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1 Introduction

We consider the problem of recovering convex boundaries of an image from blurred and noisy

observations. Following Hall and Koch (1990), we concentrate on the so-called continuous image

model (which is explained in what follows). The original image is given by an intensity function f ,

supported on a closed convex set G in the d–dimensional Euclidean space R
d. In many instances,

only a degraded version of the original image is available, where the typical reasons for degradation

are blurring and noise; we refer to Bertero and Boccacci (1998, p. 51-53) for a detailed discussion

of different sources of degradation in imaging. Blurring is modeled using a convolution operation,

K ∗ f , in which the original image f is subjected to the effects of a point spread function K. The

effects of noise degradation can then be adequately captured by adding a stochastic component to

the blurred image. In this setup, the standard problem is to recover the original image f from its

degraded version.

The outlined inverse problem of image deconvolution is the subject of considerable literature

in image processing and statistics. In this paper, however, we focus on directly recovering the

boundary of the image, rather than estimating the image itself f . We note that in virtually all image

processing applications, edge detection is one of the standard preliminary analysis steps; this fact

serves to motivate our paper. Although many practically important edge detection algorithms for

degraded images have been proposed in the image processing literature, their theoretical properties

are rarely analyzed. Our goal in this paper is to study the theoretical properties of a particular

algorithm which uses geometric probing to estimate the boundary of the image.

Our paper is closely related to two strands of research. The first focuses on nonparametric

signal and image deconvolution, which has been extensively studied in statistics; see, e.g., Ermakov

(1989), Hall (1990), Hall and Koch (1990), Korostelev and Tsybakov (1993), Efromovich (1997),

Goldenshluger (1999) and references therein. In this literature, the function f is typically assumed

to be smooth, even though its smoothness may be unknown. The second stream of research consid-

ers the problem of recovering the boundary of a multidimensional image from direct observations;

see, e.g., Korostelev and Tsybakov (1993), Tsybakov (1994), Müller and Song (1994), Mammen

and Tsybakov (1995), Härdle et al. (1995), Hall et al. (1997), Hall and Raimondo (1998), Donoho

(1999) and references therein. Recovering boundaries in models that involve indirect observations

has been discussed recently in Candés and Donoho (2002) and Goldenshluger and Spokoiny (2004).

The main contributions of this paper are the following. We propose a method for estimating

the boundary of the support G of an image f , where information on the image is only available

in the form of blurred and noisy observations. Our approach focuses on direct recovery of the
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support function of the set G; the proposed estimation scheme is akin to the method of geometric

hyperplane probing which is very common in computer vision applications [see, e.g., Skiena (1992),

and Lindenbaum and Bruckstein (1994)]. A similar estimation method has been proposed in

Goldenshluger and Spokoiny (2004) for reconstructing convex shapes from noisy observations of

their moments. In terms of accuracy of the proposed estimation procedure, we first study the

behavior of an estimator of the linear probe functional (see Theorem 1), and subsequently establish

upper bounds on accuracy of the support function estimation algorithm (see Theorem 2). We

next extend this pointwise result by deriving upper bounds on the global estimation accuracy, as

measured by the Hausdorff distance between the boundary and its support-function-based estimate

(see Theorem 3).

It is worth noting that an alternative approach to the problem studied in this paper is to first

deconvolve the function f , and subsequently infer the support boundary. However, in our setup the

assumptions imposed on the intensity function f are quite weak. In particular, we assume that f

is a square integrable bounded function with convex support, with some restrictions imposed on its

behavior near the boundary. Under such assumptions the accuracy of any deconvolution estimator

can be arbitrarily bad. Hence, in the absence of additional information on the regularity of f ,

“direct” estimation of the boundary can be advantageous.

The paper is organized in the following way. In Section 2 we formulate the estimation problem,

and introduce some preliminaries and notation. Section 3 details our estimation procedure, whose

accuracy is analyzed in Section 4. Section 5 contains some discussion, and proofs are all relegated

to Section 6.

2 Problem Formulation

The model and observation process. The image is modeled as an unknown positive function

f ∈ L2(R
d), the so-called intensity function, supported on the convex compact set G with non–

empty interior in R
d. Suppose that we can observe the process Y (x), given by

dY (x) = (Kf)(x)dx+ ǫdW (x), x ∈ R
d, (1)

where K : D(K) 7→ R(K) is a linear transformation with domain D(K) ⊆ L2(R
d), and range

R(K) ⊆ L2(R
d), 0 < ǫ < 1, and (W (x) : x ∈ R

d) is a standard d-dimensional Brownian motion.

The observation scheme (1) implies that for any function q ∈ L2(R
d) we can observe 〈q,Kf〉 with

added zero mean Gaussian noise having variance ǫ2‖q‖2. Here, 〈·, ·〉 and ‖ · ‖ denote the inner
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product and the corresponding norm in L2(R
d) with respect to Lebesgue measure. In what follows,

we restrict attention to the case where K is the convolution operator

(Kf)(x) =

∫

Rd

K(y)f(x− y)dy, x ∈ R
d, and f ∈ L2(R

d),K ∈ L1(R
d). (2)

The function K : R
d 7→ R

d which models the blurring process is referred to as the point spread

function in image analysis [cf., e.g., Bertero and Boccacci (1998, p. 51-53)]. Following Hall and

Koch (1990) we refer to (1)–(2) as the continuous image model. Our goal is to estimate the boundary

of G, using observations from (1)–(2).

Problem geometry and notation. We introduce some notation that will used in the sequel.

The Euclidean norm of the d-vector x = (x1, . . . , xd)
′ is denoted by |x|. Let Bd = {x : |x| ≤ 1}

denote the centered unit ball in R
d; its surface is the unit d-sphere Sd−1 = {x : |x| = 1}. For a unit

vector u ∈ Sd−1 we denote u⊥ the (d−1)–dimensional subspace orthogonal to u. The centered cube

with faces parallel to the coordinate hyperplanes will be designated by E = {x : |xi| ≤ 1, 1 ≤ i ≤ d}.
In what follows we will consider some simple affine transformations in R

d. In particular, for u ∈ Sd−1

let Au denote the d× d rotation matrix which maps (1, 0, . . . , 0)′ to the unit vector u ∈ Sd−1. For

fixed τ = (u, r) ∈ T := Sd−1 × [0, 1], we define

Eτ := AuE + (1 + r)u . (3)

Thus, Eτ is obtained by rotating E according to Au, followed by a translation x 7→ x + (1 + r)u.

Consequently, Eτ is the cube centered at (1 + r)u with sides of length 2 and faces parallel to the

coordinate hyperplanes of (u, u⊥).

We assume that G, the support of f , is a d–dimensional convex body, G ⊆ Bd. The following

concept of a support function plays a key role in our estimation procedure.

Definition 1 For u ∈ Sd−1, the support function h(u) of the set G is defined by

h(u) := sup{x′u : x ∈ G} .

The supporting hyperplane to G with outward normal u ∈ Sd−1 is given by {x : x′u = h(u)};
the support function h(u) at the unit vector u gives the signed distance from o to the supporting

hyperplane. Throughout the paper we assume that the origin, o, belongs to the interior of G. This

assumption is not restrictive; if it holds the support function h(u) gives the actual distance from o

to the supporting hyperplane.
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The key observation that will be exploited in what follows is that there is a one-to-one corre-

spondence between a closed convex set G and its support function, viz

G = {x : x′u ≤ h(u), ∀u ∈ Sd−1}. (4)

For fixed u ∈ Sd−1 and small η > 0 we denote

Hu(η) := {x : h(u) − η ≤ x′u ≤ h(u)}. (5)

In words, Hu(η) is the set formed by the intersection of G with the half–space {x : x′u ≥ h(u)−η}.
The volume of the set Hu(η) characterizes “massiveness” of G in direction u in a small vicinity

of the support value. It is interesting to note that behavior of the volume of Hu(η) as η → 0

is related to the tail behavior of the Fourier transform of 1G(·) in the direction u ∈ Sd−1 [see,

e.g., the survey paper by Brandolini et al. (1998) and references therein]. We remark also that

Hu(η) = E(u,h(u)−η) ∩G because G ⊆ Bd; this will be used repeatedly in what follows.

3 The Proposed Estimation Scheme

Our approach to recovering the boundary of the set G is based on pointwise estimation of its

support function h(·). Before developing the details of the proposed approach, let us first highlight

the main idea that underlies it. Fix a direction u, and imagine that a d-dimensional cube is placed

outside the unit ball in R
d so that one of its faces is tangent to the ball in direction u. This will

be referred to as the cube probe. Recall that G ⊆ Bd, so by “sliding” this cube towards the origin

along the axis u, the cube eventually intersects with the boundary of G. In the absence of blurring

and noise (i.e., K = I and ǫ = 0), the cube probe will “hit” the boundary when it is exactly at

distance h(u) from the origin. As the probe penetrates G it accumulates “mass,” where the rate of

this mass accumulation is determined by: i.) the intensity function (f); ii.) the blurring incurred

by the convolution operator (K); and iii.) the noise level (ǫ). The main idea is to estimate the

distance where the accumulated mass begins to differ significantly from zero, indicating the location

of a boundary.

The probe functional. For fixed τ = (u, r) ∈ T , where T := Sd−1 × [0, 1], let Eτ be given by

(3). We define the probe functional by

ℓf (τ) :=

∫

Eτ

f(x)dx = 〈f,1Eτ 〉, τ = (u, r) ∈ T,

where 1B stands for the indicator function of a set B ∈ R
d. The value of the linear functional ℓf (τ)

is nothing but the mass accumulated by the cube probe when it is at the location τ = (u, r) ∈ T .
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The important property of the probe functional which underlies our construction is the following.

For any fixed u ∈ Sd−1, if r ∈ [h(u), 1] then ℓf (u, r) = 0; as r decreases from h(u) to 0, ℓf (u, r)

grows monotonically, because f is positive. Although we suppose that f is everywhere positive, it

is seen from the below proofs that it suffices to assume that f is positive near its support boundary,

i.e. for u ∈ Sd−1 there exists ∆ > 0 such that f(x) ≥ 0 for all x ∈ Hu(∆).

Estimation of the probe functional. The first step of our construction is to estimate the

probe functional ℓf (τ) for given τ = (u, r) ∈ T . Fix δ > 0, and let pδ denote a real-valued infinitely

differentiable function pδ ∈ C∞(R1), equal to 1 on the interval [−1 + δ, 1 − δ], and is 0 outside

[−1, 1]. Define

ϕδ(x) :=
d∏

j=1

pδ(xj), x = (x1, . . . , xd)
′. (6)

Clearly, the support of ϕδ is the cube E = {x : |xi| ≤ 1, 1 ≤ i ≤ n}. For fixed τ = (u, r) ∈ T we

define the shifted and rotated version of ϕδ to be

ϕτ,δ(x) := ϕδ(Aux− (1 + r)u). (7)

By construction, the support of ϕτ,δ is the shifted and rotated cube, Eτ , defined in (3).

Suppose that ϕτ,δ is in the range of K∗, R(K∗), where K∗ is the adjoint operator to K. Then,

according to the linear functional strategy [cf. Golberg (1979) and Anderssen (1980)], if D(K) is

dense in L2(R
d), then there exists ψτ,δ ∈ L2(R

d) such that ϕτ,δ = K∗ψτ,δ, and

〈f, ϕτ,δ〉 = 〈Kf,ψτ,δ〉 = 〈f,K∗ψτ,δ〉, ∀f ∈ D(K). (8)

Now, for any function q ∈ L1(R
d) ∩ L2(R

d), let q̂ denote its Fourier transform

q̂(ω) :=

∫

Rd

q(x)eiω
′xdx, ω = (ω1, . . . , ωd)

′.

It is easily verified that for the convolution operator K, the range of the adjoint is given by

R(K∗) =
{
q :

∫

Rd

|q̂(ω)|2|K̂(ω)|−2dω <∞
}
,

and ψτ,δ in (8) is given by

ψτ,δ(x) =
1

(2π)d

∫

Rd

ϕ̂τ,δ(ω)

K̂(−ω)
e−iω′xdω. (9)

The following result states that, under natural assumptions on K, ϕτ,δ belongs to R(K∗) for

any τ ∈ T and all δ > 0.
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Assumption 1 There exist constants L > 0 and β > 0 such that

|K̂(ω)| ≥ L(1 + |ω|2)−β/2, ∀ω ∈ R
d.

Lemma 1 Let Assumption 1 hold. Then, ϕτ,δ ∈ R(K∗) for any τ ∈ T and all δ > 0, and in

addition

‖ψτ,δ‖2 ≤ C1L
−2δ−2β+1 , (10)

where C1 = C1(d, β) depends on d and β only.

We note that Assumption 1 guarantees the identifiability of f from the observations (1)–(2), and

states that the tails of the Fourier transform of the point spread function K cannot decrease to

zero faster than the indicated polynomial rate. This assumption is quite standard in deconvolution

problems, and corresponds to what is known as a moderately ill–posed problem. We note that the

severely ill–posed case, where the tails of K̂ are allowed to decrease at an exponential rate, can be

also treated using our methodology. This setup is, however, beyond the scope of our paper.

We are now ready to define the estimate of the probe functional ℓf (τ) based on the observations

(1). For fixed τ = (u, r) ∈ T and δ > 0 we define

ℓ̃(τ ; δ) :=

∫

Rd

ψτ,δ(x)dY (x), (11)

where ψτ,δ is given in (9). We note that in view of Lemma 1, the estimator ℓ̃(τ ; δ) is well–defined

for all τ ∈ T and δ > 0. In what follows, we assume that

sup
x∈G

|f(x)| ≤M <∞. (12)

The next statement establishes an upper bound on the accuracy of the probe functional estima-

tor ℓ̃(τ ; δ) for a fixed direction u ∈ Sd−1 uniformly over r ∈ [0, 1].

Theorem 1 Let Assumption 1 and (12) hold, and suppose that ǫ is sufficiently small. Define

δ∗ :=
( ǫ

LM

√
ln

1

ǫ

)1/(β+1/2)
, (13)

and ℓ̃∗(τ) := ℓ̃(τ ; δ∗). Then for any fixed u ∈ Sd−1 we have

{
E sup

r∈[0,1]
|ℓ̃∗(τ) − ℓf (τ)|2

}1/2
≤ C2(d, β)

(
Mβ−1/2 ǫ

L

√
ln

1

ǫ

)1/(β+1/2)
. (14)
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It is important to emphasize that the upper bound of Theorem 1 holds for all square integrable

functions f supported on G ⊆ Bd and satisfying (12). If further assumptions on f are introduced,

for instance if f is assumed to be smooth, then the rate of convergence in estimating ℓf (τ) may be

improved; see further discussion in Section 5.

The support function estimator. Based on the estimate ℓ̃∗(τ) = ℓ̃∗(u, r) of the probe

functional ℓf (τ), we define the estimator of the support function h(·) at a fixed direction u ∈ Sd−1

in the following way:

h̃ = h̃(u) := max{r ∈ [0, 1] : ℓ̃∗(u, r) ≥ θ}, (15)

where ℓ̃∗(u, r) = ℓ̃∗(τ) is given in Theorem 1, and θ > 0 is a threshold to be chosen in the sequel.

If ℓ̃∗(u, r) < θ for all r ∈ [0, 1] we set h̃(u) = 0.

We note that for θ sufficiently small, the estimator h̃(u) is well–defined. Indeed, for any fixed

u ∈ Sd−1, ℓ̃∗(τ) = ℓ̃∗(u, r), considered as a function of r, is a separable Gaussian process on [0, 1]

that has continuous sample paths with probability one. The last fact follows from the bounds in the

proof of Lemma 2 in section 6, continuity properties of ψτ,δ as a function of r, and the well–known

criteria for continuity of sample paths of Gaussian processes [see, e.g., Gihman and Skorohod (1974,

p. 193-194)]. In particular, this implies that ℓ̃∗(u, h̃) = θ with probability 1.

4 Accuracy of the Support Function Estimator

The class of intensity functions. To analyze the accuracy of the estimator h̃(u) we introduce

the following class of functions f .

Definition 2 We say that a positive function f ∈ L2(R
d) with convex support G ⊆ Bd, o ∈ int(G),

belongs to the class Fu(α), with α ≥ 1, if (12) holds and for a fixed direction u ∈ Sd−1 there exist

Q > 0, ∆ > 0 such that ∫

Hu(η)
f(x)dx ≥ Qηα, ∀η ∈ (0,∆), (16)

where Hu(η) is defined in (5).

Several comments on the above definition are in order. The integral on the left hand side of

(16) quantifies the “massiveness” of the image f in the direction u. In view of our definition of

the probe functional, this integral is nothing but ℓf (u, h(u) − η). Thus, (16) can be equivalently

rewritten as

ℓf (τ) = ℓf (u, r) ≥ Q|h(u) − r|α, ∀r ∈ (h(u) − ∆, h(u)) . (17)
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It is important to realize that the class Fu(α) is defined for a fixed direction u ∈ Sd−1, therefore the

constants Q, ∆, and α may depend on u. Relation (17) imposes restrictions both on the geometry

of G in the vicinity of the support value h(u) in direction u ∈ Sd−1, and on the behavior of f

near the boundary of G. The probe functional ℓf (u, r) quantifies the rate at which the cube probe

Eτ = E(u,r) accumulates mass as it penetrates the set G in a fixed direction u (as r decreases

from 1 to 0). The rate of increase in accumulated mass depends on the behavior of the intensity

function f near the boundary, and the local curvature of the boundary itself. For example, if f has

a discontinuity jump on the boundary, i.e. f = 1Gf̃ for f̃ ≥ c > 0, the probe functional ℓf (u, r)

behaves roughly like the volume of the set Hu(h(u) − r) = Eτ ∩G. For simple geometrical objects

the order of this volume can be easily derived. In general, it turns out that the order of this volume

is essentially determined by the (Gauss) curvature of the boundary [see, e.g., Bruna et al. (1988)

and Brandolini et al. (1998)]. We note that the parameter α indexing the class Fu(α) satisfies

α ≥ 1 whenever G is a convex set. The next examples illustrate how the curvature of the boundary

of G and the behavior of f near the boundary determine the index α. In what follows we use the

term sharp boundary when the intensity function f is discontinuous on the boundary of support

set.

Examples. 1. Assume that d = 2 and consider the case of a sharp boundary. Let G be a

convex polygon, and for simplicity, suppose that f = 1G. Then for any direction which is not

perpendicular to the side of the polygon we have α = 2. In this case the corresponding supporting

line intersects the boundary of G in a vertex of the polygon, and the constant Q depends in an

obvious way on the angle between two adjacent sides of the vertex. If the direction u ∈ S1 is

perpendicular to the side of the polygon then the supporting line contains that side; in this case

α = 1.

2. We again consider the case of d = 2, and first assume that the boundary is sharp. If G is a

circle or an ellipse, then α = 3/2 for any direction. It turns out that this case is rather general. Let

xu denotes the point on the boundary ∂G where the support value in direction u is attained. If ∂G

has non–zero curvature at xu, then α = 3/2 for that direction. Now assume that the boundary is

non-sharp. Specifically, without loss of generality we let u = (0, 1) ∈ S1, and suppose that ∂G can

be represented as x2 = g(x1) := −x2
1 + c, with c > 0, in the vicinity of the origin. This corresponds

to the case of non–zero boundary curvature in direction u. Let f(x1, x2) ≥ |x2 − g(x1)|γ for some

γ ≥ 0 (γ = 0 corresponds to the sharp boundary case). Then it is easily verified that α = γ + 3/2.

If the curvature of ∂G vanishes at xu, the exponent α differs from γ + 3/2. For instance, if ∂G is

represented as the graph of function x2 = −x2q
1 + c, q ≥ 1, then α = γ + 1 + (2q)−1. We note,

however, that if the boundary is smooth then the set of points on the boundary where the curvature
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vanishes has zero Lebesgue measure.

3. In R
d, we consider the case of a sharp boundary. If G is an ellipsoid in R

d, then α = (d+1)/2

for any direction u ∈ Sd−1. Similarly to the previous example, if for some u ∈ Sd−1 the Gauss

curvature of ∂G does not vanish at xu, then α = (d+ 1)/2 as well. If G is a parallelotope, α takes

values in the set {1, 2, . . . , d} depending on the direction u. In particular, if u is perpendicular to

a face of the parallelotope then α = 1. Without loss of generality consider now the situation when

u = (0, . . . , 0, 1) ∈ Sd−1 and ∂G can be represented as xd = g(x1, . . . , xd−1) := −x2q1
1 · · ·x2qd−1

d−1 + c

for some qi ≥ 1, i = 1, . . . , d−1 and c > 0. Then it is not difficult to verify that α = 1+
∑d−1

j=1(2qj)
−1.

Accuracy bounds. We are now ready to establish upper bounds on the accuracy of the

proposed estimation procedure.

Theorem 2 Let Assumption 1 hold. Fix an arbitrary u ∈ Sd−1, and let h̃∗(u) be the estimator of

the support function given by (15), with θ = θ∗ taken to be

θ∗ :=

(
ǫ

L
Mβ−1/2

√
C3 ln

1

ǫ

)1/(β+1/2)

, C3 > 0. (18)

Then, for sufficiently small ǫ

sup
f∈Fu(α)

{
E

∣∣∣h̃∗(u) − h(u)
∣∣∣
2}1/2

≤ C4Q
−1/α

{
Mβ−1/2 ǫ

L

√
ln

1

ǫ

} 1
α(β+1/2)

,

where C3 and C4 may depend d, β and ∆ only.

We note that since the blurring kernel K is assumed to be known, the dependence of the above

threshold θ∗ on L and β, which characterize the behavior of K, is not restrictive.

Theorem 2 gives an upper bound on the pointwise risk of the proposed estimator. Based on

the estimate h̃∗, we can define the global estimator of the set G as follows

G̃∗ := {x : x′u ≤ h̃∗(u), ∀u ∈ Sd−1}. (19)

We note that G̃∗ is a convex set, by construction, because it is the given by the intersection of half-

spaces formed by the estimated supporting hyperplanes. In order to the measure global accuracy

of G̃∗ as an estimator of G, it is natural to use the following family of Lp–metrics on the class

of all convex bodies in R
d. If G1 and G2 are convex bodies with support functions hG1 and hG2

respectively, then the Lp–metric is defined as

∆p(G1, G2) :=
{∫

Sd−1

|hG1(u) − hG2(u)|pdλd−1(u)
}1/p

, 1 ≤ p ≤ ∞ ,
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where λd−1 is the spherical Lebesgue measure on Sd−1. It is remarkable that the ∆∞–metric is

nothing but the usual Hausdorff distance between the sets [see, e.g., Schneider (1993, Section 1.8)].

We note also that metric ∆p may be viewed as the general Lp–metric of Baddeley (1992) specialized

to convex sets; the cited paper argues that such a metric has attractive properties for image

processing applications.

To state the upper bound on the risk of G̃∗ we first introduce the following “global” version of

the functional class Fu(α).

Definition 3 We say that a positive function f with convex support G ⊆ Bd, o ∈ int(G), belongs

to the class F(α), if (12) holds and for all u ∈ Sd−1 there exist Q > 0, ∆ > 0 and α ≥ 1 such that

∫

Hu(η)
f(x)dx ≥ Qηα, ∀η ∈ (0,∆),

where Hu(η) is defined in (5).

In contrast to Definition 2, here we require that (16) holds for all directions u ∈ Sd−1 with the

same constants Q, α and ∆. This class may be adequate, for example, for purposes of describing

indicator functions of convex sets with smooth boundaries having everywhere non-vanishing Gauss

curvature.

It follows immediately from Theorem 2 that

sup
f∈F(α)

{
E ∆2

2(G̃∗, G)
}1/2

≤ C5Q
−1/α

{
Mβ−1/2 ǫ

L

√
ln

1

ǫ

} 1
α(β+1/2)

.

Our next result concerns global estimation accuracy as measured by the Hausdorff distance.

Theorem 3 Let G̃∗ be given by (19). Then, under conditions of Theorem 2

sup
f∈F(α)

{
E∆2

∞(G̃∗, G)
}1/2

≤ C6Q
−1/α

{
Mβ−1/2L−1ǫ

√
ln

1

ǫ

} 1
α(β+1/2)

.

5 Discussion

We now turn to a few brief comments on the main results of this paper.

1. The proposed algorithm is based on direct estimation of the edge by means of the geometric

hyperplane probing scheme. As our results show, the accuracy of this method is determined by
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the ill–posedness of the convolution operator K (given by the value of β), and the “massiveness”

of the image in the u-direction (near the boundary) as quantified by the index α. The latter is

determined by the local behavior of the intensity function f near the boundary, and the local

geometrical properties of the support G in the vicinity of the estimated support value; these two

factors determine the index α in the manner illustrated in Examples 1–3 in Section 4.

2. The functional class Fu(α) involves only weak assumptions on the behavior of the intensity

function. Specifically, f ∈ Fu(α) is only assumed to be bounded and square integrable with convex

support, satisfying certain “massiveness” conditions near the boundary. We would like to emphasize

than under these conditions, uniform bounds on the accuracy of a deconvolution-based estimator

can be arbitrarily bad. This is due to the fact that the functional class Fu(α) is too broad. Hence,

our approach, which is built on “directly” estimating the boundary, can be applied in instances

where the deconvolution-based estimator is not appropriate.

3. The basic ingredient in our construction is the estimation of the probe functional corre-

sponding to the hyperplane probing scheme. Using Theorem 1 and results in Donoho and Low

(1992), we can show that our estimator of the probe functional is rate optimal (up to logarithmic

term). The proposed boundary estimator inherits this convergence rate.

4. If additional regularity conditions on f are imposed, then one can improve the rates given

in the main results of this paper. In particular, there is a close connection between the setup and

problem formulation in our paper, and that of estimating a change–point from indirect observations

in the one–dimensional case [see, e.g., Neumann (1995)]. The recent paper by Goldenshluger et al.

(2004) studies the problem of change-point estimation in a function f in the white noise convolution

setup. In that paper it is shown that minimax rates of convergence are determined by smoothness

of f away from the change-point, and by the ill-posedness of the convolution operator. Specifically,

further smoothness of the function f away from the change–point, results in better accuracy in

estimating the change–point. (This stands in contrast to the case of direct observations.) This

suggests that the optimal rate of convergence in estimating convex boundaries from indirect obser-

vations depends on the smoothness of the intensity function f . Establishing this result rigorously

remains an open problem.

12



6 Proofs

Proof of Lemma 1: We assume that δ > 0 is fixed, and note that by (7)

ϕ̂τ,δ(ω) =

∫

Rd

ϕτ,δ(x)e
iω′xdx

=

∫

Rd

ϕδ(Aux− (1 + r)u)eiω
′xdx

= exp{i(1 + r)u′Auω}
∫

Rd

ϕδ(y)e
iω′A′

uy dy

= exp{i(1 + r)u′Auω}ϕ̂δ(Auω). (20)

It follows from (6) that ϕ̂δ(ω) =
∏d

j=1 p̂δ(ωj) for all ω = (ω1, . . . , ωd)
′ ∈ R

d. The function p̂δ(·)
is rapidly decreasing, i.e. |p̂δ(λ)| ≤ Ck(1 + |λ|)−k for all k. Using this fact, and taking into

account Assumption 1 and (20), we conclude that ϕ̂τ,δ(·)/K̂(−·) ∈ L1(R
d) ∩L2(R

d) so that ψτ,δ(·)
is well–defined in (9). This also implies that ϕτ,δ ∈ R(K∗).

Now we prove (10). Straightforward algebra shows that

‖ψτ,δ‖2 =

∫

Rd

∣∣∣
ϕ̂δ(Auω)

K̂(−ω)

∣∣∣
2
dω

≤ L−2

∫

Rd

|ϕ̂δ(Auω)|2(1 + |ω|2)βdω

= L−2

∫

Rd

|ϕ̂δ(ω)|2(1 + |ω|2)βdω

= L−2

∫

Rd

d∏

j=1

|p̂δ(ωj)|2(1 + |ω|2)βdω

≤ c1L
−2

∫

R1

|p̂δ(λ)|2|λ|2βdλ (21)

where c1 = c1(β, d) is the constant depending on d and β only. Thus, it is sufficient to bound the last

integral in (21). To this end, we recall the standard way to construct the function pδ ∈ C∞(R1)

with aforementioned properties [see, e.g., Lighthill (1964), and Richards and Youn (1990)]. Let

γ(x) = e−1/[x(1−x)]. Then, on the interval [−1,−1 + δ], where pδ climbs from zero to one, set

pδ(x) =
c2
δ

∫ x

−1
γ
(y + 1

δ

)
dy, x ∈ [−1,−1 + δ],

where c2 is an absolute constant. First assume that β is integer; then

p
(β)
δ (x) =

c2
δβ
γ(β−1)

(x+ 1

δ

)
, x ∈ [−1,−1 + δ],
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and therefore

∫

R1

|p(β)
δ (x)|2dx =

c22
δ2β

∫

R1

∣∣∣γ(β−1)
(x+ 1

δ

)∣∣∣
2
dx

=
c22

δ2β−1

∫

R1

|γ(β−1)(x)|2dx

≤ c3
δ2β−1

,

where c3 = c3(β) depends on β only. Combining this with (21) we obtain (10) for integer β. For

general β the result follows from the standard interpolation inequalities for the Sobolev spaces [cf.

Aubin (1979, p.127)].

We now provide an auxiliary lemma that will be used repeatedly in the proofs below. Define

X(τ) = X(u, r) := ǫ

∫

Rd

ψτ,δ∗(x)dW (x) , r ∈ [0, 1], (22)

where τ = (u, r) ∈ T , ψτ,δ∗ is given by (9), and δ∗ is defined in (13). In the sequel we will treat

X(τ) as a random process over the index set T = Sd−1 × [0, 1]. When u ∈ Sd−1 is fixed we have

the random process {X(u, r) : r ∈ [0, 1]}. This distinction will always be clear from the context.

Obviously, {X(τ)} is a zero mean Gaussian process. Let

σ2
X := sup

τ∈T
E|X(τ)|2 ,

and note that in view of Lemma 1 and (13) we have that

σ2
X = sup

τ∈T
ε2‖ψτ,δ∗‖2

≤ c1ǫ
2

L2δ2β−1
∗

≤ c2

(
M2β−1 ǫ

2

L2

)1/(β+1/2)
. (23)

Lemma 2 Let Assumption 1 and condition (12) hold.

(i) For any fixed u ∈ Sd−1 and for all θ > 2σX we have that

P

{
sup

r∈[0,1]
|X(u, r)| ≥ θ

}
≤ C1Mθ

σ2
X

exp
{
− θ2

2σ2
X

}
,

where C1 = C1(d, β) depends on d and β only.
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(ii) For all θ > 2σX we have that

P

{
sup
τ∈T

|X(τ)| ≥ θ
}
≤ C2

( θ

σ2
X

)d
exp
{
− θ2

2σ2
X

}
,

where C2 may depend on d, β, M and L only.

Proof (i). Define the semi-metric

µ(ρ, r) :=
(
E|X(u, ρ) −X(u, r)|2

)1/2
.

To prove the inequality in the lemma we verify conditions of Proposition A.2.7 in van der Vaart

and Wellner (1996). Specifically, we need to evaluate the minimal number of balls of radius ν with

respect to the semi-metric µ covering the index set [0, 1]. We have that

µ2(ρ, r) = ǫ2‖ψ(u,ρ),δ∗ − ψ(u,r),δ∗‖2
2

= ǫ2
∫

Rd

∣∣∣∣∣
ϕ̂(u,ρ),δ∗(ω) − ϕ̂(u,r),δ∗(ω)

K̂(−ω)

∣∣∣∣∣

2

dw

≤ ǫ2
∫

Rd

|ϕ̂(u,ρ),δ∗(ω) − ϕ̂(u,r),δ∗(ω)|2(1 + |ω|2)βdω

(a)

≤ ǫ2
∫

Rd

|ϕ̂δ∗(Auω)|2(1 + |ω|2)β
∣∣∣1 − ei(ρ−r)u′Auω

∣∣∣
2
dω

(b)

≤ ǫ2|ρ− r|2
∫

Rd

|ϕ̂δ∗(ω)|2(1 + |ω|2)β
∣∣u′ω

∣∣2 dω

≤ ǫ2|ρ− r|2
∫

Rd

|ϕ̂δ∗(ω)|2(1 + |ω|2)β+1dω

(c)

≤ c1|ρ− r|2 ǫ2

L2δ2β+1
∗

= c1M
2|ρ− r|2,

where (a) follows from (20); (b) follows from a change of variable noting that Au is a rotation

matrix, and the standard bound |1 − exp{ix}| ≤ |x|; (c) follows from the same argument as in the

proof of Lemma 1; and the last equality follows by definition of δ∗ given in (13). Therefore the

minimal number of balls of radius ν, with respect to to the semi-metric µ, that covers the interval

[0, 1] does not exceed N(ν;µ, [0, 1]) = c2Mν−1. Applying Proposition A.2.7 from van der Vaart

and Wellner (1996) with ε0 = σX , we obtain that, for some constant c3 > 0,

P

{
sup

r∈[0,1]
|X(u, r)| ≥ θ

}
≤ c3Mθ

σ2
X

exp
{
− θ2

2σ2
X

}

provided that θ > 2σX . This concludes the proof of (i).
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(ii). Now we consider

µ(τ, t) = (E|X(τ) −X(t)|2)1/2,

where τ = (u, ρ), t = (v, r) and τ, t ∈ T = Sd−1× [0, 1]. Then, similarly to the above considerations,

we have

µ2(τ, t) ≤ ǫ2
∫

Rd

|ϕ̂τ,δ∗(ω) − ϕ̂t,δ∗(ω)|2(1 + |ω|2)βdω

≤ c4ǫ
2
{∫

Rd

|ϕ̂δ∗(Auω)|2|ei(1+r)u′Auω − ei(1+ρ)v′Avω|2(1 + |ω|2)βdω

+

∫

Rd

|ϕ̂δ∗(Auω) − ϕ̂δ∗(Avω)|2(1 + |ω|2)βdω
}

=: c4ǫ
2{J1 + J2} .

Straightforward algebra shows that

J1 ≤ c5

∫

Rd

|ϕ̂δ∗(Auω)|2|(1 + r)u′Auω − (1 + ρ)v′Avω|2(1 + |ω|2)βdω

= c5(1 + ρ)2
∫

Rd

|ϕ̂δ∗(Auω)|2
{
ω′A′

u(u− v) + ω′(Au −Av)
′v − r − ρ

1 + ρ
ω′A′

vv
}2

(1 + |ω|2)βdω

(a)

≤ c6

∫

Rd

|ϕ̂δ∗(Auω)|2|ω|2{|u− v|2 + (r − ρ)2}(1 + |ω|2)βdω

≤ c7|t− τ |2
∫

Rd

|ϕ̂δ∗(Auω)|2(1 + |ω|2)β+1dω

(b)

≤ c8|t− τ |2(Lδ2β+1
∗ )−1, (24)

where: (a) follows from the fact that Au and Av are orthogonal matrices, hence from a singular

value decomposition one has that the spectral norm of the difference between Au and Av is O(|u−v|)
when u, v ∈ Sd−1 are close; and (b) is obtained as in (i).

In order to bound J2 from above we first assume that β is integer. We introduce the standard

multi–index notation: Dk = Dk1
1 . . . Dkd

d = ∂|k|/∂xk1
1 . . . ∂xkd

d is the differential operator of the order

|k| = k1 + . . .+ kd, k = (k1, . . . , kd), and for x = (x1, . . . , xd) we write xk = xk1
1 · · ·xkd

d . Further, we

note that ϕ̂δ(·) is infinitely differentiable; hence there exists 0 ≤ ζ ≤ 1 such that

ϕ̂δ∗(Auω) = ϕ̂δ∗(Avω) + (Avω −Auω)′∇ϕ̂δ∗(Avω + ζAuω) (25)

where ∇ := (D1, . . . , Dp) is the gradient vector. Using (25) we can write

J2 ≤ c8|u− v|2
∫

Rd

|∇ϕ̂δ∗((Av + ζAu)ω)|2(1 + |ω|2)β+1dω , (26)

and our current goal is to bound the last integral. For u and v close to each other the matrix

I + ζA′
vAu is non–singular, thus using a change-of-variables in the above integral we see that it
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suffices to bound from above the integral J3 :=
∫

Rd |∇ϕ̂δ∗(ω)|2(1+ |ω|2)β+1dω. To this end we note

that

J3 ≤ c9
∑

|k|≤β+1

∫

Rd

|Dk{(−ix)ϕδ∗(x)}|2dx

≤ c10

∫ 1

−1
|p(β+1)

δ (x)|2dx ≤ c11δ
−(2β+1)
∗

where the last two inequalities follow from the definition of ϕδ∗ (and pδ∗) and from the same

argument as in the proof of Lemma 1. Combining this with (24) and (26), and substituting (13) for

δ∗ we obtain µ2(t, τ) ≤ c12|t− τ |2. Thus the minimal number of balls of the radius ν in the semi–

metric µ covering the index set T = Sd−1 × [0, 1] does not exceed N(ν;µ, T ) ≤ c13ν
−d. Therefore,

applying Proposition A.2.7 from van der Vaart and Wellner (1996) we come to the result (ii).

The statement of the lemma for non–integer β follows from standard interpolation inequalities for

Sobolev spaces [cf. Aubin (1979, p.127)].

Proof of Theorem 1: It follows from (1), (11) and (8) that

ℓ̃(τ ; δ) = 〈ψτ,δ,Kf〉 + ǫ

∫

Rd

ψτ,δ(x)dW (x)

= 〈f, ϕτ,δ〉 + ǫ

∫

Rd

ψτ,δ(x)dW (x) .

By definition ℓf (τ) = 〈f,1Eτ 〉, therefore

|ℓ̃(τ ; δ) − ℓf (τ)|2 ≤ 2|〈f, ϕτ,δ − 1Eτ 〉|2 + 2
∣∣∣ǫ
∫

Rd

ψτ,δ(x)dW (x)
∣∣∣
2

≤ c1(d)M
2δ2 + 2|X(u, r)|2 , (27)

where we have taken into account the definition of ϕτ,δ(·) and (12); X(u, r) is defined in (22). In

view of Lemma 2 we have for any t̄ > 2σX

E sup
r∈[0,1]

|X(u, r)|2 =

∫ ∞

0
2tP
{

sup
r∈[0,1]

|X(u, r)| > t
}
dt

≤ 2t̄2 + c3

∫ ∞

t̄
t2σ−2

X exp{−t2/(2σ2
X)} dt

= 2t̄2 + c4σX

∫

t̄2/2σ2
X

√
s exp{−s}ds

≤ 2t̄2 + c4σX exp{−t̄2/(4σ2
X)} ,

where the last step uses Jensen’s inequality. Minimizing with respect to t̄ we obtain

E supr∈[0,1] |X(u, r)|2 ≤ c5σ
2
X ln(1/σX), and the statement of the theorem follows from (23).
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Proof of Theorem 2: Throughout the proof we fix a direction u ∈ Sd−1 and therefore, for

brevity, omit the argument u. With slight abuse of notation, we write h for h(u), ℓf (r) for ℓf (u, r)

and so on. We denote c1, c2, . . . positive constants depending on d, β, and ∆ only.

For the estimate h̃∗ we have

E|h̃∗ − h|2 = E

[
|h̃∗ − h|2 1{h− ∆ ≤ h̃∗ ≤ h}

]

+ E

[
|h̃∗ − h|2 1{h̃∗ ≤ h− ∆}

]

+ E

[
|h̃∗ − h|2 1{h̃∗ > h}

]

=: I1 + I2 + I3, (28)

where ∆ is defined in (17). We bound I1, I2 and I3 separately.

In view of (17) we have

|h̃∗ − h|21{h− ∆ ≤ h̃∗ ≤ h} ≤ Q−2/α|ℓf (h̃∗)|2/α

≤ Q−2/α
{
|ℓf (h̃∗) − ℓ̃∗(h̃∗)| + |ℓ̃∗(h̃∗)|

}2/α

≤ c1Q
−2/α

{
|ℓf (h̃∗) − ℓ̃∗(h̃∗)|2/α + |ℓ̃∗(h̃∗)|2/α

}

≤ c1Q
2/α
{

sup
r∈[h−∆,h]

|ℓ̃∗(r) − ℓf (r)|2/α + θ
2/α
∗

}
, (29)

where we have used the fact that ℓ̃∗(h̃∗) = θ∗ with probability one. Taking expectation and using

Theorem 1 we obtain

I1 ≤ c2Q
−2/α

{(
Mβ−1/2 ǫ

L

√
ln

1

ǫ

) 2
α(β+1/2)

+ θ
2/α
∗

}
.

For the second term I2 we have

I2 = E

[∣∣∣h̃∗ − h
∣∣∣
2
1{h̃∗ < h− ∆}

]

≤ P{h̃∗ < h− ∆}
≤ P{ℓ̃∗(h− ∆) ≤ θ∗}
= P{ℓf (h− ∆) + ℓ̃∗(h− ∆) − ℓf (h− ∆) ≤ θ∗}
≤ P{|ℓf (h− ∆) − ℓ̃∗(h− ∆)| ≥ ℓf (h− ∆) − θ∗}
≤ P {|X(u, h− ∆)| ≥ ℓf (h− ∆)/2}
(a)

≤ P
{
|N (0, 1)| ≥ Q∆α(ǫ‖ψτ,δ∗‖)−1/2

}

(b)

≤ c3 exp{−c4ǫ−2/(β+1/2)}
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where (a) follows from definition of X(u, r), the choice of δ∗, and the fact that ǫ is sufficiently small,

and (b) follows from Lemma 1. Thus, I2 = o(I1) as ǫ→ 0.

It remains to bound the third error term I3. We have

I3 = E

[
|h̃∗ − h|21{h̃∗ > h}

]
≤ P{h̃∗ > h}

= P

{
sup

r∈[h,1]
ℓ̃∗(r) ≥ θ∗

}
.

Observe that

ℓ̃∗(r) = 〈ψτ,δ∗ ,Kf〉 + ǫ

∫

Rd

ψτ,δ∗(x)dW (x)

= 〈f, ϕτ,δ∗〉 +X(u, r)

= X(u, r), for r ∈ (h, 1],

because the support of ϕτ,δ∗ is Eτ , and Eτ ∩ G = ∅ for r ∈ (h, 1]. Note that for ǫ small enough,

θ∗ ≥ c5σX

√
ln(1/σX), see (23); therefore choosing θ = θ∗ we have by Lemma 2

I3 ≤ P

{
sup

r∈[h,1]
|X(u, r)| ≥ θ∗

}

≤ c6
√

ln{1/σX}[σX ]c7−1 ≤ c8θ
2/α
∗

where the last inequality is obtained by the choice of C3 in (18). Combining bounds for I1, I2 and

I3 we complete the proof.

Proof of Theorem 3: First we note that

∆∞(G̃∗, G) ≤ sup
u∈Sd−1

|h̃∗(u) − h(u)| .

The further proof is identical to the proof of Theorem 2 with the following minor modifications.

When bounding I1 in (28) we take additional supremum over u ∈ Sd−1. Therefore the expectation

E supτ∈T |ℓ̃∗(τ) − ℓf (τ)|2 should be bounded. This is done exactly as in the proof of Theorem 1

with the only difference that the stochastic error of the estimator is now considered as the absolute

value of the Gaussian process with the index set T ; then the part (ii) of Lemma 1 is used. We note

that in this case the constant C3 in (18) should be taken to be larger than in Theorem 1. In the

same manner, when bounding I3 the statement (ii) of Lemma 1 is used.
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