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Comparing the Dependence Structure of 
Equity and Asset Returns1 

The dependence structure of asset returns lies at the heart of a class of models that is 
widely employed for the valuation of multi-name credit derivatives. Using a 
statistical methodology that relies on a minimal amount of distributional 
assumptions, we investigate whether the popular tenet of Normal dependence 
between asset returns is empirically motivated. We also compare the dependence 
structures of asset and equity returns to provide some insight into the common 
practice of estimating the former using equity data. Our results provide strong 
evidence against the assumption of Normal dependence, and support the use of equity 
returns as proxies for asset returns. A simple application to portfolio loss tranches 
shows that these findings have significant consequences on the pricing and rating of 
multi-name credit instruments. 
 

1. INTRODUCTION 
The valuation of default-contingent instruments calls for the modeling of default mechanisms. 
A well-known dichotomy in credit models distinguishes between a “structural approach,” 
where default is triggered by the market value of the borrower’s assets falling below its 
liabilities, and a “reduced-form approach,” where the default event is directly modeled as an 
unexpected arrival. 

Currently, a major challenge facing credit models is represented by the rapid growth of multi-
name instruments, whose valuation entails modeling the joint default behavior of a set of 
reference names. Although both the structural and the reduced-form approaches can in 
principle be extended to the multivariate case, the calibration of the parameters governing the 
likelihood of joint defaults poses a number of problems. 

If we think of defaults as generated by asset values falling below a given boundary, then the 
probabilities of joint defaults over a specified horizon must follow from the joint dynamics of 
asset values. Consistent with their descriptive approach of the default mechanism, 
multivariate structural models rely on the dependence of asset returns in order to generate 
dependent default events. In this paper, we focus on the empirical properties of the 
dependence structure – also known as the copula function – of asset returns. 

Several well-known multivariate models assume a joint normal distribution for asset returns. 
Hull and White (2001), for example, generate default dependence by simulating correlated 
Brownian motions that are supposed to mimic the asset values dynamics. Similarly, two of 
the most commercially successful multi-name models, developed by KMV and 
CreditMetrics2, rely on the joint normality of the default-triggering variables. The widespread 
use of the multivariate Normal distribution is certainly related to the simplicity of its 
dependence structure, which is fully characterized by a correlation matrix. It remains to be 
seen, however, whether this assumption is supported by empirical evidence. 

                                                           
1 We would like to thank Dominic O’Kane, Stuart Turnbull and two anonymous referees for comments and suggestions. 
2 A description of these models can be found in Kealhofer and Bohn (2001) and Gupton, Finger and Bhatia (1997). 
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A number of recent studies have shown that the joint behavior of equity returns is better 
described by a “fat-tailed” t-copula than by a Normal copula, and that correlations are 
therefore not sufficient to appropriately characterize their dependence structure.3 The first 
goal of this article is to apply the same kind of analysis to asset returns, and test the null 
hypothesis of Gaussian dependence versus the alternative of “joint fat tails.”  

Given the low liquidity of multi-name instruments, it is not yet possible to use their market 
prices to back-out implied values for the dependence parameters. Instead, practitioners 
generally estimate the copula of asset returns from historical data. From a valuation 
perspective, this amounts to the assumption that the dependence structure of asset returns 
remains unchanged when we move from the objective probability measure to the pricing 
(risk-neutral) distribution. Rosenberg (2001) identifies general conditions under which this 
equivalence holds. 

Even if we are willing to rely on this invariance, we still face a major obstacle when 
attempting to estimate the dependence structure from historical data: asset returns are not 
directly observable. In fact, the use of unobservable underlying processes is one of several 
criticisms that the structural approach has received over the years. Given the lack of 
observable asset returns, it has become customary to proxy the asset dependence with equity 
dependence, and to estimate the parameters governing the joint behavior of asset returns from 
equity return series. Fitch Ratings (2003), for example, have recently published a special 
report describing their methodology for constructing portfolio loss distributions: it is based on 
a Gaussian copula parameterized by equity correlations. 

The use of equity returns to infer the joint behavior of asset returns is often criticized on the 
grounds of the different leverage of assets and equity. Even those who accept it as a valid 
approximation for high-grade issuers, often criticize this approach when it is applied to low-
grade borrowers. This is because a high-quality issuer has a relatively low probability of 
default, and every variation in the market value of its assets translates almost dollar-by-dollar 
into a variation of its market capitalization. On the other hand, high-yield borrowers are closer 
to the default threshold, and a variation in their asset value can potentially produce a 
significant variation in the market value of their debt as well. This “leverage effect” may 
generate significant differences in the joint dynamics of equity and asset values. The second 
goal of this article is to shed some light on the magnitude of the error induced by using equity 
data as a proxy for actual asset returns. 

To provide a plausible answer to these questions, we first need to “back out” asset values 
from observable data. One way to estimate the market value of a company’s assets is to 
implement a univariate structural model. Using Merton’s (1974) approach, – i.e., recognizing 
the identity between a long equity position and the payoff of a call option written on the asset 
value process – one can apply standard option pricing arguments and derive two conditions 
that can be simultaneously solved for the asset value of the company and its volatility. This 
procedure is at the heart of KMV’s CreditEdge,™ a popular credit tool that first computes a 
measure of distance-to-default and then maps it into a default probability (EDF™) by means 
of a historical analysis of default frequencies.4 In this article, we use the asset value series 
generated by KMV’s model to study the dependence properties of asset returns. 

                                                           
3 See, for example, Mashal and Naldi (2002) and Mashal and Zeevi (2002). 
4 Copyright © 2000-2002 KMV LLC. All rights reserved. KMV and the KMV logo are registered trademarks of KMV LLC. 

CreditEdge and EDF are trademarks of KMV LLC. 
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In Section 2, we describe a semi-parametric methodology that allows for the estimation of the 
dependence structure of a set of returns without imposing any parametric restriction on their 
marginal distributions. This section also describes a related test statistic that can be used to 
evaluate the statistical relevance of our point estimates. Section 3 presents the results of our 
empirical investigation, while Section 4 applies our findings to the practical issue of 
measuring and pricing the risk of a popular multi-name credit product. Finally, Section 5 
comments on our results and offers some concluding remarks. 

2. METHODOLOGY 
This section describes an estimation procedure that is used to calibrate a certain class of 
dependence structures to the equity and asset returns data. We first digress briefly to discuss 
some dependence-related concepts, and then proceed to describe the estimation methodology 
and an associated testing procedure.  

The key ingredient in modeling and testing dependencies is the observation that any d-
dimensional multivariate distribution can be specified via a set of d marginal distributions that 
are “knitted” together using a copula function. Alternatively, a copula function can be viewed 
as “distilling” the dependencies that a multivariate distribution attempts to capture, by 
factoring out the effect of the marginals. Copulas have many important characteristics that 
make them a central concept in the study of joint dependencies, see, e.g., the recent survey 
paper by Embrechts et al. (2001).  

A particular copula that plays a crucial role in our study is given by the dependence structure 
underlying the multivariate Student t distribution. While the Gaussian distribution lies at the 
heart of most financial models and builds on the concept of correlation, the Student t retains 
the notion of correlation but adds an extra parameter into the mix, namely, the degrees-of-
freedom (DoF). The latter plays a crucial role in modeling and explaining extreme co-
movements in the underlyings.  

Moreover, it is well known that the Student t distribution is very “close” to the Gaussian 
when the DoF is sufficiently large (say, greater than 30); thus, the Gaussian model is nested 
within the t-family. The same statement holds for the underlying dependence structures, and 
the DoF parameter effectively serves to distinguish the two models. This suggests how 
empirical studies might test whether the ubiquitous Gaussian hypothesis is valid or not. In 
particular, these studies would target the dependence structure rather than the distributions 
themselves, thus eliminating the effect of marginal returns that would “contaminate” the 
estimation problem in the latter case. To summarize, the t-dependence structure constitutes an 
important and quite plausible generalization of the Gaussian modeling paradigm, which is our 
main motivation for focusing on it in this study.  

With this in mind, the key question that we now face is how to estimate the parameters of the 
dependence structure. In particular, consider a basket of d names, each following an arbitrary 
marginal Fi i=1,…,d, and having a joint distribution H with underlying t-dependence 
structure, which is denoted by 

( )Σ⋅ ,;  νC . 
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Here, Σ denotes the correlation matrix and ν the DoF parameter.5 Suppose we have n 
observations { }n

iiX 1=
on these d names, where the returns ( )idii XXX ,...,1=  are assumed to be 

mutually independent and distributed according to H.  

If the marginal distributions were known, then we could use the representation (1) in the 
Appendix to conclude that  

( ) ( )Σ⋅= ,;  ~: νCXFU i , 

where ( ) ( ) ( )( )iddii XFXFXF ,...,: 11=  is the vector of marginal distributions, the symbol “:=” 

reads “defined as”, and the symbol “~” reads “distributed according to.” 

Since the structure of the marginals is arbitrary and unknown to us, we propose to use the 
empirical distribution function as a surrogate, that is, 

( ) { }∑
=

⋅≤=⋅

n

i
ijj XI

n
F

1
  1:ˆ ,  j=1,…,d, 

where { }  ⋅I  is the indicator function, i.e., 

( )




=
otherwise.  ,0

occurs,   if  ,1
:

A
AI  

We then work with the pseudo-sample observations 6 

( ))(ˆ),...,(ˆˆ
11 iddii XFXFU = , i=1,…,n. 

Focusing on the t-dependence structure ( )Σ⋅ ,;   νC  [formally given by the t-copula (2) in the 
Appendix], let us denote by 

( ) ( ]{ }definite positive and symmetric is  ,,2:, ddR ×

∈Σ∞∈Σ=Θ νν  

the feasible parameter space, and set 

( )Σ= ,: νθ . 

Then, for a given pseudo-sample { }n
iiU 1=

 we set the pseudo log-likelihood function to be  

( ) ( )∑
=

=

n

i
in UcL

1
;ˆlog θθ

 , 

where ( )θ;⋅c  is the t-copula density function associated with C (see the Appendix). Now, let 

( )Σ= ˆ,ˆ:ˆ νθ  

                                                           
5 For details on the relation between the joint distribution H and the copula C, see a version of Sklar’s Theorem in the 

Appendix. 
6 This approach follows the semi-parametric estimation framework developed in a more abstract context by Genest et 

al. (1995). 
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denote the maximum likelihood (ML) estimator of the DoF and correlations, i.e., the value of 
Θ∈θ  maximizing Ln(θ). The results reported in the next section refer to estimates obtained 

in this manner. 

As we mentioned earlier, the DoF parameter ν controls the tendency to exhibit extreme co-
movements, and also measures the extent of departure from the Gaussian dependence 
structure. Given its pivotal role, in the sequel we focus on the accuracy of the DoF estimates 
in a more detailed manner.  

Specifically, we use a likelihood-ratio formulation to test whether empirical evidence 
supports or rejects a given value of ν. To begin with, we fix a value of the DoF parameter ν0 
and consider the hypotheses  

Θ∈Θ∈ θθ  :      vs. : 100 HH , 

where 

{ } Θ⊂=Θ∈=Θ 00 : ννθ . 

Then, we set the likelihood-ratio test statistic to be  

( )
( )

( )∏

∏

=

=

Θ∈

−=Λ n

i
i

n

i
i

n

Uc

Uc

1

1
0

ˆ;ˆ

;ˆsup
log2|ˆ

0

θ

θ

νν

θ

 

To determine the adequacy of each value of ν0 , we need to characterize the distribution of the 
statistic ( )0|ˆ ννnΛ . Since this distribution is not tractable, the standard approach is to derive 

the asymptotic distribution and use that as an approximation. Specifically, Mashal and Zeevi 
(2002) arrive at the approximation 

( ) ( ) 2
10 1|ˆ χγνν +≈Λ n , 

where γ >0 is a constant that depends on the null hypothesis, 2
1χ  denotes a random variable 

distributed according to a Chi-squared law with one degree-of-freedom, and “≈” reads 
“approximately distributed as” (for large values of n ).7 Thus, we can calculate approximate 
p-values as a function of ν0 as follows  

( )
( )

( ) 








+

Λ
≥=−

γ

νν
χν

1
ˆ

value 02
10

nPp
. 

By letting the null hypothesis ν0 vary over the parameter space, we can compute the 
corresponding p-values and detect the range of degrees-of-freedom that are supported 
(respectively, rejected) by the observed return data. Notice that large values of the test 
statistic correspond to small p-values, thus indicating that the hypothesized ν is not plausible 
on the basis of the empirical observations. This hypothesis testing formulation illustrates the 

                                                           
7 A rigorous derivation and an explicit characterization of γ is given in Appendix A of Mashal and Zeevi (2002) who also 

validate this asymptotic numerically. 
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“sharpness” of the estimation results in a much stronger manner than if we had just focused 
on the associated confidence intervals for the parameter estimates. 

3. EMPIRICAL EVIDENCE 
In this section, we apply the methodology outlined above to study the dependence structure of 
asset returns and compare it with that of equity returns. For consistency, asset and equity 
values are both obtained from KMV’s database. The reader should keep in mind, however, 
that equity values are observable, while asset values have been “backed out” by means of 
KMV’s CreditEdge™ implementation of a univariate Merton model. We use daily data 
covering the period from 12/31/00 to 11/8/02. 

In the following sub-sections, we focus our attention on two portfolios, the 30-name Dow 
Jones Industrial Average and a 20-name high-yield portfolio. 

3.1 DJIA Portfolio 
Following the semi-parametric methodology described in Section 2, we estimate the number 
of degrees-of-freedom (DoF) of a t-copula without imposing any structure on the marginal 
distributions. Using the test statistic introduced earlier, Figure 1 presents a sensitivity analysis 
for various null hypotheses of the underlying tail dependence, as captured by the DoF 
parameter. The two horizontal lines represent significance levels of 99% and 99.99%; a value 
of the test statistic falling below these lines corresponds to a value of DoF that is not rejected 
at the respective significance levels. 

The minimal value of the test statistic is achieved at 12 DoF (ν =12) for asset returns and at 
13 DoF (ν =13) for equity returns. In both cases, we can reject any value of the DoF 
parameter outside the range [10,16] with 99% confidence; in particular, the null assumption 
of a Gaussian copula (ν =∞) can be rejected with an infinitesimal probability of error. 

Finally, notice that the point estimates of the asset returns’ DoF lies within the non-rejected 
interval for the equity returns’ DoF, and vice versa, indicating that the two are essentially 
indistinguishable from a statistical significance viewpoint. Moreover, the difference between 
the joint tail behavior of a 12- and a 13-DoF t-copula is negligible in terms of any practical 
application.  

Figure 1. DJIA Portfolio: Asset and Equity Returns Test Statistics 
as Functions of Null Hypothesis for DoF 
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Figure 2 reports the point estimates of the DoF for asset and equity returns in the DJIA 
basket, as well as for three subsets consisting of the first, middle, and last 10 names (in 
alphabetical order). The similarities between the joint tail dependence (as measured by the 
DoF) of asset and equity returns are quite striking. 8 

Figure 2. Maximum Likelihood Estimates of DoF for DJIA Portfolios 

Portfolio Asset Returns DoF Equity Returns DoF 

30-Name DJIA 12 13 

First 10 Names 8 9 

Middle 10 Names 10 10 

Last 10 Names 9 9 

 

Next, we compare the remaining parameters that define a t-copula, i.e., the correlation 
coefficients. Using a robust estimator based on Kendall’s rank statistic9, we compute the two 
30x30 correlation matrices from asset and equity returns. The maximum absolute difference 
(element-by-element) is 4.6%, and the mean absolute difference is 1.1%, providing further 
evidence of the similarity of the two dependence structures. 

In summary, the empirical evidence strongly supports the widespread practice of using equity 
return series to estimate underlying dependencies between asset returns. 

3.2 High-Yield Portfolio 

In this section we investigate whether the similarities between the dependence structures of 
asset and equity returns persist when we restrict our attention to lower-quality, higher-
leverage issuers. Figure 3 shows the constituents of a 20-name portfolio that we have 
randomly selected from the universe of publicly traded, high-yield companies covered by 
KMV. 

Figure 3. High-Yield Portfolio 

Names 1-5 Names 6-10 Names 11-15 Names 16-20 

    

AES  Atlas Air Worldwide 
Holding Inc. 

MGM Mirage Safeway Inc. 

Adaptec Inc. Echostar 
Communication Corp. 

Navistar 
International 

Saks Inc. 

Airgas Inc. Gap Inc. Nextel 
Communications 

Service Corporation  
International 

AK Steel 
Holding Inc. 

Georgia-Pacific Corp. Northwest Airlines 
Corp. 

Solectron Corp. 

Alaska Air 
Group Inc. 

L-3 Communications 
Holdings Inc. 

Royal Caribbean 
Cruises Ltd. 

Sovereign 
Bancorp Inc. 

 

                                                           
8 The range of accepted DoF is very narrow in each case, exhibiting similar behaviour to that displayed in Figure 1.  
9 See Lindskog  (2000). 
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Figure 4 reports the ML estimates for the DoF of asset and equity returns for this 20-name 
high-yield portfolio, as well as for the four 5-name sub-portfolios shown in Figure 3. Once 
again, the estimated DoF for asset and equity returns are very close. When analyzing 
correlations, a similar behavior is also observed, specifically, the maximum absolute 
difference in the correlation coefficients is 6.7% and the mean absolute difference is 1.6%. 

Figure 4. Maximum Likelihood Estimates of DoF for High-Yield Portfolios 

Portfolio Asset Returns DoF Equity Returns DoF 

20-Name Portfolio 15 16 

Names 1-5 15 13 

Names 6-10 14 12 

Names 11-15 10 10 

Names 16-20 13 15 

 

4. APPLICATION: PORTFOLIO LOSS TRANCHE 
In this section, we analyze the potential consequences of making different assumptions with 
respect to the dependence structure of asset returns. To illustrate this, we compute the 
expected discounted losses (EDL) of portfolio loss tranches. We focus on EDL because this 
measure relates both to the agency rating (when computed under real-world probabilities) and 
to the fair compensation for the credit exposure (when computed under risk-neutral 
probabilities). 

According to a recent survey published in Risk Magazine (February 2003 issue), portfolio 
loss tranches have become one of the most common type of multi-name credit exposures 
traded in the market. In a typical portfolio loss tranche, a protection buyer pays a periodic 
premium to a protection seller, who, in exchange, stands ready to compensate the buyer for a 
pre-specified slice (tranche) of the losses affecting a set of reference obligations. The 
reference portfolio is generally composed of dozens (and sometimes hundreds) of credits, and 
each name is represented in the portfolio according to a given notional amount.  

Here we consider a portfolio of 100 names, each with $1MM notional. A tranche exposure is 
defined by a lower and an upper percentile of the total notional: for example, the seller of 
protection on the 5%-10% tranche of our 100-name portfolio will be responsible for covering 
losses exceeding $5MM and up to $10MM ($5MM exposure). Losses are defined as the 
notional amount of defaulted credits times the associated loss given default (LGD). In our 
example, we assume uniform recovery rates of 35%, i.e., 65% LGD for every credit in the 
reference portfolio. The additional parameters are: 

1. 1% yearly hazard rate for each reference name, 

2. 20% asset correlation between every pair of credits, 

3. flat risk-free curve at 2%, 

4. 5-year maturity deal. 

Figure 5 compares the expected discounted losses for several tranches under the two 
alternative assumptions of Gaussian dependence and t dependence with 12 DoF. The results 
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show the significant impact that the (empirically motivated) consideration of tail dependence 
has on the distribution of losses across the capital structure: expected losses are clearly 
redistributed from the junior to the senior tranches, as a consequence of the increased 
volatility of the overall portfolio loss distribution. Of course, even larger differences can be 
observed if one compares higher moments or tail measures of the tranches’ loss distributions. 

Figure 5. Expected Discounted Loss (EDL), 100K-path Monte Carlo Simulation, Standard 
Errors in Parenthesis 

Tranche Normal Copula 

EDL (Std Err) 

t Copula DoF=12 

EDL (Std Err) 

Pctg Difference 

0% - 5% $ 2,256,300 (0.14%) $ 2,012,200 (0.23%) -11% 

5% - 10% $ 533,020 (0.63%) $ 601,630 (0.66%) 13% 

10% - 15% $ 146,160 (1.37%) $ 221,120 (1.06%) 51% 

15% - 20% $ 41,645 (1.70%) $ 90,231 (1.62%) 117% 

 

5. DISCUSSION AND CONCLUDING REMARKS 
We now turn to some comments on the methodology and results described in this paper. We 
start by noting that the empirical evidence indicating the similarity between equity and asset 
return dependencies should be considered relative to the time scales of the financial data. This 
applies also to the evidence rejecting the Gaussian dependence structure in favor of the t-
copula. For example, a common empirical observation is that data sampled at relatively low 
frequencies tends to exhibit “lighter tails” in the marginals, thus, closer to a Gaussian 
distribution. However, the recent work of Breymann, Dias and Embrechts (2003) that studies 
the joint behavior of FX financial series indicates that the DoF parameter in the t-copula 
(reflecting extreme tail dependence) is almost independent of the sampling window. 
Moreover, this parameter is small (of order 4-6) indicating that the t-copula provides a much 
more accurate description of the data than the Gaussian counterpart. Their study also 
compares the t-copula to various competing models and finds further empirical support for 
the former. 

The second comment concerns an intrinsic drawback of the copula paradigm, in particular, 
the fact that this approach only provides a static model. To this end, a conditional copula 
model may be more appropriate from a modeling standpoint, but this results in far more 
complicated specification and inference issues that restrict applicability. Given that we 
consider credit instruments with a fixed and given maturity over a long time horizon, we 
believe that this issue essentially does not restrict our analysis. (In general one can certainly 
consider dependence structures that differ according to the associated maturity date.) 

To summarize, our empirical investigation of the dependence structure of asset returns sheds 
some light on the two main issues that were raised in the introduction. First, the assumption of 
Gaussian dependence between asset returns can be rejected with extremely high confidence in 
favor of an alternative “fat-tailed dependence.” Multivariate structural models that employ 
correlated Gaussian processes for the diffusion of asset values will generally underestimate 
default correlations, and thus undervalue the junior risk and overvalue the mezzanine and 
senior risk of multi-name credit products. Fat-tailed increments of the joint value processes 
will produce more accurate joint default scenarios and more accurate valuations. Second, the 
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dependence structures of asset and equity returns appear to be strikingly similar. The KMV 
algorithm that produces the asset values used in our analysis is nothing else than a 
sophisticated way of de-leveraging the equity to get to the value of a company's assets. 
Therefore, the popular conjecture that the different leverage of assets and equity will 
necessarily create significant differences in their joint dynamics seems to be empirically 
unfounded, even when we analyze the value processes of low-grade issuers. Instead, our 
results suggest that the differences in leverage are mostly reflected in the marginal 
distributions of returns. From a practical point of view, these results represent good news for 
practitioners who only have access to equity data for the estimation of the dependence 
parameters of their credit models. 

APPENDIX 

Copula Functions and the t-Dependence Structure  
A copula function is a multivariate distribution defined over [0,1]d, with uniform marginals. 
The importance of the copula stems from the fact that it captures the dependence structure of 
a multivariate distribution. This can be seen more formally from the following fundamental 
result, known as Sklar’s theorem, adapted from Theorem 1.2 of Embrechts et al. (2001).  

Sklar’s Theorem. Given a d-dimensional distribution function H with continuous marginal 
cumulative distributions F1,…,Fd, there exists a unique d-dimensional copula C: [0,1]d

→[0,1] 
such that  

( ) ( ) ( )( )ddd xFxFCxxH ,...,,..., 111 = .                                       (1) 

As indicated in the main body, this study focuses on a natural generalization of the Gaussian 
dependence structure, namely the Student t-copula. To this end, let tν denote the (standard) 
univariate Student-t cumulative distribution function with ν degrees-of-freedom, namely,  

( )
( )∫

∞−

+−

+

Γ

+Γ
=

x

v dyyxt 2/)1(2
2/1 )/1(

)2/(
)2/)1((

ν

ν

νπν

ν

. 

Then, for ( ) [ ]dduuu 1,0,...,1 ∈=  

( )

( )

∫
−

∞−

+−−

Σ+

ΓΣ

+Γ
=Σ

ut
dT

dd dyyyduuC
1

2/)(1
2/2/11 )/1(

)2/(
)2/)((),;,...,(

ν

ν

ν

νπν

ν

ν

,     (2) 

is the t-copula parameterized by (ν , Σ), where Σ is the correlation matrix, and 

( ) ( ) ( )( )dututut 1
1

11 ,...,: −−−

=
ννν . 

The density of the t-copula, ( )Σ⋅ ,;  νc , is obtained by differentiating the t-copula w.r.t. u1,…,ud 
[for details, see, e.g., Section 3.1 in Mashal and Zeevi (2002)].  
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