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1. Introduction.

1.1. Background and overview. Pricing under demand uncertainty often involves a tradeoff
between learning about customers’ sensitivity to price variations, and earning short-term revenues.
As a motivating example, consider the practice of evaluating loan applications in the financial
sector. Because the applications are evaluated and approved on an individual basis, commercial
banks and other financial institutions that sell short-term loans can offer a different interest rate to
every customer. As noted by Phillips [26] this particular transaction structure in consumer lending,
which is called customized pricing, offers relatively seamless opportunities for price experimentation
to learn about customer behavior. Representing price sensitivity of customers in the form of a
demand curve, a firm can use historical as well as real-time sales data to form estimates of the latter,
while concurrently accumulating revenues from new sales. A key question in this context concerns
the “perishability” of useful sales data, primarily due to changes in the demand environment.
Studies on dynamic pricing with demand model uncertainty have, by and large, focused almost

exclusively on stylized settings where the demand environment, which is to be explored, does not
change over time. The main focus of this paper is to extend this literature by formulating and
studying a time-varying demand environment, and identifying some qualitative insights that arise
from the learning-and-earning tradeoff in that case.
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The particular learning-and-earning problem we consider has the following key features: (a) there
is a seller who can dynamically change the price of its product over time; (b) the seller can observe
the demand for its product, which depends on price and some unknown demand parameters; and (c)
the unknown demand parameters can change over time. The seller’s goal is to accumulate maximal
revenues over a given time horizon, which could be achieved either by focusing on immediate
revenues, or by learning the demand parameters to increase future revenues, or some combination
thereof. Problem feature (c), which is the novel element in this study, motivates the seller to keep
track of changing market conditions. We quantify the total amount of change over the time horizon
using a variation metric in the demand model parameters, and measure the performance of a
dynamic pricing policy using the growth rate of its regret : the expected revenue loss of a policy,
as a function of the time horizon T , compared to a clairvoyant that knows the changing demand
parameters. As will be explained in detail later, we first derive a lower bound on the minimum
achievable growth rate of the regret, which must be incurred by any admissible policy, and then
construct policies which admit a matching upper bound, and are hence optimal in order.

1.2. Main contributions and qualitative insights.

Summary of high level contributions. This paper makes three main contributions to the
literature on dynamic pricing with demand model uncertainty. One main insight highlights a sharp
difference that exists between “smooth” and “bursty” changes in a demand environment. This
is manifest both in terms of the best achievable revenue performance as well as in the markedly
different structure of (asymptotically) optimal policies in each case. Second, our analysis addresses
a three-way tradeoff between learning, earning, and information depreciation; the former two are
clearly central in dynamic pricing problems when there is uncertainty about the model, while the
latter is driven by the fact that uncertainty itself is shifting over time. To see the role of information
depreciation in this tradeoff, we derive several new results that characterize the complexity of the
problem. Comparing our results with previous performance bounds obtained in recent studies on
dynamic pricing with demand learning, we are able to precisely quantify the net effect of a changing
demand environment on the seller’s aggregate revenue. Finally, the policies we construct provide
simple yet interesting guidelines for experimentation in changing environments. In particular, in
the case of smooth changes we develop a weighted least squares estimation procedure that discounts
older observations at an (asymptotically) optimal rate, whereas in the case of bursty changes we
build a joint pricing and detection policy that repetitively tests if there has been a significant
change in the environment.
On smooth versus bursty changes. In this paper we identify two families of changing demand

environments that stand in stark contrast in terms of (a) the best achievable revenue performance,
and (b) the use of pricing as a learning tool. The first family of demand environments is char-
acterized by smooth changes (see the setting formulated in Section 2 and studied in Section 3),
whereas the second family of demand environments is characterized by bursty changes (see Sec-
tion 4). With regard to (a), the case of bursty changes seems to present a harsher environment at
first glance, simply because at any given time the accumulated demand information can become
worthless due to an abrupt change in the demand model. Somewhat surprisingly, our analysis
proves the opposite. The essential intuition behind this observation is that gradual changes can
practically be undetectable, and lead to substantial revenue loss in the case of smooth changes
(see the proof and discussion of Theorem 1). With regard to (b), our analysis offers distinct ways
to implement successful price experimentation in the two families of changing environments men-
tioned above. Knowing that undetected changes will lead to severe inaccuracies in estimation, the
seller needs to discount the weight of older demand observations while estimating the demand
curve in smoothly evolving environments. This gives rise to two practical price experimentation
policies: moving windows; and decaying weights (akin to exponential smoothing). These maintain
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a near-optimal balance between learning, earning, and “information depreciation” (see the proof
and discussion of Theorem 2). In the case of bursty changes, we construct a novel detection policy
that can simultaneously detect and learn changes, incurring significantly smaller regret than the
one characterizing smooth changes (see the proof and discussion of Theorem 4).
Information depreciation in changing environments. A distinguishing feature of our anal-

ysis is the explicit tradeoff between learning a demand curve, earning immediate revenues, and
weighing down obsolete sales data. While the dual tradeoff between learning and earning has been
studied extensively in the literature, there is limited work on the three-way tradeoff between learn-
ing, earning, and information depreciation. A key question here is whether a seller in a changing
environment should collect information faster (or slower) than a seller in a static environment.
More rapid information collection is desirable because the seller needs to constantly adapt to
time-varying market conditions. On the other hand, slower information collection might also seem
preferable because any piece of collected information will lose its value over time, implying that
excessive attempts to accumulate information can cost more than its marginal value. The answer
to these tradeoffs will depend on how “information” is defined. In static demand environments,
the definition of information is fairly obvious; see, e.g., Keskin and Zeevi [22]. In changing envi-
ronments, information collected up to a certain point in time only represents a nominal amount
because part of this information becomes obsolete over time. It turns out that this notion can be
quantified by considering the smallest eigenvalue of a suitably weighted Fisher information matrix,
which measures the relevant amount of information in period t (see Section 3.2). Based on these
definitions, one can revisit the tradeoffs related to the rate of information collection: a seller facing
temporal demand changes should collect a larger amount of nominal information, but maintain a
smaller amount of relevant information than a seller facing no demand change. The gap between
the nominal and relevant information describes the near-optimal information-depreciation rate in
the various demand settings studied in this paper, and moreover, enables us to quantify the time
value of information in changing demand environments. For example, if we consider a policy that
recalls only the data observed within a moving window, the ratio of the window size to the time
horizon describes how fast the policy depreciates information. In light of this, we introduce an
information depreciation factor defined as the ratio of the near-optimal moving window size in a
given environment to time horizon T . On the extreme end of the spectrum, in a static environment,
the information depreciation factor is equal to 1. This paper identifies the value of the information
depreciation factors in some non-stationary settings, and hence quantifies the extent of information
depreciation.
Organization of the paper. This section ends with a review of relevant literature. In Section

2 we formulate the problem, and in Section 3 we analyze it by first deriving a lower bound on the
revenue loss of any given policy, and then designing near-optimal policies that achieve the loss rate
in said lower bound. In Section 4 we consider demand environments that change in bursts, and
construct a near-optimal policy whose performance is substantially better than the near-optimal
performance observed in the case of smooth changes. Section 5 extends the results in Section 3 to the
case of more rapidly changing demand environments, presenting a range of results that characterize
the impact of the volatility in demand environment on the revenue performance. Section 6 contains
some concluding remarks and a numerical example demonstrating the performance of our policies.
Proofs of all results are in appendices, though proof sketches communicating key intuitive ideas
are detailed in the main body.

1.3. Related literature. In recent years, the tradeoff between learning and earning has
become a prominent area of study in the literature on dynamic pricing and revenue management
[see, e.g., 25, 1, 7, 16, 18, 10, 14, 22, 31], as well as in the broader operations management context
[see, e.g., 19]. However, the vast majority of the studies in this area focus on learning in static
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environments in the sense that the ambient problem setting is unknown but does not change over
time. One of the goals of the present paper is to provide a fairly general treatment of learning
and earning in dynamically evolving environments, to study its implications on the value of price
experimentation, and to illustrate the design of dynamic pricing policies that perform well in such
settings.
In the economics literature, there has been considerable effort towards characterizing optimal

learning policies in the presence of Markovian shifts in the demand model. As part of that effort,
Balvers and Cosimano [3] and Beck and Wieland [4] examine dynamic control problems with
autoregressive changes in underlying market-response model, while Rustichini and Wolinsky [28]
and Keller and Rady [21] focus on similar problems in which underlying demand parameters evolve
according to a two-state Markov chain. In all of these studies, the decision maker is assumed to
know the transition rule for the time-varying (and unknown) parameters.
Another research stream that targets tracking problems is the statistics literature on change-

point detection. As discussed in the survey papers by Lai [23] and Shiryaev [29], the essential
motivation for change-point detection has been military and quality control applications, making
these problems distinct from the tracking problems addressed in this study: in traditional change-
point detection, the uncertainty is essentially about the time of change, and it is assumed that the
decision maker knows exactly which model structure will be in place before and after the change;
and this literature typically considers only a “passive” observation process, namely, the decision
maker cannot influence the measurements being taken. These assumptions do not hold in the
dynamic pricing applications that motivate our work. In the broader context of abruptly changing
environments, Garivier and Moulines [17] study the performance of moving window policies in a
multiarmed bandit problem. As mentioned in Section 1.2, and further discussed in the subsequent
sections, the analysis in our formulation prescribes the use of “smooth” information-depreciation
policies (such as moving windows and decaying weights) for gradually changing environments, and
detection policies for abruptly changing environments (see Sections 3 and 4 for details).
In the operations research and management science (OR/MS) literature, the most notable stud-

ies on tracking problems are those of Aviv and Pazgal [2], Besbes and Zeevi [8], Chen and Farias
[12] and den Boer [13]. Aviv and Pazgal [2] consider a revenue management problem with finite
initial inventory, and construct a near-optimal policy, assuming that the underlying demand envi-
ronment evolves according to a discrete-state-space Markov chain, the transition structure of which
is known to the seller. Besbes and Zeevi [8] consider a dynamic pricing problem in which the
demand environment changes at an unknown time in the sales horizon. Assuming that the seller
has perfect knowledge about the demand curves before and after the change, they characterize an
asymptotically optimal policy for jointly pricing and learning said change. More recently, Chen
and Farias [12] find near-optimal policies in a dynamic pricing problem such that the market size
evolves in a Markovian fashion whereas the price-sensitivity of customers remains stationary, and
den Boer [13] studies well-performing pricing policies in a similar problem in which the market
size is unknown and can change over time, but the price-sensitivity of customers is known with
certainty. In contrast to the economics, statistics, and OR/MS studies mentioned above, we con-
sider a fairly general formulation in which (i) the unknown demand model faced by the seller can
change over time, resulting in unobservable changes in the market size and the price-sensitivity of
consumers, and (ii) the decision maker does not know the particular dynamics of changes in the
demand model, and our modeling paradigm affords a broad spectrum of such changes.
Our work is partially related to time series forecasting methods such as moving average and

exponential smoothing, first formulated by Brown [11], later analyzed by Holt [20] and Winters
[32], and studied extensively since. The main goal of such forecasting methods is to predict future
values of a time series, the past values of which are observed in a noisy environment. A distinctive
feature of our work is that the time series data in our formulation, which is composed of demand
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quantities, depends on the seller’s pricing policy, and this necessitates the implementation of price
experimentation to facilitate active learning. Therefore, “learning” and “information depreciation”
need to be carried out simultaneously in our dynamic pricing problem. More importantly, assuming
that the particular dynamic structure of the underlying price-response curve is unknown, we show
that the seller can achieve an asymptotically optimal balance between learning and information
depreciation by discounting older information using a polynomial weighting scheme.
At a high level, our work is also related to the literature on sequential stochastic optimization

problems, which are often tackled by means of stochastic approximation type methods. In theory,
it is possible to use stochastic approximation in dynamic pricing contexts, but unlike our work
the vast majority of the stochastic approximation literature has focused on static environments. In
parallel to our work, Besbes et al. [6] have examined how methods in the stochastic approximation
literature can be used in changing environments, and there are high level similarities between the
changing environments in our paper and in Besbes et al. [6] because both papers use a notion of
cumulative variation in the underlying response functions. But, our work can be distinguished in
several dimensions. Stochastic approximation type methods are designed to locally estimate the
gradient of an unknown objective function and prescribe moving in the estimated gradient direction
using a particular sequence of step sizes. In contrast, the least squares estimation methods we
employ provide global estimates of the objective function and do not rely on predetermined step
size sequences; hence, our policies are structurally different from those in Besbes et al. [6]. More
importantly, we construct and analyze a variety of practically implementable tracking policies such
as (1) moving windows, (2) decaying weights, and (3) joint detection-and-estimation. In contrast,
the work by Besbes et al. [6] is based on the idea of repetitively restarting a stochastic gradient
policy. As pointed out by Besbes et al. [6], this approach is not intended for implementation
purposes but is rather meant to provide a “proof of concept.” In particular, the gradient descent
approach is in general not very suitable for pricing problems as this policy relies on local estimates
and may frequently change prices in a highly unstructured way. In Section 6.3, we present a
numerical experiment comparing the performance of our policies and stochastic approximation
policies. In addition to these differences, our work differs from that of Besbes et al. [6] in terms of
our identification of the sharp contrast between smooth and bursty changes, and the assumptions
it makes on the decision maker’s knowledge insofar as the cumulative variation in the environment.
Once our formulation has been laid out, and the main results have been communicated, we will
resume a more detailed discussion of these distinctions in Section 6.2.

2. Problem formulation.

Basic model elements. Consider a firm, called the seller, that sells a product over a time
horizon of T periods. In each period t= 1,2, . . . the seller chooses a price pt for its product from
a given interval [ℓ, u], where 0< ℓ < u<∞. After setting the price pt, the seller observes demand
Dt, which is given by

Dt = αt +βtpt + ǫt for t= 1,2, . . . (2.1)

where αt ∈ R, βt ∈ R− are the demand model parameters, which are unknown to the seller, and
ǫt are unobservable demand shocks. Assume that {ǫt} are independent and identically distributed
random variables with mean zero and variance σ2, and that there exists a positive constant x0

such that E[exp(xǫt)]<∞ for all |x| ≤ x0 and all t. An important example is where ǫt
iid∼N (0, σ2),

but it is perhaps useful to note that the homogeneity assumption is not essential; it suffices that
the variance of ǫt is bounded, and that the exponential moment condition holds uniformly. For
notational brevity, we let θt = (αt, βt) denote the vector of unknown demand parameters in period
t, and θ = (θ1, θ2, . . .) denote the sequence of demand parameter vectors. Let Θ be a compact
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rectangle in R×R−, from which the values of θt are chosen. Given a parameter vector θ= (α,β)∈Θ
and a price p∈ [ℓ, u], the seller’s expected single-period revenue function is

r(p, θ) := p (α+βp). (2.2)

We denote by ϕ(θ) the feasible price that maximizes the function r(·, θ), that is

ϕ(θ) := argmax{r(p, θ) : p∈ [ℓ, u]}. (2.3)

To ensure that the revenue-maximizing price is always feasible, we assume that ϕ(θ) lies in the
interior of [ℓ, u] for all θ= (α,β) ∈Θ. Thus, β is strictly negative and ϕ

(

(α,β)
)

=−α/(2β) for all
(α,β)∈Θ.
Changing demand environment: the constant-budget problem. We measure the amount

of change in T periods with the following quadratic variation metric: define a partition of {1, . . . , T}
as any set of periods {t0, t1, . . . , tK} satisfying 1 ≤ t0 < . . . < tK ≤ T for some K = 1,2, . . . , and
denote by P the set of all partitions of {1, . . . , T}. Given time horizon T , and a demand vector
sequence θ= (θ1, . . . , θT ), let

Vθ(T ) := sup
{t0,t1,...,tK}∈P,K≥1

{ K
∑

k=1

‖θtk − θtk−1
‖2
}

, (2.4)

where ‖ · ‖ denotes the Euclidean norm of a vector. The values of θt are chosen from Θ such that
the demand vector sequence θ= (θ1, . . . , θT ) ∈ΘT satisfies

Vθ(T )≤B for T = 1,2, . . . (2.5)

where B > 0. For notational brevity, we denote the set of demand vector sequences θ satisfying
(2.5) as follows:

V(T,B) = {θ : Vθ(T )≤B}. (2.6)

Inequality (2.5) describes a setting in which nature has a finite quadratic variation budget to change
the demand parameters throughout the time horizon. We refer to this setting as the constant-
budget problem. In Section 4, we analyze a special case of the constant-budget problem in which
the changes occur in bursts, and in Section 5, we extend our results to the case of more rapidly
changing environments where the upper bound in (2.5) can depend on (and increase with) T .
There is a natural upper bound on the quadratic variation metric: Vθ(T )≤ λT for all θ ∈ΘT ,

where λ=max
{

‖θ− θ̃‖2 : θ, θ̃ ∈Θ
}

. Therefore, we assume without loss of generality that B ≤ λT .

(Note that, if B >λT , then we repeat our entire analysis by replacing B with B̃ = λT in (2.5), and
obtain the same performance guarantees because B̃ <B.)
Pricing policies, induced probabilities, and performance metric. Let Ht denote the

vectorized history of demands and prices observed through the end of period t, that is, Ht =
(D1, p1, . . . ,Dt, pt). Define a policy as a sequence of functions π= (π1, π2, . . .), where π1 is a constant
function, and for all t= 1,2, . . . , πt+1 is a function from R

2t into [ℓ, u], mapping Ht to the price
that will be charged in period t+1. Any such policy π constructs a nonanticipating price sequence
p= (p1, p2, . . .), where pt is determined by the function πt, and hence adapted to Ht−1. Note that
this definition excludes randomized pricing policies.
Given a sequence of demand parameter vectors θ= (θ1, θ2, . . .) and a pricing policy π, we define

a family of probability measures on the sample space of demand sequences D = (D1,D2, . . .) as
follows. Let Pπ

θ
be a probability measure satisfying

P
π
θ
(D1 ∈ dξ1, . . . ,DT ∈ dξT ) =

T
∏

t=1

Pǫ(αt +βtpt + ǫt ∈ dξt) for ξ1, . . . , ξT ∈R, (2.7)
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where Pǫ(·) is the probability measure governing the random variables {ǫt}, and p= (p1, p2, . . .) is
the price sequence formed under policy π and demand realization D= (D1,D2, . . .).
The performance metric we use in this paper is T -period regret, defined as

Rπ(T,B) = sup
{

∆π
θ
(T ) : θ ∈ V(T,B)

}

, (2.8)

where for T =1,2, . . . and θ= (θ1, . . . , θT )

∆π
θ
(T ) = E

π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)}

, (2.9)

E
π
θ
(·) is the expectation operator associated with the probability measure Pπ

θ
(·), r∗(θ) := r

(

ϕ(θ), θ
)

is the optimal single-period revenue function, and V(T,B) is as defined in (2.6). The regret of
a policy is the worst-case expected normalized revenue loss relative to a clairvoyant policy that
knows the value of θt in every period. Given the normalization in (2.9), this can also be interpreted
as the expected number of lost sales opportunities due to not knowing the underlying demand
model. Under either interpretation, when the regret of a policy is sublinear in T , the policy is long-
run-average optimal, and more generally, smaller regret corresponds to uniformly better revenue
performance.

3. Analysis of the constant-budget problem.

3.1. A lower bound on regret. Our first result is a theoretical lower bound on the minimum
achievable regret of any pricing policy in the constant-budget problem setting described in the
preceding section.

Theorem 1. (lower bound on regret) There exists a finite positive constant c such that
Rπ(T,B)≥ cB1/3T 2/3 for any pricing policy π and time horizon T ≥ 3.

Theorem 1 shows that the T -period regret of any given policy is at least on the order of T 2/3. A
policy π that achieves the loss rate in Theorem 1, i.e., any policy π such that Rπ(T ) = O(T 2/3)
will hereafter be called first-order optimal, and rate optimal if the dependence on both B and T
matches the lower bound.
Rough proof sketch. The main intuition behind this result is that nature can change the

demand parameters in a gradual manner such that it is very costly to detect changes and learn the
new demand curve after a change. By carefully choosing a parameter change with squared norm of
order T−1/3, nature makes sure that: either (i) no detection test can identify this change without
incurring a loss of order T 1/3, or (ii) the cost of learning the new parameter vector is of order T 1/3.
Within its change budget, nature can use T 1/3 such parameter changes, implying that any given
policy must have a loss of order T 2/3, even if it is designed to simultaneously detect and learn.
To prove arguments (i) and (ii), we use the Kullback-Leibler divergence to quantify the difference
between the likelihood of events under the probability measures before and after a potential change.
For a given policy, if the Kullback-Leibler divergence is smaller than a threshold η, then we derive
argument (i) via hypothesis testing results in information theory. In particular, a Fano-type lower
bound on the error probabilities in a detection problem [cf. 30, Theorem 2.2] implies that there is a
significant probability of not detecting the potential change, which consequently leads to a revenue
loss of order T−1/3N in the N periods following the potential change. On the other hand, if the
Kullback-Leibler divergence is larger than the threshold η, then we note that, despite the small
amount of change, the cost of gathering information on the new demand parameters is bounded
away from zero. This implies that the revenue loss until the next change will be of order T 1/3, as
expressed in argument (ii). If there are N periods between two changes, then arguments (i) and
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(ii) imply that the revenue loss between these two changes is at least of order (T−1/3N) ∧ T 1/3,
where ∧ denotes the minimum of two numbers. We therefore deduce that nature can cause a loss
of order T 2/3 within T periods, by choosing N to be of order T 2/3 and spreading out potential
changes throughout the time horizon. Q.E.D.
Discussion and key insights. The derivation of Theorem 1 brings forth a key insight about the

type of policies that could perform well in the setting described in the preceding section. Specifically,
the seller can face a sequence of smooth changes that are virtually undetectable, making any effort
to detect changes perform poorly. Therefore, successful policies in this environment should not
focus on detecting every single change, but instead, they need to depreciate information at some
rate, with the hope that the negative effects of undetectable smooth changes will be filtered out
sufficiently fast. The next subsection provides a general estimation procedure that implements this
idea by assigning non-increasing weights to older demand observations.
Besbes et al. [6] provide a lower bound on regret that grows proportional to T 2/3 in a stochastic

optimization setting, and their proof relies on the similar use of Kullback-Leibler divergence and
Tsybakov’s Theorem 2.2 [30], which is a commonly used proof technique in deriving such lower
bounds [see also 7, 10]. Our lower bound in Theorem 1 establishes that the complexity of our
parametric dynamic pricing problem is in the same order of magnitude as nonparametric stochastic
optimization problems in changing environments.

3.2. A weighted least squares estimator. In what follows we describe a procedure to
estimate θt+1 given the history of demands and prices through the end of period t. Let wt =
(wt

1, . . . ,w
t
t) be a t× 1 vector of nonnegative real numbers. Given history vector Ht and weight

vector wt, set the weighted least squares estimator of θt+1 to be

θ̂t+1 =argminθ{SSEt(θ,w
t)}, (3.1)

where SSEt(θ,w
t) =

∑t

s=1w
t
s(Ds −α− βps)

2 for θ = (α,β). If the matrix
[ ∑t

s=1 wt
s

∑t
s=1 wt

sps∑t
s=1wt

sps
∑t

s=1 wt
sp

2
s

]

is

invertible, then the solution of the weighted least squares problem (3.1) is

θ̂t+1 =

[

α̂t+1

β̂t+1

]

=

[
∑t

s=1w
t
s

∑t

s=1w
t
sps

∑t

s=1w
t
sps

∑t

s=1w
t
sp

2
s

]−1 [ ∑t

s=1w
t
sDs

∑t

s=1w
t
sDsps

]

. (3.2)

Let us now re-express (2.1) in the following compact form:

Dt = Xt · θt + ǫt for t= 1,2, . . . (3.3)

where Xt =
[

1
pt

]

. Then, (3.2) and (3.3) imply that

θ̂t+1 − θt+1 =

( t
∑

s=1

wt
sXsX

T

s

)−1
(

t
∑

s=1

wt
sXsX

T

s (θs − θt+1) +
t
∑

s=1

wt
sXsǫs

)

=
(

J t
t

)−1Wt
t +

(

J t
t

)−1Mt
t for all t= 2,3, . . . , (3.4)

where J t
q is the empirical Fisher information given by

J t
q =

q
∑

s=1

wt
sXsX

T

s , (3.5)

Wt
q =

∑q

s=1w
t
sXsX

T

s (θs − θt+1), and Mt
q =

∑q

s=1w
t
sXsǫs . The first term on the right hand side of

(3.4) is the estimation inaccuracy due to the changing environment, and the second term is the
estimation error due to noise.
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3.3. Unknown variation budget: designing first-order optimal policies. In this sub-
section we construct policies for the case where the seller does not know the variation budget B
at the outset. We first define two families of pricing policies that rely on (i) price experimentation
with a carefully chosen frequency, and (ii) the use of weighted least squares estimation with a par-
ticular sequence of weights. Then, we prove that these families of policies achieve O(T 2/3) regret
in T periods, and hence are first-order optimal.
Price experiments. The policies we consider in this section conduct price tests with a certain

frequency in the following manner: let κ ≥ 2, and x1, x2 be two distinct test prices in [ℓ, u]. To
construct the set of periods, X1, X2, at which the test prices will be charged, let n := ⌈κT 1/3⌉, and

Xi :=
{

t= kn+ i : k= 0,1,2, . . . , ⌊T/n⌋
}

for i= 1,2. (3.6)

In period t, charge the price

pt =







x1 if t∈X1

x2 if t∈X2

ϕ(ϑt) otherwise,
(3.7)

where ϑt is the truncated estimate that satisfies ϑt := argminϑ∈Θ{‖ϑ− θ̂t‖}. In the above experi-
mentation scheme, the frequency of price tests is 2/n, which is of order T−1/3.
Moving windows and gradually decaying weights. Our first policy estimates the unknown

demand vector using only the most recent price tests within a moving time window, forgetting
all data outside said window. The moving window policy with parameters κ,x1, x2, denoted by
M(κ,x1, x2), chooses prices according to (3.6) and (3.7), and uses a sequence of weight vectors
{w1,w2, . . .} such that wt = (wt

1, . . . ,w
t
t) for t=1, . . . , T , where

wt
s =

{

1 if s ∈X and s≥ t−n2

0 otherwise
(3.8)

for 1≤ s≤ t, and X =X1 ∪X2.
Our second policy puts decreasing weights on older observations in a gradually decaying manner.

The decaying weights policy with parameters µ,κ,x1, x2, denoted by W (µ,κ,x1, x2), selects prices
according to (3.6) and (3.7), and uses a sequence of weight vectors {w1,w2, . . .} such that wt =
(wt

1, . . . ,w
t
t) for t=1, . . . , T , where

wt
s =















(

1 − t− s̃

n2
+

(t− s̃)1−µ

n2

)

1
µ

+

if s ∈X

0 otherwise

(3.9)

for 1 ≤ s ≤ t, 0 < µ ≤ 1, and s̃ = s + I{s ∈ X1}. Under W (µ,κ,x1, x2), the weight given to any
observation decreases smoothly via the decay parameter µ. An extreme choice for µ is 1, in which
case the weights in (3.9) become wt

s =
(

1− (t− s̃+ 1)/n2
)

+
I{s∈X} for 1≤ s ≤ t, implying that

weights decay linearly over time. As µ approaches zero, we achieve slower decay rates.
Note that, forM(κ,x1, x2) andW (µ,κ,x1, x2), the empirical Fisher information in the estimation

problem (3.1-3.2) has the following form:

J t
t = X I t

t (3.10)

for all t≥ n2, where

X=

[

2 x1 +x2

x1 +x2 x
2
1 +x2

2

]

, (3.11)

and I t
q =

1
2

∑q

s=1w
t
s ≥ 0 represents the “relevance” in period t of the information in period q.

Performance of the moving window and decaying weights policies. We now show that
the two policy families defined above are first-order optimal. In our first result, we derive upper
bounds on the aggregate estimation inaccuracy due to changes in demand parameters.
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Lemma 1. (upper bound on aggregate estimation inaccuracy) There exists a finite
positive constant c1, such that under either M(κ,x1, x2) or W (µ,κ,x1, x2)

T−1
∑

t=n2

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ c1T
2/3 (3.12)

almost surely for all T =1,2, . . . and θ ∈ V(T,B).

To derive Lemma 1, we first note that a change after periods s contributes to the estimation inac-
curacy in period t if and only if wt

s > 0, i.e., the demand observation in period s has positive weight
in period t. Therefore, in a changing environment, the seller needs to: (i) avoid giving excessive
weight to past observations to limit the contribution of a parameter change to the estimation inac-
curacy; and at the same time, (ii) give non-negligible weight to past observations to accumulate
information. More formally, (i) can be viewed as an information-depreciation condition that guar-
antees that the norm of Wt

t grows sufficiently slowly. On the other hand, condition (ii), which can
be interpreted as a learning condition, guarantees that the eigenvalues of J t

t grow sufficiently fast.
Moving windows and decay weights are two distinct ways to resolve the tradeoff between these
information-depreciation and learning conditions. To obtain the bound in (3.12) for M(κ,x1, x2),
the size of the moving window should be small enough to meet the information-depreciation condi-
tion (i), but also large enough to meet the learning condition (ii). Similarly, for W (µ,κ,x1, x2), the
weight decay rate should be fast enough to satisfy (i), and simultaneously slow enough to satisfy
(ii). Lemma 1 states that the careful selection of window sizes and decay rates in (3.8) and (3.9),
respectively, leads to an O(T 2/3) aggregate estimation inaccuracy, which grows at the first-order
optimal rate described in Theorem 1.
Our second result characterizes how estimation errors due to noise decay over time.

Lemma 2. (exponential decay of estimation error due to noise) Let π be either
M(κ,x1, x2) or W (µ,κ,x1, x2). Then there exists a finite positive constant ρ such that

P
π
θ

{∥

∥

(

J t
t

)−1Mt
t

∥

∥> z, I t
t > γ

}

≤ 4 e−ρ(z∧z2)γ (3.13)

for all θ= (θ1, . . . , θT ), z > 0, γ > 0, and t≥ 2.

Lemma 2 states that the tail probability of the estimation error
(

J t
t

)−1Mt
t decays exponentially,

and the rate of this decay is determined by the amount of relevant information in period t, namely
I t
t =

1
2

∑t

s=1w
t
s ≥ 0. Using Lemmas 1 and 2 we obtain the following performance bound for moving

window and decaying weights policies.

Theorem 2. (first-order optimality) Let π be eitherM(κ,x1, x2) orW (µ,κ,x1, x2). Then
there exists a finite positive constant C such that Rπ(T )≤C T 2/3 for all T ≥ 3.

Remark 1. The constant C in the preceding theorem is linear in B.

Discussion. The preceding theorem establishes the first-order optimality of the policies con-
structed in this subsection. The main intuition behind this result is a careful balancing of three
goals: (i) learning; (ii) earning; and (iii) information depreciation. The experimentation scheme
in (3.6-3.7), and the weights in (3.8-3.9) ensure that the information metric I t

t is proportional to
T 1/3, and as shown in Lemma 1, this leads to a first-order optimal balance between learning and
information depreciation. In Theorem 2, we show that the same experimentation scheme and choice
of weights also achieve a first-order optimal balance between learning and earning: by maintaining
the relevant amount of information in the order of T 1/3, the seller guarantees that the aggregate
losses due to estimation inaccuracy and estimation error are O(T 2/3). To keep the relevant amount
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of information at that level while depreciating historical information at the rate given in Lemma 1,
the seller conducts O(T 2/3) price tests, implying that the cost of experimentation is also of order
T 2/3. These two relations between experimentation cost, estimation error, and estimation inaccu-
racy provide a fine balance between learning, earning, and information depreciation, from which
we derive the first-order optimal performance bound in Theorem 2.

3.4. Known variation budget: designing rate optimal policies. We now consider the
case where the seller knows the variation budget B, and construct a family of policies that are rate
optimal.
Price experiments. To adapt to a known B parameter, consider the following modification of

the price experimentation scheme in Section 3.3. Given κ, let n := ⌈κB−1/3 T 1/3⌉, and

Xi :=
{

t= kn2 +(i− 1)n+ q : k= 0,1, . . . , ⌊T/n2⌋, q= 1, . . . , n
}

(3.14)

for i= 1,2. The price to be charged in period t is given by

pt =







x1 if t∈X1

x2 if t∈X2

ϕ(ϑt) otherwise,
(3.15)

where x1 and x2 are two distinct test prices in [ℓ, u], and ϑt is the truncated estimate that satisfies
ϑt := argminϑ∈Θ{‖ϑ− θ̂t‖}. Because B ≤ λT , we ensure that n≥ 2 by choosing κ≥ 2λ1/3, where
λ is a constant independent of B and T . This experimentation scheme, like its counterpart in the
preceding subsection, conducts price tests with a frequency of 2/n, which is of order T−1/3.
Moving windows. Consider the following modification of the moving window policy defined

in Section 3.3: given B > 0, suppose that the moving window policy with parameters κ,x1, x2,
denoted by MB(κ,x1, x2), charges the prices in (3.14-3.15), and uses a sequence of weight vectors
{w1,w2, . . .} such that wt = (wt

1, . . . ,w
t
t) for t=1, . . . , T , where

wt
s =

{

1 if s ∈X and s≥ t−n2

0 otherwise,
(3.16)

for 1 ≤ s ≤ t, and X = X1 ∪ X2. (We also note that, as in Section 3.3, it is possible to construct
a counterpart of MB(κ,x1, x2) that depreciates information with decaying weights rather than
moving windows.) UnderMB(κ,x1, x2), the empirical Fisher information in the estimation problem
(3.1-3.2) has the form given in (3.10). This allows us to prove counterparts of Lemmas 1 and 2 for
MB(κ,x1, x2), and consequently derive the following rate optimal performance guarantee.

Theorem 3. (rate optimality) Let π be MB(κ,x1, x2). Then there exists a finite positive
constant C such that Rπ(T,B)≤CB1/3 T 2/3 for all T ≥ 3.

Recall that, as shown in Theorem 2, the moving window and decaying weights policies described
in Section 3.3 achieve O(T 2/3) regret without relying on the a priori knowledge of B. Because the
constant C in Theorem 2 grows linearly in B, the difference between that constant and the O(B1/3)
constant in Theorem 3 helps us quantify the “price” of adapting to an unknown variation budget.
This difference stems from the fact that, when B is unknown, the seller can act as if B equals a
known constant, and this would make the aggregate squared inaccuracy, namely

∑

t ‖(J t
t )

−1Wt
t‖2,

grow proportional to the quadratic variation, which is bounded above by B.
Besbes et al. [6] focus on the case of a known variation budget, and use a stochastic approximation

policy that is restarted with a predetermined frequency to obtain a performance guarantee similar
to Theorem 3 [see 6, Section 5.2, EGS algorithm]. We will revisit this policy in Section 6.3 and
compare its performance with the performance of our policies in Section 3.3 that do not rely on
the knowledge of B.
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4. Learning and detection of bursty changes. In this section, we consider the case of
bursty changes that are characterized by a positive minimum change constraint: suppose that there
exists a positive constant δ satisfying

dθ := inf
{

‖θt − θs‖ : θt 6= θs, 1≤ s < t≤ T
}

≥ δ. (4.1)

In contrast to gradual and potentially undetectable changes that can happen in the setting studied
in the preceding section, condition (4.1) states that any pair of distinct values attained by the
sequence θ= (θ1, θ2, . . .) are at least δ apart from each other. This implies that changes happen in
bursts; that is, whenever the demand vector changes, its Euclidean norm has to change by at least
δ. Combined with condition (2.5), this implies that there can be at most C̄ = ⌈B/δ2⌉ changes. An
extreme example in the family of admissible changing environments described by conditions (2.5)
and (4.1) is the case of a single change-point (over the entire time horizon). In comparison with
traditional change-point detection problems, the distinguishing feature of our problem is the need
to learn the demand parameters before and after the change, which makes it more difficult to detect
the change-point. Another example is the case of switching back and forth between two distinct
values of demand parameters. The repetitive nature of this example requires conducting multiple
detection tests, which could lead to multiple false alarms before a non-spurious change-point is
detected, unlike single change-point detection tests. In general, the demand parameter sequence
θ= (θ1, θ2, . . .) can take on C̄ +1 distinct values, all of which are initially unknown to the seller.
With the addition of the bursty change condition (4.1), we update our performance metric as

follows: let
Rπ(T,B, δ) = sup

{

∆π
θ
(T ) : θ ∈ V(T,B, δ)

}

, (4.2)

where ∆π
θ
(T ) is as defined in (2.9), and V(T,B, δ) = {θ : Vθ(T )≤B,dθ ≥ δ}. Note that V(T,B, δ)

is a subset of its counterpart in the preceding section, namely V(T,B), which is given in (2.6).
One of the key questions we would like to investigate in this section is whether we can achieve
significantly smaller regret by imposing the bursty change condition (4.1) on the set of admissible
demand parameter sequences.

4.1. Dynamic pricing with simultaneous learning and detection. Assuming the seller
knows that (4.1) holds, we design a well-performing pricing policy that detects change-points and
learns unknown demand parameters simultaneously.
Price experiments. Let κ and η be two positive real numbers, and x1, x2 be two distinct

test prices in [ℓ, u]. The detection policy with parameters η,κ,x1, x2, denoted by D(η,κ,x1, x2),
divides the time horizon into cycles of n := ⌈κT 1/2⌉ periods, and conducts price experiments in the
first 2m periods of every cycle, where m := ⌈κ logT ⌉. To be precise, the sets of periods at which
D(η,κ,x1, x2) conducts price experiments are given by

Xik :=
{

t= kn+(i− 1)m+ q : q= 1,2, . . . ,m
}

(4.3)

for i= 1,2, and k= 0,1,2, . . . , ⌊T/n⌋. In period t, D(η,κ,x1, x2) charges the price

pt =







x1 if t∈X1

x2 if t∈X2

ϕ(ϑt) otherwise,
(4.4)

where Xi =
⋃

k Xik for i= 1,2, and ϑt is the truncated estimate that satisfies ϑt := argminϑ∈Θ{‖ϑ−
θ̂t‖}. In this experimentation scheme, the frequency of price tests is 2m/n, which is of order
T−1/2 logT .
Joint change-point detection and parameter estimation.We will now describe a detection

scheme that dynamically updates the weight vector sequence {wt} of the weighted least squares
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estimator in (3.2) by placing zero weight on periods that precede a detected change-point. Fix
k ∈ {0, . . . , ⌊T/n⌋}. Denote by D̄ik the average demand observed during the periods in Xik, that is

D̄ik := m−1
∑

t∈Xik
Dt. (4.5)

Construct the binary-valued detection process χ := {χ0, χ1, . . .} as follows: fix χ0 = 1, and define
the latest detection cycle as L(k) := max{τ ≤ k : χτ = 1}. With this formalism a price experiment
in period s occurs after the latest detection (prior to period t) if and only if s > nL(t/n). For every
cycle k= 0,1, . . . , ⌊T/n⌋, let

χk+1 =

{

1 if supi,k′

{

|D̄ik − D̄ik′ | : i=1,2, L(k)≤ k′< k
}

> η
0 otherwise,

(4.6)

where the supremum of the empty set is taken to be −∞. The detection test in (4.6) repeatedly
checks whether there has been a change in the average demand observed since the latest detection.
To make a comparison, it is necessary to compute at least one average demand estimate after each
detection, and hence, it is not possible to have two consecutive detections: for any given cycle k
with χk =1, we have L(k) = k and there is no k′ satisfying L(k)≤ k′ <k, implying that χk+1 = 0.
In cycle k = 0,1,2, . . . , ⌊T/n⌋, the seller observes {D̄ik′}i=1,2, k′=0,1,...,k by the end of period

(k + 1)n, which implies that χk+1 is a function that maps demand in the first (k + 1)n periods,
D1,D2, . . . ,D(k+1)n, into {0,1}. Based on the realization of the detection process χ, D(η,κ,x1, x2)
uses the following weights for estimation:

wt
s =

{

1 if s ∈X and s > nL(t/n)
0 otherwise,

(4.7)

for 1≤ s≤ t, where X =X1∪X2. In other words, D(η,κ,x1, x2) recalls all available data as long as
it does not detect a change, and forgets all past data immediately after it detects a change (hence
it restarts learning whenever the value of the process χ switches from 0 to 1).

4.2. Performance of the detection policy. In this section, we prove that the regret of the
detection policy described above is of order T 1/2 logT . To derive this result, we first define the
random times at which detections happen. Using these random times, we decompose the regret
according to different sources of loss, and then bound each of them.
Suppose that the unknown parameter sequence θ = (θ1, θ2, . . .) has C change-points in the first

T periods, and denote by t∗j the jth change-point. That is, let 1 = t∗0 < t
∗
1 < . . . < t

∗
C < t

∗
C+1 = T +1,

where t∗j = inf{t≥ t∗j−1 : θt 6= θt∗
j−1

} for j = 1,2, . . . ,C. Recalling that D(η,κ,x1, x2) divides the time

horizon into cycles of n= ⌈κT 1/2⌉ periods, we let τ∗j := ⌊(t∗j − 1)/n⌋ be the cycle of the jth change-
point, and τ̂+j and τ̂−j be the cycles containing the first and second declared detections, respectively,
between the cycles of jth and (j+1)st change-points (if there is no detection between the jth and
(j+1)st change-points then we set τ̂+j = τ̂−j = τ∗j+1). More formally, define τ̂+0 := 0, and put

τ̂+j := inf{τ > τ∗j : χτ = 1}∧ τ∗j+1 for j = 1,2, . . . ,C, (4.8)

τ̂−j := inf{τ > τ̂+j : χτ = 1}∧ τ∗j+1 for j = 0,1, . . . ,C, (4.9)

where the infimum of the empty set is taken to be ∞. The definitions in (4.8-4.9) are interpreted
as follows: in (4.8), we label the first declared detection after the jth change-point as a “correct”
detection, regardless of delay. As will be shown below, the loss due to delays of correct detections
is reasonably small for our policy. If a correct detection is followed by any further such declarations
before the (j + 1)st change-point, we consider all these subsequent events as “false” detections
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because there is no actual underlying change. In (4.9), we label the earliest of the false detections
after the jth change-point.
In the context of joint change-point detection and parameter estimation, the loss of a policy

stems from four sources: (i) delay in correct detections; (ii) false alarms; (iii) estimation errors due
to noise; and (iv) cost of experimentation. Let us first decompose the T -period regret with respect
to losses due to (i-iii) and (iv). Because the cardinality of the experimentation set X =X1 ∪X2 is
at most 2m⌈T/n⌉ ≤ 8T 1/2 logT , we have

∆π
θ
(T ) = E

π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)}

= E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t∈X}
}

+ E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

≤ 2m

⌈

T

n

⌉

+ E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

≤ 8T 1/2 logT + E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

. (4.10)

The first term on the right hand side above is the loss due to price experimentation, (iv), whereas
the second term is the sum of losses due to the other three sources (i-iii). Now, let us decompose
the second term to see the tradeoff between (i), (ii) and (iii):

E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

= E
π
θ

{ C
∑

j=0

nτ∗j+1
∑

s=nτ∗
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s 6∈ X}
}

=
C
∑

j=0

E
π
θ

{ nτ̂+
j

∑

s=nτ∗
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s 6∈ X}

+

nτ̂−
j

∑

s=nτ̂+
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s 6∈ X}

+

nτ∗j+1
∑

s=nτ̂−
j

+1

(

1− r(ps, θs)

r∗(θs)

)

I{s 6∈ X}
}

. (4.11)

The first, second, and third sums inside the expectation on the right hand side above are the losses
due to delay of true detections, noise in estimation, and early false alarms, respectively. Our next
task is to find upper bounds on these sums. In the analysis of the losses associated with delayed
correct detections (or early false alarms), the following lemma is key.

Lemma 3. (polynomial decay of detection error) Let π be D(η,κ,x1, x2) where κ =
cǫ/(η ∧ η2) and cǫ is a finite positive constant characterized by the distribution of {ǫt}. For all i
and k, let ǭik :=m−1

∑

t∈Xik
ǫt, with m= ⌈κ logT ⌉. Then,

P
π
θ

{∣

∣ǭik
∣

∣≥ 1
2
η
}

≤ 2T−3/2, (4.12)

for all T ≥ 3, θ ∈ΘT , i= 1,2, and k =0,1,2, . . . , ⌊T/n⌋.
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Remark 2. The constant cǫ, which appears in the above lemma as well as Lemmas 4, 5, and
Theorem 4 below, is independent of T , B, δ, and completely characterized by the exponential

moment condition, E[exp(xǫt)]<∞ for all |x| ≤ x0. For example, in the case ǫt
iid∼N (0, σ2), we have

cǫ = 12σ2. A general expression of cǫ is provided in the first paragraph in the proof of Lemma 3.
Using Lemma 3, we first obtain the following upper bound on the loss due to detection delay.

Lemma 4. (loss due to delay of true detections) Let π be D(η,κ,x1, x2) with η =
|x1−x2|

8(1∨x1∨x2)
δ and κ = cǫ/(η ∧ η2), where cǫ is the constant given in Lemma 3, and ∨ denotes the

maximum of two numbers. Then there exists a finite positive constant C1 such that

E
π
θ

{ nτ̂+
j

∑

s=nτ∗
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s 6∈ X}
}

≤ C1

√
T (4.13)

for all T ≥ 3 and θ ∈ V(T,B, δ).

In contrast to results in the single change-point detection literature, where the only uncertainty is
about the time of change, the preceding lemma is proven without prior knowledge of the environ-
ment pre- and post-change. In this lemma, to estimate the expected loss due to detection delay we
first analyze the detection test in (4.6), which repeatedly compares the average demand estimates
in the current cycle k with the ones in cycles L(k), . . . , k − 1, where L(k) = max{τ ≤ k : χτ = 1}
denotes the latest detection cycle before k. As long as the demand parameter vector in cycle τ∗j +1
is significantly different than one of the demand parameter vectors in cycles L(τ∗j ), . . . , τ

∗
j , there is

a high probability of detecting the jth change-point. But, if almost all of the demand parameter
vectors in cycles L(τ∗j ), . . . , τ

∗
j are the same as the demand parameter vector in cycle τ∗j +1, this

means that the unknown demand parameter sequence must have switched back to a value that was
prevalent in the cycles that occurred after L(τ∗j ). In that case, it is unlikely that the detection test
(4.6) will identify the jth change-point, but this would not lead to substantial loss because almost

all of the information accumulated since cycle L(τ∗j ) will be relevant in cycle τ∗j +1. We formalize
this argument in the proof of Lemma 4, and show that the loss due to detection delay is of order√
T under our detection policy.
Our next result builds on Lemma 3 to show that the loss due to false alarms is of order

√
T .

Lemma 5. (loss due to false alarms) Let π be D(η,κ,x1, x2) with η = |x1−x2|
8(1∨x1∨x2)

δ and

κ = cǫ/(η ∧ η2), where cǫ is the constant given in Lemma 3. Then there exists a finite positive
constant C2 such that

E
π
θ

{ nτ∗j+1
∑

s=nτ̂−
j

+1

(

1− r(ps, θs)

r∗(θs)

)

I{s 6∈ X}
}

≤ C2

√
T (4.14)

for all T ≥ 3 and θ ∈ V(T,B, δ).

It is worth noting that the setting studied in this section might include multiple false alarms
because there is potentially more than one bursty change, and accordingly, the detection test (4.6)
is repeated throughout the time horizon. Lemma 5 provides an upper bound on the revenue loss
because of all such false alarms between the jth and (j+1)st change-points.
Having found O(

√
T ) upper bounds on the losses due to false detections, we prove in the following

lemma; the loss due to estimation noise is also O(
√
T ).
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Lemma 6. (loss due to estimation noise) Let π be D(η,κ,x1, x2). Then there exists a
finite positive constant C3 such that

E
π
θ

{ nτ̂−
j
∑

s=nτ̂+
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s 6∈ X}
}

≤ C3

√
T (4.15)

for all T ≥ 3 and θ ∈ΘT .

The preceding lemma provides an upper bound on the revenue loss incurred between the true
detection after the jth change-point and the first false detection before the (j+1)st change-point.
During this time interval, there are no changes in demand parameters and no detections, meaning
that there is no estimation inaccuracy due to changes, and the revenue loss is entirely caused by
estimation error due to noisy demand observations. By a straightforward modification of Lemma
2, the price experimentation scheme in (4.3-4.4) implies that the loss due to estimation noise in
this case is at most of order

√
T .

In the final result of this section, we combine Lemmas 4, 5, and 6 with inequality (4.11) to obtain
the following performance bound.

Theorem 4. (near-optimality of the pricing-detection policy) Let π be D(η,κ,x1, x2)
with η = |x1−x2|

8(1∨x1∨x2)
δ and κ= cǫ/(η ∧ η2), where cǫ is the constant given in Lemma 3. Then there

exists a finite positive constant C such that Rπ(T,B, δ)≤C T 1/2 logT for all T ≥ 3.

Remark 3. We note that our detection policy, D(η,κ,x1, x2), uses the knowledge of δ in the
choice of parameters η and κ, but does not require the knowledge of B. The constant C in the
preceding theorem is O(δ−2) as δ ↓ 0. Note that as δ ↓ 0 the case of bursty changes converges to the
case of smooth changes, and in the limit, the performance guarantee in Theorem 2 will eventually
become tighter than the one in Theorem 4.

According to Theorem 4, the T -period regret of our detection policy is O(T 1/2 logT ). To put this
result in perspective, we refer readers to two existing lower bounds: Keskin and Zeevi [22] derive
a lower bound of order T 1/2 in a learning-and-earning problem in a static demand environment.
Besbes and Zeevi [8] obtain another lower bound of order T 1/2 in a single change-point detection
problem in which demand curves before and after the change-point are known. In light of these
results, the policy in Theorem 4 is near-optimal in order (up to logarithmic terms in T ).
In addition to the aforementioned lower bounds, Keskin and Zeevi [22] and Besbes and Zeevi

[8] also provide policies that have O(T 1/2 logT ) regret in their settings, but because they focus on
either learning or detection in isolation, they do not address the challenges arising in simultaneous
learning and detection, such as the occurrence of a change-point prior to forming an informative
(i.e., not-too-noisy) estimate of the average demand reference point for the detection test. To
address such challenges, we employ a repeated detection test with a carefully chosen frequency to
obtain the key results in Lemmas 3 and 4. Interestingly, the policy we design achieves essentially
the same regret performance as in Keskin and Zeevi [22] and Besbes and Zeevi [8], this despite
the fact that in our setting the problem facing the seller is more challenging compared to the
formulations studied in the aforementioned papers.

5. Rapidly changing demand environments. We now generalize the constant-budget
problem formulation in Section 2 to more rapidly changing environments, where the change budget
given in condition (2.5) is increasing in T . To be precise, take ν ∈ [0,1], and assume that θt are
chosen from the rectangle Θ⊆R×R− such that

Vθ(T ) ≤ BT ν for T = 1,2, . . . (5.1)
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where B > 0, and Vθ(T ) is the quadratic variation of θ= (θ1, θ2, . . .) in T periods, defined in (2.4).
In condition (5.1), the parameter ν represents the volatility of the changing demand environment:
if ν = 0 then we have the constant-budget problem formulation studied in preceding sections,
whereas if ν = 1 then the demand environment is extremely volatile in the sense that there can
be a substantial change in every single period. For intermediate values of ν ∈ (0,1), we obtain
a spectrum of demand environments where the scale of change is characterized by the volatility
parameter ν.
We incorporate the change budget in (5.1) into our performance metric as follows: let

Rπ(T, ν) = sup
{

∆π
θ
(T ) : θ ∈ V(T, ν)

}

, (5.2)

where ∆π
θ
(T ) is as defined in (2.9), and V(T, ν) = {θ : Vθ(T )≤BT ν}. Here we note that V(T, ν) is

a superset of V(T,B), namely the set of admissible demand parameter sequences in the constant-
budget problem. The main question we address in this section is how much the regret would increase
when we expand the set of admissible demand parameter sequences. We have the following lower
bound on regret under condition (5.1).

Theorem 5. (lower bound on regret) There exists a finite positive constant c such that
Rπ(T, ν)≥ cT (2+ν)/3 for any pricing policy π and time horizon T ≥ 3.

Note that when ν = 1 the revenue losses must grow linearly with the horizon, namely, the regret
is no longer sublinear, and no policy is long-run-average optimal. To achieve the growth rate of
regret in Theorem 5, we modify the moving window and decaying weights policies in Section 3.3
as follows.
First-order optimal policies in rapidly changing environments. As before, we consider

policies that conduct price tests with a certain frequency, but due to increased volatility of the
demand vector sequence θ, the frequency of price tests needs to be higher. That is, we let n :=
⌈κT (1−ν)/3⌉ ≥ 2 where κ is a scale parameter, and construct the set of periods at which the test
prices will be charged as Xi :=

{

t= kn+i : k=0,1,2, . . . , ⌊T/n⌋
}

for i= 1,2. Choosing two distinct
test prices x1 and x2 in [ℓ, u], we let the price in period t be

pt =







x1 if t∈X1

x2 if t∈X2

ϕ(ϑt) otherwise,
(5.3)

where ϑt is the truncated estimate of θt, which satisfies ϑt := argminϑ∈Θ{‖ϑ− θ̂t‖}. The frequency
of price tests in the experimentation scheme (5.3) is 2/n, namely of order T−(1−ν)/3.
In rapidly changing environments, the moving window policy needs to have a smaller window

size, whereas the decaying weights policy needs to have a more significant rate of decay. In the
constant-budget problem, the window size of M(κ,x1, x2) was of order T 2/3. In this section, we
choose a window size of order T (2−2ν)/3: under condition (5.1), the rapidly moving window policy
with parameters κ,x1, x2, denoted by Mν(κ,x1, x2), chooses prices according to (5.3), and uses the
weights wt

s = I{s∈X , s≥ t−n2} for 1≤ s≤ t, where X = X1 ∪X2 and n= ⌈κT (1−ν)/3⌉. Similarly,
the rapidly decaying weights policy with parameters µ,κ,x1, x2, denoted byWν(µ,κ,x1, x2), chooses

prices according to (5.3), and uses the weights wt
s =

(

1− t−s̃
n2 + (t−s̃)1−µ

n2
µ

)1/µ

+
I{s∈X} for 1≤ s≤ t,

where 0<µ≤ 1, n= ⌈κT (1−ν)/3⌉, and nµ = nT µν .
In our next result, we extend Lemma 1 to the case of rapidly changing demand environments.

Lemma 7. (upper bound on aggregate estimation inaccuracy) There exists a finite
positive constant c1, such that under either Mν(κ,x1, x2) or Wν(µ,κ,x1, x2)

T−1
∑

t=n2

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ c1T
(2+ν)/3 (5.4)
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for all T = 1,2, . . . and θ ∈ V(T, ν).
By Lemma 7 and a straightforward modification of Lemma 2, we generalize Theorem 2, and derive
the following upper bound on the regret for Mν(κ,x1, x2) and Wν(µ,κ,x1, x2).

Theorem 6. (first-order optimality) Let π be either Mν(κ,x1, x2) or Wν(µ,κ,x1, x2).
Then there exist a finite positive constant C such that Rπ(T, ν)≤C T (2+ν)/3 for all T ≥ 3.

Remark 4. The constant C in the preceding theorem is linear in B and independent of ν.

The preceding theorem provides a range of results for different degrees of change scales, quan-
tifying how the volatility parameter ν influences the growth rate of regret. As ν increases, nature
can cause larger estimation inaccuracy, and in response the seller needs to depreciate informa-
tion faster, either by choosing a smaller moving window size, or by faster weight decay. Roughly
speaking, every quanta of O(T ν) in the change budget translates to an O(T ν/3) of regret.

6. Concluding remarks.

6.1. Discussion of main findings.

Measuring information depreciation. To compute the near-optimal information-
depreciation rates in the settings analyzed in this paper, let us compare the sizes of the moving
windows we constructed in these settings. In a static environment, we can use all past data within
the entire time horizon; hence the size of the “moving” window is O(T ). In changing environ-
ments, we use moving windows of smaller order, such as the O(T 2/3) moving windows in Section
3. Given a particular demand environment, let the information depreciation factor be the ratio of
the near-optimal moving window size in that environment to the nominal time horizon T . In static
settings, the information depreciation factor is of order 1 by definition, and in the time-varying
settings of Sections 3 and 5, the information depreciation factors of our policies are of order T−1/3

and T−(1+2ν)/3, respectively. In the case of bursty changes, the information is depreciated only
when a change-point is detected. Because the number of change-points is bounded by a constant
independent of T in this case, our detection policy would rarely depreciate its information, and
its information depreciation factor would be of order 1 (except when there are two closely timed
change-points).
Structure of well-performing policies. Our study presents three families of dynamic pricing

policies designed to perform well in changing demand environments. The moving window and
decaying weights policies in Section 3 are based on a weighted least squares estimator that discounts
older observations at a certain rate. The detection policy in Section 4 uses the same weighted
least squares estimator, but can reduce the weight of all past observations to zero upon detecting
a change. All of these policies have near-optimal performance in their respective settings, but
at the same time they use quite distinct rules for weighing past observations, which suggests
that successful pricing policies in presence of smooth and bursty changes can have very different
structures.
Calibrating the volatility parameter. To design successful dynamic pricing policies in rapidly

changing environments, a seller needs to characterize the volatility in the demand environment,
which is represented by parameter ν in the problem formulation in Section 5. The demand volatility
can be characterized by first observing the demand response to a given incumbent price p̂ over
N periods, and then measuring the average variation in expected demand as vN = 1

N

∑N

t=1(Dt −
Dt−1)

2−2σ2. Note that vN estimates the average quadratic variation over N periods. In a demand
environment with volatility parameter ν, vN would be of order Nν/N = Nν−1. In light of this
knowledge, the seller can run an ordinary least squares regression between log vN and logN , and
calibrate the volatility parameter ν. To demonstrate how this could be done in practice, consider
an example where the seller has access to demand observations under the prices 1.0, 1.1, . . . , 1.7.
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Table 1. Numerical example for calibrating the volatility parameter∗

p̂ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N 41 96 38 27 35 43 44 66
vN 0.148 0.123 0.219 0.306 0.347 0.327 0.371 0.356

∗ In each column, the seller computes vN based on the demand sample {Dt, t= 1,2, . . . ,N} observed under

price p̂. The demand samples used for constructing this table are randomly generated in an environment

that changes in a piecewise-linear cyclical pattern, which will be explicitly expressed in Section 6.3.

Given the demand samples observed under each price, suppose that the sample sizes N and the
observed values of the statistic vN are as in Table 1.
In this example, running a regression for the relationship log(vN) ≈ ζ0 + ζ1 logN would result

in the estimates (ζ̂0, ζ̂1) = (0.525,−0.495). Thus, the calibrated value of the volatility parameter is
ν̂ =1+ ζ̂1 = 0.505. The true value of the volatility parameter is ν =0.5 in this example.
Linear demand assumption and asymptotically optimal semi-myopic policies. Lin-

ear regression models are commonly used in econometrics to express reduced-form relationships
between variables. In this paper, we model the relationship between price and demand in a similar
linear fashion, but it is possible to extend our analysis to the case of a generalized linear model
of the form d = f(L(p)), where d is the expected demand under price p, L is a linear function
with unknown parameters, and f is a general “link function” known with certainty. In the case
of a linear demand model, ordinary least squares regression is usually used as a special case of
maximum likelihood estimation, whereas in the extension to generalized linear models one can use
maximum quasi-likelihood estimation in a similar way (see den Boer and Zwart [14, 15]). This
generalization involves substantially more technical detail, while leading to essentially the same
conclusions in terms of estimation performance as shown by den Boer and Zwart [14, 15]. To achieve
a more transparent analysis and to obtain a wider variety of results, we have chosen to use a linear
demand model. In practice the relationship between price and demand can be described by more
general functional forms, in which expected demand is a smooth decreasing function of price. In
such cases, the linear demand assumption leads to model misspecification, but as shown by Besbes
and Zeevi [9], such model misspecification can be mitigated by designing asymptotically optimal
semi-myopic policies under the linear demand assumption. In essence, their argument is that as
long as the expected demand function has a well-defined derivative around the optimal price, one
can use a linear approximation to the expected demand function within a small neighborhood of
the optimal price without incurring substantial loss. The essential principle behind asymptotically
optimal semi-myopic policies, which are also employed in this paper as well as in Keskin and Zeevi
[22] and Besbes and Zeevi [9], is using price experimentation to ensure that the myopic price is
within a small neighborhood of the optimal price with high probability, and thereby limiting losses
due to model misspecification.
Data storage constraints. Moving window and decaying weights policies designed in Section

3 differ markedly in how they store price and sales data. While the decaying weights policy makes
use of all historical observations, the moving window requires only a relatively small number of
observations. Hence, data storage considerations favor moving window policies.

6.2. Relation to other stochastic optimization approaches. Our problem formulation
is related to various sequential stochastic optimization formulations, but unlike our work the vast
majority of that literature has focused on static environments where the underlying objective
function does not change over time. We note that this literature contains parameterized bandit
formulations that can potentially be applied to pricing contexts [see, e.g., 27], but to the best of
our knowledge these formulations also restrict attention to static environments.
Concurrently with our work, Besbes et al. [6] has focused on the exploration-exploitation tradeoff

in a stochastic approximation problem with gradually changing environments. Our study signifi-
cantly differs from theirs in the following ways: first, unlike Besbes et al. [6] we study the case where
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the variation budget B is unknown to the seller, which allows us to quantify the additional cost
of adapting to an unknown variation budget (see Sections 3.3 and 3.4). Second, our work analyzes
both gradually and abruptly changing environments. As explained earlier, this helps us identify a
stark contrast between these two environments (see our discussion in Section 1.2). Third, we study
how to design bona fide tracking policies based on (1) moving windows, (2) decaying weights, and
(3) joint detection-and-estimation in various changing environments, and provide a mathemati-
cal analysis to characterize the performance of our policies, which is not present in antecedent
work. Fourth, due to the aforementioned differences between studied policies, the O(T 2/3) and
O(T 1/2 logT ) regret bounds in our paper are obtained through entirely independent techniques than
the regret bounds in Besbes et al. [6]. To be precise, we derive our regret bounds via a combination
of eigenanalysis and concentration inequalities for a family of vector martingales as opposed to
Besbes et al. [6] who essentially rely on known results for online gradient descent in an adversarial
setting which are modified to work well in the changing environment they consider. Finally, there
is a fundamental difference between the main messages of our work and that of Besbes et al. [6].
Besbes et al. [6] focus on repetitively restarting a policy with a predetermined frequency to achieve
a performance guarantee in gradually changing environments. In contrast, we use restarting only in
an adaptive manner if the changes are abrupt. If the changes are smooth, then we employ smooth
information-depreciation policies (such as moving windows or decaying weights). In particular, we
do not prescribe using restarting if the demand environment is smoothly changing.

6.3. Numerical example. To demonstrate the practical implementability of our policies, we
simulate their performance in a numerical example. Suppose the feasible set of demand parameters
is Θ= [100,120]× [−50,−35], and the demand parameter sequence follows a piecewise-linear cyclical
pattern as follows: let θ= (θ1, . . . , θT ) be such that θ1 = (110,−49.25) and

θt+1 − θt =

{

+(0, T−1/2) if t≤K (mod 2K)
−(0, T−1/2) otherwise,

(6.1)

for t= 1,2, . . . , T − 1, where K = ⌈T 2/3⌉. Note that, given any time horizon T , the aforementioned
parameter sequence θ satisfies Vθ(T ) ≤ 1; that is, B = 1 for the class of parameter sequences
described above. Assume that standard deviation of demand shocks is σ =1, and the feasible price
range is [ℓ, u] = [0.9,1.8].
We consider four different policies in this setting. The first two are the moving window and decay-

ing weights policies defined in Section 3.3. The third one is the fixed-step stochastic approximation
policy, hereafter abbreviated as fixed-step SA, which is usually considered as a heuristic policy for
stochastic optimization problems in changing environments [see 5, Chapter 4]. The fourth policy is
the restarting stochastic approximation policy, abbreviated as restarting SA, which was proposed
by Besbes et al. [6, Section 5.2, EGS algorithm]. The fixed-step SA and restarting SA belong to a
broad class of stochastic approximation policies that utilize the noisy observations on the revenue
curve to first estimate the gradient of this curve, and then move the price in the gradient direction
to find the revenue-maximizing price [a detailed description of this gradient estimation can be found
in Section 3.3 of 9]. Stochastic approximation policies designed for static environments typically
decay the step size for the moves in the gradient direction [see, e.g., 24]. In contrast, fixed-step
SA uses a constant step-size sequence so that the moves in the gradient direction do not diminish
in a changing environment. Restarting SA keeps “rebooting” the stochastic approximation routine
with a pre-determined frequency in an open-loop fashion, and the step-size sequence is reset at
each such epoch.
As displayed in Figure 1, the moving window and decaying weights policies significantly outper-

form fixed-step SA and restarting SA in the numerical example described above.
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Figure 1. Regret comparison. The four curves display the T -period regret of the moving window policy (solid
curve), the decaying weights policy (dashed curve), fixed-step SA (dash-dotted curve), and restarting SA (dotted
curve). For the moving window and decaying weights policies, the scale parameter is κ= 0.5 and the experimental
prices are x1 = 1.1 and x2 = 1.3. The decay parameter of decaying weights policy is µ = 0.5. The initial price of
fixed-step SA and restarting SA is x1 = 1.3. The step size parameters of restarting SA (described on p. 11 of Besbes
et al. [6]) are d= 0.1 and H =1. The corresponding step size parameters for fixed-step SA are d=0.0002 and H =1.

We note that the estimated growth rate of regret is close to T 2/3 for the moving window, decaying
weights, and restarting SA policies, but for fixed-step SA, we estimate the growth rate of regret
to be approximately T . To be more precise, a log-log regression reveals that the T -period regret of
the moving window, decaying weights, fixed-step SA, and restarting SA policies are in the order of
T 0.68, T 0.69, T 0.98, and T 0.73, respectively (with R2 = 0.98; all regression coefficients are statistically
significant with p < 0.001).
The superior performance of the moving window and decaying weights policies is due to the fact

that they always maintain memory of the recently obtained information. Restarting SA forgets all
historical information in an open-loop manner, which makes this policy repeatedly incur losses due
to initializations. Fixed-step SA displays better performance than restarting SA over short time
horizons, but given its (asymptotically) linearly growing regret, the performance of fixed-step SA
is expected to worsen over longer time horizons.

Appendix A: Proof of Theorem 1. Divide the time horizon into cycles of N = ⌈k0 T 2/3⌉
periods, where k0 = 42/3B−2/3, and consider the setting in which (i) ǫt

iid∼ N (0, σ2), (ii) the value
of θt can change only in the first period of a cycle, and (iii) θt takes values in the set {y0, y1},
where y0 = (a0, b0) = (2,−1) and y1 = (a1, b1) = (2 +N−1/4,−1−N−1/4). Note that (ii), (iii), and
the above choice of N imply that

Vθ(T ) ≤
(

T

N
+1

)

‖y0 − y1‖2
(a)

≤ 4T

N3/2
≤ B, (A.1)

where: (a) follows because N ≤ T and ‖y0 − y1‖2 = 2N−1/2. Therefore the setting described above
satisfies the quadratic variation bound in (2.5).
Now, focus on a single cycle, which is composed of N periods. Let Pπ

i be a probability measure
satisfying

Pπ
i (D1 ≤ ξ1, . . . ,DN ≤ ξN) =

N
∏

t=1

Φ

(

ξt − ai − bipt
σ

)

for ξ1, . . . , ξT ∈R, (A.2)
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where Φ(·) denotes the standard Gaussian cumulative distribution function, and p = (p1, p2, . . .)
is the price sequence formed under policy π and demand realization D = (D1,D2, . . .). Then, the
Kullback-Leibler divergence from Pπ

0 to Pπ
1 is

K(Pπ
0 ,P

π
1 ) := Eπ

0 log













N
∏

t=1

φ

(

Dt − a0 − b0pt
σ

)

N
∏

t=1

φ

(

Dt − a1 − b1pt
σ

)













, (A.3)

where Eπ
0 is the expectation operator associated with Pπ

0 , and φ(·) denotes the standard Gaussian
density. By elementary algebra, we can re-express (A.3) as follows:

K(Pπ
0 ,P

π
1 ) = − 1

2σ2
Eπ

0

{

N
∑

t=1

[

(Dt− a0 − b0pt)
2 − (Dt − a1 − b1pt)

2
]

}

= − 1

2σ2
Eπ

0

{

N
∑

t=1

[

ǫ2t −
(

ǫt + a0 − a1 +(b0 − b1)pt
)2
]

}

, (A.4)

because Dt = a0 + b0pt + ǫt under P
π
0 . Let δ = y0 − y1 and Xt =

[

1
pt

]

. Then, the preceding identity
becomes

K(Pπ
0 ,P

π
1 ) = − 1

2σ2
Eπ

0

{

N
∑

t=1

[

ǫ2t − (ǫt − δ ·Xt)
2
]

}

= − 1

2σ2
Eπ

0

{

N
∑

t=1

(2ǫt − δ ·Xt) δ ·Xt

}

(b)
=

1

2σ2
Eπ

0

{

N
∑

t=1

(δ ·Xt)
2

}

(c)
=

1

2σ2
Eπ

0

{

N
∑

t=1

N−1/2
(

pt − 1
)2

}

(d)
=

1

2σ2N1/2
Eπ

0

{

N
∑

t=1

(

pt −ϕ(y0)
)2

}

(e)
=

1

2σ2N1/2
∆

π
0 (N) , (A.5)

where: ∆π
i (N) denotes the N -period regret given that policy π is exercised and θt = yi for all

t=1, . . . ,N and i= 0,1, (b) follows because the ǫt are independent and have zero mean, (c) follows
because δ = (−N−1/4,N1/4), (d) follows because ϕ(y0) = 1, and (e) follows by the definition of
regret in (2.9) and the fact that b0/r

∗(y0) =−1.
We will consider two cases for the value of K(Pπ

0 ,P
π
1 ). Let η > 0.

Case 1. K(Pπ
0 ,P

π
1 )> η. By (A.5), we deduce that

∆
π
0 (N)≥ 2σ2ηN1/2. (A.6)

Case 2. K(Pπ
0 ,P

π
1 )≤ η. Define Ii :=

[

ϕ(yi)− 1
4
N−1/4,ϕ(yi)+

1
4
N−1/4

]

for i=0,1, and let χt be a
random variable such that

χt =

{

1 if pt ∈ I0
0 otherwise,

(A.7)
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for all t. Then, we have

∆
π
0 (N)+∆

π
1 (N) ≥

(

2b0
a0

)2 N
∑

t=1

Eπ
0

(

pt −ϕ(y0)
)2

+

(

2b1
a1

)2 N
∑

t=1

Eπ
1

(

pt −ϕ(y1)
)2

(e)

≥ k1N
−1/2

N
∑

t=1

(

Pπ
0 (pt 6∈ I0)+Pπ

1 (pt 6∈ I1)
)

(f)

≥ k1N
−1/2

N
∑

t=1

(

Pπ
0 (χt = 0)+Pπ

1 (χt = 1)
)

, (A.8)

where: k1 =
1
4
min

{

(b0/a0)
2, (b1/a1)

2
}

, (e) follows because
(

pt−ϕ(yi)
)2
> 1

16
N−1/2 a.s. on the event

{pt 6∈ Ii} for i = 0,1, and (f) follows because pt 6∈ I1 is implied by χt = 1. By Tsybakov’s bound
on minimax probability of error for two hypotheses [30, p. 90, Theorem 2.2(iii)], we know that
K(Pπ

0 ,P
π
1 )≤ η implies Pπ

0 (χt = 0)+Pπ
1 (χt = 1)≥ 1

4
exp(−η). Therefore we deduce by (A.8) that

max
i=0,1

{∆π
i (N)} ≥ 1

4
k1 exp(−η)N1/2. (A.9)

Combining (A.6) and (A.9), we get maxi=0,1{∆π
i (N)} ≥ k2N

1/2, where k2 =max{2σ2η, 1
4
k1 exp(−η)}.

Therefore we conclude that

sup
{

∆π
θ
(T ) : Vθ(T )≤B

}
(g)

≥
⌊

T

N

⌋

max
i=0,1

{∆π
i (N)}

≥ k2

⌊

T

N

⌋

N1/2

≥ 1

2
k2N

−1/2T

≥ cB1/3T 2/3, (A.10)

where: c= 1
8
k2 and (g) follows because there are at least ⌊T/N⌋ cycles in T periods. Q.E.D.

Appendix B: Proof of the results in Section 3.

Proof of Lemma 1. We will first prove (3.12) for M(κ,x1, x2). For the choice of weights in
(3.8), the estimation inaccuracy in period t is

(

J t
t

)−1Wt
t =

(

J t
t

)−1
t
∑

s=1

wt
sXsX

T

s (θs − θt+1) =
(

J t
t

)−1 ∑

s∈X1∪X2
t−n2≤s≤t

XsX
T

s (θs − θt+1), (B.1)

for all t. Now note that
(

J t
t

)−1
=
(

I t
t

)−1
X

−1 = n−1
X

−1 for all t≥ n2 under M(κ,x1, x2). Moreover,

for i=1,2, we have XsX
T

s =
[

1 xi
xi x2i

]

for all s ∈Xi. Plugging these expressions of
(

J t
t

)−1
and XsX

T

s

into (B.1), we get

(

J t
t

)−1Wt
t =

∑

s∈X1
t−n2≤s≤t

1
(x1−x2)n

[

−x2 −x1x2

1 x1

]

(θs − θt+1)

+
∑

s∈X2
t−n2≤s≤t

1
(x1−x2)n

[

−x1 −x1x2

1 x2

]

(θs − θt+1). (B.2)
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Therefore we have

∥

∥

(

J t
t

)−1Wt
t

∥

∥

(a)

≤
∑

s∈X1
t−n2≤s≤t

∥

∥

∥

1
(x1−x2)n

[

−x2 −x1x2

1 x1

]

(θs − θt+1)
∥

∥

∥+
∑

s∈X2
t−n2≤s≤t

∥

∥

∥

1
(x1−x2)n

[

−x1 −x1x2

1 x2

]

(θs − θt+1)
∥

∥

∥

(b)

≤ 1

n

∑

s∈X1∪X2
t−n2≤s≤t

∥

∥θs − θt+1

∥

∥

≤ 2 max
t−n2≤s≤t

∥

∥θs − θt+1

∥

∥, (B.3)

for all t≥ 2n, where: (a) follows by (B.2) and triangle inequality, and (b) follows by the fact that the

eigenvalues of 1
(x1−x2)n

[

−x2 −x1x2
1 x1

]

and 1
(x1−x2)n

[

−x1 −x1x2
1 x2

]

are 0 and ±n−1. Squaring and summing

both sides of (B.3) over t= n2, . . . , T − 1, we get

T−1
∑

t=n2

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ 4
T−1
∑

t=n2

max
t−n2≤s≤t

∥

∥θs − θt+1

∥

∥

2

(c)

≤ 4

⌈T/n2⌉
∑

j=1

n2
∑

i=1

max
(j−1)n2+i≤s≤ jn2+i

∥

∥θs − θjn2+i+1

∥

∥

2

(d)
= 4

n2
∑

i=1

⌈T/n2⌉
∑

j=1

max
(j−1)n2+i≤s≤ jn2+i

∥

∥θs − θjn2+i+1

∥

∥

2

(e)

≤ 4
n2
∑

i=1

Vθ(T ) = 4n2Vθ(T ) , (B.4)

where: (c) follows by expressing the time index as t= jn2 + i, (d) follows by changing the order
of summation, and (e) follows by (2.4) because {tj = jn2+ i : j = 0,1, . . . , ⌈T/n2⌉} is a partition of
{1, . . . , T} for all i. By (2.5) and the preceding inequality, we conclude that

T−1
∑

t=n2

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ 4n2B
(f)

≤ 16κ2BT 2/3, (B.5)

where (f) follows because n= ⌈κT 1/3⌉. We obtain (3.12) by letting c1 = 16κ2B.

Secondly, we prove (3.12) for W (µ,κ,x1, x2). Note that, because
(

J t
t

)−1
=
(

I t
t

)−1
X

−1 for all
t≥ n2, we have

(

J t
t

)−1Wt
t =

∑

s∈X1

wt
s

(x1−x2)It
t

[

−x2 −x1x2

1 x1

]

(θs − θt+1)

+
∑

s∈X2

wt
s

(x1−x2)It
t

[

−x1 −x1x2

1 x2

]

(θs − θt+1). (B.6)

Consequently, we get

∥

∥

(

J t
t

)−1Wt
t

∥

∥

(a′)

≤
∑

s∈X1

wt
s

∥

∥

∥

1
(x1−x2)n

[

−x2 −x1x2

1 x1

]

(θs − θt+1)
∥

∥

∥
+
∑

s∈X2

wt
s

∥

∥

∥

1
(x1−x2)n

[

−x1 −x1x2

1 x2

]

(θs − θt+1)
∥

∥

∥

(b′)

≤
(

I t
t

)−1
∑

s∈X1∪X2

wt
s

∥

∥θs − θt+1

∥

∥
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(c′)

≤
(

I t
t

)−1
n−2

∑

s∈X1∪X2
1≤s<t−n2

∥

∥θs − θt+1

∥

∥+
(

I t
t

)−1 ∑

s∈X1∪X2
t−n2≤s≤t

∥

∥θs − θt+1

∥

∥

≤ 2(t−n2− 1)

n3

(

I t
t

)−1
max

1≤s<t−n2

∥

∥θs − θt+1

∥

∥ +
2n2

n

(

I t
t

)−1
max

t−n2≤s≤t

∥

∥θs − θt+1

∥

∥

≤ 2t

n3

(

I t
t

)−1
max

1≤s<t−n2

∥

∥θs − θt+1

∥

∥ + 2n
(

I t
t

)−1
max

t−n2≤s≤t

∥

∥θs − θt+1

∥

∥, (B.7)

for all t≥ n2, where: (a′) follows by (B.6) and triangle inequality, (b′) follows by the fact that the

eigenvalues of 1
(x1−x2)It

t

[

−x2 −x1x2
1 x1

]

and 1
(x1−x2)It

t

[

−x1 −x1x2
1 x2

]

are 0 and ±
(

I t
t

)−1
, and (c′) follows by

(3.9) and the fact that wt
s ≤wt

t−n2 ≤ n−2 for all s < t−n2, and wt
s ≤ 1 for all s≤ t. We square and

sum both sides of (B.7) over t= n2, . . . , T − 1 to obtain

T−1
∑

t=n2

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ 8n−6

T−1
∑

t=n2

t2
(

I t
t

)−2
max

1≤s<t−n2

∥

∥θs − θt+1

∥

∥

2

+8n2

T−1
∑

t=n2

(

I t
t

)−2
max

t−n2≤s≤t

∥

∥θs − θt+1

∥

∥

2
. (B.8)

Note that, for all t≥ n2, we have

I t
t =

1

2

t
∑

s=1

wt
s ≥ 1

2

∑

s∈X

1≤s≤t

(

1 − t− s

n2
+

(t− s)1−µ

n2

)

1
µ

+

≥ 1

2

∑

s∈X

1≤s≤t

(

1 − 1

n

⌈

t− s

n

⌉)

1
µ

+

(d′)
= n

− 1
µ

n−1
∑

k=1

(n− k)
1
µ

≥ n
− 1

µ

∫ n−1

0

ξ
1
µ dξ

≥ cµn , (B.9)

where: cµ = 2−( 1
µ+1)/

(

1
µ
+1
)

, and (d′) follows by letting k = ⌈(t− s)/n⌉. By the argument used to
derive (B.4-B.5), and the fact that I t

t ≥ cµn for all t≥ n2, we deduce that the second term on the
right hand side of (B.8) is bounded above by 32c−2

µ κ2BT 2/3. To find an upper bound on the first
term, we note that

8n−6

T−1
∑

t=n2+1

t2
(

I t
t

)−2
max

1≤s<t−n2

∥

∥θs − θt+1

∥

∥

2 (e′)

≤ 8n−6

T−1
∑

t=n2+1

t2
(

I t
t

)−2
B

(f′)

≤ 8c−2
µ n−8

T−1
∑

t=n2+1

t2B

≤ 8c−2
µ n−8BT 3, (B.10)

where: (e′) follows by (2.5), and (f′) follows because I t
t > cµn for all t≥ n2. Furthermore, because

n= ⌈κT 1/3⌉, the right hand side of the preceding inequality is less than or equal to 8c−2
µ κ−8BT 1/3.

Thus the right hand side of (B.8) is bounded above by 8c−2
µ (κ−8+4κ2)BT 2/3. Q.E.D.
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Proof of Lemma 2. Because {ǫt} have a light-tailed distribution with mean zero and variance
σ2, we know by elementary real analysis that there exists a constant ν0 such that E[exp(xǫt)]≤
exp( 1

2
ν0σ

2x2) for all x satisfying |x| ≤ x0 [see, e.g., 22, for a standard derivation of this constant]. For
any given t= 1,2, . . . and y ∈R

2 such that ‖y‖= z, define a stochastic process {Zy,t
s , s= 1,2, . . .}

such that Zy,t
0 = 1 and

Zy,t
s =

{

exp
{

1
ζ

(

y ·Mt
s − 1

2
yTJ t

s y
)}

if s≤ t

Zy,t
s−1 otherwise,

(B.11)

where ζ = (1∨ z)
(

ν0 ∨ (x∗/x0)
)

σ2 and x∗ =max‖y‖≤1, p∈[ℓ,u]{|y1 + y2p|/σ2}. Let Fs := σ(ǫ1, . . . , ǫs).

Using the tower property and the fact that Zy,t
s is integrable for all s, we get

E
π
θ
[Zy,t

s |Fs−1] = exp
{1

ζ

(

y ·Mt
s−1 −

1

2
yTJ t

s y
)}

E
π
θ

[

exp
{1

ζ
y · (Mt

s −Mt
s−1)

}∣

∣

∣Fs−1

]

,

for s ≤ t. To find an upper bound on the conditional expectation on the right hand side of the

identity immediately above, note that Mt
s−Mt

s−1 =wt
sXsǫs, and |y · (wt

sXs)|/ζ =wt
s |y1+y2ps|/ζ ≤

wt
s |y1 + y2ps|x0/(zx

∗σ2) ≤ wt
s x0 ≤ x0 for all ps ∈ [ℓ, u], because wt

s ≤ 1 for all s ≤ t by definition

of the weights in (3.16). As a result, the conditional expectation on the right hand side of the
preceding identity satisfies

E
π
θ

[

exp
{1

ζ
y · (Mt

s−Mt
s−1)

}∣

∣

∣
Fs−1

]

≤ exp
{ 1

2ζ2
ν0σ

2(wt
s)

2 yTXsX
T

s y
}

≤ exp
{ 1

2ζ
wt

s y
TXsX

T

s y
}

.

Consequently we get

E
π
θ
[Zy,t

s |Fs−1] ≤ exp
{1

ζ

(

y ·Mt
s−1 −

1

2
yTJ t

s−1y
)}

= Zy,t
s−1.

So (Zy,t
s ,Fs) is a supermartingale for any given y ∈R

2 and t=1,2, . . .
To derive inequality (3.13), recall equation (3.10), which states that J t

t = XI t
t where X =

[

2 x1+x2

x1+x2 x21+x22

]

and I t
t =

1
2

∑t

s=1w
t
s ≥ 0. Let V ⊂R

2 be the set of eigenvectors of X, and consider the

eigendecomposition of X:

X=PΛP T,

where P is an orthogonal matrix that has the eigenvectors of X in its columns, and Λ is a diagonal

matrix that has the eigenvalues of X in its diagonal entries. For z > 0, define a set of four vectors
Sz := {± 1√

2
zv : v ∈ V}= {± 1√

2
zPi : Pi is the i

th column of P}. Then we have

P
π
θ

{∥

∥

(

J t
t

)−1Mt
t

∥

∥> z, I t
t > γ

}

= P
π
θ

{

(Mt
t)

T(J t
t )

−2Mt
t > z

2, I t
t > γ

}

= P
π
θ

{

(Mt
t)

TPΛ−2P TMt
t > z

2(I t
t)

2, I t
t > γ

}

.

Letting ψ := Λ−1P TMt
t we deduce that

P
π
θ

{∥

∥

(

J t
t

)−1Mt
t

∥

∥> z, I t
t > γ

}

≤ P
π
θ

{

‖ψ‖> z I t
t , I t

t > γ
}

≤ P
π
θ

{

⋃

i=1,2

{

|ψi|> 1√
2
z I t

t , I t
t > γ

}

}

.
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Note that |ψi| > 1√
2
z I t

t implies that P T

i Mt
t, the i

th component of P TMt
t, has an absolute value

larger than 1√
2
zλi I t

t , where λi = P T

i XPi is the ith diagonal entry of Λ. Therefore, viewing V as a
basis for R2, we have

P
π
θ

{∥

∥

(

J t
t

)−1Mt
t

∥

∥> z, I t
t > γ

}

≤ P
π
θ

{

⋃

i=1,2

{

|P T

i Mt
t|> 1√

2
zλi I t

t , I t
t > γ

}

}

(a)
= P

π
θ

{

⋃

i=1,2

{

|P T

i Mt
t|> 1√

2
zP T

i J t
t Pi, I t

t >γ
}

}

= P
π
θ

{

⋃

i=1,2

{∣

∣

∣

(

1√
2
zPi

)TMt
t

∣

∣

∣
>
(

1√
2
zPi

)TJ t
t

(

1√
2
zPi

)

, I t
t > γ

}

}

(b)
= P

π
θ

{

⋃

w∈Sz

{

w ·Mt
t >w

TJ t
t w, I t

t > γ
}

}

(c)

≤ P
π
θ

{

⋃

w∈Sz

{

Zw,t
t ≥ e

1
2ζ w

TJ t
t w, I t

t > γ
}

}

(d)

≤ P
π
θ

{

⋃

w∈Sz

{

Zw,t
t ≥ eρ0z

2It
t , I t

t >γ
}

}

≤ P
π
θ

{

⋃

w∈Sz

{

Zw,t
t ≥ eρ0z

2γ
}

}

,

where: ρ0 = (λ1 ∧ λ2)/(4ζ), (a) and (d) follow because λi = P T

i XPi and J t
t = XI t

t , (b) follows by

the definition of Sz = {± 1√
2
zPi : i = 1,2}, and (c) follows by the definition of Zw,t

t in (B.11). We

therefore have

P
π
θ

{∥

∥

(

J t
t

)−1Mt
t

∥

∥> z, I t
t >γ

}
(e)

≤
∑

w∈Sz

P
π
θ

{

Zw,t
t ≥ eρ0z

2γ
}

(f)

≤
∑

w∈Sz

e−ρ0z
2γ (g)

= 4e−ρ0z
2γ ,

where: (e) follows by the union bound, (f) follows by the Markov’s inequality and the fact that

(Zw,t
s ,Fs) is a supermartingale, and (g) follows because the cardinality of Sz is 4. We conclude the

proof by letting ρ= (1∨ z)ρ0 = (λ1 ∧λ2)/
(

4
(

ν0 ∨ (x∗/x0)
)

σ2
)

. Q.E.D.

Proof of Theorem 2. In the context of Section 3, the loss of a policy stems from three sources:

(i) estimation inaccuracy due to changes in demand parameters, (ii) estimation errors due to noise,

and (iii) price experimentation. To separate the effect of (iii) from (i-ii), note that

∆π
θ
(T ) = E

π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)}

= E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t∈X}
}

+ E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

≤ 3n−1T + E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

(B.12)

because the cardinality of X is less than or equal to 2(T/n+1)≤ 3T/n. The expected sum on the

right hand side above is bounded above as follows:
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E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

= E
π
θ

{ T−1
∑

t=0

(

1− r(pt+1, θt+1)

r∗(θt+1)

)

I{t+1 6∈ X}
}

= n2 − βt+1

r∗(θt+1)

T−1
∑

t=n2

E
π
θ

{

(

ϕ(θt+1)− pt+1

)2
I{t+1 6∈ X}

}

≤ n2 + c2

T−1
∑

t=n2

E
π
θ

{

(

ϕ(θt+1)− pt+1

)2
I{t+1 6∈ X}

}

(a)

≤ n2 + 2K0c2

T−1
∑

t=n2

(

E
π
θ
‖(J t

t )
−1Wt

t‖2 +E
π
θ
‖(J t

t )
−1Mt

t‖2
)

, (B.13)

where c2 =max(α,β)∈Θ{4β2/α2}, K0 =maxj=1,2

{

maxθ{(∂ϕ(θ)/∂θj)2}
}

, and (a) follows by invoking
identity (3.4) for the price experimentation scheme (3.6-3.7). To characterize the magnitude of
E

π
θ
‖(J t

t )
−1Mt

t‖2, we use Lemma 2 as follows: if π=M(κ,x1, x2), we have

E
π
θ

∥

∥

(

J t
t

)−1Mt
t

∥

∥

2
=

∫ ∞

0

P
π
θ

{∥

∥

(

J t
t

)−1Mt
t

∥

∥

2
> ξ
}

dξ ,

(b)
=

∫ ∞

0

P
π
θ

{∥

∥

(

J t
t

)−1Mt
t

∥

∥

2
> ξ, I t

t ≥ n
}

dξ ,

(c)

≤ 4

∫ ∞

0

e−ρ(
√
ξ∧ξ)n dξ

= 4

∫ 1

0

e−ρnξ dξ+4

∫ ∞

1

e−ρn
√
ξ dξ

≤ 12/(ρn), (B.14)

for all t≥ n2, where: (b) follows because I t
t ≥ n for all t≥ n2 under M(κ,x1, x2), and (c) follows

by Lemma 2. Similarly, if π =W (µ,κ,x1, x2), we have E
π
θ
‖(J t

t )
−1Mt

t‖2 ≤ 12/(ρcµn) for all t ≥
n2, because I t

t ≥ cµn for all t ≥ n2 under W (µ,κ,x1, x2). Letting c̃ = 1 ∧ cµ, we therefore get
E

π
θ
‖(J t

t )
−1Mt

t‖2 ≤ 12/(ρc̃n) for all t≥ n2. Using this inequality on the right hand side of (B.13) we
get

E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

≤ n2 +2K0c2

T−1
∑

t=n2

E
π
θ
‖(J t

t )
−1Wt

t‖2 +
24K0c2T

ρc̃n
. (B.15)

By Lemma 1 and inequality (B.15), we deduce that E
π
θ

{
∑T

t=1

(

1 − r(pt, θt)/r
∗(θt)

)

I{t 6∈ X}
}

≤
n2+2K0c1c2T

2/3+24K0c2T/(ρc̃n). Plugging the value of n= ⌈κT 1/3⌉ in this upper bound, we get
E

π
θ

{
∑T

t=1

(

1− r(pt, θt)/r
∗(θt)

)

I{t 6∈ X}
}

≤ 4κ2T 2/3 +2K0c1c2T
2/3 +24K0c2T

2/3/(ρc̃κ). Combining

this inequality with (B.12) we conclude that ∆π
θ
(T )≤CT 2/3 for all θ ∈ V(T,B), where C = 3/κ+

4κ2 +2K0c1c2 +24K0c2/(ρc̃κ). Q.E.D.

Remark 5. While choosing κ=2 is sufficient for first-order optimality, it is possible to obtain
a tighter upper bound by minimizing the value of C with respect to κ. To do that, one would choose
κ= argminκ≥2{3/κ+4κ2+2K0c1c2+24K0c2/(ρc̃κ)}. It is also possible to further tailor the choice
of κ to a particular environment by simulating the performance of M(κ,x1, x2) and W (µ,κ,x1, x2)
and estimating their regret in that environment.
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Proof of Theorem 3. As in the proof of Theorem 2, we first isolate the loss due to price
experimentation from other losses by noting that

∆π
θ
(T ) = E

π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)}

= E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t∈X}
}

+ E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

≤ 2n

⌈

T

n2

⌉

+ E
π
θ

{ T
∑

t=2n+1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

≤ 4κ−1B1/3T 2/3 + E
π
θ

{ T
∑

t=2n+1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

, (B.16)

because t∈X for all t≤ 2n, and n= ⌈κB−1/3 T 1/3⌉. To find an upper bound on the expected sum
on the right hand side above, we further note that

E
π
θ

{ T
∑

t=2n+1

(

1− r(pt, θt)

r∗(θt)

)

I{t 6∈ X}
}

= E
π
θ

{ T−1
∑

t=2n

(

1− r(pt+1, θt+1)

r∗(θt+1)

)

I{t+1 6∈ X}
}

= − βt+1

r∗(θt+1)

T−1
∑

t=2n

E
π
θ

{

(

ϕ(θt+1)− pt+1

)2
I{t+1 6∈ X}

}

≤ c2

T−1
∑

t=2n

E
π
θ

{

(

ϕ(θt+1)− pt+1

)2
I{t+1 6∈ X}

}

, (B.17)

where c2 =max(α,β)∈Θ{4β2/α2}. Here (3.4) and (3.15) imply that

E
π
θ

{

(

ϕ(θt+1)− pt+1

)2
I{t+1 6∈ X}

}

≤ E
π
θ

(

ϕ(θt+1)−ϕ(ϑt+1)
)2

≤ 2K0E
π
θ

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2
+ 2K0E

π
θ

∥

∥

(

J t
t

)−1Mt
t

∥

∥

2
, (B.18)

for all t≥ 2n, where ϑt = argminϑ∈Θ{‖ϑ− θ̂t‖} is the truncated least squares estimate of θt, and
K0 =maxj=1,2

{

maxθ{(∂ϕ(θ)/∂θj)2}
}

. To find an upper bound on the second term on the right
hand side of inequality (B.18), we use the following result whose proof is identical to that of
Lemma 2.

Lemma B.1. (exponential decay of estimation error due to noise) Let π be
MB(κ,x1, x2). Then there exists a finite positive constant ρ such that P

π
θ
{‖(J t

t )
−1Mt

t‖ > z, I t
t >

γ} ≤ 4 e−ρ(z∧z2)γ for all θ= (θ1, . . . , θT ), z > 0, γ > 0, and t≥ 2.

Replacing Lemma 2 with Lemma B.1 in the argument used to derive (B.14), and using the fact

that I t
t ≥ n for all t≥ 2n under MB(κ,x1, x2), we deduce that E

π
θ

∥

∥

(

J t
t

)−1Mt
t

∥

∥

2 ≤ 12/(ρn) for all
t≥ 2n under MB(κ,x1, x2). Thus, inequality (B.18) becomes

E
π
θ

{

(

ϕ(θt+1)− pt+1

)2
I{t+1 6∈ X}

}

≤ 2K0E
π
θ

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2
+

24K0

ρn
, (B.19)

for all t≥ n. Summing over t= 2n, . . . , T − 1, we obtain

T−1
∑

t=2n

E
π
θ

{

(

ϕ(θt+1)− pt+1

)2
I{t+1 6∈ X}

}

≤ 2K0

T−1
∑

t=2n

E
π
θ

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2
+

24K0

ρ
n−1T . (B.20)

Next we use the following counterpart of Lemma 1, whose proof is at the end of this section.
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Lemma B.2. (upper bound on aggregate estimation inaccuracy) There exists a finite
positive constant c1, such that under MB(κ,x1, x2),

∑T−1

t=2n ‖(J t
t )

−1Wt
t‖2 ≤ c1B

1/3T 2/3 almost surely
for all T = 1,2, . . . and θ ∈ V(T,B).

Invoking Lemma B.2, and recalling that n≥ κB−1/3T 1/3, we deduce that

T−1
∑

t=2n

E
π
θ

{

(

ϕ(θt+1)− pt+1

)2
I{t+1 6∈ X}

}

≤ 2K0c1B
1/3T 2/3 +

24K0

ρκ
B1/3T 2/3 = c3B

1/3T 2/3,

where c3 = 2K0c1 +24K0/(ρκ). Combining the preceding inequality with inequalities (B.16-B.17),
we conclude that ∆π

θ
(T )≤CB1/3T 2/3 for all θ ∈ V(T,B), where C = 4/κ+ c2c3. Q.E.D.

Proof of Lemma B.2. By the arguments used to derive (B.4), we deduce that
∑T−1

t=2n

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ 4n2Vθ(T ) under MB(κ,x1, x2). Combining this inequality with (2.5), we
conclude that

T−1
∑

t=2n

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ 4n2B
(a)

≤ 16κ2B1/3T 2/3, (B.21)

where (a) follows because n = ⌈κB−1/3T 1/3⌉. We get the desired result by letting c1 = 16κ2.
Q.E.D.

Appendix C: Proof of the results in Section 4. Note that if τ∗j ≥ τ∗j+1 − 2, then the

expected value on the right hand side of (4.11) is less than 2n≤ 4κ
√
T , which gives us an upper

bound on the losses due to detection and estimation between jth and (j + 1)st change-points.
Therefore, we hereafter focus on the case τ∗j < τ

∗
j+1 − 2 for any given j = 0, . . . ,C.

Proof of Lemma 3. Recall that the ǫt have a light-tailed distribution, which implies that there
exist finite constants x0 and ν0 such that Eπ

θ
[exp(xǫt)]≤ exp( 1

2
ν0σ

2x2) for all x satisfying |x| ≤ x0.
Choosing cǫ = (6/x0)∨ (12ν0σ

2), we prove (4.12) for π =D(η,κ,x1, x2) with κ= cǫ/(η ∧ η2). Note
that, for the case ǫt

iid∼N (0, σ2), we have cǫ =12σ2.
Given a real number y with |y| = 1

2
η, let {Zy

t , t = 1,2, . . .} be a stochastic process satisfying
Zy

0 = 1 and
Zy

t := exp
{

1
ζ

(

ySt − 1
2
y2t
)}

for all t= 1,2, . . . (C.1)

where ζ =
(

η
2x0

)

∨ (ν0σ
2) and St =

∑t

q=1 ǫq. First note that Zy
t is integrable for all t. Let Ft :=

σ(ǫ1, . . . , ǫt). Then, we have

E
π
θ
[Zy

t |Ft−1] = exp
{

1
ζ

(

ySt−1 − 1
2
y2t
)}

E
π
θ

[

exp
(

1
ζ
yǫt
)

|Ft−1

]

(a)

≤ exp
{

1
ζ

(

ySt−1 − 1
2
y2t
)}

exp
{

1
2ζ2

ν0σ
2y2
}

(b)

≤ exp
{

1
ζ

(

ySt−1 − 1
2
y2(t− 1)

)}

= Zy
t−1. (C.2)

for all t= 1,2, . . . , where: (a) follows because |y/ζ|= |η/(2ζ)| ≤ x0, and (b) follows because ν0σ
2 ≤ ζ.

Thus (Zy
t ,Ft) is a supermartingale for all y ∈R. Now note that

ǭ10 =
1

m

∑

t∈X10

ǫt =
1

m

m
∑

t=1

ǫt =
Sm

m
. (C.3)

Therefore, we have
P
π
θ

{∣

∣ǭ10
∣

∣≥ 1
2
η
}

= P
π
θ

{∣

∣Sm

∣

∣≥ 1
2
ηm
}

. (C.4)
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Choosing y= 1
2
η, we get

P
π
θ
{Sm ≥ 1

2
ηm} = P

π
θ

{

Sm ≥ ym
}

= P
π
θ

{

ySm − 1
2
y2m≥ 1

2
y2m

}

≤ P
π
θ

{

Zy
m ≥ exp

(

1
2ζ
y2m

)}

(c)

≤ E
π
θ
{Zy

m} exp
(

− 1
2ζ
y2m

)

(d)

≤ exp
(

− 1
8ζ
η2m

)

(e)

≤ exp
(

− 1
8ζ
η2κ logT

)

= T
− 1

8ζ
η2κ

(f)

≤ T−3/2, (C.5)

where: (c) follows from Markov’s inequality, (d) follows because y2 = 1
4
η2 and Zy

t is a supermartin-
gale with Zy

0 = 1, (e) follows because m = ⌈κ logT ⌉ ≥ κ logT , and (f) follows because κ ≥ 6
ηx0

∨
12ν0σ

2

η2
= 12ζη−2. Similarly, choosing y =− 1

2
η, we deduce by the argument used for deriving (C.5)

that P
π
θ
{Sm ≤ − 1

2
ηm} ≤ T−3/2. Therefore, Pπ

θ

{∣

∣ǭ10
∣

∣ ≥ 1
2
η
}

= P
π
θ

{∣

∣Sm

∣

∣ ≥ 1
2
ηm
}

≤ 2T−3/2. Because
the experimentation sets Xik are disjoint and {ǫt} are independent and identically distributed ran-
dom variables, ǭ10 has the same distribution as ǭik for all i and k. Therefore, by the above argument,
we have P

π
θ

{∣

∣ǭik
∣

∣≥ 1
2
η
}

≤ 2T−3/2 for all i and k. Q.E.D.

Proof of Lemma 4. Define

Aj :=

τ∗j
⋃

k=L(τ∗
j
)

{

θs = θt 6= θ(τ∗
j
+1)n+1 for all s, t∈X1k ∪X2k

}

, (C.6)

the event that there is at least one cycle k between L(τ∗j ) and τ
∗
j such that there is no change-point

in X1k ∪ X2k, and the value of the demand parameter vector during the periods in X1k ∪ X2k is
different than the one after the jth change-point. We first calculate the loss due to detection delay
on Aj . Let Dj = τ̂+j −τ∗j be the delay of the true detection following the jth change-point. Assuming
τ∗j < τ

∗
j+1 − 2, we have

E
π
θ

{ nτ̂+
j

∑

s=nτ∗
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X}∩Aj

}

≤ nEπ
θ

{

Dj IAj

}

. (C.7)

Note that D0 = 0 by definition, and for j = 1,2, . . . ,C, the expected value of Dj IAj
can be bounded

above as follows:

E
π
θ

{

Dj IAj

}

=

τ∗j+1−τ∗j
∑

d=1

P
π
θ

{

Dj ≥ d , Aj

}

(a)

≤ 2 +

τ∗j+1−τ∗j
∑

d=3

P
π
θ

{

Dj ≥ d , Aj

}

(b)

≤ 2 +

τ∗j+1−τ∗j
∑

d=3

P
π
θ

{

χτ∗
j
+d−1 = 0 , Aj

}

, (C.8)
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where: (a) follows because Pπ
θ
(·) is a probability measure, and (b) follows becauseDj ≥ d≥ 3 implies

that there was no detection in cycle τ∗j + d− 2. On Aj, the probability of no detection in cycle
k∗ = τ∗j +1, . . . , τ∗j+1 − 2 is

P
π
θ

{

χk∗+1 =0 , Aj

}

= P
π
θ

{

supi,k

{

|D̄ik∗ − D̄ik| :L(τ∗j )≤ k < k∗
}

≤ η , Aj

}

. (C.9)

Note that, on the event Aj , there exists a cycle k0 =L(τ∗j ), . . . , τ
∗
j such that for all s, t∈X1k0 ∪X2k0

we have θs = θt 6= θn(τ∗
j
+1)+1. Let y0 := θnk0+1 and y∗ := θn(τ∗

j
+1)+1. Then, by the preceding identity,

we have the following for k∗ = τ∗j +1, . . . , τ∗j+1 − 2:

P
π
θ

{

χk∗+1 =0 , Aj

}

≤ P
π
θ

{∣

∣D̄ik∗ − D̄ik0

∣

∣≤ η for i=1,2 , Aj

}

= P
π
θ

{

1

m

∣

∣

∣

∣

∣

∑

t∈Xik∗

Dt −
∑

s∈Xik0

Ds

∣

∣

∣

∣

∣

≤ η for i=1,2 , Aj

}

(c)
= P

π
θ

{

1

m

∣

∣

∣

∣

∣

∑

t∈Xik∗

(X̃i · θt + ǫt) −
∑

s∈Xik0

(X̃i · θs + ǫs)

∣

∣

∣

∣

∣

≤ η for i= 1,2 , Aj

}

(d)
= P

π
θ

{

1

m

∣

∣

∣

∣

∣

∑

t∈Xik∗

(X̃i · y∗ + ǫt) −
∑

s∈Xik0

(X̃i · y0 + ǫs)

∣

∣

∣

∣

∣

≤ η for i= 1,2 , Aj

}

= P
π
θ

{

1

m

∣

∣

∣

∣

∣

mX̃i · (y0 − y∗)+
∑

t∈Xik∗

ǫt −
∑

s∈Xik0

ǫs

∣

∣

∣

∣

∣

≤ η for i= 1,2 , Aj

}

(e)

≤ P
π
θ

{

1

m

∣

∣

∣

∣

∣

∑

t∈Xik∗

ǫt −
∑

s∈Xik0

ǫs

∣

∣

∣

∣

∣

≥
∣

∣X̃i · (y0 − y∗)
∣

∣− η for i=1,2 , Aj

}

= P
π
θ

{

∣

∣ǭik∗ − ǭik0
∣

∣≥
∣

∣X̃i · (y0 − y∗)
∣

∣− η for i= 1,2 , Aj

}

, (C.10)

where: X̃i :=
[

1
xi

]

and ǭik =m−1
∑

t∈Xik
ǫt for all i, k, (c) follows by (3.3) and the fact that pt = xi for

all t∈Xik, (d) follows because θt = y∗ for all t∈Xik∗ and θs = y0 for all s∈Xik0 , and (e) follows by
triangle inequality. Because y0 6= y∗, we know by condition (4.1) that ‖y0− y∗‖ ≥ δ. By elementary
algebra, this implies that

∣

∣X̃i · (y0−y∗)
∣

∣≥ aδ for some i0 = 1,2, where a= |x1−x2|
4(1∨x1∨x2)

. Recalling that

η= |x1−x2|
8(1∨x1∨x2)

δ= 1
2
aδ, we have

P
π
θ

{

χk∗+1 =0 , Aj

}

≤ P
π
θ

{∣

∣ǭi0k∗ − ǭi0k0
∣

∣≥ 1
2
aδ , Aj

}

= P
π
θ

{∣

∣ǭi0k∗ − ǭi0k0
∣

∣≥ η , Aj

}

≤ P
π
θ

{∣

∣ǭi0k∗
∣

∣≥ 1
2
η , Aj

}

+P
π
θ

{∣

∣ǭi0k0
∣

∣≥ 1
2
η , Aj

}

(f)

≤ 2Pπ
θ

{

⋃

i,k

{∣

∣ǭik
∣

∣≥ 1
2
η
}

, Aj

}

≤ 2Pπ
θ

{

⋃

i,k

{∣

∣ǭik
∣

∣≥ 1
2
η
}

}

(g)

≤ 2
∑

i,k P
π
θ

{∣

∣ǭik
∣

∣≥ 1
2
η
}

, (C.11)

for k∗ = τ∗j + 1, . . . , τ∗j+1 − 2, where: (f) follows because for any given i and k,
∣

∣ǭik
∣

∣ ≥ 1
4
aδ implies

⋃

i,k

{∣

∣ǭik
∣

∣≥ 1
4
aδ
}

, and (g) follows by the union bound. Using the bound in Lemma 3 on the right
hand side of (C.11), we get

P
π
θ

{

χk∗+1 = 0 , Aj

}

≤ 4
∑

i,k T
−3/2 ≤ 8T−3/2⌊T/n⌋ ≤ 8n−1T−1/2 , (C.12)
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for k∗ = τ∗j +1, . . . , τ∗j+1 − 2. Combining (C.8) and (C.12), we deduce that

E
π
θ

{

Dj IAj

}

≤ 2+8

τ∗j+1−τ∗j
∑

d=3

n−1T−1/2 ≤ 2+8n−1T−1/2⌊T/n⌋ ≤ 2+8n−2T 1/2 ≤ 2+8κ−2T−1/2.

Recalling (C.7), we conclude that

E
π
θ

{ nτ̂+
j

∑

s=nτ∗
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X}∩Aj

}

≤ (2+8κ−2T−1/2)n ≤ 4κ
√
T +16κ−1. (C.13)

Now we find an upper bound on loss due to detection delay on the event Ac
j . Assuming τ∗j < τ

∗
j+1−2,

we have the following on Ac
j:

E
π
θ

{ nτ̂+
j

∑

s=nτ∗
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X}∩Ac
j

}

≤ n+E
π
θ

{ nτ∗j+1
∑

s=n(τ∗
j
+1)+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X , s≤nτ̂+
j
}∩Ac

j

}

(a′)

≤ n+ c1

nτ∗j+1
∑

s=n(τ∗
j
+1)+1

E
π
θ

{

(

ϕ(θs)− ps
)2

I{s6∈X , s≤nτ̂+
j
}∩Ac

j

}

≤ n+ c2

nτ∗j+1
∑

s=n(τ∗
j
+1)+1

E
π
θ

{

‖θs − θ̂s‖2 I{s6∈X , s≤nτ̂+
j
}∩Ac

j

}

= n+ c2

nτ∗j+1−1
∑

s=n(τ∗
j
+1)

E
π
θ

{

‖θs+1 − θ̂s+1‖2 I{s+16∈X , s<nτ̂+
j
}∩Ac

j

}

, (C.14)

where: c1 =max(α,β)∈Θ{4β2/α2}, c2 = c1maxi=1,2

{

maxθ{(∂ϕ(θ)/∂θi)2}
}

, and (a′) follows by defi-
nitions of r(·, ·), r∗(·), and ϕ(·). By (3.4), we have

θ̂s+1 − θs+1 =
(

J s
s

)−1
s
∑

q=1

ws
qXqX

T

q (θq − θs+1) +
(

J s
s

)−1Ms
s for all s. (C.15)

The preceding identity implies the following for s= n(τ∗j +1), . . . , nτ∗j+1 − 1 satisfying s+1 6∈ X :

‖θ̂s+1 − θs+1‖
(b′)

≤
(

Is
s

)−1
s
∑

q=1

ws
q ‖θq − θs+1‖ +

∥

∥

(

J s
s

)−1Ms
s

∥

∥

(c′)

≤
(

Is
s

)−1

n(τ∗j +1)
∑

q=nL(τ∗
j
)+1

ws
q ‖θq − θs+1‖ +

∥

∥

(

J s
s

)−1Ms
s

∥

∥, (C.16)

where: (b′) follows by triangle inequality and the fact that the eigenvalues of
(

J s
s

)−1
XqX

T

q are

0 and ±
(

Is
s

)−1
for all q ∈ X , and (c′) follows because ws

q = 0 for q ≤ nL(τ∗j ) ≤ n(τ∗j + 1) ≤ s
and ‖θq − θs+1‖= 0 for (τ∗j +1)n+1≤ q≤ s≤ τ∗j+1n− 1. By the definition of Aj in (C.6) we have
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the following on Ac
j: for all cycles k between L(τ∗j ) and τ∗j , either (i) there is a change-point in

X1k∪X2k, or (ii) the value of the demand parameter vector during the periods in X1k∪X2k is exactly
the same as the one after the jth change-point. Letting K(i)

j and K(ii)
j be the sets of cycles between

L(τ∗j ) and τ
∗
j that satisfy conditions (i) and (ii), respectively, we re-express (C.16) as follows:

‖θ̂s+1 − θs+1‖ ≤
(

Is
s

)−1

(

∑

k∈K(i)
j

+
∑

k∈K(ii)
j

)

n(k+1)
∑

q=nk+1

ws
q ‖θq − θs+1‖ +

∥

∥

(

J s
s

)−1Ms
s

∥

∥

(d′)

≤
(

Is
s

)−1
∑

k∈K(i)
j

n(k+1)
∑

q=nk+1

ws
q ‖θq − θs+1‖ +

∥

∥

(

J s
s

)−1Ms
s

∥

∥

(e′)

≤
(

Is
s

)−1
c3
∑

k∈K(i)
j

n(k+1)
∑

q=nk+1

ws
q +

∥

∥

(

J s
s

)−1Ms
s

∥

∥

(f′)

≤
(

Is
s

)−1
c3 Cm +

∥

∥

(

J s
s

)−1Ms
s

∥

∥, (C.17)

for s = n(τ∗j + 1), . . . , nτ∗j+1 − 1 satisfying s+ 1 6∈ X , where: c3 = maxθ,θ′∈Θ ‖θ − θ′‖, (d′) follows

because given k ∈K(ii)
j , we have ws

q ‖θq − θs+1‖= 0 for q= nk+1, . . . , n(k+1), (e′) follows because

‖θq − θs+1‖ ≤ c3, and (f′) follows because ws
q = 0 if s 6∈ X , and the cardinality of K(i)

j is less than

or equal to the number of change-points, C. Squaring and taking the expectation of both sides of

(C.17), we get

E
π
θ

{

‖θ̂s+1 − θs+1‖2 I{s+16∈X , s<nτ̂+
j
}∩Ac

j

}

≤ E
π
θ

{(

2
(

Is
s

)−2
c23 C2m2 +2

∥

∥

(

J s
s

)−1Ms
s

∥

∥

2
)

I{s+16∈X , s<nτ̂+
j
}∩Ac

j

}

. (C.18)

On Ac
j, we know that Is

s =2
(

⌈s/n⌉−L(τ∗j )+1
)

m≥ 2
(

⌈s/n⌉−τ∗j +1
)

m for s= n(τ∗j +1), . . . , nτ̂+j −1

satisfying s+1 6∈ X . Thus, (C.18) implies that

E
π
θ

{

‖θ̂s+1 − θs+1‖2 I{s+16∈X , s<nτ̂+
j
}∩Ac

j

}

≤ c23 C2

2
(

⌈s/n⌉− τ∗j +1
)2 + 2Eπ

θ

{

∥

∥

(

J s
s

)−1Ms
s

∥

∥

2
I{s+16∈X , s<nτ̂+

j
}∩Ac

j

}

(g′)

≤ c23 C2

2
(

⌈s/n⌉− τ∗j +1
)2 +

12

ρ
(

⌈s/n⌉− τ∗j +1
)

m
, (C.19)

where (g′) follows by the arguments used to prove inequality (B.14) and Lemma 2. Summing both

sides of (C.19) over s= n(τ∗j +1), . . . , nτ∗j+1 − 1, we deduce that



Keskin and Zeevi: Learning and Earning in a Changing Environment

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 35

nτ∗j+1−1
∑

s=n(τ∗
j
+1)

E
π
θ

{

‖θs+1 − θ̂s+1‖2 I{s+16∈X , s≤τ̂+
j
n}∩Ac

j

}

≤
nτ∗j+1−1
∑

s=n(τ∗
j
+1)

(

c23 C2

2
(

⌈s/n⌉− τ∗j +1
)2 +

12

ρ
(

⌈s/n⌉− τ∗j +1
)

m

)

(h′)

≤ n

τ∗j+1−τ∗j +1
∑

q=2

(

c23 C2

2q2
+

12

ρqm

)

≤ n

(

c23 C2 π2

12
+

12

ρm
log(τ∗j+1 − τ∗j +1)

)

(i′)

≤ n

(

c23 C2 π2

12
+

6

ρκ

)

(j′)

≤
(

c23 C2 π2κ

6
+

12

ρ

)√
T , (C.20)

for T ≥ 3, where: (h′) follows by expressing the time index as s= (τ∗j +q−1)n+i, (i′) follows because

m≥ κ logT ≥ 2κ log(τ∗j+1 − τ∗j + 1) for T ≥ 3, and (j′) follows because n ≤ 2κ
√
T . By inequalities

(C.14) and (C.20), we deduce that E
π
θ

{
∑nτ̂+

j

s=nτ∗
j
+1

(

1− r(ps, θs)/r
∗(θs)

)

I{s6∈X}∩Ac
j

}

≤ c4
√
T , where

c4 = 2κ+ c2
(

c23C2π2κ/6+12/ρ
)

. Combining this result with (C.13), we conclude that

E
π
θ

{ nτ̂+
j

∑

s=nτ∗
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X}

}

≤C1

√
T , (C.21)

where C1 = 4(κ+4κ−1)∨ c4. Q.E.D.

Proof of Lemma 5. Assume that τ∗j < τ
∗
j+1−2, and that there exists at least one false detection

between the jth and (j + 1)st change-points. Let Ej = τ∗j+1 − τ̂−j be the earliness of the first false
detection after the jth change-point. Then, we have

E
π
θ

{ nτ∗j+1
∑

s=nτ̂−
j

+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X}

}

≤ n
(

1+E
π
θ
{Ej}

)

. (C.22)

For j = 0,1, . . . ,C, the expected earliness of false detections before the (j + 1)st change-point is
given by

E
π
θ
{Ej} =

τ∗j+1−τ∗j −2
∑

ε=1

P
π
θ
{Ej ≥ ε} =

τ∗j+1−τ∗j −2
∑

ε=1

τ∗j+1−τ∗j −2
∑

q=ε

P
π
θ
{Ej = q}. (C.23)

By definition, τ∗j < τ̂+j < τ̂−j ≤ τ∗j+1, i.e., if there is a false detection between the jth and (j + 1)st

change-points then it must be preceded by the true detection after the jth change-point. Therefore,
for all q= 1, . . . , τ∗j+1− τ∗j − 2, the event Ej = q implies that the true detection after the jth change-
point is between cycles τ∗j +1 and τ∗j+1−q−2, and that there is a false detection in cycle τ∗j+1−q−1.
More formally, {Ej = q} ⊆

{

L(τ∗j+1 − q − 1) ≥ τ∗j + 1
}

∩
{

χτ∗
j+1−q = 1

}

, where L(k) = max{τ ≤ k :
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χτ = 1} is the latest detection cycle that precedes cycle k. Letting Bjq :=
{

L(τ∗j+1−q−1)≥ τ∗j +1
}

,

we have the following by (C.23):

E
π
θ
{Ej} ≤

τ∗j+1−τ∗j −2
∑

ε=1

τ∗j+1−τ∗j −2
∑

q=ε

P
π
θ

{

χτ∗
j+1−q = 1 , Bjq

}

. (C.24)

For k∗ = τ∗j+1 − q− 1, the definition of the detection test (4.6) implies

P
π
θ

{

χk∗+1 = 1 , Bjq

}

= P
π
θ

{

supi,k

{∣

∣D̄ik∗ − D̄ik

∣

∣ :L(k∗)≤ k < k∗
}

> η , Bjq

}

(a)

≤ P
π
θ

{

supi,k

{∣

∣D̄ik∗ − D̄ik

∣

∣ : τ∗j +1≤ k < k∗
}

> η , Bjq

}

= P
π
θ

{

2
⋃

i=1

k∗−1
⋃

k=τ∗
j
+1

{∣

∣D̄ik∗ − D̄ik

∣

∣> η
}

, Bjq

}

(b)

≤
2
∑

i=1

k∗−1
∑

k=τ∗
j
+1

P
π
θ

{∣

∣D̄ik∗ − D̄ik

∣

∣> η
}

, (C.25)

where: (a) follows because L(k∗) = L(τ∗j+1 − q − 1)≥ τ∗j + 1 on Bjq , and (b) follows by the union

bound. Note that there are no change-points between cycles τ∗j +1 and k∗ = τ∗j+1 − q− 1. Letting

y∗ := θn(τ∗
j
+1)+1, we therefore have

D̄ik∗ − D̄ik =
1

m

∑

t∈Xik∗

Dt − 1

m

∑

s∈Xik

Ds

=
1

m

∑

t∈Xik∗

(X̃i · y∗ + ǫt) − 1

m

∑

s∈Xik

(X̃i · y∗ + ǫs)

= ǭik∗ − ǭik, (C.26)

for all k= τ∗j +1, . . . , k∗, where: X̃i =
[

1
xi

]

and ǭik =m−1
∑

t∈Xik
ǫt for all i, k. Thus, (C.25) implies

P
π
θ

{

χk∗+1 = 1 , Bjq

}

≤
2
∑

i=1

k∗−1
∑

k=τ∗
j
+1

P
π
θ

{∣

∣ǭik∗ − ǭik
∣

∣>η
}

≤
2
∑

i=1

k∗−1
∑

k=τ∗
j
+1

(

P
π
θ

{∣

∣ǭik∗
∣

∣> 1
2
η
}

+P
π
θ

{∣

∣ǭik
∣

∣> 1
2
η
}

)

(c)

≤ 4
2
∑

i=1

k∗−1
∑

k=τ∗
j
+1

T−3/2

≤ 8T−3/2

⌊

T

n

⌋

≤ 8n−1T−1/2, (C.27)

for k∗ = τ∗j+1 − q− 1, where (c) follows by Lemma 3. Combining (C.24) and (C.27), we get
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E
π
θ

{

Ej

}

≤ 2+8

τ∗j+1−τ∗j −2
∑

ε=1

τ∗j+1−τ∗j −2
∑

q=ε

n−1T−1/2

≤ 2+8n−1T−1/2

⌊

T

n

⌋2

≤ 2+8n−3T 3/2

≤ 2+8κ−3. (C.28)

Recalling (C.22), we conclude that

E
π
θ

{ nτ∗j+1
∑

s=nτ̂−
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X}

}

≤ (3+8κ−3)n ≤ C2

√
T , (C.29)

where C2 = 6κ+16κ−2. Q.E.D.

Proof of Lemma 6. Assuming τ∗j < τ
∗
j+1 − 2, we have

E
π
θ

{ nτ̂−
j

∑

s=nτ̂+
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X}

}

(a)

≤ c1

nτ∗j+1
∑

s=n(τ∗
j
+1)+1

E
π
θ

{

(

ϕ(θs)− ps
)2

I{s6∈X , nτ̂+
j
<s≤nτ̂−

j
}

}

≤ c2

nτ∗j+1
∑

s=n(τ∗
j
+1)+1

E
π
θ

{

‖θs − θ̂s‖2 I{s6∈X , nτ̂+
j
<s≤nτ̂−

j
}

}

= c2

nτ∗j+1−1
∑

s=n(τ∗
j
+1)

E
π
θ

{

‖θs+1 − θ̂s+1‖2 I{s+16∈X , nτ̂+
j
≤s<nτ̂−

j
}

}

, (C.30)

where: c1 =max(α,β)∈Θ{4β2/α2}, c2 = c1maxi=1,2

{

maxθ{(∂ϕ(θ)/∂θi)2}
}

, and (a) follows by defi-

nitions of r(·, ·), r∗(·), and ϕ(·). Recalling (3.4), we have

θ̂s+1 − θs+1 =
(

J s
s

)−1
s
∑

q=1

ws
qXqX

T

q (θq − θs+1) +
(

J s
s

)−1Ms
s for all s. (C.31)

For any given s= nτ̂+j , . . . , nτ̂
−
j − 1 satisfying s+1 6∈ X , we know that ws

q = 0 for 1≤ q ≤ nτ̂+j ≤ s,

and that θq − θs+1 = 0 for n(τ∗j +1)≤ q ≤ s≤ nτ∗j+1. Because τ
∗
j < τ̂

+
j < τ̂−j ≤ τ∗j+1, we deduce that

θ̂s+1 − θs+1 =
(

J s
s

)−1Ms
s for s= nτ̂+j , . . . , nτ̂

−
j − 1 satisfying s+1 6∈ X . (C.32)

Note that Is
s = 2

(

⌈s/n⌉ −L(s/n) + 1
)

m= 2
(

⌈s/n⌉− τ̂+j +1
)

m for s= nτ̂+j , . . . , nτ̂
−
j − 1 satisfying

s+1 6∈ X . Hence, (C.32) implies that

E
π
θ

{

‖θ̂s+1 − θs+1‖2 I{s+16∈X , nτ̂+
j
≤s<nτ̂−

j
}
}

≤ E
π
θ

{

∥

∥

(

J s
s

)−1Ms
s

∥

∥

2
I{s+16∈X , nτ̂+

j
≤s<nτ̂−

j
}

}

≤ E
π
θ

{

6

ρ
(

⌈s/n⌉− τ̂+j +1
)

m
I{s+16∈X , nτ̂+

j
≤s<nτ̂−

j
}

}

, (C.33)
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by the arguments used to prove inequality (B.14) and Lemma 2. Summing both sides of (C.33)
over s= n(τ∗j +1), . . . , nτ∗j+1 − 1, we deduce that

nτ∗j+1−1
∑

s=n(τ∗
j
+1)

E
π
θ

{

‖θs+1 − θ̂s+1‖2 I{s+16∈X , nτ̂+
j
≤s<nτ̂−

j
}

}

≤
nτ∗j+1−1
∑

s=n(τ∗
j
+1)

E
π
θ

{

6

ρ
(

⌈s/n⌉− τ̂+j +1
)

m
I{s+16∈X , nτ̂+

j
≤s<nτ̂−

j
}

}

≤ E
π
θ

{ nτ̂−
j

−1
∑

s=nτ̂+
j

6

ρ
(

⌈s/n⌉− τ̂+j +1
)

m

}

(b)

≤ n

τ∗j+1−τ∗j +1
∑

q=2

6

ρqm

≤ 6n

ρm
log(τ∗j+1 − τ∗j +1)

(c)

≤ 6ρ−1
√
T , (C.34)

for T ≥ 3, where: (b) follows by expressing the time index as s= (τ∗j + q− 1)n+ i and τ∗j < τ̂+j <

τ̂−j ≤ τ∗j+1, and (c) follows because m ≥ κ logT ≥ 2κ log(τ∗j+1 − τ∗j + 1) for T ≥ 3, and n ≤ 2κ
√
T .

Combining (C.30) and (C.34), we conclude that

E
π
θ

{ nτ̂−
j

∑

s=nτ̂+
j
+1

(

1− r(ps, θs)

r∗(θs)

)

I{s6∈X}

}

≤ 6c2ρ
−1
√
T . Q.E.D. (C.35)

Proof of Theorem 4. By (4.11) and Lemmas 4, 5, and 6, we have

E
π
θ

{ T
∑

t=1

(

1− r(pt, θt)

r∗(θt)

)

I{t6∈X}

}

≤ (C+1)(C1 +C2 +C3)T
1/2

≤ (C̄ +1)(C1+C2 +C3)T
1/2, (C.36)

for all T ≥ 3. Therefore, (4.10) implies ∆π
θ
(T ) ≤ CT 1/2 logT for all T ≥ 3, where C = 8 + (C̄ +

1)(C1+C2 +C3). Q.E.D.

Appendix D: Proof of the results in Section 5.

Proof of Theorem 5. In the proof of Theorem 1, let N = ⌈k0T 2(1−ν)/3⌉, instead of N =
⌈k0T 2/3⌉, where k0 = 42/3B−2/3. Repeating the same arguments from (A.1) to (A.10), deduce that
sup{∆π

θ
(T ) : Vθ(T )≤BT ν} ≥ 1

2
k2N

−1/2T for a certain constant k2 independent of T , B, and ν. We
therefore conclude that sup{∆π

θ
(T ) : Vθ(T )≤BT ν} ≥ cT (2+ν)/3 where c= 1

8
k2B

1/3. Q.E.D.

Proof of Lemma 7. For Mν(κ,x1, x2), using the arguments in the proof of Lemma B.2 to
obtain (B.4), we get

∑T−1

t=n2 ‖(J t
t )

−1Wt
t‖2 ≤ 4n2Vθ(T ). Under condition (5.1), this implies that

∑T−1

t=n2 ‖(J t
t )

−1Wt
t‖2 ≤ 4n2BT ν ≤ 16κ2BT (2+ν)/3. Letting c1 = 16κ2B, we get (5.4).
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For Wν(µ,κ,x1, x2), consider (B.6) in the proof of Lemma 1, which still holds under condition

(5.1):

(

J t
t

)−1Wt
t =

∑

s∈X1

wt
s

(x1−x2)It
t

[

−x2 −x1x2

1 x1

]

(θs − θt+1)

+
∑

s∈X2

wt
s

(x1−x2)It
t

[

−x1 −x1x2

1 x2

]

(θs − θt+1). (D.1)

By the arguments used to derive (B.8) and the fact that wt
s ≤ n−2T−2ν for all s < t−n2, we get

T−1
∑

t=n2

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ 8n−6T−4ν

T−1
∑

t=n2

t2
(

I t
t

)−2
max

1≤s<t−n2

∥

∥θs − θt+1

∥

∥

2

+8n2

T−1
∑

t=n2

(

I t
t

)−2
max

t−n2≤s≤t

∥

∥θs − θt+1

∥

∥

2
. (D.2)

Under Wν(µ,κ,x1, x2), we have I t
t ≥ cµn for all t≥ n2, where cµ is a constant independent of T , B,

and ν. Hence, the preceding inequality implies that

T−1
∑

t=n2

∥

∥

(

J t
t

)−1Wt
t

∥

∥

2 ≤ 8c−2
µ n−8T−4ν

T−1
∑

t=n2

t2 max
1≤s<t−n2

∥

∥θs − θt+1

∥

∥

2

+8c−2
µ

T−1
∑

t=n2

max
t−n2≤s≤t

∥

∥θs − θt+1

∥

∥

2
. (D.3)

Therefore, by condition (5.1) and the fact that n= ⌈κT (1−ν)/3⌉, the first term on the right hand side
of the preceding inequality is bounded above by 8c−2

µ n−8T−4ν
∑T−1

t=n2 t2Vθ(T )≤ 8c−2
µ n−8BT 3−3ν ≤

8c−2
µ κ−8BT (1−ν)/3. Furthermore, by (B.4) and the fact that n= ⌈κT (1−ν)/3⌉, the second term is less

than or equal to 8c−2
µ n2Vθ(T )≤ 32c−2

µ κ2BT (2+ν)/3. Thus, the right hand side of (D.3) is bounded
above by 8c−2

µ (κ−8+4κ2)BT (2+ν)/3. Q.E.D.

Proof of Theorem 6. Note that inequalities (B.12) and (B.15) in the proof of Theorem 2 are

valid under condition (5.1), implying that

∆π
θ
(T ) ≤ 3T

n
+ n2 + 2K0c2

T−1
∑

t=n2

E
π
θ
‖(J t

t )
−1Wt

t‖2 +
24K0T

ρc̃n
. (D.4)

By Lemma 7, the preceding inequality leads to ∆π
θ
(T ) ≤ 3T/n + n2 + 2K0c1c2T

(2+ν)/3 +

24K0c2T/(ρc̃n). Because n= ⌈κT (1−ν)/3⌉, this implies ∆π
θ
(T )≤C T (2+ν)/3 for all θ ∈ V(T,B), where

C = 3/κ+4κ2+2K0c1c2+24K0c2/(ρc̃κ). Q.E.D.
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