
The dependence structure of asset returns lies at the heart of a class of
models widely employed for the valuation of multi-name credit deriva-
tives as we saw in the last chapter. In this chapter, we study the depen-
dence structure of asset returns using copula functions. Employing a
statistical methodology that relies on a minimal amount of distributional
assumptions, we first investigate whether the popular tenet of Normal
dependence between asset returns is supported on the basis of empirical
observations. We also compare the dependence structures of asset and
equity returns to provide some insight into the common practice of esti-
mating the former using equity data. Our results show that the presence of
joint extreme events in the data is incompatible with the assumption of
Normal dependence, and support the use of equity returns as proxies for
asset returns. Furthermore, we present evidence that the likelihood of joint
extreme events does not diminish as we decrease the sampling frequency
of our observations. Building on our empirical findings, we then describe
how to capture the effects of joint extreme events by means of a simple and
computationally efficient time-to-default simulation. Using a t-copula
model, we analyse the impact of extreme events on the fair values and risk
measures of popular multi-name credit derivatives such as nth-to-default
baskets and synthetic loss tranches.

INTRODUCTION
The valuation of default-contingent instruments calls for the modelling of
default mechanisms. A well-known dichotomy in credit models distin-
guishes between a “structural approach”, where default is triggered by the
market value of the borrower’s assets falling below its liabilities, and a
“reduced-form approach”, where the default event is directly modelled as
an unexpected arrival.
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Currently, a major challenge facing credit models is represented by the
rapid growth of multi-name instruments, whose valuation entails model-
ling the joint default behaviour of a set of reference names. Although both
the structural and the reduced-form approaches can, in principle, be
extended to the multivariate case, the calibration of the parameters
governing the likelihood of joint defaults poses a number of problems.

If we think of defaults as being generated by asset values falling below
a given boundary, then the probabilities of joint defaults over a specified
horizon must follow from the joint dynamics of asset values. Consistent
with their descriptive approach of the default mechanism, multivariate
structural models rely on the dependence of asset returns in order to
generate dependent default events. In the first part of this chapter, we
focus on the empirical properties of the dependence structure – also
known as the copula function – of asset returns. Roughly speaking, the
copula function summarises the dependence structure of a multivariate
distribution by “factoring out” the marginals (see the section on
Dependence Structure Modelling).

The last chapter described a multivariate Normal model for generating
the joint default distributions. Indeed several well-known multivariate
models assume a joint normal distribution for asset returns. For example,
Hull and White (2001) generate default dependence by simulating corre-
lated Brownian motions that are supposed to mimic the asset values
dynamics. Similarly, two of the most commercially successful multi-name
models, developed by KMV and CreditMetrics, rely on the joint normality
of the default-triggering variables.2 The widespread use of the multivariate
Normal distribution is certainly related to the simplicity of its dependence
structure, which is fully characterised by the correlation matrix.

A number of recent studies have shown that the joint behaviour of equity
returns is not consistent with the correlation-based Gaussian modelling
paradigm. In particular, extreme co-movements between equities tend to
be more adequately described by a fat-tailed dependence structure – eg,
the one derived from the Student-t multivariate distribution (the so called
t-copula). To that end, empirical evidence suggests that correlation, and
therefore the Gaussian dependence structure (aka Normal-copula), are not
sufficient to appropriately characterise the dependencies between equity
returns.3

This observation is particularly relevant to the world of default-contin-
gent instruments. The evidence in favour of a fat-tailed dependence struc-
ture implies that the likelihood that equity values exhibit large
co-movements is higher than correlation-based models would predict.
Since the pay-offs of credit instruments are triggered by defaults, and
defaults are typically modelled as tail realisations, the increased likelihood
of such extremal events has substantial implications on the analysis and
valuation of these instruments.

CREDIT DERIVATIVES: THE DEFINITIVE GUIDE

2

20 Marshal and Naldi CD  15/8/03  11:00 am  Page 2



Of course, to substantiate the discussion above, one needs to first verify
whether the joint behaviour of asset returns is similar to that found in
equity returns, as – according to the “structural approach” – it is the
former that governs the risk profile of default-contingent instruments.
Given that asset returns are not directly observable, it has become
customary to proxy asset dependence with equity dependence, and to esti-
mate the parameters governing the joint behaviour of asset returns from
equity return series. Fitch Ratings (2003), for example, have recently
published a special report describing their methodology for constructing
portfolio loss distributions: it is based on a Gaussian copula parameterised
by equity correlations.

The use of equity returns to infer the joint behaviour of asset returns is
often criticised on the grounds of the different leverage of assets and
equity. Even those who accept it as a valid approximation for high-grade
issuers are often critical of this approach when applied to low-grade
borrowers. This is because a high-quality issuer has a relatively low prob-
ability of default, and every variation in the market value of its assets
translates almost dollar-by-dollar into a variation of its market capitalisa-
tion. On the other hand, high-yield borrowers are closer to the default
threshold, and a variation in their asset value can also produce a signifi-
cant variation in the market value of their debt. This “leverage effect” may
generate significant differences in the joint dynamics of equity and asset
values.

This chapter has three main objectives.

1. We test whether evidence of extreme events in asset return data is
statistically significant, as it was found to be in equity return data.
Building on dependence concepts, we find that this question can be
answered affirmatively; our statistical study also sheds some light on
the magnitude of the error induced by using equity data as a proxy for
actual asset returns.

2. Based on these findings, we then illustrate how one can construct
simple models that support extremal dependencies in defaults times.
We require that such models be easily calibrated to empirical data and
be computationally tractable. This culminates in a simple simulation
algorithm based on a t-copula model of correlated defaults.

3. Finally, based on these models for correlated default times, we illus-
trate the impact of extreme event modelling on the practical issue of
measuring and pricing the risk of two popular multi-name credit prod-
ucts, namely nth-to-default baskets and synthetic loss tranches. We
close with comments on our results and offer some concluding
remarks.
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DEPENDENCE STRUCTURE MODELLING
At this point we will briefly describe some dependence modelling concepts
to be used in the sequel. The key ingredient in modelling and testing
dependencies is the observation that any d-dimensional multivariate dis-
tribution can be specified via a set of d marginal distributions that are
“knitted” together using a copula function. Alternatively, a copula function
can be viewed as “distilling” the dependencies that a multivariate distribu-
tion attempts to capture by factoring out the effect of the marginals. More
formally, a copula function is a multivariate distribution defined over
[0,1]d, with uniform marginals. It is possible to confirm that copula func-
tions capture the dependence structure of a multivariate distribution from
the following fundamental result; this is known as Sklar’s theorem and is
adapted from Theorem 1.2 of Embrechts et al (2001).

Sklar’s Theorem
Given a d-dimensional distribution function H with continuous marginal
cumulative distributions F1, ..., Fd , there exists a unique d-dimensional
copula C: [0,1]d →[0,1] such that

H (x1, ..., xd ) = C (F1(x1), ..., Fd (xd )) (1)

In particular, the copula is given by

C (u1, ..., ud ) = H(F1
–1(u1), ..., Fd

–1(ud )) (2)

where ui ∈ [0,1] and Fi
–1(·) denotes the inverse of the cumulative distribu-

tion function F, for i = 1, ..., d.
By plugging in various multivariate distributions – eg, the Gaussian

distribution – for H, one produces the various copulas that underlie these
distributions and are derived from them. This study focuses on a natural
generalisation of the Gaussian dependence structure, namely the Student-t
copula. To this end, let tν denote the (standard) univariate Student-t
cumulative distribution function with ν degrees-of-freedom, namely,

x Γ((ν + 1) /2)
tν(x) = ∫ (1 + y2 / ν)–(v + 1)/2dy (3)

–∞ Γ((ν /2) (νπ)1/2

Then, for u = (u1, ..., ud ) ∈ [0,1]d

tν
–1(u) Γ((ν + d ) /2)

C (u1, ..., ud ; ν, ∑) = ∫ (1 + yT∑–1 y / ν)–(v + d )/2dy (4)
–∞ |∑|1/2Γ((ν /2) (νπ)1/2

is the Student-t copula parameterised by (ν, Σ), where Σ is the correlation
matrix, and

y = tν
–1(u):= (t ν

–1(u1), ..., t ν
–1(ud ))

The density of the t-copula, c(·; ν, ∑), is obtained by differentiating the t-
copula w.r.t. u1, ..., ud (see, for example, Embrechts et al, 2001).
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While the Gaussian copula lies at the heart of most financial models and
builds on the concept of correlation, a number of alternative dependence
models have been proposed in the literature: the Clayton, Frank, Gumbel
and Student-t are probably the most notable examples. In this chapter, we
focus on the dependence structure underlying the multivariate Student-t
distribution for a number of reasons.

First, Mashal and Zeevi (2003) compare the different copulas mentioned
above in the context of modelling the joint behaviour of financial returns.
Applying a formal test, they find that the t-copula provides a better fit than
the others (see also the study by Bremann et al (2003), which also finds
empirical support for the t-copula using a different statistical test).

Second, the t-copula retains the notion of correlation while adding an
extra parameter into the mix: the degrees-of-freedom (DoF). The latter
plays a crucial role in modelling and explaining extreme co-movements of
financial variables, and is of paramount importance for the valuation and
risk management of default-sensitive instruments. Moreover, it is well
known that the Student-t distribution is very “close” to the Gaussian when
the DoF is sufficiently large (say, greater than 30); thus, the Gaussian
model is nested within the t family. The same statement holds for the
underlying dependence structures, and the DoF parameter effectively
serves to distinguish the two models. This suggests how empirical studies
might test whether the ubiquitous Gaussian hypothesis is valid or not. In
particular, these studies target the dependence structure rather than the
distributions themselves, thereby eliminating the effect of marginal
returns that would “contaminate” the estimation problem in the latter
case.

To summarise, the t-dependence structure constitutes an important and
quite plausible generalisation of the Gaussian modelling paradigm, which
is our main motivation for focusing on it in this study. For a further discus-
sion of copulas, and the many important characteristics that make them a
central concept in the study of joint dependencies, see, eg, the recent
survey paper by Embrechts et al (2001).

THE DEPENDENCE STRUCTURE OF ASSET RETURNS: EMPIRICAL
EVIDENCE AND MODELLING IMPLICATIONS
We continue with a discussion of how asset return data is “backed out”
from observable equity return values via the Merton model. We will go on
to describe a semi-parametric methodology that allows for the estimation
of the dependence structure of a set of returns without imposing any para-
metric restriction on their marginal distributions. After introducing a test
statistic that can be used to evaluate the significance of our point estimates,
we apply this methodology to study the dependence structure of asset
returns, comparing it with that of equity returns. Next, we present a fully-
parametric model with a t-copula and t-marginals; the empirical results
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show that, since the univariate t-distribution accurately fits the time-series
of equity returns, a fully-parametric t-model produces estimates of the
dependence parameters that are extremely close to the one produced by
the semi-parametric methodology. We then provide some concluding
remarks and a summary of our empirical results.

The Merton model and implied asset values
Obviously, the main obstacle when attempting to estimate the depen-
dence structure from historical data is that asset returns are not directly
observable. In fact, the use of unobservable underlying processes is one of
several criticisms directed at the structural approach over the years. To
provide a plausible answer to these questions, we first need to “back out”
asset values from observable data. One way to estimate the market value
of a company’s assets is to implement a univariate structural model.
Using Merton’s (1974) approach – ie, recognising the identity between a
long-equity position and the payoff of a call option written on the asset
value process – one can apply standard option pricing arguments to
derive two conditions that can be simultaneously solved for the asset
value of the company and its volatility. This procedure is at the heart of
KMV’s CreditEdge, a popular credit tool that first computes a measure of
distance-to-default and then maps it into a default probability (EDF) by
means of a historical analysis of default frequencies. The empirical analy-
sis that follows employs the asset value series generated by KMV’s model
to study the dependence properties of asset returns.

A semi-parametric estimation procedure and a test for fat-tailed depen-
dence

We now describe an estimation procedure that is used to calibrate a certain
class of dependence structures to the equity and asset returns data.
Bearing our earlier discussion in mind (see the section on Dependence
Structure Modelling), the key question that we now face is how to estimate
the parameters of the dependence structure. In particular, consider a
basket of d names, each following an arbitrary marginal Fi i = 1, ..., d, and
having a joint distribution H with underlying t-dependence structure,
which is denoted by C (· ; ν, ∑) see Equation (4) for the precise parametric
form. Here, ∑ denotes the correlation matrix and ν the DoF parameter.
Suppose we have n observations {xi}

n
i=1 on these d names, where the

returns xi = (xi1, ..., xid ) are assumed to be mutually independent and
distributed according to H.

If the marginal distributions were known, then we could use Sklar’s
Theorem to conclude that U := F (Xi) ~ C (· ; ν, ∑), where F (Xi ) := (F1(Xi1), ...,
Fd (Xid )) is the vector of marginal distributions, the symbol “:=” reads
“defined as”, and the symbol “~” reads “distributed according to”.
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Since the structure of the marginals is arbitrary and unknown to us, we
propose to use the empirical distribution function as a surrogate, that is,

1
n

F̂j (·) := ∑ I {Xij ≤ ·}, j = 1, ..., d (5)
n

i=1

where I {·} is the indicator function, ie,

I (A) := � 1, if A occurs,
0, otherwise

We then work with the pseudo-sample observations:4

Ûi = (F̂1(Xi1), ..., F̂d (Xid )), i = 1, ..., n

Focusing on the t-dependence structure C (· ; ν, ∑) – formally given by the
t-copula in Equation (4) – let us denote by

Θ = [(ν, ∑): ν ∈ (2, ∞)], ∑ ∈ Rd�d is symmetric and positive definite}

the feasible parameter space, and set θ := (ν, ∑).
Then, for a given pseudo-sample {Ui}

n
i=1

we set the pseudo log-likelihood
function to be

n

Ln(θ) = ∑ log c (Ûi; θ)
i=1

where c (· ; θ) is the t-copula density function associated with C. Now, let
θ := (ν̂, ∑̂) denote the maximum likelihood (ML) estimator of the DoF and
correlations, ie, the value of θ ∈ Θ maximising Ln(θ). This maximisation is
generally very involved, and a naive numerical search is likely to fail
because of the high dimensionality, (1 + d (d – 1)/2), of the parameter space.
A simpler way to search for a maximum in this large parameter space is to
estimate the correlation matrix using Kendall’s Tau (see Lindskog, 2000)
and then maximise the likelihood over the DoF parameter. The results
reported in this study refer to estimates obtained in this manner. We note
in passing that the estimator based on Kendall’s Tau is efficient, in the
sense that it achieves the minimal asymptotic variance in this context of
the t-family – see, for example, Embrechts et al, (2001).

As we mentioned earlier, the DoF parameter ν controls the tendency to
exhibit extreme co-movements, and also measures the extent of departure
from the Gaussian dependence structure. Given its pivotal role, we subse-
quently focus on the accuracy of the DoF estimates in a more detailed
manner.

Specifically, we use a likelihood-ratio formulation to test whether empir-
ical evidence supports or rejects a given value of ν. To begin with, we fix a
value of the DoF parameter ν0 and consider the hypotheses H0: θ ∈ Θ0 vs.
H1: θ ∈ Θ where Θ0 = {θ ∈ Θ: ν = ν0} ⊂ Θ.

Then, we set the likelihood-ratio test statistic to be

EXTREME EVENTS AND MULTI-NAME CREDIT DERIVATIVES
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n

supθ∈Θ0 ∏ c (Ûi ; θ)
i=1

Λn (ν̂ | ν0) = –2 log . (6)
n

∏ c (Ûi ; θ̂)
i=1

To determine the adequacy of each value of ν0 , we need to characterise the
distribution of the statistic Λn (ν̂ | ν0). Since this distribution is not tractable,
the standard approach is to derive the asymptotic distribution and use that
as an approximation. Specifically, Mashal and Zeevi (2002) arrive at the
approximation

Λn (ν̂ | ν0) ≈ (1 + γ) χ1
2 (7)

where γ > 0 is a constant that depends on the null hypothesis, χ1
2 denotes

a random variable distributed according to a Chi-squared law with one
degree-of-freedom, and “≈“ reads “approximately distributed as” (for
large values of n).5 Thus, we can calculate approximate p-values as a func-
tion of ν0 as follows

Λn (ν̂ | ν0)p – value(ν0) ≈ P � χ1
2 ≥ �(1 + γ)

By letting the null hypothesis ν0 vary over the parameter space, we can
compute the corresponding p-values and detect the range of degrees-of-
freedom that are supported (or rejected) by the observed return data.
Notice that large values of the test statistic correspond to small p-values,
thus indicating that the hypothesised ν0 is not plausible on the basis of the
empirical observations. This hypothesis testing formulation illustrates the
“sharpness” of the estimation results in a much stronger manner than if we
had just focused on the associated confidence intervals for the parameter
estimates.

Empirical evidence
We now apply the methodology outlined above to study the dependence
structure of asset returns and compare it with that of equity returns. For
consistency, asset and equity values are both obtained from KMV’s data-
base. The reader should keep in mind, however, that equity values are
observable, while asset values have been “backed out” by means of KMV’s
CreditEdge implementation of a univariate Merton model. We use daily
data covering the period from December 31, 2000 to November 8, 2002,
and focus our attention on two portfolios, the 30-name Dow Jones
Industrial Average and a 20-name high-yield portfolio.

DJIA Portfolio
Following the semi-parametric methodology described in the previous
section, we estimate the number of DoF of a t-copula without imposing
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any structure on the marginal distributions. Using the test statistic we
introduced, Figure 1 presents a sensitivity analysis for various null
hypotheses of “joint-tail fatness”, as captured by the DoF parameter. The
two horizontal lines represent significance levels of 99% and 99.99%; a
value of the test statistic falling below these lines corresponds to a value of
DoF that is not rejected at the respective significance levels.

The minimal value of the test statistic is achieved at 12 DoF (ν =12) for
asset returns and at 13 DoF (ν =13) for equity returns. In both cases, we can
reject any value of the DoF parameter outside the range [10,16] with 99%
confidence; in particular, the null assumption of a Gaussian copula (ν = ∞)
can be rejected with an infinitesimal probability of error.

Finally, notice that the point estimate of the asset returns’ DoF lies
within the non-rejected interval for the equity returns’ DoF, and vice versa,
indicating that the two are essentially indistinguishable from a statistical
significance viewpoint. Moreover, the difference between the joint tail
behaviour of a 12- and a 13-DoF t-copula is negligible in terms of any prac-
tical application.

Figure 2 reports the point estimates of the DoF for asset and equity
returns in the DJIA basket, as well as for three subsets consisting of the
first, middle, and last 10 names (in alphabetical order). The similarities

EXTREME EVENTS AND MULTI-NAME CREDIT DERIVATIVES
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Figure 2 Maximum likelihood estimates of DoF for DJIA portfolios

Portfolio Asset Returns DoF Equity Returns DoF

30-Name DJIA 12 13
First 10 Names 8 9
Middle 10 Names 10 10
Last 10 Names 9 9
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Figure 1 DJIA portfolio: asset and equity returns test statistics

20 Marshal and Naldi CD  15/8/03  11:00 am  Page 9



between the joint-tail behaviour (as measured by the DoF) of asset and
equity returns are quite striking.6

Next, we compare the remaining parameters that define a t-copula, ie,
the correlation coefficients. Using robust estimates based on Kendall’s
rank statistic, we compute the two 30�30 correlation matrices from asset
and equity returns. The maximum absolute difference (element-by-
element) is 4.6%, and the mean absolute difference is 1.1%, providing
further evidence of the similarity of the two dependence structures.

To summarise, the empirical evidence strongly supports the widespread
practice of using equity return series to estimate underlying dependencies
between asset returns.

High-yield portfolio
We now investigate whether the similarities between the dependence
structures of asset and equity returns persist when we restrict our atten-
tion to lower-quality, higher-leverage issuers. Figure 3 shows the
constituents of a 20-name portfolio that we have randomly selected from
the universe of publicly traded, high-yield companies covered by KMV.

CREDIT DERIVATIVES: THE DEFINITIVE GUIDE
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Figure 4 Maximum likelihood estimates of DoF for high-yield portfolios

Portfolio Asset Returns DoF Equity Returns DoF

20-Name Portfolio 15 16
Names 1–5 15 13
Names 6–10 14 12
Names 11–15 10 10
Names 16–20 13 15

Figure 3 The constituents of the high-yield portfolios

Names 1–5 Names 6–10 Names 11–15 Names 16–20

AES Atlas Air Worldwide MGM Mirage Safeway Inc.
Holding Inc.

Adaptec Inc. Echostar Navistar Saks Inc.
Communication Corp. International

Airgas Inc. Gap Inc. Nextel Service Corporation
Communications International

AK Steel Georgia-Pacific Corp. Northwest Airlines Solectron Corp.
Holding Inc. Corp.

Alaska Air L-3 Communications Royal Caribbean Sovereign
Group Inc. Holdings Inc. Cruises Ltd. Bancorp Inc.
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Figure 4 reports the ML estimates for the DoF of asset and equity returns
for this 20-name high-yield portfolio, as well as for the four 5-name sub-
portfolios. Once again, the estimated DoF for asset and equity returns are
very close. When analysing correlations, a similar behaviour is also
observed: specifically, the maximum absolute difference in the correlation
coefficients is 6.7% and the mean absolute difference is 1.6%.

A fully-parametric t-model
In order to estimate the dependence structure of equity returns, one needs
to estimate the whole multivariate distribution. Namely, even though the
marginal distributions of returns can be estimated without any assump-
tion on the dependence structure, the inference of the dependence struc-
ture cannot be done without estimating the marginal distributions.

Earlier, we used the empirical marginals to estimate a t-dependence for
returns and test the null hypothesis of Gaussian dependence. In this
section, we show how to estimate the copula of equity returns while
modelling the marginals as shifted, scaled t-distributions.7 The numerical
examples we now utilise show that, since the univariate t-distribution
generally represents a good probability model for unconditional equity
returns, the estimates of the parameters of the t-copula are not very sensi-
tive to the choice between the two methods.

There is plethora of evidence that the t-distribution accurately fits
univariate equity returns (see Praetz, 1972; Blattberg and Gonedes, 1974;
Glasserman et al, 2002). As an example, in Figure 5 we use a quantile-to-
quantile (Q-Q) plot to show that a t-distribution with four degrees of
freedom offers a much better fit for the daily equity return series of Boeing
than the Normal distribution.
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Figure 5 Q-Q plots of BA return vs. normal and t4 distributions
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As before, we take advantage of Sklar’s Theorem to split the estimation
of the multivariate distribution into the following two steps:

1. estimating each marginal by itself, as the marginals are independent
from each other and from the dependence structure, and

2. estimating the dependence structure based on the estimated marginals
and the copula representation.

This procedure, which separates the estimation of the marginals from the
joint dependence parameters, is sometimes referred to as IFM (see the
monograph by Joe, 1997). To accomplish the first step, we now fit
univariate t-distributions to the individual time-series of returns rather
than using the empirical distributions as we did earlier. As for the second
step, we follow exactly the same procedure described earlier.

The density of the standard t-distribution is given by the derivative of
Equation (3):

Γ((ν + 1) /2)
fν(x) = (1 + x2 / ν)–(ν+1)/2, x ∈ R (8)

Γ((ν /2) ��πν

where ν represents the degrees of freedom (DoF) parameter. The variance
of the t-distribution is equal to ν/(ν – 2), ν > 2. We model each equity return
series by means of a shifted and scaled t-distribution (see Raiffa and
Schlaifer, 1961, Section 7.9). Given a univariate return sample {Xi }i=1, ..., n ,
where n is the number of observations, we assume that X

~
i := (Xi – m) / ��H

is distributed according to a standard t-distribution, where m denotes the
shift parameter and H denotes the scale parameter. Next we define θu = (m,
H, ν),

ΘU = {θU: m ∈ R, H > 0, ν > 2}

and the maximum likelihood estimator
n

θU = (m̂ , Ĥ, ν̂ ) = arg max ∏ fν (X
~

i )
θU∈ΘU

i=1

which can be found by means of a simple numerical search.
The purpose of the univariate estimation is to enable the transformation

of equity returns into the domain of the copula. This is achieved by
computing

Ûi := tν̂
–1 [(Xi – m̂) / ��Ĥ ]

Performing the above procedure for every return series we get

{Ûij }, i = 1...n, j = 1...d

and we can now estimate the copula following the steps described already
earlier.
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Numerical examples and the effect of the sampling frequency
We will now use our two t-models to estimate the multivariate distribu-
tion of several 5- and 10-name baskets belonging to the Dow Jones
Industrial Average. We use both daily and monthly equity return data,
ranging from January 1991 to December 2001, for a total of 2,526 daily and
119 monthly observations.

Estimating the t-marginals
To implement the fully parametric methodology, we first need to estimate
the t-marginals. Figure 6 presents the estimates of the shift, scale and DoF
parameters for the 30 DJIA stocks (membership as of February 2002).

EXTREME EVENTS AND MULTI-NAME CREDIT DERIVATIVES
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Figure 6 MLE for shift, scale and DoF parameters for DJIA stocks

Ticker Daily Monthly

m̂ Ĥ ν̂ m̂ Ĥ ν̂

AA –1.4·10–4 4119 4.8 1.1·10–2 231 4.9
AXP 6.2·10–4 3455 5.6 2.6·10–2 285 4.6
T –1.2·10–4 6304 3.4 4.6·10–3 242 4.6
BA 1.2·10–4 5432 4.0 1.1·10–2 245 8.1
CAT 1.4·10–4 4027 4.8 1.2·10–2 180 10.2
C 1.0·10–3 3021 6.2 2.9·10–2 162 7.9
KO 4.2·10–4 5702 5.2 1.9·10–2 339 4.2
DD 1.4·10–4 4910 5.1 8.2·10–3 206 >100
EK –1.1·10–5 6338 4.0 4.5·10–3 301 5.3
XOM 3.5·10–4 7768 5.8 1.0·10–2 612 27.4
GE 8.1·10–4 6427 6.1 1.8·10–2 281 144.2
GM –1.3·10–5 3409 7.5 5.3·10–3 149 11.1
HD 1.1·10–3 3658 5.2 2.3·10–2 182 18.3
HON 5.1·10–4 5118 3.9 1.8·10–2 312 3.2
HWP 8.6·10–4 2667 4.7 2.0·10–2 106 10.1
IBM 1.8·10–4 4536 4.0 8.9·10–3 134 31.1
INTC 1.5·10–3 2214 5.3 3.2·10–2 97 7.7
IP –2.1·10–4 4534 4.7 3.1·10–3 229 4.7
JPM 1.5·10–4 5410 4.0 1.2·10–2 273 4.7
JNJ 5.5·10–4 5137 7.1 1.4·10–2 206 >100
MCD 3.1·10–4 5431 5.5 1.3·10–2 236 >100
MRK 5.6·10–4 4649 6.5 1.6·10–2 188 22.2
MSFT 1.1·10–3 2870 5.9 2.7·10–2 129 6.0
MMM 1.8·10–4 8776 3.7 8.3·10–3 541 4.5
MO 5.2·10–4 5845 3.4 1.2·10–2 193 6.1
PG 4.9·10–4 6144 4.8 1.6·10–2 388 4.1
SBC 4.5·10–4 5911 4.4 1.0·10–2 295 10.9
UTX 4.7·10–4 5974 4.4 2.0·10–2 336 4.6
WMT 5.1·10–4 3942 4.9 1.6·10–2 185 14.8
DIS 2.5·10–4 5039 4.5 9.7·10–3 214 9.3
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The DoF estimates are quite low, confirming the well-documented non-
normality of equity returns. It is interesting to note that the DoF of most
names increases as we decrease the sampling frequency from daily to
monthly. This might be due to aggregation (similar to the type of behav-
iour observed in the Central Limit Theorem, which states that sums of
random variables converge to a Gaussian distribution). However, this
effect varies considerably across tickers: some names show a far more
“stable” additivity than others.

It is also clear that the estimated DoF differ significantly across names,
independently of the frequency. This confirms that in order to estimate the
copula correctly, one should allow for different DoF in the marginals
rather than fitting a multivariate t-distribution to the data.

Estimating the t-copula
To provide numerical examples for the estimation of the t-dependence
structure, we choose nine baskets consisting of members of the DJIA. The
semi-parametric model employs the empirical marginals to map each
equity return series into the unit interval, while the fully parametric method
utilises the estimates described in the previous section. In both cases, the t-
copula is then estimated using Kendall’s Tau transform for the correlation
matrix and maximising the likelihood function over the DoF parameter.

Figure 7 shows the estimated DoF of the t-copula for the nine baskets
(the term “Emp-marginals” refers to the non-parametric assumption on
the distribution of the marginals). First, notice that the two methodologies
produce very similar results, confirming that the univariate t-distribution
generally represents a good probability model for the univariate equity
return series. Second, note that while the estimates of the marginal DoF
appear to decrease systematically as we increase the frequency of the
observations, the estimates of the copulas’ DoF do not change signifi-
cantly. In other words, while the marginal fat tails get thinner due to
potential aggregation effects, there is no evidence that a similar phenom-
enon is driving the behaviour of the joint tails.

Our results echo the recent work of Breymann, Dias and Embrechts
(2003) on the joint behaviour of FX financial series. Breymann et al employ
a t-copula to model the dependence structure of a set of exchange rates,
and show that the DoF parameter is almost independent of the sampling
window. Moreover, this parameter is small (of order 4–6), indicating that
the t-copula provides a more accurate description of the data than the
Gaussian counterpart. Their study also compares the t-copula to various
competing models and finds further empirical support for the former.

Summary
Our empirical investigation of the dependence structure of asset returns
sheds some light on two main issues that were raised in the introduction.

CREDIT DERIVATIVES: THE DEFINITIVE GUIDE
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First, the assumption of Gaussian dependence between asset returns can
be rejected with extremely high confidence in favour of an alternative fat-
tailed dependence. Second, the dependence structures of asset and equity
returns appear to be strikingly similar. The KMV algorithm that produces
the asset values used in our analysis is nothing more than a sophisticated
way of de-leveraging the equity to get to the value of a company’s assets.
Therefore, the popular conjecture that the different leverage of assets and
equity will necessarily create significant differences in their joint depen-
dence seems to be empirically unfounded, even when we analyse the
value processes of low-grade issuers. Instead, our results suggest that the
differences in leverage are mostly reflected in the marginal distributions of
returns. From a practical point of view, these results represent good news
for practitioners who only have access to equity data for the estimation of
the dependence parameters of their credit models.

Our analysis also shows that imposing t-marginals on the equity return
series, rather than using their empirical distributions, does not have signif-
icant consequences for the estimation of the dependence parameters. Thus,
the t-copula with t-marginals provides a simple and parsimonious model
that can be used in various financial applications in a much more straight-
forward manner than the semi-parametric model based on the t-copula.
Finally, the presence of fat-tailed dependence does not seem to diminish as
we decrease the sampling frequency of our data. In other words, there is
no evidence that the dependence structure of equity returns approaches
the Gaussian dependence structure as we increase the measurement inter-
vals and allow for aggregation.
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Figure 7 Estimates of DoF of the t-copula for different DJIA baskets

Basket Tickers t-marginals Emp-marginals
Daily Monthly Daily Monthly

1 AA, AXP, T, BA, CAT 8 7 8 6
2 C, KO, DD, EK, XOM 10 12 9 10
3 GE, GM, HD, HON, HWP 9 7 8 6
4 IBM, INTC, IP, JPM, JNJ 8 8 7 5
5 MCD, MRK, MSFT, MMM, MO 9 6 8 5
6 PG, SBC, UTX, WMT, DIS 8 7 7 5
7 Baskets 1+2 10 10 10 8
8 Baskets 3+4 10 11 10 8
9 Baskets 5+6 9 8 9 6

DoF estimates for the t-copula of different DJIA baskets under a fully parametric and a semi-
parametric model. The semi-parametric specification uses the empirical distributions to
estimate the marginals. The estimates are provided for two different sampling frequencies
(daily and monthly)
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EXTREME EVENTS AND CORRELATED DEFAULTS
A number of different frameworks have been proposed in the literature for
modelling correlated defaults and pricing multi-name credit derivatives.
Hull and White (2001) generate dependent default times by diffusing
correlated latent variables and calibrating default thresholds to replicate a
set of given marginal default probabilities. Multi-period extensions of the
one-period CreditMetrics paradigm are also commonly used, even though
they produce the undesirable serial independence of the realised default
rate. A computationally more expensive approach is that based on the
implementation of stochastic intensity models, as proposed by Duffie and
Singleton (1998) and Duffie and Garleanu (1998). Finger (2000) offers an
excellent comparison of several multivariate models in terms of the default
distributions they generate over time when calibrated to the same
marginals and first-period joint default probabilities. While most multi-
name models require simulation, the need for accurate and fast computa-
tion of greeks has pushed researchers to look for modelling alternatives.
Finger (1999) and, more recently, Gregory and Lambert (2003) show how
to exploit a low-dimensional factor structure and conditional indepen-
dence to obtain semi-analytical solutions.

In an influential paper, Li (2000) presents a simple and computationally
inexpensive algorithm for simulating correlated defaults. His method-
ology builds on the implicit assumption that the multivariate distribution
of default times and the multivariate distribution of asset returns share the
same copula, which he assumes to be Gaussian. The approach described in
the previous chapter is based on this model. The results of our earlier
statistical analysis suggest that the dependence structure of asset returns is
very similar to the dependence structure of equity returns, and that the
dependence structure of equity returns is better described by a t-depen-
dence than by a Gaussian copula.

Therefore, it seems natural to modify Li’s methodology to account for
the likelihood of extreme joint realisations, and simulate correlated default
times under the assumption that their dependence structure is the same as
that of the associated equity returns.

Simulating default times with fat-tailed dependence
To construct the multivariate distribution of default times under the objec-
tive probability measure, we first need to estimate the marginal distribu-
tions, which we will denote with F1, F2, ..., Fd . These can be derived from
univariate structural models (such as KMV’s EDF) or simply estimated
using observed default frequencies within relatively homogeneous peer
groups (such as Moody’s default frequencies by rating). We then join these
marginals with a t-copula, and estimate the dependence parameters
(correlation matrix ∑ and DoF ν) from equity returns using either one of
the two procedures described earlier.

CREDIT DERIVATIVES: THE DEFINITIVE GUIDE
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For valuation purposes, we need to construct the multivariate distribu-
tion of default times under the risk-neutral probability measure. In this
case, it is common practice to back out the marginals F1, F2, ..., Fd from
single-name defaultable instruments (such as credit default swaps). Given
the low liquidity of multi-name instruments, it is not yet possible to use
their market prices to obtain implied values for the dependence parame-
ters. Instead, practitioners generally estimate the copula using historical
data, implicitly relying on the extra assumption that the dependence struc-
ture of default times remains unchanged when we move from the objec-
tive to the pricing probability measure.

Simulating default times from this multivariate distribution is straight-
forward:

1. Commence by simulating a multivariate-t random vector X ∈ Rd with
correlation ∑ and ν DoF.

2. Next, transform the vector into the unit hyper-cube using U = (tν(x1),
tν(x2), ..., tν(xd ))

3. Translate U into the corresponding default times vector τ using the
inverse of the marginal distributions: τ = (τ1, τ2, ...., τd ) = (F1

–1(u1),
F2

–1(u2), ..., Fd
–1(ud )).

The simulation algorithm is illustrated in Figure 8.
It is easy to verify that τ has the given marginals and that its dependence

structure is given by a t-copula with correlation ∑ and ν DoF. The logic of
the proof can be established via the following.

❏ X has a tΣ,ν copula by definition.
❏ Since copulas are preserved by strictly monotonic transformations of

the variables and the univariate t-distribution is strictly increasing, U
also possesses a tΣ,ν copula.
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Figure 8 Mapping a student-t random variable to a default time
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❏ Since copulas are preserved by strictly monotonic transformations of
the variables, while the marginal distributions of default times are
strictly monotonic, τ also has a tΣ,ν copula.

❏ Since tΣ,ν has  marginals, U has uniform marginals.
❏ Since U has uniform marginals, τ has F1, F2, ..., Fd marginals.

Asset correlation, default time correlation and default event correlation
The simulation algorithm discussed above is based on the assumption that
asset returns and default times share the same copula, and consequently
share the same correlation matrix. To understand better the impact of
different dependence assumptions on the valuation and risk measures of
default-contingent instruments, it is useful to introduce the concept of
“default event correlation”.

Default event correlation measures the tendency of two credits to
default jointly within a specified horizon. Formally, it is defined as the
correlation between two binary random variables that indicate defaults, ie,

pAB – pApB
ρD = . (9)

��pA�(1 –�p�A)� ��pB�(1 –�p�B)�

where pA and pB are the marginal default probabilities for credits A and B,
and pAB is the joint default probability. Of course, pA , pB and pAB all refer
to a specific horizon. Notice that default event correlation increases
linearly with the joint probability of default, and is equal to zero if – and
only if – the two default events are independent.

Default event correlations are the fundamental drivers in the valuation
of multi-name credit derivatives. Unfortunately, the scarcity of default
data makes joint default probabilities, and therefore default event correla-
tions, very hard to estimate directly. As a result, researchers rely on alter-
native methods to calibrate the frequency of joint defaults within their
models: the method we described above solves this problem by assuming
that rarely observable default times and frequently observable equity
returns share the same copula.

It is interesting to see how the DoF parameter – which regulates tail
dependence and the likelihood of joint extreme events – influences default
event correlations. Using a 5-year horizon and two credits whose default
times are exponentially distributed with hazard rates of 1%, Figure 9
compares a normal copula and a t-copula with three and 10 degrees of
freedom. Tail dependence increases default event correlation for any value
of asset correlation. In particular, notice that even when asset returns are
uncorrelated (ie, they are linearly independent), tail dependence can
produce a significant amount of default event correlation.

CREDIT DERIVATIVES: THE DEFINITIVE GUIDE
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MULTI-NAME CREDIT DERIVATIVES
In the previous section, we proposed an algorithm to simulate tail-depen-
dent defaults under either the objective or the pricing measures. Fair
values and risk metrics for any multi-name credit derivative can now be
easily computed. In this section, we analyse the consequences of making
different assumptions with respect to the dependence structure of default
times. Specifically, we focus on two popular multi-name credit instru-
ments, namely nth-to-default baskets and portfolio loss tranches.

nth-to-default baskets
In an nth-to-default basket swap, two counterparties agree on a maturity
and a set of reference assets, and enter into a contract whereby the protec-
tion seller periodically receives a premium (also called “basket spread”)
from the protection buyer. In exchange, the protection seller stands ready
to pay the protection buyer par minus recovery of the nth referenced
defaulter in the event that the nth default occurs before the agreed-upon
maturity. First- and second-to-default swaps are the most popular orders
of protection.

Taking extreme events into account has significant consequences on the
estimate of the Expected Discounted Loss (EDL) of a basket swap (see the
previous chapter for the definition of the EDL). This is because, other
things equal, simulating defaults by means of a fat-tailed copula increases
the probability of joint defaults, and thus default event correlation (see
Equation 9). We focus on EDL because this measure relates both to agency
rating methodologies (when computed under real-world probabilities)
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and to the fair compensation for the default risk exposure (when
computed under risk-neutral probabilities).

The sign of the relation between EDL and default event correlations,
however, depends on the order of the basket. The EDL of a first-to-default
exposure is always monotonically decreasing in default event correlations.
In terms of valuation, this means that allowing for joint extreme events
makes first-to-default protection unambiguously cheaper.

The EDL of a second-to-default exposure is not necessarily monotonic in
default event correlations. Rather, it generally increases up to a maximum,
then it starts decreasing. The location of the turning point depends on all
other parameters and, in particular, on the number of names in the basket.
With a low number of names, the EDL of a second-to-default exposure is
generally increasing in default event correlations over most of the domain.
Intuitively, with only a handful of names in the portfolio, the event that at
least two of them default becomes more likely as we increase their
tendency to default together.

These qualitative relations are consistent with the results reported in
Figure 11, where we compare the EDL of five-year first-, second-, and
third-to-default exposure on a 5-name basket using both a Normal copula
and a t-copula with 12 DoF. In both cases, the marginal distributions of
default times are assumed to be defined by a constant yearly hazard rate
equal to 1%, recovery rates are known and equal to 40%, and the risk-free
discounting curve is flat at 2%. We compute EDL for three different levels
of asset correlations, namely 0%, 20%, and 50%. The standard errors of the
Monte Carlo estimators are reported in brackets and represent the simula-
tion standard error for the EDL as a percentage of the EDL. As one would
expect, the percentage difference between the Gaussian copula and the t-
dependence is higher when the triggering event is less likely.
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Portfolio loss tranches
According to a recent survey published in Risk Magazine (February 2003),
portfolio loss tranches have become one of the most common types of
multi-name credit exposures traded in the market.8 In a typical portfolio
loss tranche, a protection buyer pays a periodic premium to a protection
seller, who, in exchange, stands ready to compensate the buyer for a pre-
specified slice (tranche) of the losses affecting a set of reference obligations.
The reference portfolio is generally composed of dozens (and sometimes
hundreds) of credits, and each name is represented in the portfolio
according to a given notional amount.

Here we consider a portfolio of 100 names, each with US$1 million
notional. A tranche exposure is defined by a lower and an upper percentile
of the total notional. For example, the seller of protection on the 5%–10%
tranche of our 100-name portfolio will be responsible for covering losses
exceeding US$5 million and up to US$10 million (US$5 million exposure).
Losses are defined as the notional amount of defaulted credits times the
associated loss given default (LGD). In our example, we assume uniform
recovery rates of 35%, ie, 65% LGD for every credit in the reference port-
folio.

We first consider a valuation exercise using the following parameters:

❏ 1% risk-neutral hazard rate for each reference name;
❏ 20% asset correlation between every pair of credits;
❏ flat risk-free curve at 2%; and
❏ a 5-year maturity deal.

Figure 12 compares the risk-neutral EDL for several tranches under the
two alternative assumptions of Gaussian dependence and t-dependence
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Figure 11 Expected discounted loss of nth-to-default baskets

Asset Copula 1st-TD 2nd-TD 3rd-TD
Correlation 

0% Normal 0.1265 (0.059%) 0.0121 (0.206%) 0.0006 (0.898%)
t12 0.1207 (0.059%) 0.0167 (0.169%) 0.0017 (0.566%)

% Difference –5% 38% 185%
20% Normal 0.1151 (0.066%) 0.0205 (0.155%) 0.0033 (0.380%)

t12 0.1094 (0.063%) 0.0239 (0.137%) 0.0051 (0.155%)
% Difference –5% 17% 55%

50% Normal 0.0934 (0.072%) 0.0305 (0.131%) 0.011 (0.231%)
t12 0.0888 (0.071%) 0.0318 (0.129%) 0.0127 (0.197%)

% Difference –5% 4% 15%

Normal vs. Student t-copula with DoF=12, 10M- path Monte Carlo simulation, standard errors in
parenthesis
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with 12 DoF. The results show the significant impact that the (empirically
motivated) consideration of tail dependence has on the distribution of
losses across the capital structure: expected losses are clearly redistributed
from the junior to the senior tranches, as a consequence of the increased
default event correlations. This implies that the Gaussian assumption
underestimates the fair compensation for senior exposures and overesti-
mates the fair compensation for junior risk.

Even larger differences can be observed if one compares higher
moments or tail measures of the tranches’ loss distributions. Let us now
assume that each of the 100 reference names has an objective default

CREDIT DERIVATIVES: THE DEFINITIVE GUIDE

22

Figure 13 Value-at-risk and expected shortfall at the 95th percentile

Tranche Copula VaR95% ES95%

0% – 5% Normal 5,000,000 5,000,000
t12 5,000,000 5,000,000

% Difference 0% 0%

5% – 10% Normal 850,000 3,119,812
t12 2,150,000 4,278,209

% Difference 153% 37%

10% – 15% Normal 0 600,480
t12 0 1,583,187

% Difference 0% 164%

15% – 20% Normal 0 124,750
t12 0 584,986

% Difference 0% 369%

20% – 100% Normal 0 32,747
t12 0 339,124

% Difference 0% 936%

Normal vs. Student t-copula with DoF=12, 100K-path Monte Carlo simulation

Figure 12 Expected discounted loss of portfolio tranches

Tranche Normal Copula t-Copula DoF=12 % Difference
EDL (Std Err) EDL (Std Err)

0% – 5% 2,256,300 (0.14%) 2,012,200 (0.23%) –11%
5% – 10% 533,020 (0.63%) 601,630 (0.66%) 13%
10% – 15% 146,160 (1.37%) 221,120 (1.06%) 51%
15% – 20% 41,645 (1.70%) 90,231 (1.62%) 117%
20% – 100% 16,188 (4.94%) 59,042 (2.79%) 265%

Normal vs. Student t-copula with DoF=12, 100K-path Monte Carlo simulation, standard
errors in parenthesis
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intensity equal to 0.5%. The remaining parameters are unchanged. Figure
13 compares the two dependence assumptions in terms of the 95% Value-
at-Risk (VAR) and expected shortfall that they produce for a number of
loss tranches.

CONCLUSIONS
The empirical study presented in the first part of this chapter has two main
findings. First, empirical evidence suggests that large joint movements of
equity values occur with higher likelihood than what is predicted by corre-
lation-based models. In particular, empirical evidence seems to favour a
fat-tailed dependence structure instead of the widely-used Gaussian one.
The second observation is that the dependence structures of asset and
equity returns appear to be strikingly similar.

One interesting corollary to these empirical findings is the lack of
support for the popular conjecture regarding the ways in which the
different leverage of assets and equity create significant differences in their
joint dependence. To this end, the KMV algorithm that we use to “back-
out” asset values from observed equity data can be viewed simply as a
means for de-leveraging the equity to arrive at the value of a company’s
assets. Our results suggest that the differences in leverage are mostly
reflected in the marginal distributions of returns. A practical consequence
is that (observed) equity data seem to provide a valid and consistent proxy
for (unobserved) asset returns, at least for the purpose of calibrating the
dependence structure.

We conclude our empirical study with a recommendation for a simple
and parsimonious framework that can be used to model asset dependen-
cies. (Such a model will also drive the analysis of multi-name credit deriv-
atives.) Specifically, this is a fat-tailed multivariate distribution, having
marginals that each follow a univariate t-distribution (with possibly
different parameters), and with a dependence structure given by a t-
copula. It is important to note that while the estimates of the parameters of
the marginals (in particular, the degrees-of-freedom which dictates the
fatness of the marginal tail) may depend on the sampling frequency of the
data, the tail behaviour in the dependence structure seems to be quite
insensitive in this regard. In particular, there is no empirical evidence that
the dependence structure of equity returns approaches the Gaussian
dependence structure as we increase the measurement intervals and allow
for aggregation.

These empirical findings have significant bearing on multi-name credit
derivatives models. In particular, the results described above indicate that
asset returns exhibit non-negligible tail dependence; therefore, if one
follows the “structural approach”, default times seem to be more accu-
rately modelled using a t-dependence structure rather than the widely
used Gaussian one. The examples on the valuation of first- and second-to-
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default baskets illustrate the importance of the modelling choice for
pricing purposes. In addition, the example that considers synthetic loss
tranches suggests that multivariate Gaussian models will generally under-
estimate default correlations and thus overestimate the expected loss of
junior positions and underestimate the expected loss of mezzanine and
senior tranches.

1 We would like to thank Mark Broadie, Paul Glasserman, Mark Howard, Prafulla Nabar,
Dominic O’Kane, Lutz Schloegl and Stuart Turnbull for comments and suggestions on
earlier versions of this document. The usual disclaimer applies.

2 A description of these models can be found in Kealhofer and Bohn (2001) and Gupton,
Finger and Bhatia (1997).

3 See, for example, Mashal and Naldi (2002), Mashal and Zeevi (2002) and Breymann et al
(2003).

4 This approach follows the semi-parametric estimation framework developed in a more
abstract context by Genest et al (1995).

5 A rigorous derivation and an explicit characterization of γ is given in Appendix A of Mashal
and Zeevi (2002) who also validate this asymptotic numerically.

6 The range of accepted DoF is very narrow in each case, exhibiting similar behaviour to that
displayed in Figure 1.

7 This should not be confused with a multivariate-t model, since we are not restricting the
copula and all of the marginals in order to achieve the same DoF parameter.

8 See “Credit derivatives survey, flow business booms”, by Navroz Patel, Risk Magazine,
February 2003, pp. S20-S23.
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