·))∈ [
¯
p, p̄] for any admissible values of n(·) and r(·). Obviously, [

¯
λ, λ̄] is indepen-

dent of state variables and t, and therefore, is an upper semicontinuous function of (t, n(t), r(t)). Further,
let

U(t, n, r) = {(z0, z) | z0 ≥ λp(λ,n, r), z = λ,λ∈ [
¯
λ, λ̄]}. (53)

Note that λp(λ,n, r) is a concave function of λ, and therefore, U(t, n, r) is a convex set for each (t, n, r). By
Theorem 1 of Cesari (1966), there exists an optimal solution to the refomulated fluid problem (52). This in
turn implies the existence of the optimal solution to the fluid problem (10) thanks to the one-to-one mapping
between the price and demand.

To show uniqueness, it suffices to show that the solution to (14) is unique under the condition (15). Rewrite
(14) as

g(z) := z+ exp(z)−µ−β+ 1− µ0−µ
γu`(z)T + 1 . (54)
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First, if µ0 ≥ µ, it is straightforward to check that g′(z)> 0 for all z, so the solution to the preceding equation

is unique. In the remaining part of the proof we focus on the case with µ0 <µ. Observe that

g′(z) = 1 + exp(z)− (µ−µ0)(1− `(z))γu`(z)T
(γu`(z)T + 1)2 . (55)

We now show that, if (15) is satisfied, then g′(z)> 0 for all z. Since 1 + exp(z)≥ 1 for all z, it suffices to

show that (15) ensures

h(z) := (µ−µ0)(1− `(z))γu`(z)T
(γu`(z)T + 1)2 < 1. (56)

It is easy to check that h(z) has a global maximum for z = z̃ such that `(z̃) = 1/(2 + γuT ), from which we

deduce that

h(z)≤ γuT (µ−µ0)
4(1 + γuT ) . (57)

Hence, (15) guarantees g′(z) > 0. Combined with the fact that g(z)→−∞ as z→−∞ and g(z)→∞ as

z→∞, we establish that there is a unique solution to (54). �

Proof for Theorem 2. We first show the result for the slow-learning regime where γT → 0. Without loss

of generality, we fix T and vary γ. Denote by pOFP the optimal fixed price which depends on γ and T . Note

from (13) that as γ→ 0,

p∗(t)→ 1 + exp(z∗0)
α

, (58)

where the constant z∗0 satisfies

z∗0 + exp(z∗0) = µ0 +β− 1. (59)

Note that the limit in (58) is independent of t. Also, as established in Theorem 1, this is the unique optimal

solution, and hence, pOFP should satisfy limγ→0 p
OFP = (1 + exp(z∗0))/α for t∈ [0, T ]. Therefore, we conclude

that 1− J̄OFP
T /J̄∗T → 0 as γ→ 0. Using the same logical steps we can show that 1− J̄OFP

T /J̄∗T → 0 as γ→∞,

which will be omitted.

Next, we show that 1− J̄OFP
T /J̄∗T →∆(κ) as γT → κ ∈ (0,∞). Observe that as γT → κ, the equation in

(14) becomes

z+ exp(z) = µ+β− 1 + µ0−µ
κu`(z) + 1 , (60)

which depends on γ and T only through κ. Let zκ be the constant that satisfies the preceding equation,

which is unique by Theorem 1. Note from (19) that

J̄∗T
T
→ exp(zκ)

α
+ µ0−µ

αuκ

(
log(uκ`(zκ) + 1)− uκ`(zκ)

uκ`(zκ) + 1

)
as γT → κ. (61)
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Note that the limit in (61) is invariant to γ and T . Hence, it remains to show that the limit of J̄OFP
T /T as

γT → κ depends on κ but invariant to γ and T . Consider a fixed-price policy π with pπ(t) = p. Observe that

nπ(T ) =
∫ T

0
ṅπ(t)dt

= u

∫ T

0

exp
(
β−αp+µ− µ−µ0

1+γnπ(t)

)
1 + exp

(
β−αp+µ− µ−µ0

1+γnπ(t)

)dt
= uT −

∫ T

0

1
1 + exp

(
β−αp+µ− µ−µ0

1+γnπ(t)

)dt
= uT −

∫ T

0
ṅπ(t) exp

(
−β+αp−µ+ µ−µ0

1 + γnπ(t)

)
dt

= uT − exp(−β+αp−µ)
∫ nπ

0
exp

(
µ−µ0

1 + γx

)
dx,

(62)

where the second and fourth equations follow from (11c), while the last equality is obtained from a straight-
forward change of variable in the integration. Hence, nπ(T ) is solution n to the following equation:

n−uT + exp(−β+αp−µ)
∫ n

0
exp

(
µ−µ0

1 + γx

)
dx= 0. (63)

Let ñπ(T ) = γnπ(T ) and ñ= γn. Then, it can be easily seen that as γT → κ, ñπ(T ) approaches the solution
ñ of the following equation:

ñ−uκ+ exp(−β+αp−µ)
∫ ñ

0
exp

(
µ−µ0

1 +x

)
dx= 0. (64)

Since the preceding equation is invariant to γ and T , we conclude that ñπ(T ) is invariant to γ and T . Further,
for any fixed-price policy π with price p, we have that

J̄πT
T

= pnπ(T )
uT

= pγnπ(T )
γuT

→ p∆′(κ)
uκ

as γT → κ,

(65)

where the first equation follows from the fact that the total number of buyers is equal to the number of
reviews divided by u, the probability of posting a review after a purchase. Instead, the last equation follows
from the previous observation that ñπ(T ) = ∆′(κ), sincewe know that the constant ∆′(κ) = γn(T ) depends
on κ but is invariant to γ and T . Since these arguments hold for any fixed-price policy, it also holds for OFP.
Combining (61) and (65), the desired result in the theorem follows. �

We need the following lemmas to prove Lemma 1 and Theorem 3. The proofs for auxiliary lemmas are
proved in Appendix B.2.

Lemma 4. Suppose that customer t posts a review with probability f(nt), where f(x) = ux−v. For any
π ∈Π and t≥ 1, there exists positive constants M1,M2 <∞ such that

Eπ
[
(rt−µ)2]{≤ M1

t1−v+1 if v ∈ [0,1]
≥M2 if v ∈ (1,∞),

(66)

where rt is the average rating in stage t induced by the policy π.
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Lemma 5. For any π ∈Π and t≥ 1,

Eπ|λ(p,n∗(t), r∗(t))−λ(p,nπbtc, nbtc)|=O
(

1√
t

)
(67)

for any p∈ [
¯
p, p̄], where n∗(t) and r∗(t) are state variables under the optimal solution ψ∗.

Proof of Lemma 1. Recall the definitions π∗ = {p∗t | t= 0, . . . , T −1} and ψ∗ = {p∗(t) | t∈ [0, T ]}, the max-
imizers for JπT and J̄ψT , respectively. Also, define π̂ = {p̂t = p∗(t) | t= 0, . . . , T − 1} ∈Π as the discrete pricing
policy induced by the ODP policy ψ∗. Likewise, define ψ̂ = {p̂(t) = p∗btc | t∈ [0, T ]} as the continuous pricing
policy induced by π∗, where btc is the largest integer less than or equal to t. We define L> 0 as the Lipschitz
constant for the logistic function `(x) = exp(x)/(1 + exp(x)). Lastly, for any π ∈Π, it will be useful to note
that

JπT =
T∑
t=1

Eπ[ptλ(pt, nt, rt)] =
∫ T

0
Eπ[pbtcλ(pbtc, nbtc, rbtc)]dt. (68)

Since J̄∗T ≥ Eψ̂[J̄ ψ̂T ] and J∗T ≥ J π̂T , observe that

|J̄∗T − J∗T | ≤max{|J̄∗T − J π̂T |, |Eψ̂[J̄ ψ̂T ]− J∗T |}. (69)

Therefore, it suffices to show that the two terms on the right-hand side of (69) are O(
√
T ).

Step 1. To bound the first term of (69), |J̄∗T − J π̂T |, let {(n̂t, r̂t) | t= 0, . . . , T − 1} be the path of the state
variables driven by π̂ and observe that

|J̄∗T − J π̂T |=
∣∣∣∣∫ T

0
p∗(t)λ(p∗(t), n∗(t), r∗(t))dt−

∫ T

0
Eπ̂
[
p̂btcλ(p̂btc, n̂btc, r̂btc)

]
dt

∣∣∣∣
≤
∫ T

0
Eπ̂
[
|p∗(t)λ(p∗(t), n∗(t), r∗(t))− p̂btcλ(p̂btc, n∗(t), r∗(t))|

]
dt

+
∫ T

0
Eπ̂
[
|p̂btcλ(p̂btc, n∗(t), r∗(t))− p̂btcλ(p̂btc, n̂btc, r̂btc)|

]
dt

.=UT +VT

(70)

Observe from (13) that n∗(t) is an affine function of t ∈ [τ , τ̄), and hence, the reciprocal of p∗(t) in (13) is
affine with respect to t. Therefore, it is not difficult to see that there exists C1 > 0 such that, for any t∈ [0, T ],

|p∗(t)− p̂btc| ≤ |p∗(btc)− p∗(bt+ 1c)| ≤ C1

(t+ 1)2 . (71)

A triangular inequality, combined with the fact that λ(p,n, s) is Lipschitz continuous in p with modulus L,
gives ∣∣p∗(t)λ(p∗(t), n∗(t), r∗(t))− p̂btcλ(p̂btc, n∗(t), r∗(t))

∣∣≤ LC1

(t+ 1)2 . (72)

Since
∫∞

0 1/(t+1)2dt <∞, we establish that UT is bounded by a constant that does not depend on T . Further,
VT =O(

√
T ) follows from Lemma 5. Combining these observations, we establish that |J̄∗T − J π̂T |=O(

√
T ).

Step 2. Next, to bound the second term of (69), |E[J̄ ψ̂T ]− J∗T |, recall that ψ̂ = {p̂(t) = p∗btc | t ∈ [0, T ]} and
p̂(t) is adopted to Fbtc, the filtration generated by the past observations along the optimal price π∗ and
corresponding state variables up to stage btc. Define n̂(t) and r̂(t) as the state variables for the fluid problem
induced by ψ̂, which are also adopted to Fbtc. From the fact that p̂(t) = p∗btc, one can write∣∣∣Eψ̂[J̄ ψ̂T ]− J∗T

∣∣∣≤ ∫ T

0
Eπ∗ [

p∗btc
∣∣λ(p∗btc, n̂(t), r̂(t))−λ(p∗btc, n∗btc, r∗btc)

∣∣]dt. (73)

From Lemma 5 the integrand on the right-hand side of the preceding inequality is O(1/
√
t), from which we

conclude that |Eψ̂[J̄ ψ̂T ]− J∗T |=O(
√
T ). �
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Proof of Lemma 2. Using the triangular inequality, It is straightforward to check that |J̄∗T −JπT | ≤∆p
T +

∆s
T , where

∆p
T =

∫ T

0
E
∣∣p∗(t)λ(p∗(t), n∗(t), r∗(t))− pπ[t]λ(pπ[t], n∗(t), r∗(t))

∣∣dt
∆s
T =

∫ T

0
E
∣∣pπbtcλ(pπbtc, n∗(t), r∗(t))− pπbtcλ(pπbtc, nπbtc, rπbtc)

∣∣dt, (74)

where btc is the largest integer less than or equal to t. It is immediate to see that ∆s
T =O(

√
T ) from Lemma 5.

Hence, it remains to show that ∆p
T =O(

√
T ). To this end, observe that the integrand of ∆p

T is bounded by

LEπ|p∗(t)− pπ[t]| by the triangular inequality and the fact that λ(p,n, q) is Lipschitz continuous with respect

to p with modulus L. Hence, the proof of the theorem is complete if we show that Eπ|p∗(t)−pπbtc|=O(1/
√
t)

for π ∈ {OFPS,OSLA,SFM,DFM}. For clarity of exposition, in the reminder of the proof we assume that t

is an integer value.

For π= OFP, observe that for any p∈ [
¯
p, p̄]

Eπ|λ(p,nπt , rπt )−λ(p,n∗(t), r∗(t))|=O
(

1√
t

)
(75)

by Lemma 5. This implies

Eπ
∣∣∣∣∣ 1
T

T∑
t=1

λ(p,nπt , rπt )−λ(p,n∗(t), r∗(t))

∣∣∣∣∣=O
(

1√
T

)
. (76)

Since |λ(p,n∗(t), r∗(t))−λ(p,∞, µ)|=O(1/t), the preceding relation implies

Eπ
∣∣∣∣∣ 1
T

T∑
t=1

λ(p,nπt , rπt )−λ(p,∞, µ)

∣∣∣∣∣=O
(

1√
T

)
. (77)

Applying proposition 6.1 of Bonnans and Shapiro (1998), we establish that the fixed price p̂T =

arg maxp{E[
∑T−1

t=0 pλ(p,nt, rt)] | p∈ [
¯
p, p̄]} satisfies |p̂−p∞|=O(1/

√
T ), where p∞ := arg maxp{pλ(p,∞, µ) |

p∈ [
¯
p, p̄]}. Further, note that θ(T ) = 0, and hence, p∗(T ) = arg maxp{pλ(p,n∗(T ), r∗(T ))} from (11a). Observ-

ing that |λ(p,∞, µ)− λ(p,n∗(T ), r∗(T ))|=O(1/T ), and by Proposition 6.1 of Bonnans and Shapiro (1998),

we have that |p∞− p∗(T )|=O(1/T ). Lastly, from (13) we have that

|p∗(T )− p∗(t)|= |µ−µ0|
α

(
1

γn∗(T ) + 1 −
1

γn∗(t) + 1

)
=O

(
1
t

)
. (78)

Combining these results with the triangle inequality, we establish that |p̂−p∗(t)| ≤ |p̂−p∞|+ |p∞−p∗(T )|+

|p∗(T )− p∗(t)|=O(1/
√
t).

For π= OSLA, observe that

|λ(p,nπt , rπt )−λ(p,∞, µ)| ≤L
∣∣∣∣γn̂btcr̂btc+µ0

γn̂btc+ 1 −µ
∣∣∣∣

≤L
(
|rπt −µ|+

∣∣∣∣ µ0−µ
γnπt + 1

∣∣∣∣) . (79)

From proposition 6.1 of Bonnans and Shapiro (1998), we have that

|pπt − p∞|=O
(
|rπt −µ|+

∣∣∣∣ µ0−µ
γnπt + 1

∣∣∣∣) . (80)
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Since Eπ|rπt −µ|=O(1/
√
t) by Lemma 4 and Eπ|(µ0−µ)/(γnπt +1)|=O(1/t), we establish that Eπ|pπt −p∞|=

O(1/
√
t). Further, as shown in the case with π= OFPS, we have that |p∞− p∗(t)|=O(1/t), from which we

conclude that Eπ|pπt − p∗(t)|=O(1/
√
t).

For π= SFM, we have pπt = p∗(t) by definition. Now, fix π= DFM. Recalling the ODP policy in (13)-(14),
and after some straightforward algebra, it can be seen that, for any integer t,

Eπ|p∗(t)− pπt | ≤
1
α

Eπ |exp(z∗)− exp(z∗t )|+ 1
α

Eπ
∣∣∣∣γn∗(t)µ+µ0

γn∗(t) + 1 − γnπt r
π
t +µ0

γnπt + 1

∣∣∣∣ , (81)

where z∗ and z∗t are defined in (14) and (27), respectively. Observe that

Eπ
∣∣∣∣γn∗(t)µ+µ0

γn∗(t) + 1 − γnπt r
π
t +µ0

γnπt + 1

∣∣∣∣≤ ∣∣∣∣ µ0−µ
γn∗(t) + 1

∣∣∣∣+ Eπ
∣∣∣∣γnπt rπt +µ0

γnπt + 1 −µ
∣∣∣∣=O( 1√

t

)
, (82)

where the last equation follows from (114) and (115). Further, observe from (14) and (27) that
Eπ| exp(z∗)− exp(z∗t )| ≤ Eπ|z∗+ exp(z∗)− z∗t − exp(z∗t )|

≤ Eπ
∣∣∣∣ µ0−µ
γu`(z∗)T + 1 −

γnπt (rπt −µ) +µ0−µ
γ(nπt +u`(z∗t )(T − t)) + 1

∣∣∣∣
≤
∣∣∣∣ µ0−µ
γu`(z∗)T + 1

∣∣∣∣+ Eπ|rπt −µ|+ Eπ
∣∣∣∣ µ0−µ
γ(nπt +u`(z∗t )(T − t)) + 1

∣∣∣∣ ,
(83)

where the first term is O(1/T ), the second term is O(1/
√
t) by Lemma 4, and the last term is O(1/t) by

theorem 1 of Chao and Strawderman (1972). Therefore, we establish that Eπ|pπt − p∗(t)| = O(1/
√
t). This

completes the proof of the theorem. �

Proof of Corollary 2. Observe that the objective function of the stochastic problem (7) can be written
as

JπT =
T−1∑
t=0

Eπ[ptλ(pt, nt, rt)]

=
∫ T

0
Eπ[pbtcλ(pbtc, nbtc, rbtc)]dt

=
∫ G(T )

0
Eπ[pbτcλ(pbτc, nbτc, rbτc)]dτ.

(84)

The remaining steps of the proof are exactly identical to the proof of Theorem 1, except for the minor
modifications due to the different time scale. The full proof will thus be omitted. �

Proof of Lemma 3. The proof of the lemma is based on two steps. In Step 1 we prove the bounds for
lk(Z∗). In Step 2 we use the Banach fixed-point Theorem to establish the uniqueness of Z∗ under the
condition (45).

Step 1. Notice that, since min(0, µk − µk0) < µk−µk0
1+ckTlk(Z∗) < max(0, µk − µk0) for any k = 1, . . . ,K, any

component z∗k of Z∗ can be bounded by above by z∗k ≤ zk := βk − 1 + max(µk,0, µk). Moreover, observe
that

∑K

i=1
1
αi

exp(z∗i )> 0 and that µk −max(0, µk − µk0) = max(µk,0, µk). Using this result, and using µk −
min(0, µk −µk0) = min(µk,0, µk), it is easy to see that z∗k ≥ zk := βk − 1−αk

∑K

i=1
1
αi

exp(zi) + min(µk,0, µk).
Finally, the bounds for lk(Z∗) follow from noticing that lk(Z) is strictly increasing in zk and strictly decreasing
in zi for i 6= k.

Step 2. For this step of the proof, we rewrite (44) as Z = F (Z), where F : RK → RK is defined by
F (Z) := (F1(Z), . . . , FK(Z)) and by

Fk(Z) := βk +µk− 1−αk
K∑
i=1

exp(zi)
αi

− µk−µk0

γku`k(Z)T + 1 . (85)
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As a result, a solution Z∗ of (44) is a fixed point of the vector function F . Observe that we can use the

bounds for Z∗ proved in the first step of the present proof to establish that Fk(Z) ∈C∞ over the compact

convex set ZK := [z1, z1]× [z2, z2]× . . . [zK , zK ] for all k. By the Banach fixed point theorem, this ensures

that F has at least a fixed point. Hence, in the remainder of this step of the proof we assume that (45) is

satisfied, and we show that, under this assumption F is a contraction mapping under the `1 norm, which, in

turn, implies that F has a unique fixed point.

By the mean value theorem we know that, for any Z,Z ′ ∈ZK ,

||F (Z)−F (Z ′)||1 ≤ max
δ∈[0,1]

||JF (Z ′+ δ(Z −Z ′))||1 · ||Z −Z ′||1, (86)

where JF (Z ′+δ(Z−Z ′)) represents the Jacobian matrix of F evaluated in the point Z ′+δ(Z−Z ′). Observe

that, for j 6= k, we have

∂Fj(Z)
∂zk

=−αj
αk

exp(zk)−
(µj −µj0)γj uT lj(Z)lk(Z)

(1 + γj ulj(Z)T )2

∂Fk(Z)
∂zk

=− exp(zk) + (µk−µk0)γk uT lk(Z)(1− lk(Z))
(1 + γk ulk(Z)T )2

(87)

Hence, using the triangular inequality, we find that
K∑
j=1

∣∣∣∣∂Fj(Z)
∂zk

∣∣∣∣≤ exp(zk)
αk/

∑K

i=1αi
+

K∑
j=1,j 6=k

|µj −µj0|
γj uT lj(Z)lk(Z)
(1 + γj uT lj(Z))2

+ |µk−µk0|
γk uT lk(Z)(1− lk(Z))

(1 + γk uT lk(Z))2 .

for all k = 1, . . . ,K. Using the above inequality, we can show that under (45) we have
∑K

j=1

∣∣∣ ∂Fj(Z)
∂zk

∣∣∣< 1− a

for some a > 0 and for all Z ∈ ZK . In fact, it is easy to verify that, for x ∈ [0,1], the function gk(x) :=
|µk−µk0|γk uTx(1−x)

(1+γk uTx)2 is strictly increasing for 0≤ x< x∗ := 1/(2 + γk uT ) and strictly decreasing for x∗ <x≤ 1,

which implies that gk(x)≤ gk(x∗) = |µk−µk0|
4

γk uT
1+γk uT

. Moreover, since we have that

γjuT lj(Z)
(1 + γj uT lj(Z)) < 1 (88)

and 0< lk < lk(Z)< lk < 1 for all j, we obtain
K∑

j=1,j 6=k

|µj −µj0|γj uT lj(Z)lk(Z)
(1 + γj uT lj(Z))2 <

K∑
j=1,j 6=k

|µj −µj0|
1 + γjuT lj

. (89)

This shows that ||JF (Z)||1 < 1− a for some a > 0 and for all Z ∈ZK , which in turn implies that, under the

assumption (45), F is a contraction mapping. This guarantees that, if (45) is satisfied, then F has a unique

fixed point Z∗ which is the unique solution of (44) and concludes the proof. �

Proof of Theorem 4. We begin the proof with Pontryagin maximum principle to characterize the first

order necessary conditions for the multi-product optimal pricing policy. To simplify notation, throughout

the proof, we omit the dependence from t where there is no ambiguity. Moreover, given that in the fluid

approximation the average rating vector R is constant over time, we also omit the dependence from R. The

Hamiltonian function is defined H(P,N,Θ) := (P +uΘ)Λ(P,N), where Θ := (θ1, . . . , θK) is the shadow price
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vector associated to the constraint Ṅ = uΛ(P,N,R). The Pontryagin maximum principle states that the

optimal solution (P ∗,N∗,Θ∗), if it exists, must satisfy

0 = ∂H(P ∗,N∗,Θ∗)
∂pk

(Maximum of H) (90a)

θ̇k =−∂H(P ∗,N∗,Θ∗)
∂nk

, θk(T ) = 0 (Shadow price) (90b)

ṅ∗k = uλk(P ∗,N∗), n∗k(0) = 0 (Number of reviews) (90c)

It is straightforward to verify that the candidate solution provided in (43) satisfies (90a)-(90c). Hence, to

prove the theorem it suffices to show existence and uniqueness.

To show existence, we first establish that there is a one-to-one correspondence between the price and the

demand function vector. In particular, we can adapt the proof in Li and Huh (2011) to show that, given a

demand function vector Λ = (λ1, . . . , λK), prices can be obtained from

pk(Λ,N) = 1
αk

[
βk + γkµknk +µk0

γknk + 1 + log(1−
K∑
j=1

λk)− logλk

]
. (91)

Similar to the proof of Theorem 1, we can reformulate (42) as

max
Λ(·)

∫ T

0
P (Λ(s),N(s)) ·Λ(s)ds

subject to Ṅ(t) = uΛ(t), t∈ [0, T ].
(92)

Invoking Li and Huh (2011), we establish that P (Λ(t),N(t)) ·Λ(t) is always concave in Λ, which guarantees

that an optimal solution to the problem (92) always exists. Using (91), this also establishes existence of an

optimal solution to the original problem (42).

To show uniqueness, we show that the candidate optimal solution in (43) is the unique solution to the

FOC in (90a)-(90c). Using (90a)-(90c), we can prove that

θ̇k(t)∗ = γk(µk−µk0)
uαk

ṅ∗k(t)
(γkn∗k(t) + 1)2 . (93)

By the transversality condition θ∗k(T ) = 0, we have that

θ∗k(t) =−
∫ T

t

θ̇∗k(s)ds=−γk(µk−µk0)
uαk

∫ T

t

ṅ∗k(s)
(γkn∗k(s) + 1)2 ds

= µk−µk0

uαk

(
1

γkn∗k(t) + 1 −
1

γkn∗k(T ) + 1

) (94)

Moreover, (90a) can be rewritten as

1 = αk(p∗k(t) +uθ∗k(t)) +αk

K∑
i=1

(p∗i (t) +uθ∗i (t))λi(P ∗(t),N∗(t)). (95)

The summation in the right-hand side of the preceding equation is the Hamiltionian function, which is

constant over the optimal trajectory, i.e. H(P ∗(t),N∗(t),Θ∗(t)) = h for all t ∈ [0, T ]. Hence, we have that

1/αk +h= p∗k(t) +uθ∗k(t) for all k. Combining this result with (94), we obtain that

p∗k(t) = 1
αk

+h− µk−µk0

αk

(
1

γkn∗k(t) + 1 −
1

γkn∗k(T ) + 1

)
. (96)
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Moreover, the preceding relation can be used to write

βk + γkµkn
∗
k(t) +µk0

γkn∗k(t) + 1 −αkp∗k(t) = βk +µk− 1−αkh−
µk−µk0

γkun∗k(T ) + 1 =: zk, (97)

which, plugged into (40), establishes that demand functions are constant over the optimal solution, i.e.,
λk(P ∗(t),N∗(t)) = lk(Z) where Z = (z1, . . . , zK), and hence that n∗k(t) = ulk(Z)t for t ∈ [0, T ]. Moreover,
since pi(T ) = 1/αk + h, combining the fact that the Hamiltonian function is constant over time with the
transversality condition θ∗k(T ) = 0 we can find that

h=H(P ∗(T ),N∗(T ),Θ∗(T )) =
K∑
i=1

p∗i (T )λi(P ∗(T ),N∗(T )) =
K∑
i=1

(
1
αi

+h

)
li(Z), (98)

or, equivalently,

h=
∑K

i=1
1
αi
li(Z)

1−
∑K

i=1 li(Z)
=

K∑
i=1

1
αi

exp(zi). (99)

Plugging this result in the definition of zk establishes that zk satisfies (44), which proves that any optimal
solution must be characterized by (43) and therefore concludes the proof of the first part of the statement of
the theorem. Since the second part of the theorem follows directly from Lemma 3, this concludes the proof
of the theorem. �

Proof of Proposition 1. We first establish that Z∞ is unique. Observe that from (46) we have for all i 6= k

z∞k −βk−µk + 1
αk

= z∞i −βi−µi + 1
αi

=−
K∑
j=1

1
αj

exp(z∞j ), k= 1,2, . . . ,K. (100)

Using the above result, (46) can be rewritten as

zk−βk−µk + 1 +
K∑
i=1

αk
αi

exp
[
βi +µi− 1− αi

αk
(βk +µk− 1) + αi

αk
zk

]
= 0, (101)

which is independent of zi for i 6= k, i.e., (46) can be reformulated as a system of K independent equations.
Moreover, notice that the real function

Hk(x) := x−βk−µk + 1 +
K∑
i=1

αk
αi

exp
[
βi +µi− 1− αi

αk
(βk +µk− 1) + αi

αk
x

]
(102)

is strictly increasing in x and that it satisfies the limits limx→−∞Hk(x) =−∞ and limx→∞Hk(x) =∞. This
implies that, for each k, there exists a unique point z∞k such that Hk(z∞k ) = 0, and, therefore, that Z∞ is
unique.

Next, to prove that Z∗ = Z∞ +O(T−2) we provide a Taylor expansion of (44) for large values of T . Let
ε1, . . . , εK be constants to be determined, and let the “perturbed solution” Z∗ := (z∗1 , . . . , z∗K) be defined by
z∗k = z∞k + εk

T
. When evaluated in Z∗, (44) gives

z∞k + εk
T

= βk +µk− 1−
K∑
i=1

αk
αi

exp
(
z∞i + εi

T

)
− µk−µk0

1 + γkulk(Z∞+ ε
T

)T , (103)

where Z∞+ ε
T

:= (z∞1 + ε1
T
, . . . , z∞K + εK

T
). The Taylor expansion of the above relation gives:

z∞k −βk−µk + 1 +
K∑
i=1

αk
αi

exp(z∞i ) + αk
T

[
εk
αk

+
K∑
i=1

εi
αi

exp(z∞i )− µk−µk0

γkulk(Z∞)

]
+ϕk(T−2) = 0, (104)
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where ϕk(T−2) =O(T−2) for all k. The term in the first square brackets of the above relation is zero because
of (46). Hence, if we choose ε1, . . . , εK such that

εk
αk

+
K∑
i=1

εi
αi

exp(z̄i)−
µk−µk0

γkulk(Z̄)
= 0, k= 1,2, . . . ,K, (105)

when T is large enough, then the perturbed solution Z∗ approximates the solution of (46) within a O(T−2)-
error. Finally, it is not difficult to see that there exist a unique vector (ε∗1, . . . , ε∗K) that solves (105). Specifi-
cally, after some straightforward algebra, we can find that

ε∗k = αk

K∑
i=1

µi−µi0
αiγiu

− µk−µk0

γkulk(Z̄)
, k= 1,2, . . . ,K, (106)

which concludes the proof. �

B.2. Proofs for Auxiliary Results

Proof for Lemma 4. We fix π and let E[·] = Eπ[·]. Note that nt = 0 implies E[(rt − µ)2] = µ2. Hence,
hereafter we only consider the case with nt ≥ 1. Observe that

E
[
(rt−µ)2 |nt ≥ 1

]
= E

[
σ2

nt

∣∣∣∣∣ nt ≥ 1
]
. (107)

First, consider the case with v ∈ [0,1]. To bound the above quantity, let
¯
λ > 0 be the minimum of the

demand function λ(p,n, r) over all admissible values of the price p and the state variables n and r. Define
by n′t a binomial random variable with (t − 1) number of trials and success probability

¯
λf(t) > 0. Since

nt+1 = nt + 1 with probability f(nt)λ(pt, nt, rt)≥ f(t)
¯
λ and nt+1 = nt otherwise, we have that E[1/nt| nt ≥

1]≤ E[1/(n′t + 1)]. Further, applying Theorem 1 of Chao and Strawderman (1972) for n′t we have

E
[

σ2

n′t + 1

]
≤ 1− (1−

¯
λf(t))t+1

¯
λ(t+ 1)f(t) = M ′1

tf(t) ≤
2M ′1

tf(t) + 1 (108)

for t≥ 1 and for some constants M ′1 <∞. Combining these inequalities we get

E
[
(rt−µ)2 |nt ≥ 1

]
≤ 2M1

tf(t) + 1 , (109)

and the desired result follows by letting M1 = max(2M ′1, µ2).
Next, consider the case with v ∈ (1,∞). It can be easily seen from Jensen’s inequality that

E
[
σ2

nt

∣∣∣∣∣ nt ≥ 1
]
≥ σ2

E[nt| nt ≥ 1] ≥
σ2

E[nt] + 1 . (110)

Define n∞ := limt→∞ nt and τm := inf{t : nt =m}. Observe that E[nt]≤ E[n∞] from the monotone convergence
theorem and that

E[n∞]≤ E
[
∞∑
t=1

I{Customer t post a review}
]

= E
[
∞∑
m=1

I{Customer τm post a review}
]

=
∞∑
m=1

1
umv

<∞,

(111)
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where I{A} is one if A is true and zero otherwise. The proof is therefore concluded, as we can always find a

positive constant M2 such that

E
[
σ2

nt

∣∣∣∣∣ nt ≥ 1
]
≥M2. � (112)

Proof for Lemma 5. Observe that

Eπ
[
|p̂btcλ(p̂btc, n∗(t), r∗(t))− p̂btcλ(p̂btc, nbtc, rbtc)|

]
≤LEπ

∣∣∣∣γn∗(t)r∗(t) +µ0

γn∗(t) + 1 −
γn̂btcr̂btc+µ0

γn̂btc+ 1

∣∣∣∣
≤L

(∣∣∣∣γn∗(t)r∗(t) +µ0

γn∗(t) + 1 −µ
∣∣∣∣+ Eπ

∣∣∣∣γn̂btcr̂btc+µ0

γn̂btc+ 1 −µ
∣∣∣∣) ,

(113)

where the first inequality follows from the Lipschitz continuity of λ, while the second follows from the

triangular inequality. Consider the first term on the right-hand side of the preceding inequality and observe

that r∗(t) = µ and n∗(t) = u`(z)t. Therefore,∣∣∣∣γn∗(t)r∗(t) +µ0

γn∗(t) + 1 −µ
∣∣∣∣= ∣∣∣∣ µ0−µ

γn∗(t) + 1

∣∣∣∣=O(1
t

)
. (114)

To bound the second term on the right-hand side of (113), observe that

Eπ
∣∣∣∣γn̂btcr̂btc+µ0

γn̂btc+ 1 −µ
∣∣∣∣≤ Eπ

∣∣r̂btc−µ∣∣+ Eπ
∣∣∣∣ µ0−µ
γn̂btc+ 1

∣∣∣∣=O( 1√
t

)
, (115)

where the last equality follows from Lemma 4 with v = 0 and from the fact that E|X| ≤ (E|X|2)0.5. This

completes the proof of the lemma. �

References
Acemoglu D, Makhdoumi A, Malekian A, Ozdaglar A (2017) Fast and slow learning from reviews. Technical

Report 24046, National Bureau of Economic Research, URL http://dx.doi.org/10.3386/w24046.

Ajorlou A, Jadbabaie A, Kakhbod A (2016) Dynamic pricing in social networks: The word-of-mouth effect.

Management Sci. 64(2):971–979.

Aviv Y, Pazgal A (2008) Optimal pricing of seasonal products in the presence of forward-looking consumers.

Manufacturing & Service Oper. Management 10(3):339–359.

Banerjee AV (1992) A simple model of herd behavior. The Quarterly J. Econom. 797–817.

Besbes O, Scarsini M (2018) On information distortions in online ratings. Oper. Res. 66(3):597–610.

Bikhchandani S, Hirshleifer D, Welch I (1992) A theory of fads, fashion, custom, and cultural change as

informational cascades. J. Political Econom. 992–1026.

Bloch F, Quérou N (2013) Pricing in social networks. Games and Economic Behavior 80:243–261.

Bonnans J, Shapiro A (1998) Optimization problems with perturbations: A guided tour. SIAM Review

40(2):228–264.

Bose S, Orosel G, Ottaviani M, Vesterlund L (2006) Dynamic monopoly pricing and herding. RAND J.

Econom. 37(4):910–928.



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. 43

Bose S, Orosel G, Ottaviani M, Vesterlund L (2008) Monopoly pricing in the binary herding model. Economic
Theory 37(2):203–241.

Candogan O, Bimpikis K, Ozdaglar A (2012) Optimal pricing in networks with externalities. Oper. Res.
60(4):883–905.

Cesari L (1966) Existence theorems for weak and usual optimal solutions in lagrange problems with unilateral
constraints. i. Trans. Amer. Math. Soc. 124(3):369–412.

Chao M, Strawderman WE (1972) Negative moments of positive random variables. J. Amer. Stat. Assoc.
67(338):429–431.

Chevalier JA, Mayzlin D (2006) The effect of word of mouth on sales: Online book reviews. J. Marketing
res. 43(3):345–354.

Crapis D, Ifrach B, Maglaras C, Scarsini M (2016) Monopoly pricing in the presence of social learning.
Management Sci. 63(11):3586–3608.

DeGroot MH (2005) Optimal statistical decisions (John Wiley & Sons).

Dellarocas C (2003) The digitization of word of mouth: Promise and challenges of online feedback mecha-
nisms. Management Sci. 49(10):1407–1424.

Duan W, Gu B, Whinston AB (2008) Do online reviews matter?—an empirical investigation of panel data.
Decision Support Systems 45(4):1007–1016.

Gallego G, van Ryzin G (1994) Optimal dynamic pricing of inventories with stochastic demand over finite
horizons. Management Sci. 40(8):999–1020.

Gallego G, van Ryzin G (1997) A multiproduct dynamic pricing problem and its applications to network
yield management. Oper. Res. 45(1):24–41.

He QC, Chen YJ (2018) Dynamic pricing of electronic products with consumer reviews. Omega 80:123–134.

Judd KL, Riordan MH (1994) Price and quality in a new product monopoly. The Review of Economic Studies
61(4):773–789.

Li H, Huh WT (2011) Pricing multiple products with the multinomial logit and nested logit models: Concavity
and implications. Manufacturing & Service Oper. Management 13(4):549–563.

Li X, Hitt LM (2008) Self-selection and information role of online product reviews. Inform. Systems Res.
19(4):456–474.
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