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Abstract

We study problem-dependent rates, i.e., generalization errors that scale tightly
with the variance or the effective loss at the "best hypothesis." Existing uniform
convergence and localization frameworks, the most widely used tools to study this
problem, often fail to simultaneously provide parameter localization and optimal
dependence on the sample size. As a result, existing problem-dependent rates are
often rather weak when the hypothesis class is "rich" and the worst-case bound of
the loss is large. In this paper we propose a new framework based on a "uniform lo-
calized convergence" principle. We provide the first (moment-penalized) estimator
that achieves the optimal variance-dependent rate for general "rich" classes; we also
establish improved loss-dependent rate for standard empirical risk minimization.

1 Introduction

Problem Statement. Consider the following statistical learning setting. Assume that a random
sample z follows an unknown distribution P with support Z . For each realization of z, let `(·; z) be a
real-valued loss function, defined over the hypothesis classH. Let h∗ ∈ H be the optimal hypothesis
that minimizes the population risk

P`(h; z) := E[`(h; z)].

Given n i.i.d. samples {zi}ni=1 drawn from P, our goal, roughly speaking, is to "learn" a hypothesis
ĥ ∈ H that makes the generalization error

E (ĥ) := P`(ĥ; z)− P`(h∗; z)
as small as possible. This pursuit is ubiquitous in machine learning, statistics and stochastic optimiza-
tion.

Let V∗ and L∗ be the variance and the "effective loss" at the best hypothesis h∗:

V∗ := Var[`(h∗; z)], L∗ := P[`(h∗; z)− inf
H
`(h; z)].

We study finite-sample generalization errors that scale tightly with V∗ or L∗, which we call problem-
dependent rates, without invoking strong convexity or margin conditions. While the direct dependence
of E (ĥ) on the sample size n is often well-understood, it typically only reflects an "asymptotic"
perspective, placing less emphasis on the scale of problem-dependent parameters V∗ and L∗.
Main challenges. In absence of strong convexity and margin conditions, perhaps the most popular
framework to study problem-dependent rates is the traditional "local Rademacher complexity"
analysis [2, 6, 16], which has become a standard tool in learning theory. However, as we will discuss
later, this analysis makes the "direct dependence" on the sample size (n) sub-optimal for all "rich"
classes with the exception of parametric classes.

The absence of more precise localization analysis also challenges the design of more refined estimation
procedures. For example, designing estimators to achieve variance-dependent rates requires penalizing
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the empirical second moment to achieve the "right" bias-variance trade-off. Most antecedent work
is predicated on either the traditional "local Rademacher complexity" analysis [12, 4] or coarser
approaches [8, 14]. Thus, to the best of our knowledge, the question of optimal variance-dependent
rates for general rich classes is still open.

When assuming suitable curvature or margin conditions, much progress on problem-dependent rates
has been made under particular formulations, such as supervised learning with strong convexity
[10, 11, 7]. Methods tailored for these settings can not directly adopt the general setting we study.

Contributions. We introduce a new framework to study localization in statistical learning, dubbed
"uniform localized convergence," which simultaneously provides optimal "direct dependence" on the
sample size, and correct scaling with problem-dependent parameters. This framework resolves some
fundamental limitations of existing localization analysis.

We employ the above ideas to design the first estimator that achieves optimal variance-dependent rates
for general function classes. The derivation is based on a novel two-stage procedure that optimally
penalizes the empirical (centered) second moment. We also establish improved loss-dependent rates
for standard empirical risk minimization, which has computational advantages.

Organization. Section 2 introduces our proposed "uniform localized convergence" principle. Section
3 provides preliminaries. Section 4 presents the loss-dependent rate. Section 5 presents the variance-
dependent rate. Section 6 illustrates our findings in two examples: non-parametric classes and VC
classes.

2 The "uniform localized convergence" principle

2.1 The current blueprint

Denote the empirical risk

Pn`(h; z) :=
1

n

n∑
i=1

`(h; zi),

and consider the following straightforward decomposition of the generalization error

E (ĥ) = (P− Pn)`(ĥ; z) +
(
Pn`(ĥ; z)− Pn`(h∗; z)

)
+ (Pn − P)`(h∗; z). (2.1)

The main difficulty in studying E (ĥ) comes from bounding the first term (P− Pn)`(ĥ; z), since ĥ
depends on the n samples. The simplest approach, which does not achieve problem-dependent rates,
is to bound the uniform error

sup
h∈H

(P− Pn)`(h; z)

over the entire hypothesis classH. In order to obtain problem-dependent rates, a natural modification
is to consider uniform convergence over localized subsets ofH.

We first give an overview of the traditional "local Rademacher complexity" analysis [2, 6, 16].
Consider a generic function class F that we wish to concentrate, which consists of real-valued
functions defined on Z (e.g., one can set f(z) = `(h; z)). Denote

Pf := E[f(z)], Pnf :=
1

n

n∑
i=1

f(zi),

and denote by ψ(r; δ) a surrogate function that upper bounds the uniform error within a localized
region {f ∈ F : T (f) ≤ r}, where we call T : F → R+ the "measurement functional". Formally,
let ψ be a function that maps [0,∞) × (0, 1) to [0,∞), which possibly depends on the observed
samples {zi}ni=1. Assume ψ satisfies for arbitrary fixed δ, r, with probability at least 1− δ,

sup
f∈F :T (f)≤r

(P− Pn)f ≤ ψ(r; δ). (2.2)

By default we ask ψ(r; δ) to be a non-decreasing and non-negatove function. The main result of
the traditional "local Rademacher complexity" analysis can be stated as follows (adapted from [2,
Section 3.2]).
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Statement 1 (current blueprint). Assume that ψ is a sub-root function, i.e., ψ(r; δ)/
√
r is non-

increasing with respect to r ∈ R+. Assume the Bernstein condition T (f) ≤ BeP[f ], Be > 0,
∀f ∈ F . Then with probability at least 1− δ, for all f ∈ F and K > 1,

(P− Pn)f ≤ 1

K
Pf +

100(K − 1)r∗

Be
, (2.3)

where r∗ is the "fixed point" solution of the equation r = Beψ(r; δ).

Since its inception, Statement 1 has become a standard tool in learning theory. However, it requires
a rather technical proof, and it appears to be loose when compared with the original assumption
(2.2)—ideally, we would like to directly extend (2.2) to hold uniformly without sacrificing any
accuracy. Moreover, some assumptions in the statement are restrictive and might not be necessary.

2.2 Key ideas of the "uniform localized convergence" principle.

We provide a surprisingly simple approach which greatly improves and simplifies the current blueprint.
While Statement 1 relies heavily on restrictive assumptions like the "sub-root" property of ψ and the
Bernstein condition, the following proposition holds essentially without any restrictions.
Proposition 1 (uniform localized convergence). For function class F and functional T : F →
[0, R], assume there is a function ψ(r; δ) (possibly depending on the samples), which is non-
decreasing with respect to r and satisfies that ∀δ ∈ (0, 1), ∀r ∈ (0, R], with probability at least
1− δ,

sup
f∈F :T (f)≤r

(P− Pn)f ≤ ψ(r; δ). (2.4)

Then, given any δ ∈ (0, 1) and r0 ∈ (0, R], with probability at least 1 − δ, for all f ∈ F , either
T (f) ≤ r0 or

(P− Pn)f ≤ ψ
(

2T (f); δ(log2

2R

r0
)−1
)
. (2.5)

The key intuition behind Proposition 1 is that the uniform restatement of the "localized" argument
(2.4) is nearly cost-free, because the deviations (P− Pn)f can be controlled solely by the real valued
functional T (f). As a result, we essentially only require uniform convergence over an interval [r0, R].
The "cost" of this uniform convergence, namely, the additional log2( 2R

r0
) term in (2.5), will only

appear in the form log(δ/ log2( 2R
r0

)) in high-probability bounds, which is of a negligibleO(log log n)
order in general.

Formally, we apply a "peeling" technique: we take rk = 2kr0, where k = 1, 2, . . . , dlog2
R
r0
e, and

we use the union bound to extend (2.4) to hold for all these rk. Then for any f ∈ F such that
T (f) > r0 is true, there exists a non-negative integer k such that 2kr0 < T (f) ≤ 2k+1r0. By the
non-decreasing property of the ψ function, we then have

(P− Pn)f ≤ ψ
(
rk+1; δ(log2

2R

r0
)−1
)
≤ ψ

(
2T (f); δ(log2

2R

r0
)−1
)
,

which is exactly (2.5). Interestingly, the proof of the classical result (Statement 1) relies on a relatively
heavy machinery that includes more complicated peeling and re-weighting arguments (see [2, Section
3.1.4]). However, that analysis obscures the key intuition that we elucidate under inequality (2.5).

The results presented in this paper essentially originate from the noticeable gap between Proposition
1 and Statement 1, illustrated by the following (informal) conclusion:
Statement 2 (improvements over the current blueprint (informal statement)). Under the as-
sumptions of Statement 1, Proposition 1 provides a strict improvement. In particular, the slower ψ
grows, the larger the gap between the bounds in the two results, and the bounds become identical
only when ψ is proportional to

√
r, i.e., when the function class F is parametric and not "rich."

Formalizing as well as providing rigorous justification for this conclusion is relatively straightforward:
taking the "optimal choice" of K in Statement 1, we can re-write its conclusion as

(P− Pn)f ≤ 20

√
r∗Pf
Be

− r∗

Be
[Statement 1],
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where the right hand side is of order
√
r∗Pf/Be when Pf > r∗/Be, and order r∗/Be when

P[f ] ≤ r∗/Be. Our result (2.5) is also of order r∗/Be when Pf ≤ r∗/Be. However, for every f
such that Pf > r∗/Be, it is straightforward to verify that under the assumptions in Statetment 1,

ψ(2T (f); δ) ≤ ψ(2BePf ; δ) [Bernstein condition: T (f) ≤ BePf ]

≤
√

2BePf√
r∗

ψ(r∗; δ) [ψ(r; δ) is sub-root]

≤
√

2r∗Pf
Be

[r∗ is the fixed point of Bψ(r; δ)]. (2.6)

Therefore, the argument ψ(2T (f); δ) ≤
√

2r∗Pf/Be established by (2.6) shows that the "uniform
localized convergence" argument (2.5) strictly improves over Statement 1.

3 Preliminaries

Our results on problem-dependent rates essentially only require the loss function to be uniformly
bounded by [−B,B], i.e., |`(h; z)| ≤ B for all h ∈ H and z ∈ Z . This is a standard assumption used
in almost all previous works that do not invoke curvature conditions or rely on other problem-specific
structure. Extensions to unbounded targets can be obtained via truncation techniques (see, e.g. [5]),
and our problem-dependent results allow B to be very large, potentially scaling with n.

We represent the complexity through a surrogate function ψ(r; δ) that satisfies for all δ ∈ (0, 1),
sup

f∈F :P[f2]≤r
(P− Pn)f ≤ ψ(r; δ), (3.1)

with probability at least 1− δ, where F is taken to be the excess loss class
` ◦H − ` ◦ h∗ := {z 7→ `(h; z)− `(h∗; z) : h ∈ H}. (3.2)

To achieve non-trivial complexity control (and ensure existence of the fixed point), we only consider
"meaningful" surrogate functions stated below.
Definition 1 (meaningful surrogate function). A bivariate function ψ(r; δ) defined over [0,∞)×
(0, 1) is called a meaningful surrogate function if it is non-decreasing, non-negative and bounded
with respect to r for every fixed δ ∈ (0, 1).

We note that the above does not place significant restrictions on the choice of the surrogate function:
the left hand side of (3.1) is itself non-decreasing and non-negative; and the boundedness requirement
can always be met by setting ψ(r; δ) = ψ(4B2; δ) for all r ≥ 4B2. We now give the formal definition
of fixed points.
Definition 2 (fixed point). Given a non-decreasing, non-negative and bounded function ϕ(r) defined
over [0,∞), we define the fixed point of ϕ(r) to be sup{r > 0 : ϕ(r) ≤ r}. Equivalently, the fixed
point of ϕ(r) is the maximal solution to the equation ϕ(r) = r.

Given a bounded class F , empirical process theory provides a general way to construct surrogate
function by upper bounding the "local Rademacher complexity" R{f ∈ F : P[f2] ≤ r} (see Lemma
4 in Appendix H). We give the definition of Rademacher complexity for completeness.
Definition 3 (Rademacher complexity). For a function class F that consists of mappings from Z
to R, define

RF := Ez,υ sup
f∈F

1

n

n∑
i=1

υif(zi), RnF := Eυ sup
f∈F

1

n

n∑
i=1

υif(zi),

as the Rademacher complexiy and the empirical Rademacher complexity of F , respectively, where
{υi}ni=1 are i.i.d. Rademacher variables for which Prob(υi = 1) = Prob(υi = −1) = 1

2 . Ez means
taking expectations over {zi}ni=1 and Eυ means taking expectations over υini=1.

Furthermore, Dudley’s integral bound (Lemma 3 in Appendix H) provides one general solution to
construct a computable upper bound of local Rademacher complexity via the covering number of F .
We give the definition of covering number.
Definition 4 (covering number and metric entropy). A ε−cover of a function class F with the
L2(Pn) metric is a set {f1, . . . , fm} ⊆ F that satisfies for each f ∈ F , there exists i ∈ {1, . . . ,m}
such that

√
Pn(f(z)− fi(z))2 ≤ ε. The covering number N (ε,F , L2(Pn)) is the cardinality of the

smallest ε−cover. We call logN (ε,F , L2(Pn)) the metric entropy.
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4 Loss-dependent rates via empirical risk minimization

In this section we are interested in loss-dependent rates, which should scale tightly with L∗ :=
P[`(h∗; z)− infH `(h; z)]; the best achievable “effective loss" onH. The following theorem charac-
terizes the loss-dependent rate of empirical risk minimization (ERM) via a surrogate function ψ, its
fixed point r∗, the effective loss L∗ and B.
Theorem 1 (loss-dependent rate of ERM). For the excess loss class F in (3.2), assume there is a
meaningful surrogate function ψ(r; δ) that satisfies ∀δ ∈ (0, 1) and ∀r > 0, with probability at least
1− δ,

sup
f∈F :P[f2]≤r

(P− Pn)f ≤ ψ(r; δ).

Then the empirical risk minimizer ĥERM ∈ arg minH{Pn`(h; z)} satisfies for any fixed δ ∈ (0, 1)
and r0 ∈ (0, 4B2), with probability at least 1− δ,

E (ĥERM) ≤ ψ
(

24BL∗; δ

Cr0

)
∨ r∗

6B
∨ r0

24B
,

where Cr0 = 2 log2
8B2

r0
, and r∗ is the fixed point of 6Bψ

(
8r; δ

Cr0

)
.

Remarks. 1) The term r0 is negligible since it can be arbitrarily small. One can simply set
r0 = B2/n4, which will much smaller than r∗ in general (r∗ is at least of order B2 log 1

δ /n in
the traditional "local Rademacher complexity" analysis). In high-probability bounds, Cr0 will only
appear in the form log(Cr0/δ)), which is of a negligible O(log log n) order, so Cr0 can be viewed an
absolute constant for all practical purposes. As a result, our generalization error bound can be viewed
to be of the order

E (ĥERM) ≤ O
(
ψ(BL∗; δ) ∨ r

∗

B

)
. (4.1)

2) By using the empirical "effective loss," Pn[`(ĥERM; z) − infH `(h; z)], to estimate L∗, the loss-
dependent rate can be estimated from data without knowledge of L∗. We defer the details to Appendix
A.

Comparison to existing results. Under additional restrictions (to be explained later), the traditional
analysis (2.3) leads to a loss-dependent rate of the order [2]

E (ĥERM) ≤ O

(√
L∗r∗
B
∨ r
∗

B

)
, (4.2)

which is strictly worse than our result (4.1) due to reasoning following Statement 2. When BL∗ ≤
O(r∗), both (4.1) and (4.2) are dominated by the order r∗/B so there is no difference between them.
However, when BL∗ ≥ Ω(r∗), our result (4.1) will be of order ψ(BL∗; δ) and the previous result
(4.2) will be of order

√
L∗r∗/B. In this case, the square-root function

√
L∗r∗/B is only a coarse

relaxation of ψ(BL∗; δ): as the traditional analysis requires ψ to be sub-root, we can compare the
two orders by

ψ (BL∗; δ)
sub-root
≤

√
BL∗
r∗

ψ(r∗; δ)
fixed point

= O

(√
L∗r∗
B

)
. (4.3)

The "sub-root" inequality (the first inequality in (4.3)) becomes an equality when ψ(r; δ) =

O(
√
dr/n) in the parametric case, where d is the parametric dimension. However, when F is

rich, ψ(r; δ)/
√
r will be strictly decreasing so that the "sub-root" inequality can become quite loose.

For example, when F is a non-parametric class we often have ψ(r; δ) = O(
√
r1−ρ/n) for some

ρ ∈ (0, 1). The richer F is (e.g., the larger ρ is), the looser the "sub-root" inequality. This intuition
will be validated via examples in Section 6.

Theorem 1 also applies to broader settings than previous results. For example, in [2] it is assumed that
the loss is non-negative, and their original result only adapts to P`(h∗; z) rather than the "effective
loss" L∗. Our proof (see Appendix D) is quite different as we bypass the Bernstein condition (which
is traditionally implied by non-negativity, but not satisfied by the class used here), bypass the sub-root
assumption on ψ, and adapt to the "better" parameter L∗.
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5 Variance-dependent rates via moment penalization

The loss-dependent rate proved in Theorem 1 contains a complexity parameter BL∗ within its ψ
function, which may still be much larger than the optimal variance V∗. Despite its prevalent use
in practice, standard empirical risk minimization is unable to achieve variance-dependent rates in
general. An example is given in [12] where V∗ = 0 and the optimal rate is at most O(log n/n), while
E (ĥERM) is proved to be slower than n−

1
2 .

We follow the path of penalizing empirical second moments (or variance) [8, 14, 12, 4] to design
an estimator that achieves the "right" bias-variance trade-off for general, potentially "rich," classes.
Our proposed estimator simultaneously achieves correct scaling on V∗, along with minimax-optimal
sample dependence (n). Besides empirical first and second moments, it only depends on the bound-
edness parameter B, a computable surrogate function ψ, and the confidence parameter δ. All of these
quantities are essentially assumed known in previous works: e.g., [8, 14] require covering number of
the loss class, which implies a computable surrogate ψ via Dudley’s integral bound; and estimators in
[12, 4] rely on the fixed point r∗ of a computable surrogate ψ.

In order to adapt to V∗, we use a sample-splitting two-stage estimation procedure (this idea is built
on the prior work [4]). Without loss of generality, we assume access to a data set of size 2n. We split
the data set into the "primary" data set S and the "auxiliary" data set S′, both of which are of size n.
We denote Pn the empirical distribution of the "primary" data set, and PS′ the empirical distribution
of the "auxiliary" data set.

Strategy 1 (the two-stage sample-splitting estimation procedure.). At the first-stage, we derive a
preliminary estimate of L∗0 := P`(h∗; z) via the "auxiliary" data set S′, which we refer to as L∗S′ .
Then, at the second stage, we perform regularized empirical risk minimization on the "primal" data
set S, which penalizes the centered second moment Pn[(`(h; z)− L∗S′)2].

As we will present later, it is rather trivial to obtain a qualified preliminary estimate L∗S′ via empirical
risk minimization. Therefore, we firstly introduce the second-stage moment-penalized estimator,
which is more crucial and interesting.

Strategy 2 (the second-stage moment-penalized estimator.). Consider the excess loss class F
in (3.2). Let ψ(r; δ) be a meaningful surrogate function that satisfies ∀δ ∈ (0, 1), ∀r > 0, with
probability at least 1− δ,

4Rn{f ∈ F : Pn[f2] ≤ 2r}+

√
2r log 8

δ

n
+

9B log 8
δ

n
≤ ψ(r; δ).

Denote Cn = 4 log2 n+ 10. Given a fixed δ ∈ (0, 1), let the estimator ĥMP be

ĥMP ∈ arg min
H

{
Pn`(h; z) + ψ

(
16Pn[(`(h; z)− L∗S′)2];

δ

Cn

)}
. (5.1)

Given an arbitrary preliminary estimate L∗S′ ∈ [−B,B], we can prove that the generalization error of
the moment-penalized estimator ĥMP is at most

E (ĥMP) ≤ 2ψ

(
c0
[
V∗ ∨ (L∗S′ − L∗0)2 ∨ r∗

]
;
δ

Cn

)
, (5.2)

with probability at least 1 − δ, where c0 is an absolute constant, and r∗ is the fixed point of
16Bψ(r; δ

Cn
). Moreover, the first-stage estimation error will be negligible if

(L∗S′ − L∗0)2 ≤ O (r∗) . (5.3)

It is rather elementary to show that performing the standard empirical risk minimization on S′ suffices
to satisfy (5.3), provided an additional assumption that ψ is a "sub-root" function. We now give our
theorem on the generalization error following this two-stage procedure.

Theorem 2 (variance-dependent rate). Let L∗S′ = infH PS′`(h; z) be attained via empirical risk
minimization on the auxiliary data set S′. Assume that the meaningful surrogate function ψ(r; δ) is
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"sub-root," i.e. ψ(r;δ)√
r

is non-increasing over r ∈ [0, 4B2] for all fixed δ. Then for any δ ∈ (0, 12 ), by
performing the moment-penalized estimator in Strategy 2, with probability at least 1− 2δ,

E (ĥMP) ≤ 2ψ

(
c1V∗;

δ

Cn

)
∨ c1r

∗

8B
,

where r∗ is the fixed point of Bψ(r; δ
Cn

) and c1 is an absolute constant.

Remarks. 1) In high-probability bounds, Cn will only appear in the form log(Cn/δ)), which is of a
negligible O(log log n) order, so there is no much difference to view Cn as an absolute constant.

2) The "sub-root" assumption in Theorem 2 is only used to to bound the first-stage estimation error
(see (5.3)). This assumption is not needed for the result (5.2) on the second-stage moment penalized
estimator.

3) Replacing V∗ by an empirical centered second moment, we can prove a fully data-dependent
generalization error bound that is computable from data without the knowledge of V∗. We leave the
full discussion to Appendix A.

Comparison to existing results. The best variance-dependent rate attained by existing estimators is
of the order [4] √

V∗r∗
B2

∨ r
∗

B
,

which is strictly worse than the rate proved in Theorem 2. The reasoning is similar to Statement 2
and the explanation after Theorem 1: when V∗ ≤ O(r∗) the two results are essentially identical, but
our estimator can perform much better when V∗ ≥ Ω(r∗). Because ψ is sub-root and r∗ is the fixed
point, we can compare the orders of the rates

ψ(V∗; δ)
sub-root
≤

√
V∗
r∗
ψ(r∗; δ)

fixed point
= O

(√
V∗r∗
B2

)
.

Since variance-dependent rates are generally used in applications that require robustness or exhibit
large worst-case boundedness parameter, V∗ ≥ r∗ is the more critical regime where one wants to
ensure the estimation performance will not degrade.

Discussion. Per our "uniform localized convergence" principle, the most obvious difficulty in proving
Theorem 2 is in establishing (5.2): the empirical second moment is sample-dependent, whereas our
Proposition 1 crucially depends on a "measurement functional" (the T functional in Proposition 1)
that is unrelated to the samples. The core techniques in the proof essentially overcome this difficulty,
and may be of independent interest. We defer details to Appendix E.

The tightness of our variance-dependent rates depend on tightness of the computable surrogate
function ψ. When covering numbers of the excess loss class are given, a direct choice is Dudley’s
integral bound (Lemma 3 in Appendix H), which is known to be rate-optimal for many important
classes.

Previous approaches usually take a simper regularization term [8, 4] that is proportional to the square
root of the empirical second moment (or empirical variance). That type of penalization is "too
aggressive" for rich classes from our viewpoint. [12] propose a regularization term that preserves
convexity of empirical risk. However, based on an equivalence proved in their paper, they have
similar limitations to the approaches that penalizes the square root of the empirical variance.

6 Discussion and illustrative examples

6.1 Discussion

Recall that our loss-dependent rates and variance-dependent (moment-penalized) rates are of the
orders

E (ĥERM) ≤ O
(
ψ(BL∗; δ) ∨ r

∗

B

)
and E (ĥMP) ≤ O

(
ψ(V∗; δ) ∨ r

∗

B

)
, (6.1)
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respectively. In contrast, the best known loss-dependent rates [2] and variance-dependent rates [4]
are of the orders

E (ĥERM) ≤ O

(√
L∗r∗
B
∨ r
∗

B

)
and E (ĥprevious) ≤ O

(√
V∗r∗
B2

∨ r
∗

B

)
, (6.2)

respectively (we use ĥprevious to denote the previous best known moment-penalized estimator proposed
in [4]). To illustrate the noticeable gaps between our new results and previous known ones, we
compare the two different variance-dependent rates in (6.1) and (6.2) on two important families of
"rich" classes: non-parametric classes of polynomial growth and VC classes. The implications of this
comparison will similarly apply to loss-dependent rates.

Before presenting the advantages of the new problem-dependent rates, we would like to discuss how
to compute them. In Theorem 1 and Theorem 2, the class of concentrated functions, F , is the excess
loss class ` ◦H− ` ◦ h∗ in (3.2). As we have mentioned in earlier sections, a general solution for the
ψ function is to use Dudley’s integral bound (Lemma 3 in Appendix H). Knowledge of the metric
entropy of the excess loss class can be used to calculate Dudley’s integral bound and construct the
surrogate function ψ needed in our theorems. Note that there is no difference between the metric
entropy of the excess loss class and metric entropy of the loss class itself: from the definition of
covering number and metric entropy, one has

logN (ε, ` ◦H − ` ◦ h∗, L2(Pn)) = logN (ε, ` ◦H, L2(Pn)).

We comment that almost all existing theoretical works that discuss general function classes and
losses [2, 8, 14, 4] impose metric entropy conditions on the loss class/excess loss class rather than
the hypothesis class, and we follows that line as well to allow for a seamless comparison of the
results. As a complement, we will discuss how to obtain such metric entropy conditions for practical
applications in Appendix B.

6.2 Non-parametric classes of polynomial growth

Example 1 (non-parametric classes of polynomial growth). Consider a loss class ` ◦H with the
metric entropy condition

logN (ε, ` ◦H, L2(Pn)) ≤ O
(
ε−2ρ

)
, (6.3)

where ρ ∈ (0, 1) is a constant. Using Dudley’s integral bound to find ψ and solving r ≤ O (Bψ(r; δ)),
it is not hard to verify that

ψ(r; δ) ≤ O

(√
r1−ρ

n

)
, r∗ ≤ O

(
B

2
1+ρ

n
1

1+ρ

)
.

As a result, our variance-dependent rate (6.1) is of the order

E (ĥMP) ≤ O
(
V∗

1−ρ
2 n−

1
2 ∨ r

∗

B

)
, (6.4)

which is O
(
V∗

1−ρ
2 n−

1
2

)
when V∗ ≥ Ω(r∗). In contrast, the previous best-known result (6.2) is of

the order

E (ĥprevious) ≤ O
(√
V∗B−

ρ
1+ρn−

1
2+2ρ ∨ r

∗

B

)
, (6.5)

which is O
(√
V∗B−

ρ
1+ρn−

1
2+2ρ

)
when V∗ ≥ Ω (r∗). Therefore, for arbitrary choice of n,V∗, B,

the "sub-optimality gap" is

ratio between (6.5) and (6.4) :=

√
V∗B−

ρ
1+ρn−

1
2+2ρ ∨ r∗

B

V∗
1−ρ
2 n−

1
2 ∨ r∗

B

= 1 ∨ (V∗( n
B2

)
1

1+ρ )
ρ
2 , (6.6)

which can be arbitrary large and grows polynomially with n.

We consider two stylized regimes as follows (we use the notation ≈ when the left hand side and the
right hand side are of the same order).
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• The more "traditional" regime: B ≈ 1, V∗ ≈ n−a where a > 0 is a fixed constant. This
regime captures the traditional supervised learning problems where B is not large, but one
wants to use the relatively small order of V∗ to achieve "faster" rates.
• The "high-risk" regime: B ≈ nb where b > 0 is a fixed constant, and V∗ � B2 (i.e., V∗ is

much smaller than order n2b). This regime captures modern "high-risk" learning problems
such as counterfactual risk minimization [14], policy learning [1], and supervised learning
with limited number of samples. In those settings, the worst-case boundedness parameter is
considered to scale with n so that one wants to avoid (or reduce) the dependence on B.

In both the two regimes, generalization errors via naive (non-localized) uniform convergence argu-
ments will be worse than our approach by orders polynomial in n, so we only need to compare with
previous variance-dependent rates.

The "traditional" regime. The "sub-optimality gap" (6.6) is 1 ∨ (V∗n
1

1+ρ )
ρ
2 . It is quite clear that

when V∗ ≈ n−a where 0 < a < 1
1+ρ , our variance-dependent rate improves over all previous

generalization error rates by orders polynomial in n.

The "high-risk" regime. We restrict our attention to the simple case B
2

1+ρ ≤ V∗ � 4B2 to gain
some insight, where our result exhibits an improvement of order O(n

ρ
2 (

1
1+ρ )) relative to the previous

result. Clearly the larger ρ, the more improvement we provide. By letting ρ→ 1 our improvement
can be as large as O(n

1
4 ).

6.3 VC-type classes

Our next example considers VC-type classes. Although this classical example has been extensively
studied in learning theory, our results provide strict improvements over antecedents.
Example 2 (VC-type classes). One general definition of VC-type classes (which is not necessarily
binary) uses the metric entropy condition. Consider a loss class ` ◦H that satisfies

logN (ε, ` ◦H, L2(Pn)) ≤ O
(
d log

1

ε

)
,

where d is th so-called the Vapnik–Chervonenkis (VC) dimension [15]. Using Dudley’s integral
bound to find the surrogate ψ and solving r ≤ O(Bψ(r; δ)), it can be proven [6] that

ψ(r; δ) ≤ O

(√
dr

n
log

8B2

r
∨ Bd

n
log

8B2

r

)
, r∗ ≤ O

(
B2d log n

n

)
.

Recently, [4] proposed a moment-penalized estimator whose generalization error is of the rate

E (ĥprevious) ≤ O

(√
dV∗ log n

n
+
Bd log n

n

)
,

in the worst case without invoking other assumptions. This result has a O(log n) gap compared with

the Ω(
√

dV∗
n ) lower bound [3], which holds for arbitrary sample size. There is much recent interest

focused on when the sub-optimal log n factor can be removed [1, 4].

By applying Theorem 2, our refined moment-penalized estimator gives a generalization error bound
of tighter rate

E (ĥMP) ≤ O

√dV∗ log 8B2

V∗

n
∨ Bd log n

n

 . (6.7)

This closes the O(log n) gap in the regime V∗ ≥ Ω( B2

(logn)α ), where α > 0 is an arbitrary positive
constant. Though this is not the central regime, it is the first positive result that closes the notorious
O(log n) gap without invoking any additional assumptions on the loss/hypothesis class (e.g., the rather
complex “capacity function" assumption introduced in [4]). We anticipate additional improvements
are possible under further assumptions on the hypothesis class and the loss function.
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A Estimating the loss-dependent and variance-dependent rates from data

In this section we present problem-dependent bounds that can be computed from data, where the
unknown quantity L∗ and V∗ are replaced by some empirical estimates.

Corollary 3 (estimate of the loss-dependent rate from data). Recall the term L∗ is P[`(h∗; z)−
infH `(h

∗; z)] and denote L̂∗ = Pn[`(ĥERM; z)− infH `(h; z)]. Under the conditions of Theorem 1,
setting Cn = 2 log2 n+ 6, then for any fixed δ ∈ (0, 12 ), with probability at least 1− 2δ, we have

E (ĥERM) ≤ ψ
(
cBL̂∗; δ

Cn

)
∨ cr

∗

B
∨
cB log 2

δ

n
(A.1)

and

L∗ ≤ c1
(
L̂∗ ∨ r

∗

B
∨
B log 2

δ

n

)
≤ c2

(
L∗ ∨ r

∗

B
∨
B log 2

δ

n

)
, (A.2)

where c, c1, c2 are absolute constants.

Remarks. 1) The B log 2
δ /n terms (A.1) and (A.2) are negligible, because r∗ is at least of order

B2 log 1
δ /n for most practical applications. This order is unavoidable in traditional “local Rademacher

complexity" analysis and two-sided concentration inequalities.

2) The generalization error bound (A.1) shows that without knowledge of L∗, one can estimate the
order of our loss-dependent rate by using L̂∗ = Pn[`(ĥERM; z)− infH `(h; z)] as a proxy. Despite
replacing L∗ by L̂∗, other quantities in the bound remain unchanged in order.

3) The inequality (A.2) shows that the estimation of L∗ is tight.

Corollary 4 (estimate of the variance-dependent rate from data). Consider the empirical cen-
tered second moment

V̂∗ := Pn
[
`(ĥNMP; z)− L̂∗0)2

]
,

where L∗S′ ∈ [−B,B] is the preliminary estimate of L∗ obtained in the first-stage, ψ is defined in
Strategy 2, and

ĥNMP ∈ arg min
H

Pn`(h; z)− 2ψ
(

16Pn
[
(`(h; z)− L̂∗0)2

])
.

For any fixed δ ∈ (0, 1), by performing the moment-penalized estimator in Strategy 2, with probability
at least 1− δ,

E (ĥMP) ≤ 4ψ

(
16V̂∗; δ

Cn

)
∨ r∗

8B
, (A.3)

where r∗ is the fixed point of 16Bψ(r; δ
Cn

).

Remarks. 1) The subscript “NMP" within ĥNMP means “negative moment penalization." Note that
ĥNMP may not have good generalization performance, it is only used to compute V̂∗ so that we can
evaluate the estimator ĥMP proposed in Strategy 2.

2) While the fully data-dependent generalization error bound (A.3) provides a way to evaluate
the moment-penalized estimator in Strategy 2 from training data, it seems that V̂∗ and V∗ are not
necessarily of the same order. Therefore, (A.3) may not be as tight as the original variance-dependent
rate in Theorem 2. One should view (A.3) as a relaxation of the original variance-dependent rate in
Theorem 2.

3) We also comment that the “sub-root" assumption in Theorem 2 is not needed here as we do not
discuss the precision of L̂∗0. It is easy to combine Corollary 4 with the guarantee on L̂∗0 proved in
Appendix E.2.
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B Application areas of problem-dependent rates

In Section 6 we illustrate the advantages of our problem-dependent rates in “rich" non-parametric
and VC classes, where we use metric entropy conditions of the loss/excess loss class. In practical
applications it is more standard to consider metric entropy conditions of the hypothesis classH. In
view of this, we introduce three important settings where the metric entropy on the loss/excess loss
class can be obtained from metric entropy conditions on the hypothesis classH.

Supervised learning with Lipchitz continuous cost. In supervised learning, the data z is a feature-
label pair (x, y), and the loss `(h; z) is of the form

`(h; z) = `sv(h(x), y),

where `sv is a fixed cost function that is Lsv−Lipchitz continuous with respect to its first argu-
ment, namely, Lipchitz with parameter Lsv. For hypothesis classes characterized by metric entropy
conditions, properties are preserved because

logN (ε, ` ◦H, L2(Pn)) ≤ logN (
ε

Lsv
,H, L2(Pn)).

Note that Lsv only depends on the cost function and is usually of constant order. Our theory naturally
applies to supervised learning problems where the cost function is Lipchitz continuous and not
strongly-convex (for example, the `1 cost, the hinge cost, the ramp cost, etc.).

Counterfactual risk minimization. Denote x ∈ X the feature and t ∈ T the treatment (e.g. T =
{0, 1} in binary treatment experimental design), and c(x, t) the unknown cost function. A hypothesis
(policy) h is a map from X × T to [0, 1] such that

∑
t∈T h(x, t) = 1. Thus, a hypothesis (policy)

essentially maps features to a distribution over treatments. We consider the standard formulation
of “learning with logged bandit feedback," dubbed “counterfactual risk minimization" [14]: a batch
of samples {(xi, ti, ci)}ni=1 are obtained by applying a known policy h0, so that ti is sampled from
h0(xi, ·) and one can only observe the cost ci associated with ti. We write z = (x, t, c) and let

`(h; zi) =
ci

h0(xi, ti)
h(xi, ti), (B.1)

be the “constructed loss" using importance sampling. It is straightforward to show that the population
risk P`(h; z) is equal to the expected cost of policy h, so determining good policies requires one to
minimize the generalization error E (ĥ). It is usually convenient to obtain metric entropy condition
of the loss/excess loss class by using the linearity structure of (B.1). In particular, from the Cauchy-
Schwartz inequality we can prove that

logN (ε, ` ◦H, L2(Pn)) ≤ N (
ε

γn
,H, L4(Pn)), (B.2)

where γn := 4

√
Pn
[
( c(x,t)
h0(x,t)

)4
]

only depends on the functions c, h0 in the given problem, and

the samples rather than the worst-case parameters. A systematical challenge in counterfactual risk
minimization is that the worst-case boundedness parameter, suph,z |`(h; z)|, is typically very large,
since the inverse probability term 1

h0(xi,ti)
in (B.1) is typically large in the worst case.

Causal inference with observational data. When one only observes the samples {(xi, ti, ci}ni=1
but the policy h0 used to generate them is not known, counterfactual risk minimization becomes more
challenging. This task is referred to as “policy learning with observational data" [1]. More broadly,
the recent work [4] establishes a unified framework that covers policy learning and other causal
inference problems under the framework “orthogonal statistical learning." Consider the problem to
minimize the generalization error of the “unknown loss" β(z, g∗)h(z) without knowledge of the
nuisance function g∗. For example, g∗ is the unknown past policy h0 in policy learning. The universal
principle here is sample splitting and “plug-in" estimation: the learner uses a part of the samples to
obtain an estimate ĝ, and use the remaining samples to learn the best policy through the “constructed
loss"

`(h; z) = β(z, ĝ)h(z).
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In [4, Theorem 2], it is shown that any generalization error on the “constructed loss" `(h; z) can be
converted to the generalization error on the “unknown loss" β(z, g∗)h(z), under certain regularity
conditions. Hence, the generalization error results in our paper are directly applicable to many causal
inference problems covered in [4]. Similar to (B.2), it is usually convenient to obtain metric entropy
conditions of the loss/excess loss class by using the linearity of the loss function. Again, a central
challenge in these applications is that the worst-case boundedness parameter is typically very large
since `(h; z) is the counterfactual outcome constructed by importance sampling techniques.

In the following sections, we will present proofs of the theoretical results. In all the proofs we
consider a fixed sample size n. In order to distinguish “probability of events" and “expectation
with respect to P," we will use the notation Prob(A ) to denote the probability of the event A (as a
substitute to P(A )).

C Proof of Proposition 1

Given any r0 ∈ (0, R], take rk = 2kr0, k = 1, · · · , dlog2
R
r0
e. Note that dlog2

R
r0
e ≤ log2

2R
r0

.

We use a union bound to establish that supT (f)≤r(P − Pn)f ≤ ψ(r; δ) holds for all these rk
simultaneously: ∀δ ∈ (0, 1), with probability at least 1− δ,

sup
T (f)≤rk

(P− Pn)f ≤ ψ

(
rk;

δ

log2
2R
r0

)
, k = 1, · · · ,

⌈
log2

R

r0

⌉
.

For any fixed f ∈ F , if T (f) ≤ r0 is false, then let k be the non-negative integer such that
2kr0 < T (f) ≤ 2k+1r0, we further know that rk+1 = 2k+1r0 ≤ 2T (f). Therefore, with probability
at least 1− δ,

(P− Pn)f ≤ sup
f̃∈F :T (f̃)≤rk+1

(P− Pn)f̃

≤ ψ

(
rk+1;

δ

log2
2R
r0

)

≤ ψ

(
2T (f);

δ

log2
2R
r0

)
.

Therefore, with probability at least 1− δ, ∀f ∈ F , either T (f) ≤ r0 or

(P− Pn)f ≤ ψ

(
2T (f);

δ

log2
2R
r0

)
.

This completes the proof. �

D Proof of Theorem 1

Let F be the excess loss class in (3.2). Clearly, its members f are uniformly bounded in [−2B, 2B].
Let T (f) = P[f2]. Define f̂ by f̂(z) = `(ĥERM; z)− `(h∗; z),∀z ∈ Z .

For a fixed r0 ∈ (0, 4B2), Denote Cr0 = 2 log2
8B2

r0
. Then from Proposition 1 we know with

probability at least 1− δ
2 , either T (f̂) ≤ r0 or

(P− Pn)f̂ ≤ ψ

(
2T (f̂);

δ
2

log2
8B2

r0

)
= ψ

(
2T (f̂);

δ

Cr0

)
. (D.1)

We denote the events A1 = {T (f̂) ≤ r0} and A2 = {inequality (D.1) holds true}, then we have

Prob(A1) + Prob(A1) ≥ 1− δ

2
.
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Consider the event A1. From the surrogate property of ψ, we have

Prob
(

A1 ∩
{

(P− Pn)f̂ ≤ ψ(2r0;
δ

Cr0
)

})
≥ Prob(A1)− δ

Cr0
≥ Prob(A1)− δ

2
.

Combine the events A1 and A2, we have

Prob
({

(P− Pn)f̂ ≤ ψ
(

2T (f̂) ∨ 2r0;
δ

Cr0

)})
≥ Prob(A1)− δ

2
+ Prob(A2) ≥ 1− δ.

From the property of ERM we have Pnf̂ ≤ 0, so with probability at least 1− δ,

E (ĥERM) ≤ (P− Pn)f̂ ≤ ψ
(

2T (f̂) ∨ 2r0;
δ

Cr0

)
. (D.2)

From now to the end of this proof, we will prove the generalization error bound on the event

A = {the inequality (D.2) holds true}, (D.3)

whose measure is at least 1 − δ. Define ĝ by ĝ(z) = `(ĥERM; z) − infH `(h; z),∀z ∈ Z . Let
T (ĝ) = P[ĝ2]. We have f̂(z) = ĝ(z)− (`(h∗; z)− infH `(h; z)),∀z so that

P[f̂2] ≤ 2P[ĝ2] + 2P[(`(h∗; z)− inf
H
`(h; z))2]

≤ 2P[ĝ2] + 4BL∗ ≤ 4P[g2] ∨ 8BL∗.
That is,

T (f̂) ≤ 4T (ĝ) ∨ 8BL∗. (D.4)

From (D.2) and (D.4) we have

Pĝ − L∗ = E (ĥERM) ≤ ψ
(

8T (ĝ) ∨ 16BL∗ ∨ 2r0;
δ

Cr0

)
. (D.5)

Since ĝ(z) ∈ [0, 2B] for all z, we have T (ĝ) ≤ 2BPĝ. From this fact and (D.5) we obtain

T (ĝ) ≤ 2BPĝ

≤ 2B

(
L∗ + ψ

(
8T (ĝ) ∨ 16BL∗ ∨ 2r0;

δ

Cr0

))
= 2BL∗ + 2Bψ

(
8T (ĝ) ∨ 16BL∗ ∨ 2r0;

δ

Cr0

)
.

Whether BL∗ is less than 2Bψ
(

8T (ĝ) ∨ 16BL∗ ∨ 2r0; δ
Cr0

)
, or BL∗ is greater or equal to

2Bψ
(

8T (ĝ) ∨ 16BL∗ ∨ 2r0; δ
Cr0

)
, the above inequality always implies that

T (ĝ) ≤ 3BL∗ ∨ 6Bψ

(
8T (ĝ) ∨ 16BL∗ ∨ 2r0;

δ

Cr0

)
≤ 3BL∗ ∨ 6Bψ

(
8T (ĝ);

δ

Cr0

)
∨ 6Bψ

(
16BL∗ ∨ 2r0;

δ

Cr0

)
. (D.6)

Let r∗ be the fixed point of 6Bψ(8r; δ
Cn

). From the definition of fixed points whether 2BL∗∨ r04 ≤ r∗
or 2BL∗ ∨ r0

4 > r∗, we always have

6Bψ

(
16BL∗ ∨ 2r0;

δ

Cr0

)
≤ r∗ ∨ 2BL∗ ∨ r0

4
.

Combine the above inequality with (D.6), we have

T (ĝ) ≤ 3BL∗ ∨ 6Bψ

(
8T (ĝ);

δ

Cr0

)
∨ r∗ ∨ r0

4
.
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From the above inequality and again the definition of fixed points, it is straightforward to prove that

T (ĝ) ≤ 3BL∗ ∨ r∗ ∨ r0
4
.

Combining the above inequality with (D.4), we have

T (f̂) ≤ 12BL∗ ∨ 4r∗ ∨ r0.

From the above inequality and (D.2) we have

E (ĥERM) ≤ (P− Pn)f̂ ≤ ψ
(

24BL∗ ∨ 8r∗ ∨ 2r0;
δ

Cr0

)
, (D.7)

which implies that

E (ĥERM) ≤ ψ
(

24BL∗; δ

Cr0

)
∨ ψ

(
8r∗ ∨ 2r0;

δ

Cr0

)
.

Recall that r∗ is the fixed point of 6Bψ(8r; δ
Cr0

). Since r∗ ∨ r0
4 ≥ r

∗, from the definition of fixed
points we have

6Bψ(8r∗ ∨ 2r0;
δ

Cr0
) ≤ r∗ ∨ r0

4
.

So we finally obtain

E (ĥERM) ≤ ψ
(

24BL∗; δ

Cr0

)
∨ r∗

6B
∨ r0

24B
.

Recall that the generalization error bound holds true on the event A defined in (D.3), whose measure
is at least 1− δ. This completes the proof. �

E Proof of Theorem 2

The main goal of this subsection is to prove Theorem 2. We first prove Theorem 5 (the bound (5.2)
in the main paper), a guarantee for the second-stage moment penalized estimator ĥMP. In order to
prove Theorem 2, we then combine Theorem 5 with a guarantee for the first-stage empirical risk
minimization (ERM) estimator.

E.1 Analysis for the second-stage moment-penalized estimator

Theorem 5 (variance-dependent rate of the second-stage estimator). Given arbitrary preliminary
estimate L∗S′ ∈ [−B,B], the generalization error of the moment-penalized estimator ĥMP in Strategy
2 is bounded by

E (ĥMP) ≤ 2ψ

(
c0
[
V∗ ∨ (L∗S′ − L∗0)2 ∨ r∗

]
;
δ

Cn

)
,

with probability at least 1 − δ, where c0 is an absolute constant and r∗ is the fixed point of
16Bψ(r; δ

Cn
).

Proof of Theorem 5: the proof of Theorem 5 consist of four parts.

Part I: use ψ to upper bound localized empirical processes
Lemma 1 (bound on localized empirical processes). Given a fixed δ1 ∈ (0, 1), let r∗1(δ1) be the
fixed point of 16Bψ(r; δ1) where ψ is defined in Strategy 2. Then with probability at least 1− δ1, for
all r > 0,

sup
P[f2]≤r

(P− Pn)f ≤ ψ (r ∨ r∗1(δ1); δ1) . (E.1)
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Proof of Lemma 1: Recall that F is the excess loss class in (3.2). Clearly, its members f are
uniformly bounded in [−2B, 2B]. When P[f2] ≤ r, we have P[f4] ≤ 4B2r. From Lemma 4 (the
two-sided version of its second inequality), with probability at least 1− δ1

2 ,

sup
P[f2]≤r

∣∣(P− Pn)f2
∣∣

≤ 4Rn{f2 : P[f2] ≤ r}+ 2B

√
2r log 8

δ1

n
+

18B2 log 8
δ1

n

≤ 16BRn{f : P[f2] ≤ r}+ 2B

√
2r log 8

δ1

n
+

18B2 log 8
δ1

n
,

where the last inequality follows from the Lipchitz contraction property of Rademahcer complexity
(see, e.g., [9, Theorem 7]), and the fact that for all f1, f2 ∈ F , |f21 (z)− f22 (z)| ≤ 4B|f1(z)− f2(z)|.
We conclude that with probability at least 1− δ1

2 ,

sup
P[f2]≤r

∣∣(P− Pn)f2
∣∣ ≤ ϕδ1(r), (E.2)

where ϕδ1(r) := 16BRn{f : P[f2] ≤ r}+ 2B

√
2r log 8

δ1

n +
18B2 log 8

δ1

n .

Denote r∗2(δ1) the fixed point of 4ϕδ1(r) (the fixed point must exist as 4ϕδ1(r) is a non-decreasing,
non-negative and bounded function). From (E.2) and the fact that r∗2(δ1) is the fixed point of 4ϕδ1(r),
if r > r∗2(δ1), then with probability at least 1− δ1

2 ,

sup
P[f2]≤r

∣∣(P− Pn)f2
∣∣ ≤ r

4
. (E.3)

(E.3) implies that with probability at least 1− δ1
2 , for all r > r∗2(δ1), P[f2] ≤ r implies that

Pn[f2] ≤ 5

4
r ≤ 2r. (E.4)

Again from the two-sided version of the second inequality in Lemma 4, we know that with probability
at least 1− δ1

2 ,

sup
P[f2]≤r

|(P− Pn)f | ≤ 4Rn{f : P[f2] ≤ r}+

√
2r log 8

δ1

n
+

9B log 8
δ1

n
.

Combining the above inequality and (E.4) using a union bound, we know that with probability at
least 1− δ1

2 −
δ1
2 = 1− δ1, if r > r∗2(δ1), then

sup
P[f2]≤r

(P− Pn)f ≤ 4Rn{f : P[f2] ≤ r}+

√
2r log 8

δ1

n
+

9B log 8
δ1

n

≤ 4Rn{f : Pn[f2] ≤ 2r}+

√
2r log 8

δ1

n
+

9B log 8
δ1

n
. (E.5)

Recall that the ψ function satisfies that ∀r > 0,

4Rn{f : Pn[f2] ≤ 2r}+

√
2r log 8

δ1

n
+

9B log 8
δ1

n
≤ ψ(r; δ1).

From this fact and (E.5), we see that with probability at least 1− δ1, for all r > 0,

sup
P[f2]≤r

(P− Pn)f ≤ ψ (r ∨ r∗2(δ1); δ1) . (E.6)

From (E.6), in order to prove the result (E.1) in Lemma 1, we only need to prove that

r∗2(δ1) ≤ r∗1(δ1). (E.7)
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Assume this is not true, i.e. r∗2(δ1) > r∗1(δ1). Since r∗1(δ1) is the fixed point of 16Bψ(r; δ1), from
the definition of fixed points we have

r∗2(δ1) > 16Bψ(r∗2(δ1); δ1).

From the definitions of ψ and ϕδ1 , for all r > r∗1(δ1),

4ϕδ1(r) ≤ 16Bψ(r; δ1).

From the above two inequalities and r∗2(δ1) > r∗1(δ1), we have

r∗2(δ1) > 16Bψ(r∗2(δ1); δ1) ≥ 4ϕδ1(r∗2(δ1)). (E.8)

From the fact that r∗2(δ1) is the fixed point of 4ϕδ1 , we have

4ϕδ1(r∗2(δ1)) = r∗2(δ1). (E.9)

The above two inequalities (E.8) and (E.9) result in a contradiction. So the assumption r∗2(δ1) >
r∗1(δ1) is false. Therefore r∗2(δ1) ≤ r∗1(δ1), and this completes the proof of Lemma 1. �

Part II: a “uniform localized convergence" argument with data-dependent measurement.

Based on Lemma 1, we will modify the proof of Proposition 1 to obtain a “uniform localized
convergence" argument with the data-dependent “measurement" functional Pn[f2].
Lemma 2 (a “uniform localized convergence" argument with the data-dependent “measure-
ment" functional). Given a fixed δ1 ∈ (0, 1), let r∗1(δ1) be the fixed point of 16Bψ(r; δ1) where ψ

is defined in Strategy 2. Then with probability at least 1 − 2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)

)
δ1, for all f ∈ F

either P[f2] ≤ r∗1(δ1), or

(P− Pn)f ≤ ψ
(

4Pn[f2]; δ1

)
. (E.10)

Proof of Lemma 2: from the definition of ψ and the fact that r∗1(δ1) is the fixed point of

16Bψ(r; δ1), we know that r∗1(δ1) ≥
144B2 log 8

δ1

n > 0. Take r0 = r∗1(δ1).

Take R = 4B2 ∨ r0 to be a uniform upper bound for Pf2, and take rk = 2kr0, k = 1, · · · , dlog2
R
r0
e.

Note that dlog2
R
r0
e ≤ log2

2R
r0

. We use the union bound to establish that supP[f2]≤r(P − Pn)f ≤
ψ(r; δ1) holds for all {rk} simultaneously: with probability at least 1− log2

2R
r0
δ1,

sup
P[f2]≤rk

(P− Pn)f ≤ ψ(rk; δ1), k = 1, · · · ,
⌈

log2

R

r0

⌉
.

For any fixed f ∈ F , if P[f2] ≤ r0 is false, let k be the non-negative integer such that 2kr0 <
P[g(h; z)2] ≤ 2k+1r0. We further have that rk+1 = 2k+1r0 ≤ 2P[f2]. Therefore, with probability
at least1− log2

2R
r0
δ1,

Pf ≤ Pnf + sup
f̃∈F :P[f̃2]≤rk+1

(P− Pn)f̃

≤ Pnf + ψ(rk+1; δ1) (E.11)

By (E.2) we know that with probability at least 1− δ1
2 ,

sup
P[f2]≤r

(
P[f2]− Pn[f2]

)
≤ r

4

for all r > r0 (here we have used the fact r0 = r∗1(δ1) ≥ r∗2(δ1), which is the result (E.7) in the proof
of Lemma 1). From the union bound, with probability at least 1−(log2

2R
r0

+ 1
2 )δ1 ≥ 1−2(log2

2R
r0

)δ1,
the condition rk+1 ≥ P[f2] > rk will imply

Pn[f2] ≥ P[f2]− 1

4
rk+1 ≥

1

4
rk+1,

17



so

rk+1 ≤ 4Pn[f2].

Combining this result with (E.11), we have that for all f such that T (f) > r0, with probability at
least 1− 2(log2

2R
r0

)δ1,

Pf ≤ Pnf + ψ(rk+1; δ1)

≤ Pnf + ψ

(
4Pn[f2]; δ1

)
.

We conclude that with probability at least 1− 2(log2
2R
r0

)δ1, for all f ∈ F , either P[f2] ≤ r∗1(δ1), or

(P− Pn)f ≤ ψ
(

4Pn[f2]; δ1

)
.

This completes the proof of Lemma 2. �

Part III: specify the moment-penalized estimator and its error bound. We specify the moment-
penalized estimator to be

ĥMP = arg min
H

{
Pn`(h; z) + ψ

(
16Pn[(`(h; z)− L∗S′)2]; δ1

)}
. (E.12)

Define f̂ by f̂(z) = `(ĥMP; z)− `(h∗; z),∀z ∈ Z , We define the event

A1 = {P[f̂2] ≤ r∗1(δ1)},

and event
A2 = {the inequality (E.10) holds true at f̂}.

Lemma 2 has proven that

Prob(A1) + Prob(A2) ≥ 1− 2

(
log2

8B2 ∨ 2r∗1(δ1)

r∗1(δ1)

)
δ1.

Consider the event A1 where P[f̂2] ≤ r∗1(δ1) holds true. Due to the surrogate property of ψ,

Prob
(
A1 ∩

{
(P− Pn)f̂ ≤ ψ(r∗1(δ1); δ1)

})
≥ Prob(A1)− δ1.

Combining events A1 and A2, we conclude that with probability at least 1 −
2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)
+ 1
)
δ1, we have

(P− Pn)f̂ ≤ ψ
(

4Pn[f̂2] ∨ r∗1(δ1); δ1

)
. (E.13)

Denote w(h; z) = `(h; z)− L∗S′ . Then f̂(z) = w(ĥMP; z)− w(h∗; z),∀z ∈ Z , and we have that

4Pn[f̂2] ≤ 8Pn[w(ĥMP; z)2] + 8Pn[w(h∗; z)2]

≤ 16Pn[w(ĥMP; z)2] ∨ 16Pn[w(h∗; z)2].

From the above conclusion and (E.13) we obtain with probability at least 1 −
2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)
+ 1
)
δ1,

E (ĥMP) + Pn`(h∗; z) ≤ Pn`(ĥMP; z) + ψ(4Pn[f̂2] ∨ r∗1(δ1); δ1)

≤ Pn(ĥMP; z) + ψ

(
16Pn[w(ĥMP; z)2] ∨ 16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
≤ Pn(ĥMP; z) + ψ

(
16Pn[w(ĥMP; z)2]δ1

)
+ ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
. (E.14)
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From the definition (E.12) of ĥMP, we have

Pn`(ĥMP; z) + ψ

(
16Pn[w(ĥMP; z)2]; δ1

)
≤ Pn`(h∗; z) + ψ

(
16Pn[w(h∗; z)2]; δ1

)
(E.15)

Therefore, with probability at least 1− 2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)
+ 1
)
δ1,

E (ĥMP) ≤ Pn`(ĥMP; z) + ψ

(
16Pn[w(ĥMP; z)2]; δ1

)
+ ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
− Pn`(h∗; z)

= arg min
H

{
Pn`(h; z) + ψ

(
16Pn[w(h; z)]; δ1

)}
− Pn`(h∗; z) + ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
≤ ψ

(
16Pn[w(h∗; z)2]; δ1

)
+ ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
≤ 2ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
,

(E.16)

where the first inequality is due to (E.14) and the second inequality is due to (E.15).

From Bernstein’s inequality at the single element h∗, for any fixed δ2 ∈ (0, 1), with probability at
least 1− δ2,

Pn[w(h∗; z)2] ≤ P[w(h∗; z)2] + 2B

√
2P[w(h∗; z)2] log 2

δ2

n
+

4B2 log 2
δ2

n

≤ 2P[w(h∗; z)2] +
6B2 log 2

δ2

n
.

Therefore, we conclude that with probability at least 1− 2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)
+ 1
)
δ1 − δ2,

E (ĥMP) ≤ 2ψ

(
16Pn[w(h∗; z)] ∨ r∗1(δ1) ∨ B

2

n
; δ1

)
≤ 2ψ

((
32P[w(h∗; z)2] +

96B2 log 2
δ2

n

)
∨ r∗1(δ1) ∨ B

2

n
; δ1

)
. (E.17)

Part IV: final steps.

From the definition of ψ and the fact that r∗1(δ1) is the fixed point of 16Bψ(r; δ1), we know that

r∗1(δ1) ≥
144B2 log 8

δ1

n
. (E.18)

Denote Cn := 4 log2 n+ 10 ≥ 4 log2 and take

δ1 =
δ

Cn
, (E.19)

then we have

4 log2

8B2 ∨ 2r∗1(δ1)

r∗1(δ1)
+ 6 ≤ max

{
4 log2

8n

144 log 8
, 4 + 6

}
≤ max{4 log2 n, 10} ≤ Cn,

so (
2 log2

8B2 ∨ 2r∗1(δ3)

r∗1(δ3)
+ 3

)
δ1 ≤

δ

2
.

19



Set r∗ = r∗1(δ1) and take δ2 = δ
2 . From (E.17), we obtain that with probability at least 1 − δ, the

generalization error of ĥMP is upper bounded by

E (ĥMP) ≤ 2ψ

(
c

[
P[w(h∗; z)2] ∨ r∗ ∨

B2 log 4
δ

n

]
;
δ

Cn

)
, (E.20)

where c is an absolute constant. From (E.18) we have r∗1(δ1) ≥ 144B2 log 8Cn
δ

n ≥ B2 log 4
δ

n . Combine
this fact with the inequality (E.20), we obtain that

E (ĥMP) ≤ 2ψ

(
c
[
P[(`(h∗; z)− L∗S′)2] ∨ r∗

]
;
δ

Cn

)
≤ 2ψ

(
c0
[
V∗ ∨ r∗ ∨ (L∗S′ − L∗0)2

]
;
δ

Cn

)
. (E.21)

where c0 is an absolute constant. This completes the proof of Theorem 5. �

E.2 Analysis of the first-stage ERM estimator

After proving Theorem 5, the remaining part needed to prove Theorem 2 is to bound (L∗S′−L∗0)2—the
error of the first-stage ERM estimator.

The remaining steps in the proof of Theorem 2: We will give a guarantee on the first-stage ERM
estimator, and combine this guarantee with Theorem 5 to prove Theorem 2. Recall that PS′ is the
empirical distribution of the “auxiliary" data set. Denote ĥERM ∈ arg minH PS′`(h; z).

From Part I in the proof of Theorem 5, ∀δ ∈ (0, 12 ), with probability at least 1− δ,

sup
F
|(P− Pn)f | ≤ ψ(4B2; δ) ≤ ψ

(
4B2;

δ

Cn

)
.

Since ψ is sub-root with respect to its first argument, we have
ψ(4B2; δ

Cn
)

√
4B2

≤
ψ(r∗; δ

Cn
)

√
r∗

=

√
r∗

16B
,

where r∗ is the fixed point of 16Bψ(r; δ
Cn

). So we have proved that ψ(4B2; δ
Cn

) ≤
√
r∗

8 . Therefore,

sup
F
|(P− Pn)f | ≤

√
r∗

8
.

Because ĥERM ∈ arg minH PS′`(h; z) and PS′`(ĥERM; z) = L∗S′ , we have

L∗S′ − L∗0 = (PS′`(ĥERM; z)− PS′`(h∗; z)) + (PS′`(h∗; z)− P`(h∗; z))
≤ PS′`(h∗; z)− P`(h∗; z) ≤ sup

F
|(P− Pn)f |,

and
L∗S′ − L∗0 = (PS′`(ĥERM; z))− P`(ĥERM; z)) + (P`(ĥERM; z)− P`(h∗; z))

≥ PS′`(ĥERM; z))− P`(ĥERM; z) ≥ − sup
F
|(P− Pn)f |.

Hence we have

(L∗S′ − L∗0)2 ≤ (sup
F
|(P− Pn)f |)2 ≤ r∗

64
.

Combine this result with (E.21), we have that ∀δ ∈ (0, 12 ), with probability 1− 2δ,

E (ĥMP) ≤ 2ψ

(
c1 (V∗ ∨ r∗) ;

δ

Cn

)
≤ 2

(
ψ

(
c1V∗;

δ

Cn

)
∨ ψ

(
c1r
∗;

δ

Cn

))
≤ 2ψ

(
c1V∗;

δ

Cn

)
∨ c1r

∗

8B
,

where c1 = max{c0, 16} is an absolute constant, and the last inequality follows from the fact that
c1r
∗

16 > r∗ and the definition of fixed points. This completes the proof of Theorem 2. �

20



F Proof of Corollary 3

From the definitions, we know that L∗ = P[`(h∗; z) − infH `(h
∗; z)], L̂∗ = Pn[`(ĥERM; z) −

infH `(h; z)] and P`(h∗; z) ≤ P`(ĥERM; z). As a result, we have

L∗ − L̂∗ = P`(h∗; z)− Pn`(ĥERM; z)− (P− Pn)[inf
H
`(h; z)]

≤ (P− Pn)`(ĥERM; z)− (P− Pn)[inf
H
`(h; z)]

= (P− Pn)f̂ + (P− Pn)[`(h∗; z)− inf
H
`(h; z)], (F.1)

where f̂ is defined by f̂(z) = `(ĥERM; z)− `(h∗; z),∀z ∈ Z .

We take r0 = B2

n in Theorem 1, and denote Cn := Cr0 = 2 log2 n+ 6. From (D.7) in the proof of
Theorem 1, on the event A defined in (D.3) (whose measure is at least 1− δ),

E (ĥERM) ≤ (P− Pn)f̂ ≤ ψ(24BL∗ ∨ 8r∗ ∨ 2B2

n
;
δ

Cn
). (F.2)

Since 3BL∗ ∨ r∗ ∨ B2

4n ≥ r
∗, from the definition of fixed points we have

(P− Pn)f̂ ≤ ψ
(

8

(
3BL∗ ∨ r∗ ∨ B

2

4n

)
;
δ

Cn

)
≤

3BL∗ ∨ r∗ ∨ B2

4n

6B
≤ L

∗

2
+

r∗

6B
+

B

24n
. (F.3)

This result holds together with the result of Theorem 1 on the event A .

The random variable `(h∗; z) − infH `(h; z) is uniformly bounded by [0, 2B]. From Bernstein’s
inequality and the fact Var[`(h∗; z)− infH `(h; z)] ≤ 2BL∗, with probability at least 1− δ,∣∣∣∣(P− Pn)[`(h∗; z)− inf

H
`(h; z)]

∣∣∣∣ ≤
√

4BL∗ log 2
δ

n
+

2B log 2
δ

n
≤ L

∗

4
+

3B log 2
δ

n
. (F.4)

Consider the event
A3 = A ∪ {inequality (F.4) holds true},

whose measure is at least 1− 2δ. On the event A3, from inequalities (F.1) (F.3) (F.4), it is straightfor-
ward to show that

L∗ − L̂∗ ≤ 3

4
L∗ +

r∗

6B
+

4B log 2
δ

n
,

which implies

L∗ ≤ 4L̂∗ +
2r∗

3B
+

16B log 2
δ

n
. (F.5)

From this result and (F.2), it is straightforward to show that

E (ĥERM) ≤ ψ
(
cBL̂∗; δ

Cn

)
∨ cr

∗

n
∨
cB log 2

δ

n
,

where c is an absolute constant.

We also have
L̂∗ − L∗ = Pn`(ĥERM)− P`(h∗; z)− (Pn − P)[inf

H
`(h; z)]

≤ (Pn − P)`(h∗; z)− (Pn − P)[inf
H
`(h; z)]

= (Pn − P)[`(h∗; z)− inf
H
`(h; z)].

From this result and (F.4), on the event A3,

L̂∗ ≤ 5

4
L∗ +

3B log 2
δ

n
. (F.6)

Combine (F.5) and (F.6) we obtain

L∗ ≤ c1
(
L̂∗ ∨ r

∗

B
∨
B log 2

δ

n

)
≤ c2

(
L∗ ∨ r

∗

B
∨
B log 2

δ

n

)
,

where c1 and c2 are absolute constants. This completes the proof. �
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G Proof of Corollary 4

Define f̂NMP by f̂NMP(z) = `(ĥNMP; z)− `(h∗; z),∀z ∈ Z , and w(h; z) = `(h; z)− L̂∗0. In the proof
of Theorem 5, the result (E.16) and the specification of δ1 in (E.19) show that with probability at
least 1− δ

2 ,

E (ĥMP) ≤ 2ψ

(
16Pn[w(h∗; z)2] ∨ r∗; δ

Cn

)
. (G.1)

We also refer to another implication of the proof of Theorem 5. Note that the proof of the result (E.13)
does not depends on any property of the estimator ĥMP. By the repeating the lines between (E.12)
and (E.13) for the estimator ĥNMP, and use the specification of δ1 in (E.19), it is straightforward to
show that with probability at least 1− δ

2 ,

(P− Pn)f̂NMP ≤ ψ
(

4Pn[f̂2NMP] ∨ r∗; δ

Cn

)
. (G.2)

We continue the proof on the event

A := {the inequalities (G.2) and (G.1) hold true},
whose measure is at least 1− δ.

From the definition of ĥNMP,

Pn`(ĥNMP; z)− 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
≤ Pn`(h∗; z)− 2ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
.

(G.3)

Therefore, we have

2ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ Pn`(h∗; z)− Pn`(ĥNMP; z)

= 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ P[`(h∗; z)− `(ĥNMP; z)] + (Pn − P)[`(h∗; z)− `(ĥNMP; z)]

≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ (P− Pn)f̂NMP

≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ ψ

(
4Pn[f̂2NMP];

δ

Cn

)
, (G.4)

where the first inequality is due to (G.3), the second inequality is due to the fact that h∗ minimizes
the population risk; and the last inequality is due to (G.2).

Note that

4Pn[f̂2NMP] ≤ 8Pn[w(ĥNMP; z)2] + 8Pn[w(h∗; z)2]

≤ 16Pn[w(ĥNMP; z)2] ∨ 16Pn[w(h∗; z)2].

From the above inequality and (G.4), we have

2ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
∨ ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
.

(G.5)

Whether Pn[w(h∗; z)2] ≤ 16Pn[w(ĥNMP; z)2] or Pn[w(h∗; z)2] > 16Pn[w(ĥNMP; z)2], the inequal-
ity (G.5) always implies

ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
= 2ψ

(
16V̂∗; δ

Cn

)
. (G.6)
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(Note that V̂∗ := Pn[w(ĥNMP; z)2].) We conclude that with probability at least 1− δ,

E (ĥMP) ≤ 2ψ

(
16Pn[w(h∗; z)2] ∨ r∗; δ

Cn

)
= 2ψ

(
16Pn[w(h∗; z)2];

δ

Cn
) ∨ 2ψ(r∗;

δ

Cn

)
≤ 4ψ

(
16V̂∗; δ

Cn

)
∨ r∗

8B
,

where the first inequality is due to (G.1) and the last inequality is due to (G.6). This completes the
proof. �

H Auxiliary lemmas

Lemma 3 (Dudley’s integral bound, [13]). Given r > 0 and a class F that consists of functions
defined on Z ,

Rn{f ∈ F : Pn[f2] ≤ r} ≤ inf
ε0>0

{
4ε0 + 12

∫ √r
ε0

√
logN (ε,F , L2(Pn))

n
dε

}
.

Lemma 4 (Talagrand’s concentration inequality for empirical processes, [2]). Let F be a class
of functions that map Z into [B1, B2]. Assume that there is some r > 0 such that for every f ∈ F ,
Var[f(zi)] ≤ r. Then, for every δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈F

(P− Pn)f ≤ 3RF +

√
2r log 1

δ

n
+ (B2 −B1)

log 1
δ

n
,

and with probability at least 1− δ,

sup
f∈F

(P− Pn)f ≤ 4RnF +

√
2r log 2

δ

n
+

9

2
(B2 −B1)

log 2
δ

n
.

Moreover, the same results hold for the quantity supf∈F (Pn − P)f .

Lemma 5 (Bernstein’s inequality). Let X1, · · · , Xn be real-valued, independent, mean-zero ran-
dom variables and suppose that for some constants σ,B > 0,

1

n

n∑
i=1

E|Xi|k ≤
k!

2
σ2Bk−2, k = 2, 3, · · ·

Then, ∀δ ∈ (0, 1), with probability at least 1− δ∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≤
√

2σ2 log 2
δ

n
+
B log 2

δ

n
. (H.1)

23


	Introduction
	The "uniform localized convergence" principle
	The current blueprint
	Key ideas of the "uniform localized convergence" principle.

	Preliminaries
	Loss-dependent rates via empirical risk minimization
	Variance-dependent rates via moment penalization
	Discussion and illustrative examples
	Discussion
	Non-parametric classes of polynomial growth
	VC-type classes

	Estimating the loss-dependent and variance-dependent rates from data
	Application areas of problem-dependent rates
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Analysis for the second-stage moment-penalized estimator
	Analysis of the first-stage ERM estimator

	Proof of Corollary 3
	Proof of Corollary 4
	Auxiliary lemmas

