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1 Introduction

The Hough transform (HT), due to Hough (1959), is one of the most frequently used algorithms

in image analysis and computer vision [see, e.g., Ritter and Wilson (1996) and the survey papers

by Leavers (1993) and Stewart (1999)]. The algorithm is most often used to detect and estimate

parameters of multiple lines that are present in a noisy image (typically the image is first edge-

detected and the resulting data serve as input to the algorithm).

In the particular case where only one line is present, the algorithm shares the same objective

as simple linear regression, namely, estimating the slope and intercept of the line. While inference

using regression methods is well understood, the statistical properties of the HT approach have

not been studied thoroughly. Most studies have focused almost exclusively on algorithmic and

implementation aspects [for a comprehensive survey see, e.g., Leavers (1993)], while few papers

pursue a statistical formulation [for example, see Kiryati and Bruckstein (1992), and Princen et.

al. (1994)].

The basic idea of the Hough transform can be informally described as follows. Consider a set

of planar points {(Xi, Yi)}n
i=1 depicted in Figure 1 (a). The objective is to infer the parameters of

the line that fits the data in the “best” manner. The key to the HT algorithm is to view each point

as generating a line, which is comprised of all pairs (slope, intercept) that are consistent with this

point. Specifically, for the ith point this line is given by Li = {(a, b) : Yi = aXi + b}. The set of

random lines {Li}n
i=1 is plotted in the Hough domain, depicted in Figure 1(b). In the statistical

literature this domain is referred to as the dual plot. Thus, co-linearity in the original set of points

will manifest itself in a common intersection of lines in the dual plot.

In practice, the HT algorithm is implemented as follows. The Hough domain is first quantized

into cells, and each such cell maintains a count of the number of lines that intersect it. The cell with

the largest number of counts is the obvious estimator of the parameters of the original line. If one

is focusing on detecting multiple lines, a threshold is specified and those cells with counts exceeding

the threshold indicate the presence (and parametrization) of lines in the original image. A polar

parametrization of the lines is also used in practical implementations, resulting in sinusoidal curves

in the Hough domain [see, e.g., Ritter and Wilson (1996)].

The goal of this paper is provide analysis that formalizes and elucidates statistical properties
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Figure 1: An illustration of the Hough transform: (a) the original scatterplot; (b) the Hough

domain (dual plot).

of the HT methodology. The main contributions of this paper are the following:

i.) We establish almost sure consistency of the HT estimator (Theorem 1), determine the rate of

convergence and characterize the limiting distribution (Theorem 2). The estimator is shown

to have cube-root asymptotics [see, e.g., Kim and Pollard (1990)].

ii.) Robust properties of the HT estimator are derived. In particular, the breakdown point is

determined (Theorem 3) and it is shown that this point can be made to be arbitrarily close

to 50%. The theory is illustrated via a standard example.

iii.) We illustrate the effects of design parameters of the HT estimator on its performance via a

simulation study.

iv.) We relate the multiple line detection problem to multi-modality testing in the Hough domain.

In particular, asymptotic behavior of empirical excess mass functionals (Theorem 4) provide

the building block by which one can pursue a test for the presence of multiple lines.

While a study focusing on the statistical properties of the Hough transform is lacking in the

literature, several strands of statistics-related research are akin to the HT approach. The concept

of the dual plot has appeared already in early work of Daniels (1954), and in more recent work

of Johnstone and Velleman (1985) and Rousseeuw and Hubert (1999). As we shall see in what
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follows, the HT estimator is closely related to regression methods such as least median of squares

of Rousseeuw (1984), and S-estimators studied in Rousseeuw and Yohai (1987), and Davies (1990).

Finally, the multiple line detection problem is intimately related to multi-modality testing using

excess mass [see, e.g., Hartigan (1987), Müller and Sawitzki (1991), and Polonik (1995)]. The basic

problem of estimating the location of a single mode studied by Chernoff (1964) can also be viewed

as a one-dimensional application of the HT algorithm. Further details concerning some of these

relations are given in the sequel.

The paper has two main focal points: the first three sections, namely, Sections 2, 3 and 4

focus on the HT estimator, while the subsequent Section 5 discusses testing of multiple lines.

Section 2 describes the precise formulation of the HT estimator, while Section 3 studies large

sample properties of the HT estimator (Section 3.1) and robustness (Section 3.2). Section 4 then

focuses on some issues concerned with the design of the estimator, effects of the variates, and

relation of the method to other statistical approaches. The problem of testing for multiple lines is

the subject of Section 5. Finally, Section 6 contains several concluding remarks. Proofs are collected

in two appendices: Appendix A gives the proofs related to the properties of the HT estimator, while

Appendix B contains the proofs related to the multiple line testing problem.

2 Definition of the Hough Transform Estimator

Let data points (X1, Y1), . . . , (Xn, Yn) be given on the plane. Each observation pair (Xi, Yi) defines

a straight line in the Hough domain:

Li : b = −Xia + Yi, i = 1, . . . , n.

For a positive number r, let Br(θ) denote the disc of radius r centered at θ = (a, b). We are looking

for a point θ̂ = (â, b̂) in the Hough domain such that the maximal number of lines Li cross over

the disc Br(θ̂). More formally, the HT estimator θ̂r,n maximizes the objective function

Mr,n(θ) :=
1
n

n∑
i=1

1{Br(θ) ∩ Li �= ∅}
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with respect to θ = (a, b). Note that Li ∩ Br(θ) �= ∅ if and only if the distance between the line Li

and the disc center θ = (a, b) is less than or equal to r. Thus Mr,n(θ) takes the following form

Mr,n(θ) =
1
n

n∑
i=1

1
{
|Xia + b − Yi|2 ≤ r2(X2

i + 1)
}

, (1)

and the HT estimator is defined by

θ̂r,n = arg max
θ∈R2

1
n

n∑
i=1

1
{
|Xia + b − Yi|2 ≤ r2(X2

i + 1)
}

. (2)

Hence θ̂r,n can be regarded as an M-estimator associated with the objective function Mr,n(·). Note

that usually the above maximum is not unique; any point of the solution set may be chosen as θ̂r,n.

Note, the above definition of the HT estimator depends on the design parameter r. Denote by

Mr(θ) := EMr,n(θ) = P

{
|Xa + b − Y |2 ≤ r2(X2 + 1)

}
(3)

the deterministic counterpart.
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Figure 2: Template of the HT estimator

The HT estimator admits the following geometrical interpretation. Denote

Dθ = {(x, y) : |xa + b − y|2 ≤ r2(x2 + 1)}, θ = (a, b) ∈ R
2. (4)
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For given θ, Dθ is the set of all points of the plane laying between two branches of a hyperbola that

has straight lines y = (a − r)x + b and y = (a + r)x + b as its asymptotes; see Figure 2. Hence the

HT estimator given by (2) seeks the value θ such that the corresponding set Dθ covers the maximal

number of data points. The set Dθ defines the so–called template of the Hough transform in the

observation space [e.g., Princen et. al. (1992)]. We note that the template shape is determined

by the choice of the cell shape, which is a disc of radius r in our case. Various estimators may

be defined using other cell shapes; the rectangular cell is most natural. However, the difference in

properties of these estimators is marginal.

3 Properties of the Hough Transform Estimator

Asymptotic properties of the HT estimator are studied under the following assumptions. Suppose

that (X1, Y1), . . . , (Xn, Yn) are independent identically distributed random observations drawn from

the model

Y = a0X + b0 + ε, (5)

where:

(a) X is independent of ε, and;

(b) ε is a random variable with bounded, symmetric, and strictly unimodal density, f(x) =

f(−x), ∀x.

By strict unimodality we mean that density f has a maximum at a unique point, x = 0, and

decreases as x goes away to zero in either direction.

Let Pn denote the empirical measure of a sample of the pairs (Xi, Yi), i = 1, . . . , n, and P be the

common distribution of (Xi, Yi). Then the objective function Mr,n(θ) in (1) and its deterministic

counterpart, Mr(θ), can be written written as Mr,n(θ) = Pn(Dθ) and Mr(θ) = P(Dθ), where Dθ is

defined by (4).
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3.1 Asymptotics

We are interested in the asymptotic behavior of θ̂r,n as n → ∞. The first theorem establishes

consistency.

Theorem 1 Under assumptions (a)-(b) for any fixed r > 0 the estimator θ̂r,n is strongly consistent:

θ̂r,n
a.s.→ θ0 as n → ∞, where θ0 = (a0, b0).

It is interesting to note that the consistency proof does not require existence of the expectation

of the noise ε. For example, the noise may be a sequence of i.i.d Cauchy random variables. The

next theorem establishes the asymptotic distribution of the centered and scaled estimator.

Theorem 2 Let f be continuously differentiable with bounded first derivative, and let assumptions

(a) and (b) hold. Assume that X is a non-degenerate random variable with finite second moment.

Then for every fixed r > 0, n1/3(θ̂r,n − θ0) ⇒ W , where W has the distribution of the (almost

surely unique) maximizer of the process θ �→ 1
2θT V0θ + G(θ),

V0 = E

{
[f ′(r‖Z‖) − f ′(−r‖Z‖)]ZZT

}
, (6)

Z = (X, 1)T , and G is zero-mean Gaussian process with continuous sample paths and stationary

increments such that for any ξ, η ∈ R
2

E[G(ξ) − G(η)]2 = 2E

{
f(r‖Z‖)|ZT (ξ − η)|

}
. (7)

The cube-root rates of convergence are due to the discontinuous nature of the objective function

Mr,n(·). The most general results dealing with this type of asymptotics are given in Kim and

Pollard (1990); see also van der Vaart and Wellner (1996, chapter 3). Clearly the asymptotic

distribution above is quite complicated. The one-dimensional instance, where G(·) is a Brownian

motion, was first studied in Chernoff (1964) [see also, Groeneboom (1989), and Groenenboom and

Wellner (2001)].

3.2 Robustness

One way to characterize the robustness of an estimator is through its breakdown properties. In-

tuitively, the breakdown point is the smallest amount of “contamination” necessary to “upset” an
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estimator entirely. We use the formal definition of the finite–sample breakdown point given by

Donoho and Huber (1982). Let Yn = {(X1, Y1), . . . , (Xn, Yn)} and θ̂ = θ̂(Yn) be an estimator

based on Yn. Consider an additional data set Y ′
k of size k. If by choice of Y ′

k one can make

θ̂(Yn ∪ Y ′
k) − θ̂(Yn) arbitrarily large, we say that θ̂ breaks down under contamination fraction

k/(n + k). The finite-sample addition breakdown point εadd(θ̂;Yn) is the minimal contamination

fraction under which θ̂ breaks down:

εadd(θ̂;Yn) = min
{ k

n + k
: sup

Y ′
k

‖θ̂(Yn ∪ Y ′
k) − θ̂(Yn)‖ = ∞

}
.

Similarly, the finite–sample replacement breakdown point of θ̂ is defined by

εrep(θ̂;Yn) = min
{k

n
: sup

Yk
n

‖θ̂(Yk
n) − θ̂(Yn)‖ = ∞

}
,

where Yk
n denotes the corrupted sample obtained from Yn by replacing k data points of Yn with

arbitrary values. The following theorem gives the breakdown properties of the HT estimator θ̂r,n.

Theorem 3 Let Yn = {(X1, Y1), . . . , (Xn, Yn)} be a sample with no repeated values of X. Then,

εadd(θ̂;Yn) =
�nMr,n(θ̂r,n)� − 1

n + �nMr,n(θ̂r,n)� − 1

εrep(θ̂;Yn) =
1
n

⌊nMr,n(θ̂r,n)
2

⌋
.

Moreover, if the conditions of Theorem 1 hold, and the distribution of X is continuous, then, as

n → ∞

εadd(θ̂r,n;Yn) a.s→ p(1 + p)−1,

εrep(θ̂r,n : Yn) a.s.→ p/2,

where p = P{ε2 ≤ r2‖Z‖2}.

We now turn to several remarks concerning the theorem. First, the assumption that the sample

Yn does not contain repeated observations of X rules out parallel lines in the Hough domain.

This assumption is quite typical in the context of the regression methods utilizing the dual plot

approach [see, e.g., Daniels (1954)]. Second, the value of r controls breakdown properties of the

HT estimator: the larger r, the closer the breakdown point is to 1/2. For example, if r is chosen
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Figure 3: An illustration of the breakdown properties of the HT estimator. The data set consists of

30 observations from the underlying linear regression model, and 20 “bad” data points (the cluster

on the right).

to be the (1 − α)-quantile of the distribution of ε2‖Z‖−2, the addition breakdown point of the

corresponding estimate is (1 − α)/(2 − α), and the replacement breakdown point is (1 − α)/2.

To illustrate the breakdown properties of the HT estimator, we consider a numerical example

given in Rousseeuw (1984). The sample containing 30 “good” observations is generated from the

model Yi = Xi + 2 + εi, where εi are Gaussian random variables with zero mean and standard

deviation 0.2, and Xi are uniformly distributed on [1, 4]. Then the cluster of 20 “bad” observa-

tions is added. These observations follow bivariate Gaussian distribution with expectation (7, 2)

and covariance matrix 0.25I. Figure 3 displays the data along with the least squares (LS), least

median of squares (LMS) and the Hough transform (HT) estimates. The LMS estimator is de-

fined as the value of the parameter θ = (a, b) that minimizes the median1≤i≤n|Yi − aXi − b|2 [see

Rousseeuw (1984)]. The parameter r of the HT estimator is set to 0.15. Under conditions of

the experiment P{ε2(X2 + 1)−1 ≤ 0.152} ≈ 0.923 which approximately corresponds to the 46%

replacement breakdown point. The HT estimator is calculated by direct maximization of (2) on

the square [−3, 3]× [−3, 3] using a uniform rectangular grid comprised of 250, 000 points. Because

the solution is not unique, the average of the grid points where the maximum is achieved is taken
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as the estimate. Thus the HT estimate yields â = 0.917 and b̂ = 2.173 which is quite close to the

original values a0 = 1 and b0 = 2. In general, behavior of the HT estimate in this example is very

similar to that of the LMS.

4 Discussion

4.1 Choice of the radius r

The properties of the HT estimator depend on the choice of a parameter r. The results of Section 3

assert that the HT estimator is consistent for any choice of r, and the asymptotic distribution is

given in Theorem 2. Thus a reasonable choice of r would be the value minimizing the variance

of the limiting random variable in Theorem 2. Unfortunately, the asymptotic distribution is not

tractable, and we cannot use it as basis to make a choice of r. Clearly, large values of r leads to

a large connected solution set, and in this case the estimation accuracy depends crucially on the

way the estimator is chosen from the solution set. On the other hand, small values of r lead to

an “under-smoothed” dual plot, and the solution set is a union of many disconnected sets. In this

case estimation accuracy of the average estimator may be very poor.

To study how estimation accuracy depends on r, we conducted the following simulation exper-

iment. For sample sizes n = 25, 50, 100 we generate data sets from the model Yi = Xi + 2 + εi,

where εi are Gaussian random variables with zero mean and standard deviation 0.5, and Xi are

uniformly distributed on [−2, 2]. The HT estimator is computed for different values of r. In our

implementation we used the square [−3, 3]× [−3, 3] as the search region. The value of the objective

function is computed at nodes of the regular grid comprised of 360, 000 points. The resulting HT

estimator is set to be the average of the grid nodes where the maximum of the objective function is

achieved. Simulation results are given in Table 1. The table presents the values of the HT estimates

of the parameters (a0, b0) = (1, 2) averaged over 1,000 replications, along with the square root of

the resulting mean squared error. Closer inspection of the results shows that the mean squared

error first decreases as r grows, but when r becomes large, an increase in the mean squared error is

observed. Overall, it seems that the estimation accuracy is relatively stable as r varies over a wide

range of values. This phenomenon has been consistently observed for various data sets generated

from different models. (The results described in Table 1 are one such representative example.)
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Sample size

r n = 25 n = 50 n = 100

0.025 (0.992, 1.981) (0.995, 2.009) (0.990, 2.009)

0.407 0.297 0.245

0.04 (0.999, 1.989) (0.997, 2.013) (0.995,2.013)

0.392 0.284 0.231

0.05 (1.003, 2.001) (0.995, 2.001) (1.001, 2.009)

0.354 0.272 0.219

0.075 (1.011, 2.007) (0.992, 2.008) (1.000, 2.009)

0.322 0.264 0.213

0.1 (1.009, 2.008) (0.996,2.009) (0.998, 2.015)

0.308 0.251 0.204

0.2 (1.000, 2.010) (0.997,2.012) (1.000, 2.004)

0.264 0.208 0.164

0.4 (1.001, 2.010) (0.999, 2.007) (0.996, 2.003)

0.220 0.171 0.137

0.5 (0.996, 2.008) (0.995, 2.004) (0.994, 2.001)

0.211 0.174 0.135

0.75 (1.012, 1.999) (1.002, 1.996) (0.999,2.003)

0.248 0.209 0.172

0.8 (1.015,1.997) (1.002,1.997) (0.996, 2.002)

0.254 0.219 0.179

Table 1: Estimation accuracy of the HT estimator. The numbers in parenthesis are the

(slope,intercept) estimates, and the value below them is the associated root mean squared error.

All values are obtained by averaging over 1000 replications.

Finally we note that in practice it may be advantageous to take r slowly tending to zero as n → ∞.

This might be particularly important in the problem of multiple line testing discussed in Section 5.

However, analysis of theoretical properties of such an estimator is beyond the scope of this paper.

4.2 Equivariance properties and the effect of design variables

We now briefly mention some equivariance properties of the HT estimator. In the context of

regression estimators, different notions of equivariance are considered [see, e.g., Rousseeuw and

Leroy (1987, p. 116)]. An estimator θ̂ is said to be regression equivariant if θ̂({Xi, Yi + cXi}n
i=1) =
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θ̂({Xi, Yi}n
i=1) + c , where c is an arbitrary constant. It is scale equivariant if θ̂({Xi, cYi}n

i=1) =

cθ̂({Xi, Yi}n
i=1) , and affine equivariant if θ̂({cXi, Yi}n

i=1) = c−1θ̂({Xi, Yi}n
i=1) . for c �= 0.

It is easily seen that the HT estimator θ̂r,n is regression equivariant, but not scale and affine

equivariant. The equivariance properties of the HT estimator are clearly intimately related to the

Hough template. In particular, the template displayed in Figure 2 implies that the estimate treats

differently observations with small and large X-variate values. The straight lines in the Hough

domain corresponding to the observations with large Xi values are very steep. If the majority of

the observations have a large X-coordinate and the standard deviation of the noise is small, then

the corresponding straight lines are nearly parallel. In this case, behavior of the HT estimator may

be quite poor.

To illustrate the effect of the design distribution, we generate 100 independent observations from

the model Yi = Xi + 2 + εi, where εi are Gaussian random variable with zero mean and standard

deviation 0.5. Figure 4 displays the perspective plots of the objective function M0.3,n(θ) along with

the corresponding dual plots for two different design distributions. Figure 4 (a)-(b) corresponds

to the explanatory variables Xi uniformly distributed on [−2, 2], while Figure 4 (c)-(d) shows the

case of Xi uniformly distributed on [20, 24]. In the second case the objective function is very flat.

This leads to a large solution set and high variability of the HT estimator. Theoretically, when Xi

are large, the matrix V0 appearing in (6) is nearly singular because f ′(r‖Z‖) − f ′(−r‖Z‖) is close

to zero. Therefore, the asymptotic distribution of θ̂r,n is close to the distribution of the point of

maximum of a zero mean Gaussian process given in (7). To recapitulate this point, the influence

of the design distribution on estimation accuracy suggest that it would be reasonable in practice

to center the explanatory variables before applying the HT estimator. We note that in computer

vision applications this does not typically pose a problem as the measurement units used for the

X-coordinate are image-independent.
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Figure 4: Perspective plots of Mr,n(θ) along with the corresponding dual plots: (a)-(b) Xi are

uniformly distributed on [−2, 2]; (c)-(d) Xi are uniformly distributed on [20, 24].

4.3 Related regression methods

The HT estimator may be viewed as a counterpart to an S-estimator [cf. Rousseeuw and Yohai (1984),

and Davies (1990)]. Indeed, fix δ ∈ (0, 1) and consider the following optimization problem

P(δ) : min
θ=(a,b)∈R2

r

s.t. Mr,n(θ) =
1
n

n∑
i=1

1
{
|Yi − aXi − b|2 ≤ r2(X2

i + 1)
}
≥ 1 − δ.

(8)

Solution of (8) defines the S-estimator θ̂δ,n whose replacement breakdown point equals εrep(θ̂δ,n;Yn) =

min(δ, 1 − δ) [cf. Davies (1990)]. The least median of squares (LMS) estimator, see Rousseeuw

(1984), can be written in the form similar to (8). In this specific case δ = n−1(�n/2� + 1), and

X2
i +1 on the RHS should be replaced by 1. Recall that, by definition, the HT estimator θ̂r,n solves
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the following optimization problem

Q(r) : max
θ=(a,b)∈R2

Mr,n(θ) =
1
n

n∑
i=1

1
{
|Yi − aXi − b|2 ≤ r2(X2

i + 1)
}

.

Then the connection between the HT estimator and the S-estimator (8) is as follows. For a given

δ > 0 let r̂ = val(P(δ)), where val(·) is the value of the optimization problem, and let θ̂δ,n be the

solution to P(δ). Then clearly val(Q(r̂)) ≥ 1−δ, and θ̂r̂,n belongs to the solution set of P(δ). Thus,

with this particular choice of r, the HT estimator and the corresponding S-estimator are identical;

in particular, εrep(θ̂r̂,n;Yn) = min(δ, 1 − δ).

5 Multiple Line Detection

In practice, the Hough domain is discretized into cells, and the number of lines crossing each cell

is counted. Next, each of the cells is examined to search for “high counts.” In particular, cells

with counts exceeding some predetermined threshold correspond to “detected” lines in the original

space. This procedure amounts to an exhaustive search for local maxima (threshold exceedences) in

the Hough domain. Thus, in contrast to other line fitting procedures, the Hough transform is used

to estimate several lines simultaneously. It should be noted, however, that points of local maxima

do not necessarily correspond to actual line parameters. Consequently, in the case of multiple lines

it is more accurate to view the Hough transform as a tool for testing or detecting the presence of

straight lines in images. This has also been recognized in the computer vision literature [cf. Princen

et.al., (1994)].

In view of the above, one can view the multiple line detection problems using the Hough

transform as testing for multi-modality in the Hough domain. Testing multi-modality is a subject

of vast literature. This problem is characterized by the fact that only one–sided inference is possible

[see, e.g., Donoho (1988)], that is, the only verifiable hypotheses are of the type “there are at least

three lines in the image.” The most appropriate approach for our purposes is based on the concept of

excess mass [see Hartigan (1987), Müller and Sawitzki (1991), and Polonik (1995)], which typically

used in the “mode testing” problem. In the context of the Hough transform, this excess mass

corresponds to regions in the parameter space (Hough domain) where large counts are present.
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5.1 Excess mass functionals

Let (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. random variables, and, for r > 0 and θ = (a, b) ∈ R
2,

let Mr,n(θ) and Mr(θ) be given by (1) and (3) respectively. We stress that (X1, Y1), . . . , (Xn, Yn)

are not assumed to be drawn from the linear model (5). Throughout this section we suppose that

parameter θ is confined to a compact set Θ0 ⊂ R
2.

The excess mass functional is defined by

E(λ) :=
∫

(Mr(θ) − λ)+dθ =
∫

Θλ

Mr(θ)dθ − λL{Θλ},

where (x)+ := max(0, x), Θλ := {θ ∈ R
2 : Mr(θ) ≥ λ}, and L{·} stands for Lebesgue measure in

R
2. We call Θλ the λ–level set; note that Θλ is closed and bounded because Mr(·) is continuous.

For a compact set Θ ⊂ R
2 and λ ∈ (0, 1), let us define

Hλ{Θ} :=
∫

Θ
Mr(θ)dθ − λL{Θ} .

Then, E(λ) = sup{Hλ{Θ} : Θ ⊂ R
2 compact}. The empirical version of the excess mass functional

is obtained by substituting Mr,n(·) instead of Mr(·) in the definition, viz,

En(λ) :=
∫

(Mr,n(θ) − λ)+dθ

=
∫

Θλ,n

Mr,n(θ)dθ − λL{Θλ,n},

where Θλ,n = {θ ∈ R
2 : Mr,n(θ) ≥ λ} is the empirical λ-level set. Using the notation

Hλ,n{Θ} :=
∫

Θ
Mr,n(θ)dθ − λL{Θ} ,

we have that En(λ) = sup{Hλ,n{Θ} : Θ ⊂ R
2, compact}. Note that the empirical λ-level set Θλ,n

is a closed subset of R
2; this follows from the fact that Mr,n : R

2 → [0, 1] is upper semi–continuous

[see, e.g., Rudin (1987, pp. 37-38)]. Since the parameter θ is assumed to take values in the compact

set Θ0, Θλ,n is also bounded.

Following Polonik (1995) we also consider the excess mass functional over some classes of subsets

in R
2. Let T be a class of compact subsets of R

2. The excess mass functional over T at level

λ ∈ (0, 1) is given by

ET (λ) := sup{Hλ{Θ} : Θ ∈ T } = sup
Θ∈T

[ ∫
Θ

Mr(θ)dθ − λL{Θ}
]

.
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Every set Θλ(T ) ∈ T satisfying ET (λ) = Hλ{Θλ(T )} is called the λ-level set in T . Clearly,

ET (λ) ≤ E(λ), and ET (λ) = E(λ) if Θλ ∈ T . The empirical version ET ,n(λ) of ET (λ) is defined

by

ET ,n(λ) := sup{Hλ,n{Θ} : Θ ∈ T }

=
∫

Θλ,n(T )
Mr,n(θ)dθ − λL{Θλ,n(T )},

where Θλ,n(T ) is the empirical λ–level set in T .

We stress that the excess mass approach is very natural in the context of the Hough transform.

In particular, the value of En(λ) conveniently quantifies the total sum of counts corresponding

to cells with counts exceeding λ. Consequently asymptotic behavior of the empirical excess mass

functional is of interest.

5.2 Asymptotics of the empirical excess mass functional

The asymptotic behavior of the empirical excess mass functional is the key building block in a

statistical procedure for detecting multiple lines; this is given in the next theorem. To that end,

let us denote

νn(λ) :=
√

n

∫
Θλ

[Mr,n(θ) − Mr(θ)]dθ, λ ∈ Λ := [λ, λ] ⊂ (0, 1),

and let l∞(Λ) denote the space of all uniformly bounded real-valued functions over Λ.

Theorem 4 Suppose that Mr : R
2 �→ [0, 1] satisfies

lim
δ→0

sup
λ∈Λ

L{{θ : |Mr(θ) − λ| < δ}} = 0 . (9)

Then,

(i) supλ∈Λ |√n[En(λ) − E(λ) − νn(λ)| = op(1) as n → ∞, and

νn(λ) ⇒
∫

Θλ

G(θ)dθ in l∞(Λ), n → ∞, (10)

where G(·) is a zero mean Gaussian random field with covariance kernel

E[G(ξ)G(η)] = P
{
|ZT ξ − Y | ≤ r‖Z‖, |ZT η − Y | ≤ r‖Z‖

}

−P
{
|ZT ξ − Y | ≤ r‖Z‖

}
P

{
|ZT η − Y | ≤ r‖Z‖

}
, (11)

where Z = (X, 1)T and ξ, η ∈ R
2.
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(ii) Let T denote the class of compact subsets of R
2 such that Θλ ∈ T for every λ ∈ Λ. Then

sup
λ∈Λ

∣∣∣√n[ET ,n(λ) − E(λ)] − νn(λ)
∣∣∣ = op(1), n → ∞,

and (10) holds.

The asymptotics of the empirical excess mass functional, is determined by two factors: the

asymptotic behavior of the random field Mr,n(θ), and the asymptotic behavior of the (random)

level set Θλ,n. There are essentially two main ideas that underlie the proof: (i) the class of sets

generated by the Hough template, D = {Dθ : θ ∈ R
2}, is a separable VC class of sets, and thus

a uniform central limit theorem holds for the random field Mr,n(·) [cf. Proposition 2]; (ii) under

assumption (9) which essentially posits that the deterministic field Mr(·) does not have “flat parts,”

the convergence of the random field also implies convergence of the associated (random) level sets

to their deterministic counterparts. In the absence of assumption (9), difficulties can easily arise

in “mode testing” [see Müller and Sawitzki (1991) and Polonik (1995), where a similar condition

is imposed in the context of excess mass testing for modes of a distribution].

5.3 Testing for multiple lines

We now sketch how Theorem 4 may be used for detecting multiple lines in some specific cases. To

illustrate the ideas, consider the following hypothesis test

H0 : one line vs. H1 : more than one line. (12)

The rigorous interpretation of the above is that “under the null hypothesis,” the data is generated

by the model (5) with some unknown θ0 = (a0, b0), and assumptions (a)-(b) of Section 3 hold. To

characterize the behavior of excess mass functionals under the null hypothesis, we will need the

next result which essentially states that under H0 the λ-level set Θλ for λ ∈ Λ is a convex set which

is balanced around θ0 = (a0, b0).

Proposition 1 Assume that the data are generated by the model (5), and assumptions (a)-(b)

hold. Then Mr(θ) = M̃r(θ− θ0) for some function M̃r(·) which is symmetric near zero with unique

mode at θ = 0. In addition, the set Θ̃λ = {θ ∈ R
2 : M̃r(θ) ≥ λ} is a closed convex and balanced set

(i.e. if θ ∈ Θ̃λ then −θ ∈ Θ̃λ).
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First consider the testing problem under the assumption that that the distributions of ε and X

are known. Suppose that Mr(·) has no “flat parts”, i.e. (9) holds. By Proposition 1, under H0 the

excess mass functional E(λ) is completely specified and given by

E∗(λ) =
∫

(Mr(θ) − λ)+dθ

=
∫

(M̃r(θ) − λ)+dθ

=
∫ (

P{|ε + ZT θ| ≤ r‖Z‖} − λ
)+

dθ .

Thus (12) reduces to testing

H ′
0 : E(λ) = E∗(λ), ∀λ ∈ Λ vs. H ′

1 : E(λ) �= E∗(λ) for some λ ∈ Λ.

It follows from Theorem 4(i) that

T ′
n :=

√
n sup

λ∈Λ
|En(λ) − E∗(λ)| ⇒ χ,

where χ := supλ∈Λ |
∫
Θλ

G(θ)dθ|. Observe that Θλ = Θ̃λ + θ0, hence

χ = sup
λ∈Λ

∣∣∣
∫

Θ̃λ

G(θ − θ0)dθ
∣∣∣ = sup

λ∈Λ

∣∣∣
∫

Θ̃λ

G̃(θ)dθ
∣∣∣,

where G̃(·) = G(· − θ0). We note that the covariance kernel of the zero mean Gaussian process

G̃(·) := G(· − θ0) does not depend on θ0, and is given by (11) with Y replaced by ε. Thus the

test can be based on the statistic T ′
n whose asymptotic distribution does not depend on unknown

parameter θ0, and is completely specified under H0, provided that the distributions of ε and X

are known. Such a test will be consistent against all alternatives of the type |E(λ) − E∗(λ)| > 0

for some λ ∈ Λ. We note that although the assumption that the distributions of ε and X are

known may seem to be restrictive, it is quite typical in many application settings [see, e.g., Princen

et.al. (1994)].

If the distributions of X and ε are unknown, T ′
n cannot be computed and therefore testing the

presence of one line against multiple lines is more complicated. In this setting one can pursue

the multiple line testing problem by comparing restricted and unrestricted empirical excess mass

functionals. Proposition 1 states that under the null hypothesis, the λ-level set Θλ is convex and

balanced around θ0. Therefore the test may be based on comparing En(λ) with the empirical excess

mass EC,n(λ) over the set C of all compact convex subsets of R
2. Thus we consider testing

H̃ ′
0 : Θλ ∈ C, ∀λ ∈ Λ vs. H̃ ′

1 : Θλ �∈ C for some λ ∈ Λ.
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In view of Theorem 4 a natural test statistics is T̃ ′
n :=

√
n supλ∈Λ |En(λ)−EC,n(λ)|, and H̃ ′

0 should

be rejected for large values of T̃ ′
n. Under H̃ ′

0, T̃ ′
n = Op(1), as n → ∞. On the other hand,

if E(λ) − EC(λ) > 0 for some λ ∈ Λ, then by Theorem 4 the power of the test based on T̃ ′
n

converges to 1 as n → ∞. Thus the described test is consistent against all alternatives of the type

E(λ) − EC(λ) > 0 for some λ ∈ Λ. Unfortunately the limiting distribution of T̃ ′
n is not available;

in general it depends on the rate at which supλ∈Λ L{{θ : |Mr(θ) − λ| < δ}} goes to zero as δ → 0

[cf. (9)]. We note that even though the condition E(λ)−EC(λ) > 0 does not imply that Θλ �= Θλ(C),

in many situations this is the case.

6 Concluding remarks

1. The HT estimator can be used in the multiple regression context. Assume the model

Y =
p∑

k=1

βkXk + ε,

and denote θ = (β1, . . . , βp)T and Z = (X1, . . . , Xp)T . Then the HT estimator is defined by

θ̂r,n = arg max
θ∈Rp

1
n

n∑
i=1

1
{
|Yi − θT Zi|2 ≤ r2‖Zi‖2

}
. (13)

It can be easily seen that Theorems 1, 2, and 3 hold for multiple regression setup with evident

modifications. In particular, the breakdown point given in Theorem 3 does not depend on the

dimension. Unfortunately, the maximization problem in (13) is difficult and cannot be solved as

easily as in the two–dimensional case. In general, the HT estimator can be used in the context of

fitting more complicated curves.

2. The slow, cube root, convergence rate of the HT estimator is a consequence of the discon-

tinuous objective function. Kim and Pollard (1990) study this phenomenon and survey various

estimation settings in which cube root convergence rates govern the asymptotics. To this end, the

original objective function might be approximated by a smooth function, and the resulting modified

“smoothed” estimator would have standard
√

n asymptotics and “good” breakdown properties. In

this case, maximization of the objective function can be pursued using a gradient-based search.

3. A variety of modified estimators may be obtained using different cell shapes in the Hough

domain. For example, a vertical line segment of the length 2r as a cell shape in the Hough domain
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corresponds to an estimator which maximizes

1
n

n∑
i=1

1{|Yi − θT Zi|2 ≤ r2}

over θ ∈ R
2. The template of this estimator represents a strip of the width 2r measured in the

vertical direction. Such an estimator can be viewed as a counterpart to the least median of squares

estimator. The properties of the estimator are quite similar to those of the HT estimator. In

addition, such an estimator is scale and affinely equivariant.

4. Fitting a straight line when the both variables are subject to random errors can be treated

using described techniques. For example, it can be easily shown that the estimator based on

the vertical line–segment cell is consistent provided the errors have symmetric strongly unimodal

densities.

A Proofs for Section 3

Proof of Theorem 1: Conditioning on X we have for θ �= θ0

E[Mr,n(θ) | X] = P

{
|Xa + b − Y |2 ≤ r2(X2 + 1) | X

}

= P

{
−r

√
X2 + 1 − X(a − a0) − (b − b0) ≤ −ε ≤ r

√
X2 + 1 − X(a − a0) − (b − b0) | X

}

< P

{
−r

√
X2 + 1 ≤ −ε ≤ r

√
X2 + 1 | X

}
.

The last inequality is a consequence of the Anderson lemma [Anderson (1955)] and the fact that f

is symmetric and strictly unimodal. Hence θ0 is a unique point of maximum of function Mr(θ) :=

EMr,n(θ) for any r > 0. In particular, denoting by Bε(θ0) the ball of radius ε with center θ0, we

have that for any ε > 0,

max
θ∈Bc

ε(θ0)
Mr(θ) < Mr(θ0) . (14)

The point of maximum of Mr(·) is thus unique and well-separated.

Consider the class of sets D = {Dθ, θ ∈ R
2}, where Dθ is defined in (4). This class has

polynomial discrimination, i.e., it is a Vapnik–Cervonenkis (VC) class of sets [see Pollard (1984),

Definition II.13, or van der Vaart and Wellner (1996), p. 85]. Indeed, as was mentioned before,

D is a class of subsets of the plane generated by a linear space of quadratic forms. Hence, by
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Lemma II.18 in Pollard (1984), D has polynomial discrimination. Note also that D is universally

separable in the sense of Pollard (1984, p. 38). [This follows straightforwardly from Pollard (1984,

p. 38 problem 4).] Therefore, we conclude that the random variable supθ |Mr,n(θ) − Mr(θ)| is

measurable. Now, Theorem II.14 from Pollard (1984) implies that

sup
θ

|Mr,n(θ) − Mr(θ)| = sup
D∈D

|Pn(D) − P(D)| → 0, almost surely. (15)

Further, write

Mr(θ̂r,n) − Mr(θ0) =

= Mr(θ̂r,n) − Mr,n(θ̂r,n) + Mr,n(θ̂r,n) − Mr(θ0)

≤ sup
θ

|Mr(θ) − Mr,n(θ)| + Mr,n(θ̂r,n) − Mr(θ̂r,n)

≤ 2 sup
θ

|Mr(θ) − Mr,n(θ)| .

Hence (15) implies

|Mr(θ̂r,n) − Mr(θ0)| → 0 (16)

almost surely, as n → ∞. Fix ε > 0. Then, by (14) there exists a δ > 0 such that maxθ∈Bc
ε(θ0) Mr(θ) ≤

Mr(θ0) − δ. Consequently, we have the set inclusion

{
θ̂r,n ∈ Bc

ε(θ0), i.o.
}
⊆

{
Mr(θ̂r,n) ≤ Mr(θ0) − δ, i.o.

}
.

But (16) implies that the probability of the event on the right-hand-side is zero. Thus, we conclude

that {θ̂r,n ∈ Bε(θ0), ev.} occurs with probability one. Since ε > 0 was arbitrary, we have that

θ̂r,n → θ0, almost surely, as n → ∞. This concludes the proof.

Proof of Theorem 2: The proof is based on verifying conditions of the main theorem of Kim &

Pollard (1990) [cf. also Theorem 3.2.10 in van der Vaart & Wellner (1996)].

Let V (θ) denote the second derivative matrix of the function

Mr(θ) = P

{
|Xa + b − Y | ≤ r

√
X2 + 1

}
= P

{
|ZT θ − Y | ≤ r‖Z‖

}
.

Write

Mr(θ) = E

[
F (r‖Z‖ − ZT (θ − θ0)) − F (−r‖Z‖ − ZT (θ − θ0))

]
, (17)

where F is the distribution function of ε, and the expected value above is taken w.r.t. to the

distribution of Z := (X, 1)T . Now, recall that f is assumed to be continuously differentiable with
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bounded derivative, and that EX2 < ∞. Therefore, we can apply the Dominated Convergence

Theorem to interchange the order of expectation and differentiation for the expression on the RHS

of (17). In particular, (17) can be differentiated twice w.r.t. θ under the integral sign, yielding

V (θ) := ∇2
θMr(θ) = E

{[
f ′(r‖Z‖ − (θ − θ0)T Z) − f ′(−r‖Z‖ − (θ − θ0)T Z)

]
ZZT

}
.

Let V0 = V (θ0). Note that the matrix V0 is negative definite when X is non–degenerate. This

follows because for strictly unimodal symmetric densities f , f ′(x) − f ′(−x) < 0 for all x > 0, and

under the premise of the theorem EZZT is positive definite.

For δ > 0 consider classes of functions Mδ = {mθ − mθ0 : ‖θ − θ0‖ < δ}, where mθ = 1Dθ
, and

Dθ is defined in (4). These classes have polynomial discrimination, i.e., they are VC classes [see

Pollard (1984), Definition II.13, or van der Vaart and Wellner (1996), p. 85] with envelope functions

M̄δ = sup
‖θ−θ0‖<δ

∣∣∣1
{
−r ≤ ZT θ − Y

‖Z‖ ≤ r
}
− 1

{
−r ≤ ZT θ0 − Y

‖Z‖ ≤ r
}∣∣∣

≤ 1
{
−r − δ ≤ ZT θ0 − Y

‖Z‖ ≤ −r + δ
}

+ 1
{

r − δ ≤ ZT θ0 − Y

‖Z‖ ≤ r + δ
}

.

Therefore for small δ

EM̄2
δ ≤ P

{
−r − δ ≤ ε

‖Z‖ ≤ −r + δ
}

+ P

{
r − δ ≤ ε

‖Z‖ ≤ r + δ
}

≤ cδ := cφ2(δ)

for some positive constant c. This verifies condition (vi.) in Kim and Pollard (1990, Theorem 1.1),

namely, that EM̄2
δ = O(δ). Thus, we anticipate that n−1/3 is the rate at which θ̂r,n converges to

θ0. To arrive at a rigorous conclusion, the key is to compute E(mθ0+δξ − mθ0+δη)2, for fixed δ > 0

and ξ, η ∈ R
2. This behavior, together with the order of φ(δ) will also determine the structure of

the increments of the limiting Gaussian process asserted in the theorem. To that end, note that

E

[
(mθ0+δξ − mθ0+δη)21{ZT ξ ≤ ZT η}

]

= E

∫
f(x)1

{
x ∈ [r‖Z‖ + δZT ξ, r‖Z‖ + δZT η]

}
dx 1{ZT ξ ≤ ZT η}

+
∫

f(x)1
{

x ∈ [r‖Z‖ + δZT ξ, r‖Z‖ + δZT η]
}

dx 1{ZT ξ ≤ ZT η}

= E
[
F (−r‖Z‖ + δZT η) − F (−r‖Z‖ + δZT ξ) ; ZT ξ ≤ ZT η

]

+E
[
F (r‖Z‖ + δZT η) − F (r‖Z‖ + δZT ξ) ; ZT ξ ≤ ZT η

]

=: I1 + I2 .
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Similar expressions hold when the above expectation is taken on the event 1{ZT ξ > ZT η}, with ξ

replaced by η and vice versa. Our objective is to evaluate an expression for

lim
δ↓0

E(mθ0+δξ − mθ0+δη)2

φ2(δ)
.

But, since φ(δ) = δ1/2 this amounts to differentiating E(mθ0+δξ − mθ0+δη)2 w.r.t. δ under the

integral. (This interchange is justified since f , the density of ε, is assumed to be bounded, and

Z has finite second moment.) Given the above expressions for I1 and I2, straightforward algebra

yields

lim
δ↓0

E(mθ0+δξ − mθ0+δη)2

φ2(δ)
= E

{
[f(−r‖Z‖) + f(r‖Z‖)]|ZT (ξ − η)|

}

= 2E

{
f(r‖Z‖)|ZT (ξ − η)|

}
.

This completes the proof.

Proof of Theorem 3: Under the premise of the theorem there are no parallel lines Li in the Hough

domain. In other words, any pair of random lines intersect, and there is a closed ball of finite radius

that contains the set of all intersection points. By construction, for fixed n, θ̂ = θ̂r,n is the center

of the ball of radius r that crosses over the maximal number of random lines Li in the parameter

space. Of course, nMr,n(θ̂r,n) is the corresponding number of such lines. Clearly, in order to shift

this estimate to infinity one should add at least nMr,n(θ̂r,n)− 1 lines at infinity. Thus the smallest

contamination fraction under which θ̂r,n breaks down is (nMr,n(θ̂r,n) − 1)/(n + nMr,n(θ̂r,n) − 1).

Applying the argument as in the proof of Theorem 1 we conclude Mr,n(θ̂r,n) a.s.→ Mr(θ0) = P{ε2 ≤
r2‖Z‖2}, the result for εadd(θ̂r,n;Yn) follows. For the replacement breakdown point it is sufficient

to note that under the premise of the theorem at least �nMr,n(θ̂r, n)/2� lines should be replaced.

The proof is complete.

B Proofs for Section 5

First we state the uniform central limit theorem for the random field Mr,n(·) alluded to before. The

statement is formulated in terms of the class of sets generated by the Hough template.

Proposition 2 Let D = {mθ = 1Dθ
: θ ∈ R

2}, where Dθ is defined in (4). Let l∞(D) denote the set

of all uniformly bounded real functions on D. Then the class D is P–Donsker, i.e.
√

n(Pn−P) ⇒ GP
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in l∞(D), where the limit process {GPmθ : mθ ∈ D} is zero mean Gaussian with covariance function

E[GPmξGPmη] = P(Dξ ∩ Dη) − P(Dξ)P(Dη). (18)

The proposition follows from the uniform central limit theorem for measurable VC-classes [e.g.,

Corollary 6.3.17 in Dudley (1999)]. Through the mapping θ �→ Dθ, the weak convergence in l∞(D)

implies that
√

n(Mr,n(θ)−Mr(θ)) ⇒ G(·), where ‘⇒’ denotes weak convergence in l∞(R2), and the

limit is a zero mean Gaussian process with covariance function induced by (18).

Proof of Theorem 4: First we prove the statement given in the part (i) of the theorem. The

proof proceeds in two steps.

Step 1. We will require a notion of convergence of sets (all sets are members of the Borel

σ-field over R
2). For any two sets A1, A2, let A1�A2 := (A1 \ A2) ∪ (A2 \ A1) be the symmetric

difference, and define

d(A1, A2) := sup
k≥1

L{(A1�A2) ∩ Bk}

where L{·} stands for Lebesgue measure in R
2, and Bk = {θ ∈ R

2 : ‖θ‖ ≤ k}. Note that the above

supremum is always finite due to the compactness assumption of the parameter space. First, we

prove that

sup
λ∈Λ

d(Θλ, Θλ,n) → 0, almost surely (19)

as n → ∞ (we refer to Molchanov (1998) for closely related results). For brevity, let us denote

∆λ,n := Θλ�Θλ,n. Fix δ > 0. We start with the decomposition

d(Θλ, Θλ,n) = L{∆λ,n ∩ {θ : |Mr(θ) − λ| < δ}} + L{∆λ,n ∩ {θ : |Mr(θ) − λ| ≥ δ}} .

The first term on the right hand side is dominated by L{{θ : |Mr(θ) − λ| < δ}}. The second term

on the right hand side can be upper bounded using the Markov inequality as follows:

L{∆λ,n ∩ {θ : |Mr(θ) − λ| ≥ δ}} ≤ δ−1

∫
∆λ,n

|Mr(θ) − λ|dθ

≤ δ−1L{∆λ,n} sup
θ∈∆λ,n

|Mr(θ) − λ| .
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Now, for sufficiently large n (not depending on the choice of λ) we have (almost surely) the following

set inclusions

∆λ,n = {θ : Mr(θ) ≥ λ, Mr,n(θ) < λ} ∪ {θ : Mr(θ) < λ, Mr,n(θ) ≥ λ}

⊆ {θ : Mr(θ) ≥ λ, Mr(θ) ≤ λ + ηn} ∪ {θ : Mr(θ) < λ, Mr(θ) ≥ λ − ηn}

⊆ {θ : |Mr(θ) − λ| ≤ ηn}

where

ηn := sup
θ∈R2

|Mr,n(θ) − Mr(θ)|

and does not depend on λ. It follows that

sup
θ∈∆λ,n

|Mr(θ) − λ| ≤ ηn .

In particular, we have for sufficiently large n (independent of λ) that

d(Θλ, Θλ,n) = L{∆λ,n}

≤ L{{θ : |Mr(θ) − λ| ≤ ηn}}

and the bound on the right hand side is uniform in λ. Thus taking the supremum over λ ∈ Λ,

letting n → ∞ and appealing to condition (9) we obtain the asserted asymptotic (19).

Step 2. We now show that for all λ ∈ Λ

√
n(En(λ) − E(λ)) = νn(λ) + op(1), n → ∞, (20)

where op(1) is uniform in λ ∈ Λ. First, observe that

En(λ) − E(λ) =
∫

Θλ,n

(Mr,n(θ) − λ)dθ −
∫

Θλ

(Mr(θ) − λ)dθ

= νn(λ) + Rn , (21)

where

Rn :=
∫

Θλ,n\Θλ

(Mr,n(θ) − λ)dθ −
∫

Θλ\Θλ,n

(Mr,n(θ) − λ)dθ . (22)

Now,

|
√

nRn| ≤
√

n

∫
Θλ
Θλ,n

|Mr,n(θ) − λ| dθ

≤ d(Θλ, Θλ,n)
√

n sup
θ∈Θλ
Θλ,n

|Mr,n(θ) − λ| .
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To prove that |√nRn| = op(1) it suffices to prove this for the right hand side above. To see this,

recall from Step 1 that

sup
θ∈Θλ
Θλ,n

|Mr(θ) − λ| ≤ sup
θ

|Mr,n(θ) − Mr(θ)| ,

where the upper bound does not depend on λ. Consequently, we have that

|
√

nRn| ≤ d(Θλ, Θλ,n)
√

n sup
θ

|Mr,n(θ) − Mr(θ)| .

But it follows from Proposition 2 that

√
n sup

θ
|Mr,n(θ) − Mr(θ)| ⇒ sup

θ
|G(θ)|

where G(·) is the zero mean Gaussian process identified in Proposition 2 and the discussion following

thereafter, and the above supremum is finite almost surely. Note that the weak limit does not

depend on λ. By Step 1 we have that supλ∈Λ d(Θλ, Θλ,n) → 0 as n → ∞, almost surely. Finally,

using Slutzky’s lemma we have that
√

nRn = op(1) uniformly in λ. This result together with (21)

gives the assertion (20).

Finally, we put the pieces together using the continuous mapping theorem in the space of contin-

uous functions [see, e.g., Billingsley (1968)], which yields that νn(λ) converges to the corresponding

integral of the process G(·). To that end, we note that the mapping λ �→ Θλ is continuous w.r.t.

to the metric d, because Mr(·) is continuous and (9) holds. This concludes the proof of the first

statement of the theorem.

The proof of statement (ii) goes along the same lines as above. We indicate only the differences.

Note that ET (λ) = E(λ) because Θλ ∈ T . Also, by definition of Θλ,n(T ),

Hλ,n{Θλ} ≤ Hλ,n{Θλ,n(T )} ≤ Hλ,n{Θλ,n}. (23)

Therefore similarly to (21) we write

ET ,n(λ) − E(λ) = νn(λ) + R̃n

where

R̃n :=
∫

Θλ,n(T )\Θλ

(Mr,n(θ) − λ)dθ −
∫

Θλ\Θλ,n(T )
(Mr,n(θ) − λ)dθ

= Hλ,n{Θλ,n(T )} − Hλ,n{Θλ}

≤ Hλ,n{Θλ} − Hλ,n{Θλ,n} = Rn,
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the last inequality follows from (23) and Rn is defined in (22). Thus |√nR̃n| is bounded using the

bounds on |√nRn| above. Other details of the proof remain unchanged.

Proof of Proposition 1: It follows immediately from the definition that Mr(θ) = M̃r(θ − θ0)

where

M̃r(θ) = P{|ε + ZT θ| ≤ r‖Z‖}

= E

[
F (r‖Z‖ − ZT θ) − F (−r‖Z‖ − ZT θ)

]
.

By symmetry of f

F (r‖Z‖ − ZT θ) − F (−r‖Z‖ − ZT θ) = F (r‖Z‖ + ZT θ) − F (−r‖Z‖ + ZT θ), ∀Z,

and therefore M̃r(θ) = M̃r(−θ), ∀θ. Uniqueness of the mode follows from the Anderson lemma.

Let θ1, θ2 ∈ Θ̃λ, i.e. M̃r(θ1) ≥ λ and M̃r(θ2) ≥ λ. Let θ∗ = αθ1 + (1 − α)θ2 for some

α ∈ (0, 1), and denote I1 = [−r‖Z‖−ZT θ1, r‖Z‖−ZT θ1], I2 = [−r‖Z‖−ZT θ2, r‖Z‖−ZT θ2], and

I∗ = [−r‖Z‖ − ZT θ∗, r‖Z‖ − ZT θ∗]. With this notation

Mr(θ∗) = E

∫
I∗

f(x)dx

The lengths of I1, I2 and I∗ are equal to 2r‖Z‖. However, since min{ZT θ1, Z
T θ2} ≤ ZT θ∗ ≤

max{ZT θ1, Z
T θ2}, the center of I∗ is closer to the origin than one of the centers of I1 and I2.

Therefore by symmetry and unimodality of f , for all Z,

Mr(θ∗) = E

∫
I∗

f(x)dx ≥ E min
{∫

I1

f(x)dx,

∫
I2

f(x)dx
}
≥ λ .

Thus θ∗ ∈ Θ̃λ, and Θ̃λ is convex.

Acknowledgements. The authors wish to thank the referees for their careful reading and

helpful and constructive suggestions.

References

[1] Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex

set and some probability inequalities. Proc. Amer. Math. Soc. 6, 170-176.

27



[2] Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons, New York.

[3] Chernoff, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math. 16, 31–41.

[4] Daniels, H. E. (1954). A distribution–free test for regression parameters. Ann. Math. Statist. 25,

499-513.

[5] Davies, L. (1990). The asymptotics of S-estimators in the linear regression model. Ann. Statist. 18,

1651–1675.

[6] Donoho, D. (1988). One–sided inference about functionals of a density. Ann. Statist. 16, 1390-1420.

[7] Donoho, D. and Huber, P. J. (1982). The notion of breakdown point. In: Festscrift for E. Lehmann,

eds. P. J. Bickel, K. A. Doksum, and J. L. Hodges, Belmont, CA: Wadsworth Press, 157-184.

[8] Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge University Press.

[9] Hartigan, J. A. (1987). Estimation of a convex density contour in two dimensions. J. Amer. Stats.

Assoc. 82, 267-270.

[10] Hough, P. V. (1959). Machine analysis of bubble chamber pictures, International Conference on High

Energy Accelerators and Instrumentation, CERN.

[11] Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab. Theory

Related Fields 81, 79–109.

[12] Groeneboom, P. and Wellner, J. (2001). Computing Chernoff’s distribution. Jour. Comp. and

Graph. Statis. 10, 388–400.

[13] Johnstone, I. M. and Velleman, P. F. (1985). The resistant line and related regression methods.

J. Amer. Statist. Assoc. 80, 1041-1054.

[14] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18, 191–219.

[15] Kiryati, N. and Bruckstein, A. N. (1992). What’s in a set of points? IEEE Trans. Pattern Anal.

Mach. Intell. 14, 496–500.

[16] Leavers, V. (1993). Which Hough transform? CVGIP: Image Understanding 58, 150–164.

[17] Molchanov, I.S. (1998). A limit theorem for solutions of inequalities. Scand. J. of Statistics 25,

235-242.

[18] Müller, D. W. and Sawitzki, G. (1991). Excess mass estimates and tests of multimodality. J. Amer.

Statist. Assoc. 86, 738-746.

28



[19] Pollard, D. (1984). Convergence of Stochastic Processes. Springer Series in Statistics, Springer-Verlag,

New York.

[20] Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters–an excess

mass approach. Ann. Statist. 23, 855-881.

[21] Princen, J., Illingworth, J. and Kittler, J. (1992). A formal definition of the Hough transform:

properties and relationships. J. Math. Imaging and Vision 1, 153-168.

[22] Princen, J., Illingworth, J. and Kittler, J. (1994). Hypothesis testing: a framework for analyzing

and optimizing Hough transform performance. IEEE Trans. Pattern Anal. Mach. Intell. 16, 329–341.

[23] Ritter, G. X. and Wilson, J. N. (1996). Computer Vision Algorithms in Image Algebra. CRC press,

FLorida.

[24] Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79, 871–880.

[25] Rousseeuw, P. J. and Hubert, M. (1999). Regression depth. J. Amer. Statist. Assoc. 94, 388–433,

1999.

[26] Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection. John Wiley

& Sons, New York.

[27] Rousseeuw, P. and Yohai, V. (1984). Robust regression by means of S-estimators. In: Robust and

Nonlinear Time Series Analysis (Heidelberg, 1983), 256–272, Lecture Notes in Statist., 26, Springer,

New York.

[28] Rudin, W. (1987). Real and Complex Analysis. Third edition. McGraw-Hill Book Co., New York.

[29] Stewart, C. V. (1999). Robust parameter estimation in computer vision. SIAM Review 41, 513–537.

[30] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.

Springer Series in Statistics, Springer-Verlag, New York.

29


