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We study a multi-server queueing model of a revenue-maximizing firm providing a service to a market of

heterogeneous price- and delay-sensitive customers with private individual preferences. The firm may offer a

selection of service classes that are differentiated in prices and delays. Using a deterministic relaxation, which

simplifies the problem by preserving the economic aspects of price-and-delay differentiation while ignoring

queueing delays, we construct a solution to the fully stochastic problem that is incentive compatible and near-

optimal in systems with large capacity and market potential. Our approach provides several new insights for

large-scale systems: i) the deterministic analysis captures all pricing, differentiation, and delay characteristics

of the stochastic solution that are non-negligible at large scale; ii) service differentiation is optimal when

the less delay-sensitive market segment is sufficiently elastic; iii) the use of “strategic delay” depends on

system capacity and market heterogeneity – and contributes significant delay when the system capacity is

under-utilized or when the firm offers three or more service classes; and iv) connecting economic optimization

to queueing theory, the revenue-optimized system has the premium class operating in a “quality-driven”

regime and the lower-tier service classes operating with noticeable delays that arise either endogenously

(“efficiency-driven” regime) or with the addition of strategic delay by the service provider.

Key words : service differentiation; pricing; revenue management; damaged goods; queueing games;

many-server limits

1. Introduction
1.1. Motivation and Overview of Results

Price discrimination based on the speed at which a service is delivered has become a prevalent

business practice. Standard examples include: parcel delivery services such as FedEx and UPS

that offer overnight delivery at substantially higher prices than standard ground shipping; airport

security screening whereby any economy class ticket holder, regardless of frequent flyer status,

can purchase access to a priority lane; and various government services, e.g., passport issuance

and renewals, that can be expedited by paying additional fees. The on-going debate over network

neutrality principles questions whether Internet service providers should be allowed to charge
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higher prices to certain content providers for faster data transmission rates. In all of the above, an

essentially identical service is provisioned at varying quality levels (based on delay) and segments

the market in a way that enables the firm to provide faster processing for impatient customers

and shift system congestion to more patient customers. For revenue-maximizing firms, this service

differentiation is driven by the potential to extract further revenues from the less-patient customer

base, while non-profit providers can use service differentiation to better allocate resources and

increase social welfare. The high-level problem for the service provider is how to optimally design

and implement a menu of price-delay service offerings in such settings. We study this service

differentiation problem in the context of a large-scale stochastic service system that is prone to

congestion due to queueing.

We consider a monopolistic revenue-maximizing firm (service provider) that offers a single service

to a market of heterogeneous price- and delay-sensitive customers. The system is modeled as a

multi-server queue and may have multiple service classes that are differentiated in terms of price

and delay. Demand for each service class consists of a stream of atomistic and rational customers.

An individual customer gains positive utility from receiving service, but suffers negative utility

for each unit of time spent waiting. Upon arrival, he chooses the service class (or opts out) that

maximizes his net expected utility. In this manner, the set of price and delay combinations affects

the demand for each service class, which in turn determines the congestion in each class, and so

on. An optimal solution specifies a menu of service classes and a sequencing rule that maximize

the expected revenue rate.

The market is composed of distinct customer segments or “types.” All customers of a particular

type have the same linear delay sensitivity and a random service valuation (or willingness-to-pay)

drawn from a common distribution. The type and valuation of any individual customer is private

information and thus unknown to the service provider. Designing the service provider’s revenue

maximizing product menu, taking into account the effect of customers’ self-optimizing choices, can

be cast as a mechanism design problem. As a point of reference, the socially optimal menu for

the above model is known and fairly straightforward to characterize and implement, based on the

key insights that it is optimal to set prices equal to the externality costs and to allocate servers

so as to minimize aggregate delay costs; see further discussion in §1.2. For revenue maximization,

however, both of these insights no longer hold and the firm’s problem becomes more complex and

only partially understood.

Main findings. This paper proposes an approximate analysis, that applies to systems with

large processing capacity operating in settings with large market potential. This greatly simplifies

the study of the revenue-maximization problem, while preserving the significant insights into the

structure of the optimal solution. Some of the key contributions are the following.
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1. Solution via Deterministic Analysis. Setting aside queueing dynamics, we propose a determin-

istic relaxation of the revenue maximization problem and show that its solution yields an intuitive

price-delay menu and suggests a simple priority sequencing rule. This translates to a solution in the

stochastic setting that achieves near-optimal revenue performance in large-scale systems. We apply

this framework to the setting with two customer types (§2-4) and show that it easily extends to

multiple customer segments (§5), which is relevant to settings with significant market heterogene-

ity. Our deterministic analysis does not provide closed-form price prescriptions in terms of model

primitives, but rather allows an easy-to-compute solution that is accurate in large-scale systems

(see Remark 2).

2. Insights into Service Differentiation. Our approach shows that the first-order (non-vanishing

at large scale) features of the stochastic solution can be immediately determined from the solution

to the deterministic relaxation. Such features are prices, delays, level of differentiation, system

utilization, sequencing of customers, and strategic delay (which was first analyzed in Afèche (2004)).

For example, we identify conditions that imply first-order service differentiation is optimal. We

also establish that in systems with two service classes, strategic delay is a first-order effect when

there is ample capacity (some fraction of servers permanently idle at large scale), but second-order

(vanishing at large scale) when there is not, including settings where the service provider decides to

set capacity at a level that avoids permanently idle servers. In systems where it is optimal to offer

three or more service classes, strategic delay is always a first-order consideration. These results

do not rely on restrictive assumptions on the market primitives, such as uniform or exponential

valuation distributions.

3. Connection to Asymptotic Queueing Regimes. The paper also contributes to the literature

on heavy-traffic analysis of queueing systems. We believe that this is the first work to show that

classical operating regimes, such as the so-called efficiency-driven (ED) and quality-driven (QD),

may arise endogenously as a result of price discrimination and service differentiation; specifically,

the high priority class operates in the QD regime, experiencing an underloaded and uncongested

system, while the lowest priority class operates in the heavily utilized ED regime, experiencing a

system that is always congested. This complements earlier results by Maglaras and Zeevi (2003a)

that first showed that the quality and efficiency-driven (QED) operating regime arises endogenously

as a result of revenue maximization when customers are homogenous in their delay costs.

1.2. Related Literature

The work on strategic customers in queues – where arrivals depend on system congestion – is

extensive, dating back to the seminal study of Naor (1969); a survey of the topic area can be found in

Hassin and Haviv (2003). Two early references that are relevant to our work are Mendelson (1985)
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and Mendelson and Whang (1990), which introduced the atomistic, utility-maximizing customer

behavior model in queues with single and multi-type markets, respectively; the latter focused on

welfare maximization.

The revenue maximization problem that we consider is most closely related to Afèche (2013),

who analyzed a single-server queueing system facing a market with two customer types (analogous

to §3-4 in this work), and made three important and related contributions. First, he formulated

the problem in a mechanism design framework, and, second, showed that externality pricing and

delay cost minimization are no longer optimal in the revenue maximization setting. Third, he

established necessary and sufficient conditions for the optimal solution to include strategic delay,

in which the service provider chooses to artificially delay some customers beyond what is caused

by system congestion alone. His study provides an exact analysis of the two-type case and partial

extensions of this approach to multiple (more than two) customer types in a M/M/1 setting can

be found in Afèche and Pavlin (2011) and Katta and Sethuraman (2005). These partial extensions

require more restrictive assumptions on the market primitives – specifically, all customers of a given

type (common delay cost) share a common service valuation, and there is a monotone relationship

between delay cost and service valuation. Our work adopts the mechanism design formulation

(which allows for strategic delay) introduced in Afèche (2013), applied to a multi-server setting.

More importantly, our method of analysis and the focus of our results are different. Unlike the above

papers, we undertake an approximate rather than exact analysis approach, which provides new

and complementary insights. The exact analysis papers describe features of the optimal solution

directly in terms of model primitives, while we formulate an approximate solution, which in turn

is based on the solution to a deterministic relaxation. In particular, the deterministic relaxation

solution captures the first-order features of the optimal solution and ignores those that become

vanishingly small in large systems. We note that our proposed framework extends to the multi-type

setting without further restrictions. Another example of interest that can be handled within our

framework and is of interest to service systems and information service networks is the parallel

multi-pool, multi-server system. We provide a detailed comparison with Afèche (2013) in §5 (see

Remark 4).

The above references and the closely related literature uses exact analysis for single-server queue-

ing systems. There is a parallel stream of work that, like this paper, considers multi-server systems

and leverages asymptotic analysis to gain insight into the optimal prices and policies. Maglaras

and Zeevi (2003a) consider a single-class system, characterize the asymptotic equilibrium operating

point, and show that, when demand is elastic, the revenue-maximizing price places the system in

the QED regime. Maglaras and Zeevi (2005) introduces the use of a deterministic relaxation for

a two class system, where choice is captured via an aggregated demand function in a setting with
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partially substitutable products; atomistic choice, incentive compatibility, and delay preference

heterogeneity were not considered.

The terminology describing the operating regimes of large-scale, multi-server systems is due to

Borst et al. (2004). In that paper and much of the work in capacity sizing and optimal control

of multi-server systems (typically motivated by call center applications), demand is exogenous.

By contrast, demand in our model is delay-sensitive and therefore endogenously determined via

a game-theoretic equilibrium, which captures the complex interaction between individual, utility-

maximizing customers and a revenue or social-welfare maximizing service provider. While there is

a significant body of work in which asymptotic operating regimes arise from endogenous demand,

including Maglaras and Zeevi (2003a,b, 2005), Whitt (2003), Armony and Maglaras (2004a,b), and

Plambeck and Ward (2006), most consider problems in which large-scale delay differentiation is

absent and find that the QED regime is economically optimal.

Strategic delay can be viewed as the queueing system manifestation of damaged goods, a concept

from the economics and marketing literature, which refers to the practice of introducing a low-price

low-quality version of a good, despite equal (or greater) production costs, that serves to segment

the customer market and price discriminate. A number of examples of such cases can be found in

Deneckere and McAfee (1996), while McAfee (2007) derives sufficient conditions this practice to be

optimal. More recently, Anderson and Dana (2009) provide necessary conditions for a monopolist

firm to increase profits by engaging in price discrimination, which may include offering damaged

goods. A significant difference between our work and these is that we consider a system that is

subject to congestion, so quality degrades as more customers purchase the service, and the service

provider only has a partial (deliberate delay) or indirect (pricing and sequencing) influence on

quality. The marketing and economics literature generally disregards the operational considerations

of the service system, and the inherent conflict between price discrimination and efficient resource

utilization that gives rise to congestion effects.

2. Model and Problem Formulation

System model. The service provider (SP) operates s servers, which are used to offer k classes of

service that are differentiated by price and delay. Arrivals into a service class j ∈ {1, . . . , k} form

an independent Poisson process with rate λj, which is determined by the customer choice model

specified below. Each service class has an infinite-capacity buffer and customers in that class wait

in a queue until they are allocated a server. The delay experienced by a customer in a given service

class is the time he spends in the system minus the time spent in service.1 All customers have

1 All results hold if delay is defined to be the sojourn time, with only trivial changes to the proofs.
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random processing requirements that are independent and identically distributed (i.i.d.) draws

from an exponential distribution with mean 1/µ.

The allocation of servers to customers is determined by a control policy π, which satisfies the

following assumptions: i) each server may only work on one customer at a time; ii) service for

any customer may be interrupted without penalty and resumed without restarting service (allow

preempt/resume); iii) the policy does not depend on the realized service times of customers; iv)

servers may not idle if there are any customers waiting in queue.

Assumption i) is for ease of exposition – all major results hold if processor sharing is allowed.

Assumption ii) simplifies many of the proofs; if preemption is not allowed, the asymptotic results

are the same in the limit, but the rates of convergence may differ – see Remark 3. Assumptions iii)-

iv) are standard work-conservation assumptions. A formal description of these queueing dynamics

is provided in Appendix B. We allow for strategic delay by assuming that customers are sent to an

infinite-capacity “delay node” following service completion, where a customer from service class j

is held for δj ≥ 0 units of time and then released from the system. This is one of several ways to add

strategic delay (see §3.2 and §7 of Afèche (2013)), and can achieve the expected delays obtained

under any alternative implementation.

Given a control policy π and an arrival rate vector λ= (λ1, . . . , λk) that satisfies
∑k

j=1 λj < sµ,

standard queueing results (e.g., Saaty (1961) and references therein) show that there exists a unique

stationary distribution for the number of customers for each service class that are in queue or in

service, but not in the delay node (sometimes called the “headcount process”). Define EDj(λ,π)

to be the expected time in queue for class j customers under this stationary distribution. The

overall delay experienced by a customer in class j is therefore EDj(λ,π) + δj. (Expected values are

always with respect to the stationary distribution generated by a specified arrival rate vector λ

and admissible control π.)

Customer choice model. Customers of type i = 1,2 arrive at the system according to an

independent Poisson process with rate Λi and may choose a service class to purchase or leave

the system without service. Each type i customer has a willingness-to-pay Vi which is an i.i.d.

draw from a distribution Fi. We assume that for each i the cumulative distribution function Fi is

strictly increasing on its support, has a continuous density fi, an increasing generalized failure rate

(IGFR), and a finite mean. The IGFR and finite mean assumptions ensure that an infinite price is

not optimal (Lariviere (2006)). (This is a common condition in the revenue management literature,

but weaker assumptions, e.g., that the functions pF̄i(p) for i= 1,2 are coercive, also suffice.) Each

type i customer incurs an additive linear delay cost of ci per unit time spent waiting, where ci is

common across all type i customers. We assume, without loss of generality, that c1 > c2, so type 1

customers are more delay sensitive than type 2 customers.
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A type i customer with willingness-to-pay Vi, who arrives at a system offering k service classes

with prices pj and overall delays dj, j = 1, . . . , k, calculates his net utility for each service class j,

Ui(j) = Vi− (pj + cidj), (1)

and chooses the option that maximizes his net utility,

j∗ = argmaxj{Ui(j) :Ui(j)≥ 0, j = 1, . . . , k} with j∗ = 0 if Ui(j)< 0 for all j = 1, . . . , k;

where j = 0 represents the no-purchase option. Customers who choose not to enter the system are

lost and do not return.

Information structure. We assume that the characteristics of each customer segment (Λi, ci,

Fi, and µ) are known to the SP, while the type i∈ {1,2} and valuation Vi of any individual customer

are private information, and thus unknown to the SP. Since the SP is unable to distinguish between

customer types, he offers the same set of service classes to all customers. We also assume that the

queues are unobservable so customers make their choice based on the announced prices and delays

(which we require to be credible).

Number of service classes offered. Observe that all customers of type i will select the

same service class, because any individual type i customer selects the service class j with the

minimum “full cost,” pj +cidj, irrespective of his individual willingness-to-pay Vi. In a market with

N customer types, the SP need only offer up to N service classes (k≤N). For N = 2, the resulting

mean demand rate for each service class is given by

λ1(p1, p2, d1, d2) = Λ1F̄1(p1 + c1d1)1{p1 + c1d1 ≤ p2 + c1d2}

+ Λ2F̄2(p1 + c2d1)1{p1 + c2d1 < p2 + c2d2}, (2)

λ2(p1, p2, d1, d2) = Λ1F̄1(p2 + c1d2)1{p2 + c1d2 < p1 + c1d1}

+ Λ2F̄2(p2 + c2d2)1{p2 + c2d2 ≤ p1 + c2d1}, (3)

where F̄i(·) := 1− Fi(·) and 1{·} is the indicator function. We assume that if a customer of type

i is indifferent between the two service classes, he will choose service class j = i. By the Poisson

thinning property, the arrival process into each service class is itself Poisson.

System equilibrium. The queueing delays (ED1,ED2) depend on the demand rates (λ1, λ2)

and control policy π, and, in turn, these demand rates depend, in part, on the queueing delays.

An equilibrium for the system is an operating point where the queueing delays induce precisely the

demand rates that in turn induce said delays (under given prices, control policy, strategic delays,

and demand model).
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Definition 1 (Equilibrium). Fix prices (p1, p2), a control policy π, strategic delays (δ1, δ2),

and a customer demand model (λ1, λ2) = (λ1(p1, p2, d1, d2), λ2(p1, p2, d1, d2)). The system admits an

equilibrium if λ1 +λ2 < sµ and

dj =EDj(λ1, λ2, π) + δj j = 1,2. (4)

Remark 1. We do not provide general conditions under which an equilibrium exists, but rather

show in §4 that a unique equilibrium exists for the specific solution we propose to the following

economic optimization problem.

Revenue maximization problem. The SP’s problem is to find prices (p1, p2), a control policy

π, and strategic delays (δ1, δ2) to maximize the equilibrium revenue rate given by

R(π,p1, p2, δ1, δ2) =
2∑
j=1

pjλj(p1, p2, d1, d2), (5)

where (d1, d2) are the overall delays in equilibrium (assuming it exists), given in (4), and the

customer demand model λj(·), j = 1,2, is given in (2) and (3).

We adopt the formulation of Afèche (2013), which states the above as a mechanism design prob-

lem. Applying the revelation principle (Myerson (1979)), we consider, without loss of generality,

only direct mechanisms that satisfy incentive compatibility and individual rationality.

• Incentive Compatibility: pi + cidi ≤ pj + cidj for all j 6= i.

• Individual Rationality: λi = ΛiF̄i(pi + cidi) for i= 1,2.

In a direct mechanism, each customer reports their private information (type i and valuation Vi) to

the SP, who then uses that information to determine which service class the customer purchases, if

any. If such a mechanism satisfies the incentive compatibility and individual rationality conditions,

then it is a Nash equilibrium for customers to truthfully report their types and valuations. Under

this labeling, type i customers are either assigned to service class i or turned away.

The revenue maximization problem is to find prices (p1, p2), a control policy π, and strategic

delays (δ1, δ2) to:

maximize
2∑
i=1

piλi (6)

subject to pi + cidi ≤ pj + cidj i, j = 1,2 and i 6= j

λi = ΛiF̄i(pi + cidi) i= 1,2

λ1 +λ2 < sµ

di =EDi(λ1, λ2, π) + δi i= 1,2

δi ≥ 0 i= 1,2.
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The solution to (6) does not necessarily have two distinct service classes; the optimization prob-

lem allows both classes to offer the same level of service, e.g., by pricing the “two options” equally

and sequencing all customers through one queue that is served under a FIFO discipline. We consider

such solutions to be single-class. The ability of the SP to segment the market by delay sensitiv-

ity, but not valuation, is a consequence of additive delay costs; linearity of the delay cost is not

required.

3. Deterministic Analysis

Our proposed analysis framework relies on a deterministic relaxation (“DR”), which preserves the

essential economic considerations and the capacity constraint of the original problem (6) while

ignoring the complications presented by the queueing dynamics and resulting equilibrium. We then

use the optimal solution to the DR to construct an approximate solution to the original problem,

which achieves near-optimal performance in large systems in a way we make precise in the next

section.

3.1. Deterministic Relaxation

The DR seeks prices (p1, p2) and delays (d1, d2) that

maximize p1λ1 + p2λ2 (7)

subject to pi + cidi ≤ pj + cidj i, j = 1,2 and i 6= j

λi = ΛiF̄i(pi + cidi) i= 1,2

λ1 +λ2 ≤ sµ

d1 ≥ 0, d2 ≥ 0.

The delays are treated as “free” decision variables, only constrained to be non-negative and to

satisfy the system-wide capacity constraint; they do not need to correspond to an achievable pair

of equilibrium delays in the queueing system as required in (6). In this precise sense, (7) is a

(deterministic) relaxation of (6).

An optimal solution to (7), which we call the “DR solution,” exists since the objective function

is coercive and the feasible set is closed. We denote the DR solution (p̄1, p̄2, d̄1, d̄2) and set λ̄i =

ΛiF̄i(p̄i + cid̄i), i= 1,2. We also denote by κ̄i the fraction of system capacity consumed by class i

in the DR solution

κ̄i =
λ̄i
sµ

i= 1,2. (8)

Remark 2. Note that while we guarantee the existence of a DR solution and describe some

of its properties that are useful in constructing a stochastic solution, we do not provide closed-

form expressions for the DR solution. By treating delays as decision variables, computing the DR
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solution to (7) is substantially easier than directly solving (6), both of which, in general, may

require numerical methods. We do not discuss numerical methods in this paper and assume that

the solution to the deterministic optimization problem (7) is accessible.

Since (7) is a relaxation of (6), the optimal revenue rate in the DR setting,

R̄= p̄1λ̄1 + p̄2λ̄2,

is an upper bound on the optimal revenue rate in (6). In later sections, we prove asymptotic

optimality of approximate solutions by demonstrating that their revenues converge to this upper

bound.

3.2. Characterization of the DR Solution

The SP earns revenue from fees but not delays. Therefore, a feasible DR solution (p1, p2, d1, d2)

cannot be optimal if it is possible to maintain the same full cost in a service class while reducing

its delay and increasing its price, since this would increase revenues and maintain feasibility.

Proposition 1 (Structure of the DR solution). It suffices to consider solutions

(p1, p2, d1, d2) that satisfy

(a) d1 = 0, and

(b) p1 = p2 + c1d2.

Recall that c1 > c2. At the optimal solution (p̄1, p̄2, d̄1, d̄2), type 1 customers do not wait; type

2 customers wait “only long enough” to satisfy incentive compatibility, i.e., p̄1 = p̄2 + c1d̄2, and

segment the market.

We propose the following categorization and nomenclature for the DR solution, summarized in

Table 1. If p̄1 = p̄2 we say that the DR solution is “undifferentiated,” and if p̄1 > p̄2 it is “differen-

tiated.”2 If κ̄1 + κ̄2 = 1 it is “capacitated,” and if κ̄1 + κ̄2 < 1 it is “uncapacitated” (since the two

cases refer to the DR solutions for which the capacity constraint in (7) is either binding or not).

With this in mind, we first answer the question of when the DR solution is differentiated.

Consider the following “single-product problem,” in which the SP is constrained to offering only

one service class:

max
p

{
p(Λ1 + Λ2)Ḡ(p) : (Λ1 + Λ2)Ḡ(p)≤ sµ

}
, (9)

where Ḡ(p) = 1−G(p), and G(p) is the aggregate willingness-to-pay distribution with density g(p),

G(p) :=
Λ1F1(p) + Λ2F2(p)

Λ1 + Λ2

, g(p) :=
Λ1f1(p) + Λ2f2(p)

Λ1 + Λ2

. (10)

2 Note that if p̄1 > p̄2 and κ̄2 = 0, then (p̄1, p̄1) is also a solution to the DR, and so the problem essentially reduces to
a single product with a single market segment. Therefore we assume that any solution with κ̄2 = 0 is also “undiffer-
entiated.”
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Table 1 Categorization of DR solutions (N = 2).

capacitated uncapacitated

undifferentiated p̄1 = p̄2 p̄1 = p̄2

κ̄1 + κ̄2 = 1 κ̄1 + κ̄2 < 1

differentiated p̄1 > p̄2 p̄1 > p̄2

κ̄1 + κ̄2 = 1 κ̄1 + κ̄2 < 1

We assume that there is a unique maximizer of the single-product problem, which we denote

by p̂.3 Observe that if the optimal solution to the DR (7) is undifferentiated (p̄1 = p̄2), then the

optimal solution to the single-product problem (9) must be p̂= p̄1 = p̄2. In that case, no revenue is

lost in restricting the SP to a single service class in the DR setting.

In Proposition 2 below we provide a necessary and sufficient condition for a differentiated solu-

tion, expressed in terms of demand elasticity4 at the single-product optimal price p̂. Let εi(pi, di)

be the demand elasticity for service class i at price pi and delay di, for i= 1,2, and let εg(p) be the

elasticity of the aggregate demand for a single service class at price p:

εi(pi, di) =
pifi(pi + cidi)

F̄i(pi + cidi)
, εg(p) =

pg(p)

Ḡ(p)
. (11)

Proposition 2 (Conditions for service differentiation). Assume that the optimal solution

of the single-product problem (9) has a unique solution, p̂, and assume that F̄2(p̂)> 0. Let p̄1, p̄2 be

the optimal prices of the deterministic relaxation (7). Then

p̄1 > p̄2 if and only if

(
1− c2

c1

)
ε2(p̂,0)> εg(p̂). (12)

We assume that F̄2(p̂) > 0, so that ε2(p̂,0) is well-defined.5 Differentiated services should be

offered if and only if the demand for type 2 (delay-insensitive) customers at p̂ is sufficiently more

elastic than the aggregate demand at that price. In that case, the SP may increase revenues by

lowering the price for type 2 customers. Elasticity relative to the aggregate demand (as opposed

to simply having an elasticity which is greater than 1) allows for the single-product solution to be

capacitated. The factor of (1− c2/c1) accounts for the fact that any reduction in class 2 price must

be matched by an increase in delays, in order to maintain incentive compatibility.

3 It is straightforward to extend Proposition 2 to the case of multiple solutions to (9) by requiring that the condition
(12) hold for all single-product optimal prices. Moreover, uniqueness of p̂ is guaranteed if, for example, G is strictly
IGFR, but this is an additional assumption and does not follow from IGFR assumptions on individual demand
distributions F1 and F2.

4 In general, the demand elasticity at a price p is the proportional change in demand due to a change in price:

ε(p) = − p

λ

∂λ

∂p
.

Demand is elastic at p if ε(p)> 1 in which case reducing the price will increase revenue; demand is inelastic at p if
ε(p)< 1 in which case increasing the price will increase revenue.

5 If F̄2(p̂) = 0, it can be shown that a sufficient condition for service differentiation is F̄2 (p̂ (1− (1− c)/εg(p̂)))> 0.
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3.3. Translating the DR Solution

We construct a solution to the stochastic problem (6) based on the results of §3.1-3.2, thereby

translating the DR solution into a stochastic solution. The number of services classes k and their

respective prices p̄1, p̄2 are taken directly from the DR solution. For k = 1, this fully specifies the

solution (of course, no strategic delay is added to a single class). When two service classes are

offered, k = 2 with p̄1 > p̄2, the control policy π gives strict preemptive priority to class 1 and

strategic delay δ2 is added to class 2 as needed to discourage type 1 customers (no strategic delay

in class 1, δ1 = 0).

δ2 = max(0, d̄2− (ED2−ED1)).

This captures the intuition, from Proposition 1, that class 1 delays should be as small as possible

and class 2 delays should be only large enough to guarantee type 1 incentive compatibility.

Henceforth, we will explicitly distinguish between the “DR solution” to (7) and its interpretation

in the stochastic system, which will be referred to as the “stochastic solution.” We will also port the

nomenclature in Table 1 to the stochastic setting. We call the stochastic solution “differentiated” if

it offers two service classes and “undifferentiated” if it offers a single service class. With some abuse

of terminology, we call the queueing system operating under the stochastic solution “capacitated”

(“uncapacitated”) if the underlying DR solution is capacitated, κ̄1 + κ̄2 = 1 (uncapacitated, κ̄1 +

κ̄2 < 1). Of course, the equilibrium traffic intensity in the queueing system under the stochastic

solution is always less than 1.

4. Asymptotic Performance Analysis
4.1. Preliminaries

We now prove that the stochastic solution prescribed above is asymptotically optimal in the

stochastic setting, and induces an equilibrium and operating regime that is consistent with the DR

solution. Consider a sequence of systems with increasing capacity and market potential, indexed

by n:

sn := n,

Λn
i := nΛ̂i, i= 1,2,

(13)

with Λ̂i := Λi/s, and Λi and s are the parameters of the system of original interest. With this

definition in place, when n = s, the corresponding system in that sequence matches the original

system. While the size of each customer segment Λn
i scales with capacity, the valuation distribution

Fi(·) and delay cost parameter ci are held fixed. In this way, the customer population grows large,

but the characteristics and behavior of individual customers remain the same. We use a superscript

n to index quantities that depend on the size of the system.
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For the nth system in the sequence, the revenue maximization problem is analogous to (6) with

quantities having a superscript n replacing their counterparts. The scaled DR revenue rate nR̄/s

is again an upper bound on the optimal revenue rate earned in the nth system. The stochastic

solution constructed in §3.3 can be applied to each system of size n as follows.

Undifferentiated DR solution (single class). If p̄1 = p̄2 = p̂, offer a single service class (k = 1) at

price p̂ with no strategic delay. The arrival rate into the single class is

λn = Λn
1 F̄1(p̂+ c1d

n) + Λn
2 F̄2(p̂+ c2d

n),

where dn is simply the queueing delay EDn under the work-conserving control policy πn. The

single-class problem is largely addressed in Maglaras and Zeevi (2003a), whose results easily extend

to a heterogenous market of customers that are offered a single service class. In particular, their

Theorems 1 and 2 can prove that p̂ is asymptotically optimal and the resulting system operates in

the QED regime (in the capacitated case).

Differentiated DR solution (two classes). If p̄1 > p̄2, offer two service classes (k = 2) at prices

(p̄1, p̄2) and add strategic delays (0, δn2 ), where δn2 = max(0, d̄2− (EDn
2 −EDn

1 )). The control policy

πn gives class 1 strict preemptive priority over class 2. For the remainder of this section, we focus on

this differentiated case, when necessary distinguishing between the capacitated and uncapacitated

cases.

Our first result shows that the stochastic solution yields a unique equilibrium for each system

in the sequence, under a simplified customer choice model,

λnj = Λn
j F̄j(p̄j + cjd

n
j ), for j = 1,2. (14)

In contrast to the demand model described in (2)-(3), (14) explicitly assumes that customers

choose the “correct” service class, or equivalently, report their type truthfully. We denote by ρnj =

λnj /nµ the traffic intensity in class j = 1,2. Furthermore, the sequence of equilibria (i.e., the traffic

intensities (ρn1 , ρ
n
2 ) and overall delays (dn1 , d

n
2 ) induced by the stochastic solution) converges to the

DR solution.

Proposition 3 (System equilibrium). Assume the scaling in (13) and the customer choice

model in (14). Under the stochastic solution consisting of prices (p̄1, p̄2), strategic delays (δn1 , δ
n
2 ),

and priority rule πn described above:

(a) for every n, there exists a unique system equilibrium (ρn1 , ρ
n
2 , d

n
1 , d

n
2 );

(b) as n→∞, ρnj → κ̄j and dnj → d̄j, for j = 1,2;

(c) as n→∞, if the DR solution in (7) is capacitated, κ̄i + κ̄2 = 1, then δn2 → 0; and if it is

uncapacitated, κ̄i + κ̄2 < 1, then δn2 → d̄2.
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4.2. Incentive Compatibility and Revenue Optimality

Proposition 3 establishes the asymptotic system behavior under the assumption that customers

make the “correct” choices. Theorem 1 establishes that the stochastic solution becomes incentive

compatible in large systems, which implies it is a Nash equilibrium strategy for customers to choose

the “correct” service classes (or equivalently to truthfully report their type and valuation).

Theorem 1 (Large-scale incentive compatibility). Assume the scaling in (13). Then,

there exists a finite Nic such that for all n≥Nic, the stochastic solution composed of prices (p̄1, p̄2),

strategic delays (δn1 , δ
n
2 ), and priority rule πn described in §4.1 is incentive compatible, namely

p̄i + cid
n
i ≤ p̄j + cid

n
j , i, j = 1,2 and i 6= j.

Moreover, if the solution is capacitated, λ̄1 + λ̄2 = sµ, then δn2 = 0 for all n sufficiently large.

Incentive compatibility is achieved for a finite sized system, i.e., for all systems in the sequence

above the threshold Nic, customers will choose the correct service class (in equilibrium). So, one

does not need to assume that customers make the right choices through (14), as in Proposition 3,

but rather the atomistic, utility maximizing behavior of customers described in (2)-(3) guarantee

the desired behavior in large systems. If the solution is capacitated, the system congestion creates

sufficient queueing delay in class 2 to satisfy the incentive compatibility condition and strategic

delay becomes vanishingly small in large systems; if the solution is uncapacitated, queueing delays

in both classes will become negligible, in which case, the SP adds strategic delay to class 2 in order

to optimally segment the market and ensure that delay-sensitive customers have an incentive to

pay a premium for high-priority service (cf. Proposition 3(c)).

We define

Rn = p̄1λ
n
1 + p̄2λ

n
2

to be the revenue rate in the nth system generated by this solution.

Theorem 2 (Asymptotic revenue optimality). Assume the scaling in (13). Then, the rev-

enue rate Rn generated by the stochastic solution composed of prices (p̄1, p̄2), strategic delays

(δn1 , δ
n
2 ), and priority rule πn described in §4.1, satisfies

nR̄

s
−Rn ≤M, for all n≥Nic,

for some finite positive constant M , and Nic as in Theorem 1. (Note that nR̄/s is an upper bound

on the optimal revenue of the original mechanism design problem (6) for the scale-n system.)
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Theorem 2 is an unusually strong optimality result. Given that the DR is, in some sense, a fairly

crude (first-order) approximation of the mechanism design problem (6), one might expect that the

policy predicated on the DR would lead to a performance gap, in terms of revenue, that increases

with system size. Indeed, it is typical that system design optimized via a deterministic analysis may

result in a asymptotic optimality gap that grows proportionally to
√
n, and that even systems where

the “second-order” behavior has been optimized will still have an asymptotic gap that is o(
√
n),

but still diverges with n. Indeed, in Maglaras and Zeevi (2003a, 2005) this asymptotic gap for

policies based on deterministic analysis often grows proportionally to
√
n, which is the magnitude

of the stochastic fluctuations not captured by the DR. They further optimized the
√
n behavior so

the gap is then o(
√
n), but still diverges with n. Theorem 2 shows that the optimality gap of the

policy derived via the static DR remains bounded, regardless of the volume of workflow and scale

of the resulting revenues. This type of bounded error result is also featured in Randhawa (2013).

The underlying driver is that the fluid-optimal solution describes a critically loaded system with

non-degenerate delays, which is uniquely determined by the ED regime, and, in turn, guarantees

O(1) accuracy of the fluid model. We discuss this in detail in the following section.

4.3. System Operating Regime and Its Implications

The asymptotic operating regime of a single-class multi-server queue can be naturally characterized

by focusing on the probability that an arriving customer will have to wait prior to commencing

service:

• P(waiting time > 0)≈ 0: “quality driven” (QD) regime (focus on providing high-quality ser-

vice).

• P(waiting time> 0)≈ 1: “efficiency driven” (ED) regime (focus on efficient use of resources).

• P(waiting time> 0)≈ ν ∈ (0,1): “quality and efficiency driven” (QED) regime.

The celebrated work of Halfin and Whitt (1981) showed that these regimes are equivalently char-

acterized by the system’s traffic intensity. Specifically, the QED regime, where the probability

of having to wait for service is modest, i.e., neither “never” nor “always,” arises if and only if

ρn = 1−β/
√
n for some 0<β <∞. This corresponds to the well-known “heavy-traffic” regime that

has been studied extensively in the queueing literature. The ED regime operates at still higher

asymptotic utilization rates,
√
n(1 − ρn)→ 0, implying that arriving customers always have to

wait. The QD regime corresponds to lower asymptotic utilization rates where arriving customers

never wait,
√
n(1− ρn)→∞. The next theorem characterizes the operating regime that arises as

a consequence of the economic objectives in (6).

Theorem 3 (System operating regimes). Assume the scaling in (13), and consider the

stochastic solution composed of prices (p̄1, p̄2), strategic delays (δn1 , δ
n
2 ) and priority rule πn described

in §4.1. Then,
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(a) if the DR solution in (7) is capacitated, κ̄1 + κ̄2 = 1, then the traffic intensity in the stochastic

system is

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2−
α

n
+ o(1/n),

and the system operates in the ED regime, namely,

ρn1 + ρn2 = 1− α
n

+ o(1/n),

where α is a finite positive constant that depends on model primitives;

(b) if the DR solution in (7) is uncapacitated, κ̄1 + κ̄2 < 1, then

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 + o(1/n),

and the system operates in the QD regime.

Relating back to Proposition 3 and Theorem 1, if the DR solution is capacitated, then the

resulting equilibrium converges to the ED regime in which the delay of the low priority class

emerges due to significant congestion effects (strategic delay vanishes in those cases). The high

priority class never experiences any significant delay since they receive static priority, and κ̄1 < 1

(that class is effectively facing an underutilized system operating in the QD regime).

The system operating regimes characterized above are the result of economic optimization, and

are not imposed a priori for analysis purposes. To summarize, i) in a capacitated system, a single-

class stochastic solution gives rise to the QED regime (cf. Maglaras and Zeevi (2003a)); ii) a

two-class stochastic solution in a capacitated system places class 1 in the QD regime and class 2 in

the ED regime; and iii) in the uncapacitated case all classes operate in the QD regime and strategic

delay is required to differentiate the two service classes. Therefore, we show that strategic delay is

a first-order effect in the two-class system only in the uncapacitated case, when some fraction of

servers are asymptotically always idle. In a system where the service provider sets capacity, with

an associated positive cost (e.g. analogous to the setting of §5 in Maglaras and Zeevi (2003a)),

this suggests an optimized capacity level avoids permanently idle servers and thus strategic delay

will be of second-order importance – i.e., approaches zero as the system grows large. In finite sized

systems, the optimal solution may include non-zero strategic delay even when the service provider

optimizes capacity.

The O(1/n) convergence characterized by the ED regime also explains the bounded revenue

optimality gap in Theorem 2. Note that in the capacitated case

Rn = p̄1λ
n
1 + p̄2λ

n
2 = nµ (p̄1ρ

n
1 + p̄2ρ

n
2 ) ,

= nµ
(
p̄1(κ̄1 + o(1/n)) + p̄2

(
κ̄2−

α

n
+ o(1/n)

))
,

= nµ(p̄1κ̄1 + p̄2κ̄2) +nµ
(
p̄1o(1/n)− p̄2

α

n
+ p̄2o(1/n)

)
,

=
nR̄

s
−µp̄2α+ o(1). (15)
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In the uncapacitated case, ρn2 converges at rate o(1/n) in the QD regime, so the stochastic solution

will provide revenues that are close, in absolute dollars, to the optimum.

Remark 3 (Non-preemption). If we restricted our control policy π to non-preemptive prior-

ities, much of this analysis would carry through directly. Class 1 would get strict non-preemptive

priority in the differentiated case, and prices and strategic delays would remain unchanged. (A dif-

ferent proof would be required to extend Proposition 3(a), which establishes equilibrium delays.) In

this setting, both class 1 and class 2 delays will converge to their respective limits at rate O(1/n),

and the incentive compatibility and revenue optimality results would carry through. (This is also

true, for example, in the appropriately scaled M/M/1 system). In contrast, class 1 delay converged

exponentially fast to zero in the preemptive case.

Finally, the assumptions on Fi(·), i = 1,2, can be substantially weakened as long as the DR

solution to (7) is guaranteed and accessible. In that case, the results and intuition of Propositions 1

and 3 as well as Theorems 1-3 still hold under much weaker assumptions, for example the functions

Fi(·) are only required to be strictly increasing and continuously differentiable in a neighborhood

of the DR solution.

5. The Essential Role of Injected Delay

The analysis of the two-type model of the preceding sections establishes that strategic delay

becomes asymptotically negligible in large-scale capacitated systems. This sharp insight turns out

to hinge crucially on the restrictive assumption of a market with only two segments. In this section

we study a market with multiple types (N ≥ 3) and demonstrate that strategic delay is a first-order

effect that is needed to allow differentiation into three or more service classes, regardless of system

capacity. The problem formulation and methodology described in §2-4 is readily extended to the

multi-type setting. We focus on highlighting additional insights rather than the straightforward

extensions of Propositions 1 and 3 or Theorems 1-3.

5.1. Analysis of the Deterministic Relaxation

We consider N customer types with linear delay costs c1 > c2 > · · ·> cN , valuation distributions

Fi(·), and potential demand Λi, i= 1, . . . ,N . The mechanism design problem is then to find prices

(p1, . . . , pN), a control policy π, and the strategic delay prescription (δ1, . . . , δN) that maximize

revenues. The following DR is the analogue of (7):

maximize
N∑
i=1

piλi (16)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . ,N and i 6= j

λi = ΛiF̄i(pi + cidi) i= 1, . . . ,N
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N∑
i=1

λi ≤ sµ

di ≥ 0 i= 1, . . . ,N.

The optimal solution to (16), indexed by customer type, is denoted p̄ = (p̄1, . . . , p̄N) and d̄ =

(d̄1, . . . , d̄N), where two or more customer types may have the same price and delay offering. (In

the two-type setting, this corresponded to the undifferentiated solution.) The solution to (16)

can be expressed with respect to distinct service classes, denoted by p̂ = (p̂(1), . . . , p̂(k)) and d̂ =

(d̂(1), . . . , d̂(k)), along with k sets {A(1), . . . ,A(k)}, where A(j) is the set of all customer types that

prefer class j to any other service class (i.e., p̄i = p̂(j) and d̄i = d̂(j) for all i ∈ A(j)). We will call

the sets A(j), j = 1, . . . , k, “market segments.” Note that a customer prefers one service class over

others but may still choose the no-purchase option. Therefore Lemma 1 does not claim that it is

optimal to serve consecutive types and the optimal solution to (16) may satisfy (17) and still price

out intermediate customers types. More technically, these market segments reflect the structure of

the incentive compatibility conditions, but not individual rationality conditions.

Generalizing Proposition 1, it suffices to consider solutions that satisfy

d1 = 0 and pi + cidi = pi+1 + cidi+1 for i= 1, . . . ,N − 1. (17)

In the multi-type setting, this structure describes the optimal pooling of customer types in the

DR.

Lemma 1. For any feasible solution to (16) (p1, . . . , pN), (d1, . . . , dN) that satisfies the conditions

(17), the market segments A(j), j = 1, . . . , k are contiguous in the following sense

A(1) =
{

1, . . . , |A(1)|
}
,

A(2) =
{
|A(1)|+ 1, . . . , |A(1)|+ |A(2)|

}
,

...

A(k) =
{∑k−1

j=1 |A(j)|+ 1, . . . ,N
}
.

Lemma 1 shows that the market segments A(j), j = 1, . . . , k, consist of consecutive customer types

(recall that customer types are ordered by their delay sensitivity c1 > c2 > · · ·> cN). An example

with N = 10 customer types and k = 4 service classes, along with the associated DR solution p̄, d̄

and p̂, d̂,{A(1), . . . ,A(4)} is shown in Figure 1. We note that a partial extension to Proposition 2

may be derived, but it adds little insight.
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Figure 1 Depiction of optimal DR solution for N = 10 customer types.

Customer types

Service classes

1 32 5 64 7 98 10

Note. This DR solution specifies k= 4 service classes, where p̂(j) and d̂(j) denote the price and delay, respectively, of

service class j and A(j) denotes the segment of customer types that choose service class j.

5.2. Prescribed Solution for the Stochastic System

Suppose the DR solution to (16) offers k distinct service classes at prices p̂(1) > p̂(2) > · · · > p̂(k)

and delays d̂(k) > · · ·> d̂(2) > d̂(1) = 0, with market segments A(1), . . . ,A(k). At the DR solution, we

define the relative workload contribution from class j ∈ {1, . . . , k} to be

κ̂(j) :=

∑
i∈A(j)

ΛiF̄i(p̂(j) + cid̂(j))

sµ

and, following terminology established in §3, we say that the DR solution is capacitated if∑k

j=1 κ̂(j) = 1, and uncapacitated otherwise.

We again specify a stochastic solution with the same number of service classes and prices as the

DR, combined with strict preemptive priorities and strategic delays that are added only if queueing

delays are insufficient. If k = 1, there is only a single class priced at p̂(1); no priorities or strategic

delays are needed. If k ≥ 2 there are k service classes with prices p̂= (p̂(1), . . . , p̂(k)), served with a

strict preemptive priority rule, with highest priority given to class 1 and lowest to class k. Strategic

delay is given by δ= (δ(1), . . . , δ(k)), where: δ(1) = 0 and

δ(j) = max(0, d̂(j)− (ED(j)−ED(j−1))) for j = 2, . . . , k.

Applying the scaling in (13) to all customer types i= 1, . . . ,N , the demand for each class j in

the nth system in the sequence is given by

γn(j) =
∑
i∈A(j)

Λn
i F̄i(p̂(j) + cid

n
(j))1{p̂(j) + cid

n
(j) ≤ p̂(`) + cid

n
(`) for all `= 1, . . . , k}

+
∑
i/∈A(j)

Λn
i F̄i(p̂(j) + cid

n
(j))1{p̂(j) + cid

n
(j) < p̂(`) + cid

n
(`) for all ` 6= j},
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where dn(j) = EDn
(j) + δn(j) is the overall delay. The revenue earned in the nth system under our

solution is Rn =
∑k

j=1 p̂(j)γ
n
(j).

Necessity of strategic delay. Proposition 3 and Theorems 1-3 all generalize in the multi-

class case. Focusing on the intermediate classes j = 2, . . . , k − 1, i.e., excluding the highest and

lowest priority classes, the strategic delay added to an intermediate class j is non-vanishing in large

systems,

δn(j)→ d̂(j) as n→∞,

irrespective of capacity utilization. The limiting amount of strategic delay added to the lowest

priority class k depends on the capacity constraint, as it did in the two-class setting. Essentially, the

priority rule causes all congestion to be experienced in only the lowest priority class, so first-order

strategic delay must be added to differentiate intermediate service classes.

Remark 4 (Connection to Afèche (2013)). Afèche (2013) introduced a mechanism design

(incentive-compatible) formulation of revenue maximization problems in queueing systems, where

he was the first to demonstrate the use of strategic delay in the context of revenue maximization

in a queueing system, highlight the use of delay in the low priority class to achieve incentive com-

patibility, the importance of capacity, and obtain parameter conditions that favor differentiation.

His study focused on a two-type market served by an M/M/1 system and used exact analysis, and

some of his results and conditions imposed further restrictions on the valuation distributions. Some

of his results may be extended to service systems in which the achievable region of delays is explic-

itly and tractably characterized, including a two-class multi-server queue. As pointed out in § 7 of

Afèche (2013), the exact analysis approach based on the achievable region may become intractable

in queueing systems of increasing complexity, including multi-type and multi-class queues, whereat

progress is made by imposing additional restrictions on the customer market. Our analysis lever-

ages Afèche’s formulation but uses a more tractable framework that relies on the solution of a much

simpler deterministic relaxation and asymptotic approximations. Such model approximations are

justified via asymptotic limits in large-scale systems, and offer a framework that generates strong

insights regarding first-order drivers of optimized system performance and allows the treatment of

systems that may not be amenable to exact analysis. The latter is underscored by the analysis of

a market with multiple (N ≥ 3) types. As previously mentioned in Remark 2, the DR may not,

in the generality presented here, yield closed-form expressions for optimal prices. However, when

numerical computation is required, the DR solution is likely considerably easier to compute than

the exact solution, which additionally depends on the queueing delay equilibrium. Moreover, once

a DR solution is found, all of its features (price, service differentiation, and insight into operational

considerations) carry over as first-order drivers of system performance in an asymptotically opti-

mal solution to the stochastic problem. The insights gleaned from model approximations become
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accurate in systems and application settings characterized by large processing capacity and large

market potential. For example, while the exact analysis of Afèche (2013) simply shows that the two

customer types are always offered distinct service classes (if both types are present in the system),

our asymptotic analysis suggests that this distinction may become negligible in large systems, in

particular when type 2 demand is sufficiently inelastic (in the sense of Proposition 2). An even

more extreme example of asymptotically negligible differentiation is detailed in the next section.

Remark 5 (An alternative implementation). Is it possible to achieve the same degree of

delay differentiation if k ≥ 3 without the use of strategic delay in a capacitated system? While

the answer is affirmative, the resulting heuristic may not be desirable. For example, suppose k= 3

and consider a structure with two priority lanes. Users that select the most expensive service class

p̂(1) get assigned to the high priority queue and experience negligible delay. Users that select the

cheapest class p̂(3) get assigned the second (low) priority queue. Users that select the intermediate

service class p̂(2) get assigned to the high priority queue with probability 1− d̂(2)/d̂(3) and to the

low priority queue with probability d̂(2)/d̂(3), which results in an average delay that converges to

d̂(2). One can verify that this policy is incentive compatible and results in near-optimal revenues.

However, while the average delays in the intermediate service classes are asymptotically optimal,

this policy would subject those customers to either very long delays or no delay at all, a quality that

makes it less desirable from an operational standpoint. While this demonstrates that the solution

to the DR may have multiple implementations in the stochastic setting, we believe that the one

provided in §5.2 is the most natural and efficient interpretation of the DR solution.

6. Contrast with Mendelson-Whang’s Socially Optimal Solution

In the welfare-maximization problem, the SP seeks to find prices (p1, . . . , pN) and a policy π that

maximize the overall welfare in the system (net utility to customers plus revenue to the SP). As

with the revenue maximization objective in (6), this can be reformulated as a mechanism design

problem:

maximize W (p, d) =
N∑
i=1

Λi

(∫ ∞
pi+cidi

vfi(v)dv− cidiF̄i(pi + cidi)

)
(18)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . ,N and i 6= j

λi = ΛiF̄i(pi + cidi) i= 1, . . . ,N
N∑
i=1

λi < sµ

Money transfers from customers to the SP are “internal” and are not reflected in the welfare

objective.
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Mendelson and Whang (1990) offered a complete analysis of this problem for a system modeled

as an M/M/1 queue. Their main insights were: i) the SP should offer N service classes, i.e., one for

each customer type; ii) the optimal prices are equal to the externality costs for each class; and iii)

resulting equilibrium delays arise naturally as the result of system congestion under a strict priority

rule that strives to minimize the total delay costs (the “cµ-rule”). A relatively simple variation of

their arguments in the M/M/1 context can be applied in the multi-server setting of our paper to

re-establish i)-iii).

First, consider the following deterministic relaxation (DR) of the social welfare optimization

problem (18):

maximize W (p, d) (19)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . ,N and i 6= j

λi = ΛiF̄i(pi + cidi) i= 1, . . . ,N
N∑
i=1

λi ≤ sµ

pi ≥ 0, di ≥ 0 i= 1, . . . ,N.

The social-welfare objective is equivalent to delay-cost minimization and so, in the DR setting

(19), the optimal solution is unique and undifferentiated6 with zero delay and optimal price p̂soc,

p̂soc =

{
Ḡ−1

(
sµ∑N
i=1 Λi

)
,
∑N

i=1 Λi > sµ

0, otherwise.

Since we expect the DR to be asymptotically optimal in large systems, this suggests that as the

system size grows large, the optimal strategy identified by the Mendelson-Whang solution degener-

ates to a single-class offering. That would imply that delay differentiation is always asymptotically

negligible in the social welfare setting.

To be more precise, the Mendelson-Whang solution under the scaling (13), prescribes the vector

of social welfare optimal prices in the nth system, pn = (pn1 , . . . , p
n
N), to be

pnj =
N∑
`=1

c`λ
n
`

∂EDn
`

∂λnj
, j = 1, . . . ,N. (20)

Here, λnj = Λn
j F̄ (pnj + cjEDn

j ) is the demand rate, and EDn
j is the queueing delay in each class

j = 1, . . . ,N under a strict preemptive priority policy πn that gives class j priority over class j+ 1.

Let ρnj = λnj /nµ denote the traffic intensity in class j in the nth system under this optimal solution.

6 This assumes that the model primitives are such that F̄N (p̂soc)> 0 to rule out meaningless “differentiation” for the
Nth type, such as pN = 0, dN = p̂soc/cN .
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Proposition 4 (Social welfare solution structure). Assume the scaling in (13) and

assume that F̄N(p̂soc)> 0. Then as n→∞,

(a) pnj∗→ p̂soc and EDn
j → 0 for j = 1, . . . ,N ;

(b) if p̂soc > 0 then
√
n
(

1−
∑N

j=1 ρ
n
j∗

)
→ β for some strictly positive, finite constant β that

depends on model primitives.

Part (a) asserts that the DR indeed captures the first order properties of the optimal solution for

the original mechanism design problem (18), and that the exact analysis in Mendelson and Whang

(1990) provides a lower order (and asymptotically vanishing) refinement around the DR solution

(that may, of course, be significant in systems of modest size).

Part (b) asserts that a capacitated social-welfare optimized system must equilibrate in the QED

regime, namely
∑N

j=1 ρ
n
j∗ ≈ 1−β/

√
n. This complements the analysis in Maglaras and Zeevi (2003a),

who showed that the QED regime was welfare maximizing in a market with a single customer type.

In contrast, revenue maximization requires significant delay differentiation to extract, in return,

significant price premia, and this leads the system to operate in the ED regime that is accompanied

by higher resource utilization rates.

Appendix A: Proofs

This appendix contains the proofs of Propositions 2-3 and Theorems 1-2. We defer the proofs of Proposition

1, Lemma 1, and Proposition 4 along with a few side lemmas to Appendix B.

Proof of Proposition 2. We prove the equivalent statement: p̄1 = p̄2 = p̂ if and only if (1−c2/c1)ε2(p̂,0)≤
εg(p̂).

Fix (p1, p2, d1, d2) to be a feasible solution to the DR (7) that additionally satisfies

d1 = 0, d2 =
1

c1
(p1− p2).

The full cost for each class at this solution is

p1 + c1d1 = p1 and p2 + c2d2 = cp1 + (1− c)p2,

respectively, where c := c2/c1. Define the functions κ1(p1, d1) and κ2(p2, d2) to be the relative workload

contributions by class 1 and class 2, respectively, at the price point (p1, d1, p2, d2):

κ1(p1, d1) :=
Λ1F̄1(p1 + c1d1)

sµ
, κ2(p1, d2) :=

Λ1F̄2(p2 + c2d2)

sµ
. (21)

The following result, specifically (22), proves the “only if” part of the above assertion.

Lemma 2. Let p̂ be the optimal solution to the single-product problem (9), and let (p̄1, p̄2, d̄1, d̄2) be the

optimal solution to the DR (7). Then

p̄1 = p̄2 = p̂ implies (1− c)ε2(p̂,0)≤ εg(p̂) and (22)

p̄1 > p̄2 implies
ε1(p̄1,0)

p̄1

<

(
1− c

1− c
κ2(p̄2, d̄2)

κ1(p̄1,0)

)
(1− c)ε2(p̄2, d̄2)

p̄2

, (23)

where εi(pi, di), i= 1,2 and εg(p) are the price elasticities defined in (11) and κi(pi, di), i= 1,2, are defined

in (21).
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It remains to show that ε2(p̂,0)≤ εg(p̂) implies p̄1 = p̄2 = p̂. Note that (23) is equivalent to the statement

that p̄1 = p̄2 = p̂, provided that

ε1(p̄1,0)

p̄1

≥
(

1− c

1− c
κ2(p̄2, d̄2)

κ1(p̄1,0)

)
(1− c)ε2(p̄2, d̄2)

p̄2

.

Also, if p̄1 = p̄2 = p̂ then d̄2 = 0, and hence

ε1(p̂,0)≥
(

1− c

1− c
κ2(p̂,0)

κ1(p̂,0)

)
(1− c)ε2(p̂,0),

which we rewrite in terms of fi and F̄i,

p̂f1(p̂)

F̄1(p̂)
≥
(

1− c

1− c
Λ2F̄2(p̂)

Λ1F̄1(p̂)

)
(1− c) p̂f2(p̂)

F̄2(p̂)
.

Some algebraic manipulation yields

Λ1f1(p̂)≥
(
(1− c)Λ1F̄1(p̂)− cΛ2F̄2(p̂)

) f2(p̂)

F̄2(p̂)
,

Λ1f1(p̂) + Λ2f2(p̂)

Λ1F̄1(p̂) + Λ2F̄2(p̂)
≥ (1− c) f2(p̂)

F̄2(p̂)
,

εg(p̂)≥ (1− c)ε2(p̂,0),

and we deduce that (1− c)ε2(p̂, p̂)≤ εg(p̂) implies p̄1 = p̄2 = p̂. This concludes the proof. �

Proof of Proposition 3. Consider the sequence of systems under the scaling (13).

Proof of (a) (Existence and uniqueness of equilibrium.) Fix a positive integer n and put sn = n. We make

two trivial observations that substantially simplify our analysis.

Observation 1: Since the control is a strict preemptive priority, the number of class 1 customers in the

system form a Markov process that is an M/M/n queue with arrival rate λn1 and service rate µ; customers

in class 2 are “invisible” to customers in class 1.

Observation 2: Since the service requirements of all customers are i.i.d. exponential with rate µ, the total

number of customers in the system form a Markov process that is an M/M/n queue with arrival rate λn1 +λn2

and service rate µ.

For any arrival rate 0 ≤ λn1 < nµ, we define, with some abuse of notation, EDn
1 (λn1) to be the queueing

delay in class 1 as an explicit function of the arrival rate in class 1. The expectation is taken with respect

to the stationary distribution of the class 1 headcount process under the arrival rate λn1 and the sequencing

rule πn. With Observation 1, standard queueing results show that such a stationary distribution exists and

is unique as long as λn1 <nµ.

For any arrival rate pair (λn1 , λ
n
2), with λn1 , λ

n
2 ≥ 0 and λn1 + λn2 < nµ, we define EDn

2 (λn1 , λ
n
2) to be the

queueing delay in class 2 as a function of arrival rates in both classes. The expectation is taken with respect to

the stationary distribution of the headcount process under arrival rates (λn1 , λ
n
2) and the sequencing rule πn.

With Observation 2, standard queueing results show that such a stationary distribution exists and is unique

as long as λn1 + λn2 < nµ. Note that EDn
1 (λn1) is continuous and monotone increasing in λn1 . EDn

2 (λn1 , λ
n
2) is

continuous and monotone increasing in λn1 and in λn2 .

For each class i= 1,2, we write the class i arrival rate in that class as an explicit function of the class i

overall delay dni ≥ 0: λni (dni ) = Λn
i F̄i(p̄i+cid

n
i ), i= 1,2. In class 2, strategic delay is added such that the overall
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delay dn2 = δn2 + ξn2 = max{ξn2 , ξn1 + d̄2}. Note that λni (dni ) is monotone non-increasing in dni . An equilibrium

in the nth system is given by a delay pair (ξn1 , ξ
n
2 ) that jointly satisfies

λn1(ξn1 ) +λn2(δn2 + ξn2 )<nµ,

EDn
1 (λn1(ξn1 )) = ξn1 ,

EDn
2 (λn1(ξn1 ), λn2(δn2 + ξn2 )) = ξn2 .

(24)

Since class 2 customers are “invisible” to class 1, we first show that a unique ξ1 exists for class 1 and then,

given ξ1, we show that a unique ξ2 exists for class 2.

Class 1: Define h1(x) := x−EDn
1 (λn1(x)). Note that h1(x) exists for all x≥ 0, since λn1(0) = Λn

1 F̄1(p̄1)<

nµ, and is continuous with h1(0) < 0 and h1(∞) > 0 (since λn1(∞) = 0). Furthermore, h1(x) is monotone

increasing in x since EDn
1 (λn1(x)) is monotone non-increasing in x. Therefore, there exists a unique ξn1 such

that h1(ξn1 ) = 0.

Class 2: Fix λn1 = Λn
1 F̄1(p̄1 + c1ξ

n
1 ) and note that λn1 <nµκ̄1. Define

h2(x) := x−max{EDn
2 (λn1 , λ

n
2(max{x, ξn1 + d̄2})), ξn1 + d̄2}.

Note that h2(x) exists for all x ≥ 0, since λn2(ξn1 + d̄2) < nµ − λn1 , and is continuous with h2(0) < 0 and

h2(∞) > 0 (since λn2(∞) = 0). Furthermore, h2(x) is monotone increasing in x since the second term is

monotone non-increasing in x. Therefore, there exists a unique ξn2 such that h2(ξn2 ) = 0.

We conclude that there exists a unique equilibrium for each n, which can be represented by the delay pair

(ξn1 , ξ
n
2 ) satisfying (24), or equivalently the traffic intensity pair (ρn1 , ρ

n
2), where

ρni =
Λn
i F̄i(p̄i + cid

n
i )

nµ
, i= 1,2

dn1 = ξn1 , and dn2 = max{ξn2 , ξn1 + d̄2}. Note that under this equilibrium, ρn1 + ρn2 < 1 and therefore a unique

stationary distribution exists for every n.

Proof of (b) (Convergence of equilibria to DR solution). We prove part (b) in two steps. In Step 1 we show

that a limit exists, ρni → ρ∞i , i= 1,2. In Step 2 we show that the overall delays converge to the delays in the

DR solution, dni → d̄i, i= 1,2. From Step 2, it follows immediately, by the continuity of Fi(·), that ρ∞i = κ̄i,

i= 1,2.

In what follows, let {ρni }∞n=1 be the sequence of class i traffic intensities in equilibrium and let {EDn
i }∞n=1

be the associated sequence of class i expected queueing delays, i= 1,2. For each n,

ρn1 =
Λ̂1

µ
F̄1(p̄1 + c1EDn

1 ),

ρn2 =
Λ̂2

µ
F̄2(p̄2 + c2δ

n
2 + c2EDn

2 ),

where the expectation is taken with respect to the unique stationary distribution established in part (a).

Step 1. Proving that ρni → ρ∞i , i= 1,2.

If ρn1 = 0 then EDn
1 = 0 (since there are no class 1 customers in the system), but then ρn1 = κ̄1 > 0, in

contradiction. Therefore, ρn1 > 1 for all n. Now, suppose there exist subsequences {nk}∞k=1 and {n`}∞`=1 such

that

lim
k→∞

nk(1− ρnk
1 ) = g and lim

`→∞
n`(1− ρn`

1 ) = g,

where 0≤ g < g≤∞.
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Lemma 3. Given a sequence of single-class M/M/n systems, indexed by n, with arrival rate λn and service

rate µ, with λn <nµ, let EDn be the expected queueing delay with respect to the stationary distribution.

1. If n(1− ρn)→ 0, then EDn→∞.

2. n(1− ρn)→ g ∈ (0,∞) if and only if EDn→ d= 1
µg
∈ (0,∞).

3. If n(1− ρn)→∞, then EDn→ 0.

Since 0≤ g < g≤∞, by Lemma 3, we have that

0≤ lim
k→∞

EDnk
1 < lim

`→∞
EDn`

1 ≤∞.

Noting that ρn1 is continuous and strictly decreasing in EDn
1 ,

0≤ lim
`→∞

ρn`
1 < lim

k→∞
ρnk

1 ≤ 1.

Since lim`→∞ ρ
n`
1 is strictly less than 1, we have

lim
`→∞

n`(1− ρn`
1 ) = g=∞

and therefore g≤ g, contradicting our assumption. Therefore, all subsequences converge to a common limit,

which we denote ρ∞1 . The same argument shows that ρn1 + ρn2 converges as n→∞. Therefore, ρn2 → ρ∞2 .

Step 2. Proving that overall delays converge to the DR solution dni → d̄i, i= 1,2.

First, observe that dn1 =EDn
1 > d̄1 = 0 and dn2 = max{EDn

2 , d̄2 +EDn
1}> d̄2. Therefore,

ρn1 + ρn2 =
Λ̂1

µ
F̄1(p̄1 + c1d

n
1) +

Λ̂2

µ
F̄2(p̄2 + c2d

n
2)< κ̄1 + κ̄2 ≤ 1.

In the uncapacitated case, κ̄1 + κ̄2 < 1 so ρn1 + ρn2 is bounded away from 1 so EDn
1 → 0 and EDn

2 → 0, and

we conclude that dn1 → 0, dn2 → d̄2, and δn2 → d̄2.

In the capacitated case, κ̄1 + κ̄2 = 1 (κ̄2 > 0), ρn1 < κ̄1 < 1 is bounded away from 1 so EDn
1 → 0 and therefore

dn1 → 0. Since F̄1 is continuous, this implies that ρn1 → κ̄1.

For class 2, suppose limn→∞ d
n
2 > d̄2, then there exists ε > 0 such that for all n sufficiently large

ρn2 =
Λ̂2

µ
F̄2(p̄2 + c2d

n
2)≤ κ̄2− ε.

since F̄2(·) is strictly decreasing. Therefore, eventually ρn1 +ρn2 < 1, which implies EDn
2 → 0, in contradiction.

Since dn2 > d̄2 for all n, we conclude that dn2 → d̄2 and, by continuity of F̄1(·), ρn2 → κ̄2.

Proof of (c) (Strategic delay). For the uncapacitated case, since EDn
2 → 0 and dn2 → d̄2, it must be that

δn2 → d̄2. For the capacitated case, we defer to the proof of Lemma 4, where it is shown that EDn
2 → d̄2.

This completes the proof. �

The following Lemma is central to the proof of Theorem 1-3.

Lemma 4 (Rates of convergence). Assume the scaling in (13). Set the stochastic solution to prices

(p̄1, p̄2), strategic delays (δn1 , δ
n
2 ), and priority rule πn described in §4.1. Assume that customer types choose

the “correct” service class, i.e.,

λnj = Λn
j F̄j(p̄j + cjd

n
j ), for j = 1,2.
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If the DR solution is uncapacitated (κ̄1 + κ̄2 < 1),

dn1 = o(1/n) and dn2 = d̄2 + o(1/n), (25)

while if the DR solution is capacitated (κ̄1 + κ̄2 = 1),

dn1 = o(1/n) and dn2 = d̄2 +O(1/n). (26)

Proof of Lemma 4. We prove this in three steps.

Step 1. We first prove that dn1 = o(1/n) in both the capacitated and uncapacitated cases. From Proposition

3(b), ρn1 → κ̄1 < 1 and therefore
√
n(1− ρn1)→∞. The proof of Proposition 1 of Halfin and Whitt (1981)

shows that for a single-class multi-server queue,

√
n(1− ρn1) exp(n(1− ρn1)2/2)ν(ρn1)→ 1

1 +
√

2π
as n→∞.

Here, ν(·) is the probability that a class 1 customer has a positive waiting time, as a function of traffic

intensity. Therefore,

n3/2 exp(n(1− ρn1)2/2)EDn
1 →

1

µ(1− κ̄1)(1 +
√

2π)
∈ (0,∞) as n→∞,

which yields dn1 = O(n−3/2e−bn) = o(1/n) where b = 1
2
(1− κ̄1)2. This also proves that EDn

2 = o(1/n), and

therefore dn2 = d̄2 + o(1/n), if κ̄1 + κ̄2 < 1, so we have proven (25).

Step 2. We now provide an intermediate step showing that n(κ̄1 − ρn1)→ 0 in both the capacitated and

uncapacitated cases. Since F1(·) is continuously differentiable, the mean value theorem ensures that there

exists some d̃n1 ∈ [0, dn1 ] such that

ρn1 =
Λ̂1F̄1(p̄1 + c1d

n
1)

µ
=

Λ̂1F̄1(p̄1)

µ︸ ︷︷ ︸
=κ̄1

−dn1
c1Λ̂1f1(p̄1 + c1d̃

n
1)

µ

and therefore

n(κ̄1− ρn1) = ndn1
c1Λ̂1f1(p̄1 + c1d̃

n
1)

µ
.

Since ndn1 → 0 as n→∞ and d̃n1 ≤ dn1 we conclude that n(κ̄1 − ρn1)→ 0. (A nearly identical argument also

proves n(κ̄2− ρn2)→ 0, if κ̄1 + κ̄2 < 1.)

Step 3. This step proves the dn2 rate of convergence in the capacitated case, (26). F2(·) is continuously

differentiable, so there exists some d̃n2 ∈ [d̄2, d
n
2 ] such that

n(κ̄2− ρn2) = n(dn2 − d̄2)
c2Λ̂2f2(p̄2 + c2d̃

n
2)

µ
,

and f2(p̄2 + c2d̃
n
2)→ f2(p̄2 + c2d̄2)> 0. Note that (1− ρn) = (κ̄1− ρn1) + (κ̄2− ρn2), which combined with the

result of Step 2, gives us

lim
n→∞

n(1− ρn) = lim
n→∞

n(κ̄2− ρn2) =
c2Λ̂2f2(p̄2 + c2d̄2)

µ
lim
n→∞

n(dn2 − d̄2).

Recall that dn2 − d̄2 = max{EDn
2 − d̄2,EDn

1} and therefore

lim
n→∞

n(dn2 − d̄2) = max
{

lim
n→∞

n(EDn
2 − d̄2),0

}
.
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If limn→∞ n(EDn
2 − d̄2)≤ 0 then n(1−ρn)→ 0 and, by Lemma 3, EDn

2 ≥EDn→∞, a contradiction. Similarly,

if limn→∞ n(EDn
2 − d̄2) =∞ then EDn→ 0 and therefore EDn

2 → 0, again a contradiction. Therefore, it must

be that

lim
n→∞

n(EDn
2 − d̄2) =

1

c2κ̄2d̄2Λ̂2f2(p̄2 + c2d̄2)
∈ (0,∞)

since ρn1EDn
1 + ρn2EDn

2 = (ρn1 + ρn2)EDn implying EDn → κ̄d̄2 and n(1 − ρn)→ 1/µκ̄2d̄2. Therefore dn2 =

d̄2 +O(1/n), proving the remainder of (26). �

Proof of Theorem 1. It suffices to show that the delays (dn1 , d
n
2) from Proposition 3 are incentive compat-

ible for sufficiently large n. If incentive compatibility is satisfied, then it is a Nash equilibrium for customers

to truthfully report their types and valuations. This allows us to drop the assumption that customers choose

the correct service class and thus define, for any n ≥Nic, a system where the customer demand model is

given by (2)-(3), under which an equilibrium exists, and where the prices and equilibrium delays are incentive

compatible.

Applying Proposition 1(b) to the incentive compatibility conditions, the delays (dn1 , d
n
2) are incentive

compatible if

d̄2 ≤ (dn2 − dn1)≤ c1
c2
d̄2. (27)

From Proposition 3(b) we have that dn1 → 0 and dn2 → d̄2 as n→∞ Since c1/c2 > 1, there exists some Nic

such that for all n≥Nic, d
n
2 − dn1 ≤ c1

c2
d̄2. Strategic delay δn2 ensures that the left hand inequality is satisfied

for all n.

In the capacitated case, the results of Lemma 4 show that

dn2 = max{EDn
2 , d̄2 +EDn

1}= max{d̄2 +O(1/n), d̄2 + o(1/n)}

and therefore EDn
2 > d̄2 +EDn

1 and δn2 = 0 for all n sufficiently large (this may be larger than Nic).

This concludes the proof. �

Proof of Theorem 2. By Theorem 1, for any n≥Nic, the prescribed solution is incentive compatible and

customers choose the “correct” service class. We write the revenues earned in the nth system as

Rn = p̄1λ
n
1 + p̄2λ

n
2 = nµ(p̄1ρ

n
1 + p̄2ρ

n
2)

where λni = Λn
i F̄i(p̄i + cid

n
i ) and ρni = λni /nµ. Therefore

Rn = nµ(p̄1κ̄1 + p̄2κ̄2)−µp̄1n(κ̄1− ρn1)−µp̄2n(κ̄2− ρn2)

=
nR̄

s
−µp̄1n(κ̄1− ρn1)−µp̄2n(κ̄2− ρn2).

From (25) and (26) we have that n(κ̄1− ρn1)→ 0 while, if the DR solution is uncapacitated n(κ̄2− ρn2)→ 0

and if the DR solution is capacitated n(κ̄2−ρn2)→ 1/µκ̄2d̄2. Therefore, there exists a finite, positive constant

M such that

n(κ̄1− ρn1) +n(κ̄2− ρn2)≤M for all n≥Nic. �
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Proof of Theorem 3. By Theorem 1, for any n≥Nic, the prescribed solution is incentive compatible and

customers choose the “correct” service class. Therefore, all the assumptions of Proposition 3 and Lemma 4

are satisfied for the sequence of systems indexed by n, starting at Nic, and the results of Proposition 3 and

Lemma 4 hold. In particular, a unique sequence of equilibria exists, the equilibrium delays converges to the

DR solution, and as n→∞, if the DR solution is uncapacitated,

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 + o(1/n),

while if the DR solution is capacitated,

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2−
α

n
+ o(1/n).

where α= 1/µκ̄2d̄2. This concludes the proof. �

Appendix B: Supplementary Proofs (to be included in full technical report)

Queueing Dynamics

We represent the control policy π as an allocation process π(t) : [0,∞)→ Zk+, where πj(t) is the number

of servers processing class j customers at time t. We require πj(t) to be right continuous with left limits

and Lebesgue integrable. As an example, consider a strict preemptive priority policy, with highest priority

given to class 1 and lowest given to class k. Under such a policy, an arriving class j customer interrupts any

lower-priority customer in service, from classes j+ 1, . . . , k. If all servers are serving higher- or equal-priority

customers, the arriving customer waits in queue. As long as the queues of all higher-priority classes are empty,

then idle servers may resume interrupted lower-priority customers (from highest to lowest priority and in

the order that they were interrupted) and start working on customers from the highest-priority non-empty

queue. In other words, all processing capacity is first applied to class 1 and any remaining capacity is then

successively applied to class 2, then to class 3, and so on. Such a policy can be expressed as follows:

π1(t) = min{s,Z1(t)} πj(t) = min{(s−Z1(t)− · · ·−Zj−1(t))
+
,Zj(t)}, j = 2, . . . , k, (28)

where (Z1(t), . . . ,Zk(t)) is the headcount process defined below.

We now define the system dynamics for fixed arrival rate vector λ= (λ1, . . . , λk) and control policy π(t).

Consider 2k mutually independent unit-rate Poisson processes, N
(a)
j (t) and N

(s)
j (t) for j = 1, . . . , k. N

(a)
j (λjt)

is the number of customers that have arrived into class j by time t and N
(s)
j

(∫ t
0
µπj(s)ds

)
is the number

of class j customers that have completed service by time t. The system may be described in terms of the

“headcount process” ((Z1(t), . . . ,Zk(t)) : 0≤ t <∞) where Zj(t) is the number of class j customers in the

system excluding the delay node at time t, and the “queue length process” ((Q1(t), . . . ,Qk(t)) : 0≤ t <∞)

where Qj(t) is the number of class j customers in queue at time t. These processes must jointly satisfy the

following conditions:

k∑
j=1

πj(t) = min

{
s,

k∑
j=1

Zj(t)

}
, (29)

Qj(t) =Zj(t)−πj(t)≥ 0 for j = 1, . . . , k, (30)

Zj(t) =N
(a)
j (λjt)−N (s)

j

(∫ t

0

µπj(s)ds

)
≥ 0 for j = 1, . . . , k. (31)
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Condition (29) ensures the total number of servers working at any time does not exceed s, and that no

servers idle while there are customers waiting in the queue. Condition (30) restricts the number of servers

working on class j customers to be at most the number of class j customers in the system at that time.

Condition (31) describes the system dynamics. We require that the control π, (π1(t), . . . , πk(t)) be adapted

to the filtration generated by (Z1(t), . . . ,Zk(t)).

Proof of Proposition 1. We prove the general N -type case stated in (17). Note that in the case of additive,

linear delay costs, local incentive compatibility implies global incentive compatibility. This is also shown

in Lemma 2 of Katta and Sethuraman (2005) although we clarify that the assumption d1 ≤ d2 ≤ . . . dN is

redundant.

Lemma 5 (Local incentive compatibility implies global incentive compatibility.).

pi + cidi ≤ pi+1 + cidi+1 for i= 1, . . . ,N − 1

pi + cidi ≤ pi−1 + cidi−1 for i= 2, . . . ,N

implies

pi + cidi ≤ pj + cidj for all i, j = 1, . . . ,N.

Proof of Lemma 5. First, we note that local incentive compatibility is equivalent to

ci+1(di+1− di)≤ pi− pi+1 ≤ ci(di+1− di)

and since ci > ci+1 this implies that di+1 ≥ di and pi ≥ pi+1. We now prove by induction.

Fix i∈ 1, . . . ,N −2. For j > i, assume pi + cidi ≤ pj + cidj (the base case j = i+ 1 is true by local incentive

compatibility).

pj+1 + cidj+1 = pj+1 + cjdj+1 + (ci− cj)dj+1

≥ pj + cjdj + (ci− cj)dj+1

= pj + cidj + (ci− cj)(dj+1− dj)

≥ pi + cidi

Fix i ∈ 3, . . . ,N . For j < i, assume pi + cidi ≤ pj + cidj (the base case j = i− 1 is true by local incentive

compatibility).

pj−1 + cidj−1 = pj−1 + cjdj−1− (cj − ci)dj−1

≥ pj + cjdj − (cj − ci)dj−1

= pj + cidj + (cj − ci)(dj − dj−1)

≥ pi + cidi

This concludes the proof of Lemma 5. �
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Supposing each property does not hold for a feasible solution (p1, . . . , pN), (d1, . . . , dN), we construct an

alternative solution (p̆1, . . . , p̆N), (d̆1, . . . , d̆N), that satisfies the property, is feasible, and achieves at least as

high a revenue rate. In particular, the alternative solution is constructed to satisfy p̆i + cid̆i = pi + cidi for

all i = 1, . . . ,N , which guarantees that the capacity constraint is satisfied, and it is trivial to check local

incentive compatibility and therefore global incentive compatibility.

Proof of (a). Suppose d1 > 0. Take p̆1 = p1 + c1d1, d̆1 = 0, and p̆i = pi, d̆i = di for i= 2, . . . ,N . Note that

if F̄1(p1 + c1d1)> 0 then revenues are strictly improved.

Proof of (b). Suppose pi + cidi < pi+1 + cidi+1. Take

p̆i+1 =
ci(pi+1 + ci+1di+1)− ci+1(pi + cidi)

ci− ci+1

d̆i+1 =
pi + cidi− pi+1− ci+1di+1

ci− ci+1

and p̆j = pj , d̆j = dj for j 6= i+ 1. Note that if F̄i+1(pi+1 + ci+1di+1)> 0 then revenues are strictly improved.

Proof of Proposition 1. A feasible solution that satisfies (17) implies

di = di−1 +
1

ci−1

(pi−1− pi).

Since incentive compatibility implies p1 ≥ p2 ≥ · · · ≥ pN , we see that if pi = pj for some i > j then pi = pi+1 =

· · ·= pj and di = di+1 = · · ·= dj . Therefore the sets {A(1), . . . ,A(N)} must have the structure described. Note

that it is possible for i∈A(j) and F̄i(p(j) +cid(j)) = 0, in which case no type i customers will purchase service.

However, the solution will still segment the market such that type i customers are in the jth segment. �

Proof of Lemma 2. Apply Proposition 1 to reduce the deterministic relaxation (7) to two variables p1

and p2, and set c := c2
c1
< 1,

maximize Λ1p1F̄1(p1) + Λ2p2F̄2(cp1 + (1− c)p2) (32)

subject to p1 ≥ p2

Λ1F̄1(p1) + Λ2F̄2(cp1 + (1− c)p2)≤ sµ.

Equations (22) and (23) follow from the KKT necessary conditions of (32). �

Proof of Lemma 3. Lemma 3 follows immediately from Lemma 6 and the M/M/n delay formula. �

Lemma 6 (Halfin and Whitt). Given a sequence of single-class M/M/n systems, indexed by n, with

arrival rate λn and service rate µ, we define ρn = λn

nµ
and νn = P(Zn ≥ n), the probability that all servers are

busy.

(a) If
√
n(1− ρn)→ 0 then νn→ 1.

(b)
√
n(1− ρn)→ β ∈ (0,∞) if and only if νn→ ν ∈ (0,1).

(c) If
√
n(1− ρn)→∞ then νn→ 0.

Proof of Proposition 4.

Proof of (a). Let EDn
j∗ be the queueing delay for class j, j = 1, . . . ,N , in the nth system operating under

the optimal prices pnj∗ and a strict priority rule. Let W n
∗ be the optimal social welfare under this solution.
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Let EDn
soc be the queueing delay in the nth system operating with a single service class at price p̂soc and

let W n
soc be the resulting social welfare. We first show that EDn

soc→ 0. Define ρnsoc to be the utilization in

the nth system and note that

ρnsoc =

N∑
j=1

Λn
j

nµ
F̄j(p̂soc + cjEDn

soc)<

N∑
j=1

Λn
j

nµ
F̄j(p̂

n
soc)≤ 1 for all n.

If limn→∞EDn
soc > 0 then limn→∞ ρ

n
soc < 1 implying that limn→∞EDn

soc = 0, in contradiction.

If limn→∞ p
n
j∗ 6= p̂soc then

Wn
∗

Wn
soc

< 1 for sufficiently large n, in contradiction.

Proof of (b). We can write the queueing delays in each class as

EDn
1∗ =ψn(ρn1∗), and EDn

j∗ =
ωnj∗ψ

n(ωnj∗)

ρnj∗
−
ωn(j−1)∗ψ

n(ωn(j−1)∗)

ρnj∗
for j = 2, . . . ,N. (33)

where ωnj∗ :=
∑j

`=1 ρ
n
`∗ for j = 1, . . . ,N ,

νn(x) :=

(
n−1∑
j=0

(nx)j

j!
+

(nx)n

n!(1−x)

)−1

(nx)n

n!(1−x)
and ψn(x) :=

νn(x)

nµ(1−x)
. (34)

Note that νn(x) is the formula for probability of delay and ψn(x) is the formula for expected delay in a

standard M/M/n queue in stationarity, each as a function of traffic intensity x∈ [0,1).

Define

κj∗ :=
Λ̂jF̄j(p̂soc)

µ
for j = 1, . . . ,N.

From part (a) we have ρnj∗→ κj∗. Since
∑N−1

j=1 κj∗ < 1, we have that, n(κj∗− ρnj∗)→ 0 for all j = 1, . . . ,N − 1

(see Step 2 in the proof of Lemma 4) and therefore
√
n(κj∗− ρnj∗)→ 0 for all j = 1, . . . ,N − 1. It remains to

show that
√
n(κN∗− ρnN∗)→ β ∈ (0,∞).

FN(·) is continuously differentiable, so there exists some d̃n ∈ [0,EDn
N∗] such that

(κN∗− ρnN∗) = EDn
N∗

Λ̂NfN(pnN∗+ cN d̃
n)

µ
.

According to the formulas above, we can write

EDn
N∗ =

ωnN∗
ρnN∗

νn(ωnN∗)

nµ(1−ωnN∗)
−
ωn(N−1)∗

ρnN∗

νn(ωn(N−1)∗)

nµ(1−ωn(N−1)∗)

n(1−ωnN∗)EDn
N∗ =

ωnN∗
µρnN∗

(
νn(ωnN∗)−

ωn(N−1)∗

ωnN∗

(1−ωnN∗)
(1−ωn(N−1)∗)

νn(ωn(N−1)∗)

)
lim
n→∞

n(1−ωnN∗)EDn
N∗ =

1

µκN∗
lim
n→∞

νn(ωnN∗).

Also, note that

n(1−ωnN∗)(κN∗− ρnN∗) =

N−1∑
j=1

n
(
κnj∗− ρnj∗

)
(κN∗− ρnN∗) +n(κN∗− ρnN∗)2

lim
n→∞

n(1−ωnN∗)(κN∗− ρnN∗) = lim
n→∞

n(κN∗− ρnN∗)2.

Therefore, we have that (
lim
n→∞

√
n(κN∗− ρnN∗)

)2

=
Λ̂NfN(p̂soc)

µ2κN∗
lim
n→∞

νn(ωnN∗).

By Lemma 6, it must be that
√
n(κN∗− ρnN∗)→ β ∈ (0,∞). �
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