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Abstract

We examine some mathematical aspects of learning unknown mappings with the Mixture of Experts

Model �MEM�� Speci�cally� we observe that the MEM is at least as powerful as a class of neural networks�

in a sense that will be made precise� Upper bounds on the approximation error are established for a wide

class of target functions� The general theorem states that inf kf � fnkp � c�nr�d holds uniformly for

f � W r
p �L� �a Sobolev class over ���� ��d�� where fn belongs to an n	dimensional manifold of normalized

ridge functions� The same bound holds for the MEM as a special case of the above� The stochastic error�

in the context of learning from i�i�d� examples� is also examined� An asymptotic analysis establishes the

limiting behavior of this error� in terms of certain pseudo	information matrices� These results substantiate

the intuition behind the MEM� and motivate applications�

Keywords

Mixture of experts� non	linear regression� ridge functions� neural networks� approximation bounds�

asymptotic error�

I� Introduction

For several years now� neural network models have enjoyed wide popularity� being ap�

plied to problems of regression� classi�cation and time series analysis� The theoretical

aspects of these models have been studied in ���� ���� �	��� �

�� �
��� to name but a few�

These results substantiated the� already widespread� use of these models in many appli�

cation�

Although neural networks are universal function approximators �����	����
��� and statis�

tical aspects related to learning are well understood by now ���������

� the practitioner is

still faced with quite a few problems� Perhaps one of the main concerns is understanding

the structure and the parameterization of the model� Ultimately� one would like to de�

duce conclusive statements on the data structure� by inspection and analysis of the actual

performance and application results i�e�� residual error on the training set� and prediction

results��

Recently� a novel non�linear model� termed the Mixture of Experts Model MEM� was

introduced by Jacobs et al� �	��� The idea underlying this model is to combine several

local estimators� or experts� each �specializing� in some region of the input space� The

framework of this model originates in the �eld of Statistics� More speci�cally it is an
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adaptation of standard mixture models� a �eld of study which is applied to problems of

density estimation� pattern classi�cation and clustering �	���

The MEM architecture is composed of n expert networks� each of which solves a function

approximation problem over a local region of the input space� A stochastic model� that

relates input vectors x � IRd to output vectors y � IRs� is associated with each expert�

We denote the conditional probability model of each expert as follows py jx� �j� with j �
	� 
� � � � � n� where the �j � � are parameter vectors associated with each expert� Typically�

these densities are chosen from the exponential family� Thus� the overall stochastic model

assumes the form of a mixture density

pyjx� �� �
nX

j	�

gjx� �g�pyjx� �j�� 	�

Each expert network produces as output a vector �j where

�j � �x� �j� j � 	� 
� � � � � n

that is � � IRd �� �� IRs� The function � may be a simple linear transformation� or a

more general non�linear mapping� In most formulations of this architecture� the function �

was taken to be linear in the parameters� a structure which is better suited to the learning

algorithm� An additional requirement is that �j be the conditional expectation taken

w�r�t the underlying jth component density in the mixture� i�e�� �j � IE�YjX � x� �j��

Although more restrictive� this imposition allows a more natural interpretation of the

output� viewed as a mixture of regressors�

The MEM also utilizes an auxiliary network� termed the gating network� whose objective

is to partition the input space into regions� corresponding to the various experts� This

task is assumed by assigning a probability vector ���� ��� � � � � �n�
T to each point in the

input space� The implementation is by a multinomial logit� de�ned as follows

�j � gx� �g�
�
�

expfsjgPn
i	� expfsig

j � 	� 
� � � � � n 
�

where sj � IR
d��g �� IR� and is typically taken to be a linear mapping sj � �gj

Tx��gj���

Note that by de�nition of g��� we have
Pn

j	� �j � 	 for all x�

There are several advantages associated with the probabilistic formulation of the model�

one of the most important being the availability of an e�cient learning algorithm� Jordan
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and Jacobs �		� demonstrated the applicability of the Expectation � Maximization EM�

algorithm to the learning phase� This optimization technique is extremely well suited to

mixture model estimation problems� by breaking down the global optimization into several

re�estimation equations� These equations are in many cases insightful� driven by the

intrinsic properties of the mixture model� In many cases� this yields substantially simpler

and more straightforward estimation than gradient methods� and more robust behavior

than second order algorithms �	��� The method is also much less intensive computationally

than gradient descent� making the MEM an attractive candidate� and contender to neural

network models� where gradient descent has been the popular optimization technique�

In the sequel we will be mainly concerned with the model class Hn de�ned formally in

���

fnx� �� � IE�YjX � x�Hn� �
nX

j	�

gjx� �g��x� �j� ��

that is� the parametric mapping induced by taking the conditional expectation w�r�t� the

conditional density in 	�� We will restrict attention to the simple case where �x� �j� �

�Tj x� �j��� following the original formulation of Jacobs et al� �	���

The main concern of this paper is to study some theoretical properties of the MEM

model� In particular� we will focus on two question� One� given a target function f in a

prescribed function class F � can we approximate it to arbitrary accuracy using function

fn � Hn� In fact� we will be interested in a somewhat sharper answer� that is� how large

should n be alternatively� how many experts should one choose� so as to have a prescribed

accuracy level in the approximation� A second question relates to the statistical properties

of the estimation error� in learning the function f from a given sample set� The setting is

that of least squares estimation as opposed to the estimation procedures of the stochastic

model 	� via maximum�likelihood and the EM algorithm�� The focus is on learning some

unknown function� belonging to a certain class� by means of parametric models taken from

the model class Hn� The target function in this setting is the �true� underlying regression

function associated with some observable� noisy� input�output process�

A typical result we obtain� is that the MEM is capable of approximating any target

function in a certain Sobolev class� Bounds on the approximation error that hold uniformly
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over the class of target function are established� demonstrating that

inf
fn�Hn

kf � fnkp � c

nr�d
	 � p � �

In general f � IRd �� IRs� and we concentrate on the case s � 	 for simplicity� The func�

tion fn is given in ��� c is an absolute constant� d is the dimension of the input space and

r is the number of continuous derivatives in Lp we assume f to possess� This statement

follows from a general result Theorem 	�� concerning the degree of approximation char�

acteristics of a class of linear combinations of normalized ridge functions� A recent paper

by Mhaskar �	��� points out that this bound is of optimal order under further conditions�

We do not make any such claim in the setting we analyze herein� though we will brie�y

digress to discuss this point following the presentation of the main results�

The asymptotic estimation error is examined as well� and an upper bound is thus es�

tablished by combining the two error terms� We note in passing that the estimation is

generally assumed to be in a misspeci�ed framework �
	�� that is we conceive that the

model we have fn� di�ers from the �true� regression function f � associated with the data

generating mechanism� Moreover� we do not assume f � Hn for any n� Finally� we

note that the estimation error is analyzed under asymptotic assumptions� and therefor we

must be careful in interpreting these results� in particular when only small sample sets are

available�

Based on the derived upper bounds� a model selection criterion is introduced� inspired by

the method of structural risk minimization �
��� This method has recently been pursued in

the context of neural networks by Murata and Amari �	��� based on Amari et al��s work on

learning curves ���� and has been termed by these authors as NIC � Network Information

Criterion� The question of how to determine the number of experts� best suited to solve

a given problem available in the form of a sample set�� can be similarly addressed in a

systematic manner�

The remainder of the paper is organized as follows� Section II is devoted to some

preliminaries and de�nitions which are essential to the statement of the main results� In

Section III we present the main theorems� concerning the degree of approximation results

and the estimation error� In Section IV� we introduce a model selection criterion based

on the results of these theorems� Finally� we discuss the results and some open problems�
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Technical proofs are relegated to the Appendix for continuity of ideas�

II� Definitions� Notation and Problem Statement

Let X� Y � be random variables� de�ned over an underlying probability space E� E � P ��

such that X� Y � � E � Id � IR� with Id � ��	� 	�d� Let P be such that IEY � � �� The

following induced probability measures on Id and IR may then be de�ned� �A� � P X �
A� for all A � BId� the Borel ���eld on Id�� and 	xB� � P Y � BjX � x� for all x � Id

and B � BIR�� We will be concerned with the following problem� Given a random sample

set DN � fXt� YtgNt	�� consisting of N i�i�d� copies of X� Y �� our objective is to come up

with the �best� possible estimate of the regression function fx� � IE�Y jX � x�� Here f

is a deterministic unknown mapping f � IRd �� IR� in some prescribed class of functions

F � In view of the above de�nitions� one may view the sample set as being generated by

the relation

Yt � fXt� � 
t� t � 	� 
� � � � � N� ��

where f
tg� is a zero mean� �nite variance� noise process� Since the focus will be on

the regression function f � one may view the noise process as the residual randomness


t � Yt � fXt��

We attempt to reconstruct f � over Id� using estimators from the MEM parametric

family� A complexity index n is assigned to the MEM estimators� referring to the number

of experts in the architecture� Throughout this paper we use upper case letters to denote

random variables and correspondingly lower case letters to denote realizations� Boldface

type will be used to denote vector valued quantities�

We note in passing that the restriction on x can be to any compact domain K 	 IRd�

The selection of K � Id has been chosen in order to simplify the mathematical analysis�

and make it more transparent� However� the fact that the support of x is compact is

crucial to the proof techniques� As for the commonly used i�i�d� assumption� we note

that it may be replaced with much weaker assumptions� provided the uniform strong law

of large numbers and certain formulations of the central limit theorem still hold� For

instance� in the case of correlated data as in time series we will typically assume jointly

stationary ergodic vectors with appropriate mixing conditions see �
�� for details in the
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context of the MEM class and time series prediction��

De�ne the Lp norm over Id as follows

kf � gkp �
�
�Z

Id
f � g�pd�

���p
	 � p ��

and the L� norm as

kf � gk� �
� ess sup

x�Id
jfx�j �

where � denotes the Lebesgue measure on IRd� Let LpI
d� �� denote the vector space of

measurable functions f which have kfkp � �� where we identify f � g if the functions

are equal a�e����

De�ne the following risk function� w�r�t� the squared loss�

L���F � fn� �
�
Z
IR

Z
Id
�yx�� fnx� ���

�	dyjx��dx� � ��

where F is the class of target functions� and the dependence of y on x has been made

explicit� De�ne the empirical risk function

lDN � fn�
�
�

	

N

NX
t	�

�Yt � fnXt� ���
� ��

which follows from taking the integration in �� w�r�t� the empirical distribution �Nx� y� �
	N

PN
t	� �x� xt� y � yt��

The purpose of learning is to �nd a function f �n that minimizes ��� w�r�t� a class of

estimators de�ning fn� In this work we concentrate on the following class

Hn �

��
�fn j fnx� �� �

nX
j	�

gjx� �g���
T
j x� �j���� ��Tj � �j���

T � �n� �g � �g
n

��
� ��

where � � ��T
g � �

T
� � � � � � �

T
n � ����� � � � � �n���

T � and �n��
g
n are compact subsets of IRn�d���

de�ned as follows

�n �
n
�j� �j�

n
j	� � IRd � IR j k�jk� � c�� j�jj � 
Le�dn���o����� j � 	� 
� � � � � n

o
�g

n �
n
�gj � �gj���

n
j	� j k�gjk� � 	� j�gj�� j � 	� j � 	� 
� � � � � n

o
� ��

Here c� � IR� is arbitrary� and L is de�ned in Theorem � and Assumption 	� Note that

the restrictions on �g are a consequence of the conditions stated in Assumption 
� applied
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to the function �t� � et� We use the term o	�� appearing in the exponent� to abbreviate

terms whose growth is dominated by the term en� The explicit expressions for these terms

appear in the Appendix� We note that the somewhat unusual bound on the size of the

parameters �j arises because of certain technical conditions required to achieve the correct

degree of approximation� This issue is expanded on in Remark 
 in Section III�

This class de�nition follows from the formulation of the MEM as in ��� where the gating

network is implemented as a �softmax� function as in �	��� That is

gjx� �g�
�
�

expf�Tgjx� �gj��gPn
i	� expf�Tgix� �gi��g

�

The vector of parameters �g is composed of n sub�vectors �gj � j � 	� 
� � � � � n and n

constants �gj�� � The choice of �softmax� functions is due to the inherent positivity and

normalization� two properties imposed on the output of the gating network in �	�� and

�		��

Obviously� there is no hope in attempting to approximate any target function using

this class of approximants� unless we restrict the target class by imposing some regularity

conditions� The following assumption is useful in characterizing the target class�

Assumption �� The target function f belongs to the Sobolev class� f � W r
p L�

W r
p L�

�
�

��
�hx� j khkW r

p
�

X
j�j�r

jjh���x�jjp � L

��
�

where

h��� � �k�k�h

�x��

� �x��

� � � ��x�d
d

and � � Zd
� is a multi integer � � ��� ��� � � � � �d��

Now� the objective of seeking f �n � the minimizer of the risk function �� � is not feasible�

since we are only able to de�ne the empirical risk� based on the sample set DN � We thus

minimize lDN � fn�� the empirical risk� and obtain a least squares estimator �fn�N � Note

that by the following decomposition we can de�ne the risk function w�r�t� the regression

function f �

L���F � fn� � IE����Y � fnX� ����

� IE�fY � IE�Y jX�g� � IE�fIE�Y jX�� fnX� ��g�
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� �� � IE�ffX�� fnX� ��g�

� �� � L�F � fn�� ��

Here �� is the variance of the zero mean additive noise f
tg� Obviously� minimizing �� is

equivalent to minimizing ��� The vector of parameters associated with the minimizer of

��� f �n� will be denoted ��n

�
�

n
�
	 arg min

���n

L��F � fn��

and the vector of least square estimates� derived from the minimization of the empirical

risk function

��n�N
�
	 arg min

���n

l�DN � fn��

where �n � �n
�g
n� with �n and �g

n are de�ned in ��� Plugging ��n�N into fn we obtain

�fn�N � the estimator of f � based on the sample set DN �

III� Main Results

Having de�ned the estimator �fn�N � our objective is to assess its performance by exam�

ining the mean integrated squared error between f and �fn�N � Denote the total error as

L��n�N�� where

L��n�N� �
� kf � �fn�Nk�L��Id��� �

Z
Id
�fx�� fx� ��n�N��

��dx� 	��

and de�ne L��n�� the total error evaluated at the point � � ��n as

L��n� �
� kf � f �nk�L��Id��� �

Z
Id
�fx�� fnx� �

�
n��

��dx�� 		�

We start the derivation of the main results by considering the following decomposition

of the total error L��n�N�� by means of a second order stochastic Taylor series expansion

around ��n� Since fnx� �� is clearly three times continuously di�erentiable w�r�t� �� the

expansion exists�

L��n�N� � L��n�	 
z �
�i�

�rTL��n���n�N � ��n�	 
z �
���

�
	



��n�N � ��n�

Tr�L��n���n�N � ��n� � rn�N	 
z �
�ii�

� 	
�
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where the remainder term rn�N is given by

rn�N �
�n�d���X
i�j�k	�

	

��

��L ��n�
��i��j��k

��i � ��i���j � ��j���k � ��k� � 	��

Here� and in the sequel� we denote rL��n� � r�L��j�	��n� to avoid cluttering the equa�

tions� Under further assumptions imposed in the sequel� and the results of Lemma 	

which we discuss in Section III�A� this remainder term will be shown to be uniformly

bounded and its expected value o�nN�� In the above expressions all gradients are taken

w�r�t� �� and �� is a point on the line segment connecting ��n�N and ��n� Note that we have

used the generic symbol �i to denote the ith component of the parameter vector� and did

not distinguish between the di�erent origins of the components as we have done previously

gating network parameters� di�erent experts� etc��� Also in what follows we will denote

Sn�N
�
� �

�
��n�N � ��n�

Tr�L��n���n�N � ��n� for brevity�

� The �rst term on the right hand side r�h�s�� of 	
�� labeled i�� is the approximation

term� measuring the deviation from zero of the minimal risk� Here we induce an error due

to the limits of the approximation class Hn�

� The second term on the r�h�s�� labeled  �� is zero by de�nition�

� The third term on the r�h�s�� labeled ii�� is the estimation error induced by a parameter

estimate which is based on a sample of size N � This error term is also referred to as the

stochastic error� Note� that this term includes the remainder rn�N �

Our next task is to estimate the magnitude of these error terms� and establish some bounds

which will lead to a bound on the total error L��n�N��

A� Statistical Properties of the Estimation Error

Since the sample set DN has been drawn at random� and both the parameter estimator

��n�N � ��DN� as well as L��n�N� are measurable functions� we will be interested in their

statistical properties in what follows�

The parameter estimator ��n�N is subject to a distribution Qn�N��� It is shown by White

�
	���

�� as part of a general theory of misspeci�ed models� that Qn�N � Qn as N tends to

in�nity� where� denotes weak convergence� Moreover this limit distribution is a Gaussian

distribution centered around ��n� the minimizer of the expected risk function� We present

the following lemma� adapted from White �
��� without proof�
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Lemma �� Let ��n�N be a sequence of least squares estimators i�e�� minimizers of lDN � fn���

and assume that L�F � fn� has a unique minimum at ��n in �n� a compact subset of

IR�n�d���� then ��n�N
a�s��� ��n� Assume further that the matrices A�

n and B�
n de�ned be�

low� are nonsingular and that ��n is interior to �n� Then the r�v�
p
N��n�N � ��n� is

asymptotically normal� i�e�

p
N��n�N � ��n�

d� Zn � N�� C��n��� 	��

where C�
n
�
� C��n� � A�

n�
��B�

nA
�
n�
���

A�
n
�
� A��n� �

Z
r��fx�� fnx� �

�
n��

��dx��

and

B�
n
�
� B��n� � �

Z
�fx�� fnx� �

�
n��

� � ���rfnx� ��n�rTfnx� �
�
n��dx� 	��

Here� all gradients are taken w�r�t� the parameter vector �� and �� � IE
�t � Also� �Cn�N �

�A��
n�N

�Bn�N
�A��
n�N is a strongly consistent estimator of C��n� where

�An�N
�
�

	

N

NX
t	�

r��Yt � fnXt� ��n�N��
�

and

�Bn�N
�
�

	

N

NX
t	�

r�Yt � fnXt� ��n�N��
�rT �Yt � fnXt� ��n�N��

��

Remark �� For the lemma to hold as stated� one must verify the following three condi�

tions see also �
���� We denote r�x� y� � �y � fnx� �n��
� for brevity�

��� r�x� y� � mx� y� for all �n � �n and x � Id� y � IR where
R
mx� y��dx�	dyjx� �

��

��� �r�x� y���i are measurable functions of x� y�� and continuously di�erentiable func�

tions of � for each x� y�� and i � 	� 
� � � � � 
nd� 	��

��� j�r��x�y�
��i

�r��x�y�
��j

j and j��r��x�y�
��i��j

j are dominated by functions integrable w�r�t� �dx�	dyjx��
Since �n is compact� the �rst condition holds trivially� and we may set mx� y� � 
y� �


 sup���n
f �nx� ��� where the supremum is �nite since fn is continuous in � and �n is

compact� That mx� y� is integrable is obvious� Since fnx� �� is twice continuously dif�

ferentiable by inspection�� and x � Id� the second and third condition hold by the same
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argumentation� and thus the results of the lemma follow� given the speci�ed assumptions

concerning the matrices A�
n� B

�
n and the uniqueness of the minimizer ��n�

Lemma 	 establishes the strong consistency� and asymptotic distribution of ��n�N � and

explicitly de�nes its statistical properties i�e�� the mean vector and asymptotic covariance

matrix�� Moreover� Lemma 	 de�nes consistent estimators of the information matrices�

The statement of the lemma is reassuring in the face of a misspeci�ed estimation frame�

work� In most scenarios the estimator ��n�N will not �lead us� to the true parameter char�

acterizing the target function�� as no such parameterization exists in general� On the other

hand� we are assured that the estimator will consistently reach the optimal parameter in

the class of functional estimators Hn�� as the sample set becomes large� of correlated

signals or time series would be straightforward

Unlike the well speci�ed case� in which Sn�N in the estimation term� ii� in 	
��� would

asymptotically follow a Chi�squared distribution� in the misspeci�ed case i�e�� where the

postulated model di�ers from the underlying true model� this term is asymptotically given

by a quadratic form in normal random variables� The distribution of quadratic forms has

been studied� and a summary of their properties can be found in �	
�� To elucidate the

analysis of the estimation term� we shall make use only of basic results concerning �rst

and second order moments� The following lemma establishes the statistical properties of

the stochastic error term given in 	
�� We use the notation xN � oaN� if xNaN� � �

and xN � OaN� if C �� such that limxNaN � � C� With some abuse of notation� we

will write IEjXj �� to mean IEjXij �� for all i � 	� 
� � � � � p where X is a r�v� mapping

from the underlying sample space to IRp�

Lemma �� Let the conditions of Lemma 	 hold� Assume further that for any �xed

n� � � � s�t� supN IEjZn�N j
�� � � i�e�� the inequality is assumed to hold for each

coordinate of Zn�N�� with Zn�N �
p
N��n�N � ��n�� Then�

IE �Sn�N � rn�N � � O
�

	


N
TrfB��n�A

����n�g
�
� o

�
�n
N

�
� 	��

If in addition for every �xed n� supN IEjZn�N j��� �� then�

Var �Sn�N � rn�N � � O
�

	


N�
TrfB��n�A

����n�B��n�A
����n�g

�
� o

�
��n
N�


� 	��

where �n� �
�
n are constants independent of N � and the matrices A��n� and B��n� are
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de�ned in Lemma 	� Here Sn�N � �
�
��n�N � ��n�

Tr�L��n���n�N � ��n�� and rn�N is the

remainder term as in 	���

Proof� See Appendix A�

An obvious result of Lemma 	 is the following

Corollary �� Let the assumptions of Lemma 
� needed for 	��� hold� Then� for any

�xed n the estimation error converges to zero almost surely�
	



��n�N � ��n�

Tr�L��n���n�N � ��n� � rn�N

�
a�s��� � �

Proof� First� note that since ��n�N � ��n almost surely� and since Sn�N continuous in ��n�N �

Sn�N � � almost surely� By application of the Markov inequality� for all � � � we have

IPfjrn�N j � �g � IEjrn�N j
�

In the proof of Lemma 
� we establish that IEjrn�N j � �nN
���� and therefor by the Borel�

Cantelli Lemma rn�N � � almost surely� and the result follows� �

These results� concerning the statistical properties of the estimation error term� will be

the basis of the bounds� established in Section III�C� We will utilize the �rst and second

moment calculation to formulate bounds on the mean integrated squared error� and bounds

in probability on the integrated squared error�

B� Degree of Approximation Results

The main task now is to bound the magnitude of the approximation term part i� of

the r�h�s� of 	
� �� We �rst state a general theorem� concerning the approximation of

functions in the Sobolev class by a manifold of normalized ridge functions�

De�nition �� A function h � IRd � IR is called a ridge function if it may be expressed as

hx� � �aTx� b� �

with a � IRd� b � IR� and � � IR� IR�

Thus� a ridge function takes constant values on hyper�planes in IRd� In what follows we will

use the term ridge function to mean the function �t�� suppressing the explicit argument�

where t � IR� The following de�nition will be used in the statement of the theorem�
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De�nition �� A superposition of normalized ridge functions �� is a manifold of the form

Qn
�
�

�
qnx� j qnx� �

Pn
k	� ck�a

T
k x� bk�Pn

k	� �a
T
k x � bk�

� ck� bk � IR� ak � IRd

�
� 	��

Note that Qn di�ers from Hn in �� by making the normalization explicit� and taking

the linear functions to be constants� Also� in the case of Hn the ridge functions are

taken to be �t� � et� and the parameters take values in an explicit compact subset of

IRd and IR respectively� The statement of the approximation theorem� establishing upper

bounds on the approximation error between functions in the Sobolev class and classes of

superpositions of normalized ridge functions� requires the following assumption concerning

the admissibility of ridge functions�

Assumption �� The ridge function �t� satis�es the following conditions�

	� For any bounded subset K 	 IR there exists a positive constant c such that �t� � c �

� �t � K�


� b � IR such that �k � Z�� the k�th order derivative ��k�b� �� �� Moreover� there is a

� � �� and a �nite interval �b� �� b � �� where � is in�nitely many times di�erentiable�

�� For any bounded subset K 	 IR� j��k�t�j � � for all t � K and k � N� Moreover�

!C�
�
� max��i�k supt��b���b��� j��i�t�j � !cbe

k� and C� � min��i�k supt��b���b��� j��i�t�j �
cbe

�k�

Now we state the main approximation result concerning the above functional classes�

Theorem �� Let Assumption 	 and Assumption 
 hold� then

sup
f�W r

p

inf
qn�Qn

kfx�� qnx�kLp�Id�	� �
c

nr�d
	 � p � � 	��

where c is an absolute constant� Moreover� the coe�cients ck� ak and bk de�ning the class

Qn in 	�� may be chosen� without loss of generality� so that kakk� � �
d� jbk�bj � �
�

and max��k�n jckj � 
Le�dn���o����� where b and � are as in Assumption 
�

Proof� See Appendix B�

Note that this result does not yet establish a bound on the approximation term in 	
��

We postpone this derivation to Section III�C� where we establish upper bounds on the

total error induced by the estimator �fn�N � However� this result immediately extends to

the class of approximants de�ned by the MEM architecture� with degenerate experts i�e��
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each expert is a constant� and not a linear function of the input�� since the conditions of

Assumption 
 are easily veri�ed for �t� � et� i�e� Theorem 	 is applicable to the �softmax

network�� In fact� the statement in Theorem 	 applies to a large class of approximants�

since any ridge function obeying the conditions of Assumption 
 will allow this result to

hold true�

At this point we digress to make several remarks concerning these results�

Remark �� The result established in Theorem 	 is in the spirit of the results obtained

by Mhaskar �	��� where the same bound is seen to hold for a standard neural network�

under similar assumptions� Since the last condition of Assumption 
 is not satis�ed for a

sigmoidal function� Theorem 	 does not yield as an immediate corollary� that normalized

neural networks are characterized by the same degree of approximation results as the

standard neural networks� Note however� that we have imposed the last condition in

Assumption 
 in order to obtain bounds on the magnitudes of the parameters appearing

in the de�nition of the functional class 	��� as in Theorem 	� These bounds are essential

for the analysis of the estimation error� but are otherwise super�uous for the analysis of the

approximation error� Consequently� from the point of view of the approximation results

per se� we have that neural networks� using normalized sigmoidal units� are characterized

by the same degree of approximation results� as are neural networks that use sigmoidal

units� Moreover� while the bounds on the magnitude of the parameter values are �nite and

explicit� we have made no attempt to optimize them� as this seems rather di�cult within

the particular approximation scheme we are using here� We believe that these bounds

can be substantially improved using alternative techniques from the theory of function

approximation�

Remark �� Recently upper bounds of the order of cn��� have been established by Barron

���� w�r�t� feedforward neural networks� This bound was seen to hold for a class of target

functions that are e�ectively band�limited i�e�� absolute value �rst order moments of the

bandwidth are �nite� and upper bounded by a global constant�� This result has been

established in the L� norm ���� and extended to the sup�norm L�� by Yukich et al� �
���

Both proofs employ a random coding argument� The interesting property of these bounds

is their independence of the dimensionality� compared to classical results obtained by
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Mhaskar �	��� and the results proved herein� The simple explanation for this seeming

dissonance lies in the de�nition of the target class� The now classical result of Barron ���

is driven by the restriction of target functions to a fairly limited class� while Mhaskar�s

analysis �	�� assumes functions are in a Sobolev class� One should note� however� that

the constant factor in Barron�s bounds could be exponential in the dimensionality of the

problem� thus requiring an exponentially large number of terms in the approximant� It

should also be mentioned that as shown in ��� in the case where r � d
 � 
 partial

derivatives of fx� are known to exist then the class under study is a sub�set of the class

studied by Barron� for which approximation rates of order cn��� can be achieved� It is

interesting that in this case� there is no requirement for the square integrability of the

derivatives�

Remark 	� The following lower bound is a consequence of ��� see also �	�� for further

details and discussion�

sup
f�W r

p

inf
�qn� �Qn

kfx�� �qnx�kp � c

nr�d

where �Qn is the standard sigmoidal neural network� with n nonlinear sigmoidal units in

the so�called hidden layer i�e�� linear combinations of n terms of sigmoidal functions ��

This lower bound is valid if the parameterization of the neural network is such that the

linear parameters are continuous functionals of the unknown mapping f � In a sense� this

limits the e�ects of small �uctuations around the true target function� on the choice

of the parameterization of �qn�� � the neural network approximator� Recently� Mhaskar

�	�� established optimal degree of approximation results for sigmoidal neural networks�

by establishing an upper bound which is of the same order� using a parameterization

determined by continuous linear functionals on f � In our setting� we have not focused

on the issue of optimality� and the parameterization studied both for the approximation

bound � as well as for the bound in Theorem �� are not restricted to be continuous linear

functionals of the mapping f � The upper bound does suggest however that it may be

optimal in order� but this is left at best as a conjecture�

Remark 
� Obviously� the result of Theorem 	 holds for the case of ��� �j� that is linear
in the parameters� or any other non�linear function that can be reduced to a constant� In

fact� in the statement of Theorem 	� we have eliminated some degrees of freedom in the
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original construction of the MEM class Hn by taking � to be constants� The case of linear

experts is particularly important since local linear regression can be interpreted more

directly than global non�linear models� Consider as an example the case of non�linear

models for time series� A local linear approximation� in the form of an Autoregressive

AR� model� allows insight and analysis of localized time scale phenomena� In �
�� we

demonstrate that these results carry over to the framework of prediction in time series�

thus local linearization is in some sense su�cient� if an adequate partition function is

implemented� This statement can be made rigorous with the aid of Theorem 	� and its

implications as to the choice of gating networks�

Note that in the well speci�ed case� the approximation error is zero� and all that remains

is the stochastic error� which can be straightforwardly analyzed with the aid of classical

large sample properties of the LS estimator� In the next section we derive an expression

for the total error bound� based on the bounds and statistical properties that have been

developed and studied in the previous sections�

C� Total Error Bounds

In some of the results presented in this section we will need the following technical

condition

Assumption �� Assume that � � � where � is the Lebesgue measure in IRd� Further�

more� let the associated density function be uniformly bounded over Id�

We are now ready to derive the complete error bounds� combining the estimation and

approximation bounds obtained thus far�

Theorem �� Suppose assumption 
� �� and the conditions needed for 	�� hold� Assume

further that f � W r
� L�� then for N su�ciently large we have

IEkf � �fn�Nk�L��Id��� �
c

n�r�d
�O

�
	


N
TrfB��n�A

����n�g
�
� o

�
�n
N

�
� 
��

where c is an absolute constant see Appendix B�� and �n is a constant appearing in Lemma


� independent of N � Here n is the complexity index i�e�� the number of additive terms

in the approximating manifold�� The parameter r is the number of continuous derivatives

in L� that f is assumed to possess and d is the dimensionality of the input� The matrices

A�
n and B�

n are de�ned in Lemma 	 and N is the sample size�
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Proof� By the second order Taylor series expansion of the mean squared error� we have

kf � �fn�Nk�L��Id��� � kf � f �nk�L��Id��� � Sn�N � rn�N 
	�

where Sn�N is the stochastic error term� and rn�N is the remainder� The �rst term on the

r�h�s is simply L��n�� the approximation error term� The bound on this term is established

with the aid of Assumption � and Theorem 	 as follows�

kf � f �nk�L��Id��� �
Z
Id
jf � f �nj�d�

� K
Z
Id
jf � f �nj�d�

� Kkf � f �nk�L��Id�	�
� c�

n�r�d
�

where the �rst inequality follows from Assumption � with K the uniform upper bound�

and the second inequality follows from Theorem 	� Note� that since Qn � Hn� we have

inffn�Hn kf � fnk � inffn�Qn kf � fnk� Taking the expectation and applying the results of

Lemma 
 we have

IEkf � f �nk�L��Id��� �
c�

n�r�d
�O

�
	


N
TrfB��n�A

����n�g
�
� o

�
�n
N

�

which concludes the proof� ��

The following corollary asserts that if we restrict f � W r
�� then Assumption � may be

dropped�

Corollary �� Suppose assumption 
� and the conditions of 	�� of Lemma 
 hold� As�

sume further that f � W r
�L� then� for N su�ciently large we have

IEkf � �fn�Nk�L��Id��� �
c

n�r�d
�O

�
	


N
TrfB��n�A

����n�g
�
� o

�
�n
N

�


�

where all the parameters are as in Theorem 
�

Proof� Immediately follows from the fact that

Z
Id
jf � f �nj�d� � kf � f �nk�

and we apply the result of Theorem 	 with p ��� The �nal bound then follows straight�

forwardly� �
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In ��� Barron obtains an upper bound on the estimation error� w�r�t� the class of neural

network functional estimators� which is Ond logNN�� This bound� unlike the bound

obtained herein� is not asymptotic in N � rather it holds for �nite values of N � Moreover�

this bound is explicit in expressing the relation between the dimensionality complexity

and sample size� In the setting we pursue herein� these relations are only implicit in the

form of the derived upper bound�

For the overall bound in 

� to actually decrease to zero� we must specify nN�� Since

the increase rate of nN� is restricted by stringent requirements� i�e�� the limiting behavior

of ��n�N � the solution is not obvious to us at the moment� The question of consistent

estimation� can be addressed by use of sieves the reader is referred to Geman and Hwang�s

paper ��� for a general overview� White�s work in the context of neural networks �

�� and

the work of Barron ���� ����� The general results of ��� and �

� suggest that consistency in

the case of nonlinear regression on i�i�d� data�� can be established by taking the sequence

nN� � ON��
� for any � � �� The growth of the parameter space is also limited by

bounding the sum of absolute valued linear coe�cients to be OlogN�� In the process of

revising this paper� we have established a result along these lines� proving the above in

general form see �
����

An alternative formulation of Theorem 
 is established� as the total error is bounded in

probability�

Corollary �� Let the conditions of Theorem 
� and the conditions in Lemma 
 needed

for 	�� hold� Then� for N su�ciently large� and � � �� 	� we have

L��n�N� � c

n�r�d
� O

�
� 	

N

�
�TrfB��n�A

����n�g



�

s
TrfB��n�A

����n�B��n�A
����n�g


�

�
�
�
A

� o

�
�
q
���n�

N

�
A 
��

with probability exceeding 	� �� where all the parameters are as in Theorem 
�

Proof� The result follows trivially from the Chebychev inequality�

IP

��
�j L��n�N�� IE�L��n�N�� j �

s
Var�L��n�N��

�

��
� � 	� �� �� � �� 	� �
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Plugging in the bounds on the mean and variance derived in Lemma 
 completes the

proof� ��

IV� Model Selection by Complexity Regularization

The problem of model selection� in the context of the MEM� can be stated as follows�

We are given two parametric models� one denoted by fn�x� ��� and the other fn�x� ���

where �� � �n� 	 IR�n��d��� and �� � �n� 	 IR�n��d���� n� � n��� We assume that one

is a sub�model of the other�

ffn�x� ���� �� � �n�g 	 ffn�x� ���� �� � �n�g�

This implies� that by restricting some components of �� to �xed values� or within �xed

relations� we obtain the �rst sub�model� In the case of the MEM� by clamping expert

parameters to zero we eliminate� for all practical purposes� some of the experts and obtain

a restricted sub�model� Alternatively� one can obtain the same e�ect by choosing the

parameters of the gating network so that gjx� �� � � for some values of j and zero for

others� in which case we again have a reduced complexity model� This can be done� for

example� by choosing the parameters �gj �� � �k�gjk� in the representation 
� with

sj � �Tgjx� �gj ���

When the parameters of the two competing models are estimated� based on a common

training set DN � the problem is to decide which model is superior� We shall concentrate on

a model selection criterion� based on the method of complexity regularization� in the spirit

of Akaike�s AIC �
�� Rissanen�s MDL �	��� Instead of minimizing the empirical risk function

i�e�� the average sum of squares�� we add a regularization term� and attempt to minimize

the sum of the two terms� The complexity is understood in the sense of the number of free

parameters� characterizing the model� We note in passing that a similar methodology has

also been suggested by Vapnik� who termed it structural risk minimization �
��� There� an

attempt is made to minimize some bound on the sample size needed for consistent learning

i�e�� establishing conditions so that the uniform law of large numbers holds��

We follow Murata et al� �	��� who suggested the following regularization scheme� Let

Mi � ffnix� �i�� �i � �nig denote a hierarchical series of modelsM� 	M� � � � 	 Mm 	
� � �� Let ��ni�N denote the parameter vector of the model Mi obtained by minimizing the
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following complexity regularized risk function

RDN � fni�
�
�

	

N

NX
t	�

�Yt � fniXt� �i��
� �

	


N
Tr
n
�BN

�A��
N

o

��

where �BN and �AN are the misspeci�ed model information matrices� de�ned in Lemma 	�

Note that as the size of DN becomes large� minimizing Rfni�DN� will be equivalent to

minimizing the bound on the expected total error� given in Theorem 
� as all quantities

in 
�� converge almost surely to their expectations� Therefore� minimizing Rfni�DN� is

consistent with minimizing the upper bounds on the expected total error as the sample size

increases� The questions concerning statistical properties of this complexity regularized

estimator� are still under investigation�

Remark �� Note that the penalty term in the de�nition of RDN � fni� 
��� is itself of

asymptotic nature� since it is the estimator of the expected stochastic error� based on the

asymptotic normality of the estimator ��n�N � This may contradict the application of this

penalty term in small sample sets� and mars the generality of the argument� We note

that the same reasoning applies both to Akaike�s AIC and Rissanen�s MDL� two popular

methods of model selection by complexity regularization� In fact� in the well speci�ed

case �BN
�A��
N degenerates to the identity matrix� the trace of which corresponds to the

number of free parameters in the model� In this case� the criterion degenerates to the

akaike�s AIC� In contrast� �nite sample regularization criteria can be implemented as in

the work of Vapnik �
�� on structural risk minimization and the framework of complexity

regularization introduced by Barron and Cover ��� and Barron ����

V� Discussion

We have studied some of the properties of a novel non�linear model� the so called Mix�

ture of Experts Model MEM�� in the context of multivariate regression� Extensions are

straightforward to other modeling frameworks such as time series and nonlinear signal pro�

cessing� The model is characterized by a simple architecture � and o�ers the practitioner

intuition and insight� two features which are absent in most non�linear models such as

neural networks�� The main task of this work was to illuminate some of the theoretical

foundation� underlying the MEM�
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In the derivation of the approximation bound� we observe that the MEM may be

regarded as �equivalent� to a class of neural networks with normalized ridge function units

where �equivalence� is taken in the sense that both classes are characterized by the same

degree of approximation�� We complement the approximation results by examining the

stochastic estimation� error� The asymptotic bound on the estimation error term is

established using the point estimation results in a misspeci�ed framework� Thus� the

bound is characterized by quantities related to the asymptotic variance of the least squares

estimator� via certain pseudo�information matrices�

Several fundamental questions are still unresolved� For one� it is not clear to us whether

the approximation bounds that have been derived are in fact optimal� i�e�� does there exist

a lower bound of the same order of magnitude� A related issue concerns the restrictions we

have imposed on the MEM function class in deriving the degree of approximation results�

Namely� we have forced the linear experts to be constants� Is there a loss of generality�

and can it be quanti�ed" We also expect that the coarse bounds on the parameters can

be made tighter with the use of other approximation techniques�

The results that have been obtained in the analysis of the estimation term are quite

restrictive� both in the conditions needed for them to hold� as well as in the interpretation

they may have in face of a �nite sample size� These issues indeed mar the generality of

the arguments� and we believe that it should be possible to rephrase most of this work

in terms of the uniform convergence framework c�f�� Vapnik �
���� thus obtaining �nite

sample results�
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Appendix

I� Proof of Lemma �

Let Hn � r�L��n�� We �rst establish 	��� Since� Zn�N
d� Zn we have ZT

n�NHnZn�N
d�

ZT
nHnZn� by the fact that �z� � zTHnz is continuous in z� The random variable ZT

nHnZn

is a quadratic form in Gaussian random variables� since Zn � N�� C�
n� by Lemma 	� Thus�

we have the representation

ZT
nHnZn �

�n�d���X
i	�

�iR
�
i

with Ri i�i�d� Gaussian random variables with zero mean and unit variance see �	
� p�

	�� � 	����� The �i�s are the eigenvalues of the matrix HnC
�
n� Using the above� we have

IE�ZT
nHnZn� � IE

�
��n�d���X

i	�

�iR
�
i

�
�

�
�n�d���X

i	�

�i

� TrfHnC
�
ng

� TrfB�
nA

�
n�
��g

where the last step follows from observing that Hn � A�
n� by de�nition� and C�

n �

A�
n�
��B�

nA
�
n�
��� Now� write ZT

n�NHnZn�N �
P

i�j HijZiZj where we have simpli�ed the

notation by omitting the dependence on n and N � and the scalars Zi are the components of

the vector Zn�N � Since� IE�ZiZj� �
q
IEZ�

i

q
IEZ�

j � and by assumption supN IEjZn�N j� ���

it follows that IEjZT
n�NHnZn�N j��� � � and thus ZT

n�NHnZn�N is u�i� uniformly inte�

grable�� Since ZT
n�NHnZn�N

d� ZT
nHnZn� and Z

T
n�NHnZn�N is u�i�� it follows c�f� ��� Propo�

sition 
��	
�� that IE�ZT
nHnZn� � � and IE�ZT

n�NHnZn�N � � IE�ZT
nHnZn� in IR� Thus� we

have IE�Sn�N � � O 
N���TrfB�
nA

�
n�
��g� in fact IE�Sn�N � � 
N���TrfB�

nA
�
n�
��g� with

aN � bN if limaNbN � 	�� Now�

IEjrn�N j � IE

�
��n�d���X

i�j�k	�

	

��

����� ��L���
��i��j��k

����� j��i � ��ijj ��j � ��jjj ��k � ��kj
�
�

� �n
N���

where the second step follows from noting that a� the function L�� is three times con�

tinuously di�erentiable� over the compact domain �n� therefore the third order derivatives
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are uniformly bounded� b� the components of the random variable jZn�N j
 are u�i�� thus

applying the Cauchy�Schwartz inequality the result follows� Therefore�

IE�Sn�N � rn�N � � O
�

	


N
TrfB�

nA
�
n�
��g

�
� o

�
�n
N

�
�

The proof of 	�� follows along the same lines� First� we have

ZT
n�NHnZn�N�

� d� ZT
nHnZn�

� �

Now� since jZn�N j
 is u�i� by assumption�� we have IE�ZT
n�NHnZn�N �

� � IE�ZT
nHnZn�

� in

IR� and consequently Var�ZT
n�NHnZn�N �� Var�ZT

nHnZn�� where

Var�ZT
n�NHnZn�N � � Var

�
��n�d���X

i	�

�iR
�
i

�
�

� 

�n�d���X

i	�

��i

� 
TrfB�
nA

�
n�
��B�

nA
�
n�
��g � 
��

Here we have used the fact that Var�R�
i � � 
� To bound the remaining components of

the variance of the estimation error we note that IEjrn�N j� � cnN
� as jZn�N j� is u�i� by

assumption� and applying the Cauchy�Schwartz inequality�� and

CovSn�N � rn�N� �
q
Var�Sn�N �

q
Var�rn�N �

� O

�
��n
N���


� 
��

Thus� combining the above statements we have

Var�Sn�N � rn�N � � O
�

	


N�
TrfB�

nA
�
n�
��B�

nA
�
n�
��g

�
� o

�
��n
N�



which concludes the proof� ��

II� Proof of Approximation Bounds

A� Preliminaries

We repeat some of the de�nitions and notation introduced in the main section of the

paper� We assume the target function f belongs to the Sobolev class

W r
p L�

�
�

��
�fx� j jjf jjW r

p
�

X
j�j�r

jjf ���x�jjp � L

��
� 
��
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x � Id � ��	� 	�d� De�ne the manifold Qn

Qn
�
�

�
qx� j qx� �

Pn
k	� ck�a

T
k x � bk�Pn

k	� �a
T
k x� bk�

� ck� bk � IR� ak � IRd

�
� 
��

The ridge functions ��� are chosen to satisfy Assumption 
� The distance between the

class W r
p and the manifold Qn is de�ned as

distfW r
p �Qng �

� sup
f�W r

p

inf
q�Qn

jjf � qjjp 
��

where the LpI
d� �� norm is de�ned as kf � qkp � �

R
Id jf � qjpd����p�

B� Proof of the Main Theorem

We now present the main result of the appendix�

Theorem �� For every integer p� 	 � p � �� there holds

distfW r
p �Qng � c

nr�d
� ���

where c � cr� d� p�� Moreover� the parameters fak� bk� ckg in 
�� can be bounded for each

	 � k � n as follows� kakk� � �
d� jbk � bj � �
 and jckj � 
Ln
 exp
�
�n � dn��d

�
�

with b and � as in Assumption 
�

For clarity� we outline the proof by stating two lemmas without proof� and a proposition

concerning the properties of an auxiliary function� to be de�ned� Combining the results by

use of the triangle inequality concludes the proof of the theorem� The proof of these lemmas

and the proposition is given preceding the outline� The following de�nitions are necessary

for the statement of the �rst lemma� We denote by Tkx� �
Qd

i	� coski arccos xi�� ki �

�� 	� � � � � the d dimensional Chebychev polynomials restricted to Id� and de�ne

�x� � ��x�
�
� 
���d

Z
������d

�wTx� b�dw � � � � 	�� �	�

where b is de�ned in Assumption 
� We also introduce the manifold

Tn �
�

��
�tx� j tx� � X

��k�m

dk
Tkx�

�x�
� dk � IR� k � Zd

�

��
� � �
�

where M � m�m� � � � �m�T � m � dn��de� and � � k � M means � � ki � m �i �

	� 
� � � � � d� We note that the Chebychev polynomials may be expressed as

Tkx� �
X

��p�k

�k�px
p� ���
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In the sequel we will need to bound the coe�cients �k�p� For this purpose we introduce

the following simple result�

Proposition �� For any multi�integer � � k �M the coe�cients �k�p in ��� are bounded

as follows�

C�
�
� max

��k�M
max
��p�k

j�k�pj �
�
m




�d


e�m
d

���

Proof Consider the one�dimensional Chebychev polynomial given by �
��

Tkx� � cosk cos�� x� �
k




bk��cX
j	�

�	�j k � j � 	��

j�k � 
j���

x�k��j

�
�

bk��cX
j	�

tk�j
x�
k��j�

Using the inequality
�
k
j

�
� ekj�j and simple algebra we obtain jtk�jj � k

�

e�k� The

result follows by taking the tensor product needed to de�ne the d�dimensional Chebychev

functions� namely Tkx� �
Qd

i	� Tkixi�� �

We �rst present a proposition concerning the properties of �x� de�ned in �	��

Proposition �� For the function �x�� the following holds�

�� �x� � c� � � �x � ��	� 	�d and �� � ��

�� �f � W r
p we have the following inequality

jjf�jjW r
p
�

X
j�j�r

jjD��f��jjp � K�

where K� � K�r� d�� i�e� f� � W r
p �

We now state the �rst lemma�

Lemma �� For every positive integers p� n � � and r � �

distfW r
p � Tng �

c

nr�d
� ���

Moreover� the coe�cients dk in the de�nition of the class Tn in �
� may� without loss of

generality� be assumed to be bounded as follows� jdkj � 
Ln�

The following lemma states that the functions Tkx��x� can be approximated to arbi�

trary accuracy by a linear combination of n normalized ridge functions ���� That is� we

establish that the distance between the manifold Qn and the functions constituting the

manifold Tn is arbitrarily small�
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Lemma 	� For every k � ��� m�d and h � 	� �md���� there exist a vector p � �p�� p�� � � � � pd�
T �

��� m�d and a set of bounded coe�cients faj�kg such that�����Tkx��x�
�

P
��j�p aj�k��h
j� p�Tx � b�

�p���
P

��j�p ��h
j� p�Tx� b�

�����
�

� c�d��h� ���

where j � Zd
�� The vector inequality j � p is de�ned coordinate�wise� and we have de�ned

�p � p� � 	�p� � 	� � � � pd � 	� and �p � m� 	�d is implicit� The exact bound on jaj�kj is
given in Lemma � below�

We now present the proof of the main theorem�

Proof of Theorem � From the second property of �� stated in Proposition 
� and

Lemma � we have �f � W r
p � dk � dkf� �� such that

������fx��x��
X

��k�M

dkTkx�

������
p

� cn�r�d� ���

Now� from ��� and the result of Lemma � we have the following chain of inequalities�

# �
������fx��

X
��k�M

dk

P
��j�p aj�k��h
j� p�Tx� b�P
��j�p ��h
j� p�Tx � b�

������
p

�a�

�
������fx��

X
��k�M

dk
Tkx�

�x�

������
p

�

������
X

��k�M

dk
Tkx�

�x�
� X

��k�M

dk

P
��j�p aj�k��h
j� p�Tx � b�P
��j�p ��h
j� p�Tx� b�

������
p

�b�

� cn�r�d

k�x�kp �
X

��k�M

jdkjc�d��h
�c�

� c�n�r�d� ���

Step a� follows from the triangle inequality� Step b� Follows from the bounds obtained

in Lemma � and ���� and step c� is established on setting h � n�r�dc�d��
P

��k�M jdkj�
and c� � cjj�x�jjp by using k�kp � c� together with the bounds on dk established in

Lemma �� Since h is arbitrary� we may select it to be so small that the second term is at

most of the order of magnitude of the �rst� Finally� the upper bound on the coe�cients

ck appearing in the de�nition of the class Qn is obtained by noting that they are upper
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bounded by
P

��k�M jdkaj�kj and using the bounds already derived for jdkj� and for jaj�kj in
Lemma � in conjunction with the above choice of h� The upper bound on the parameters

of the ridge function �t�� ak and bk� follows from Assumption 
� Thus� for example� we

may set bk � b and since x � Id� set kakk� � �
d� ensuring jaTk xj � � as required� �

C� Proof of Lemmas

We shall now give the proof of Proposition 
� Lemma � and Lemma �� In the process

we introduce two auxiliary lemmas� Lemma � and �� which are proved as well�

Proof of Proposition � The �rst property follows trivially by the assumption 
 on the

lower boundedness of �t�� The second property is proved as follows

kf�kW r
p

�
X
j�j�r

�Z
Id
jD�f��x�jpdx

���p

�a�
�

X
j�j�r

�
�Z

Id
j X
������	�

A������ �D�
�

fD�
��

��x�jpdx
�
A��p

�b�

� X
j�j�r

X
������	�

jA������ j
�Z

Id
j�D��

fD�
��

��x�jpdx
���p

�c�

� X
j�j�r

X
������	�

jA������ j jjD��

fx�jjpjjD���

�x�jj�
�d�

� cr��
X
j�j�r

jjD�f jjp
�e�
� cr��kfkW r

p
� C ���

where a� follows from the chain rule of di�erentiation and the coe�cients A������ depend

only on �� and ���� Steps b� and c� follow from Minkowski�s and H$older�s inequalities

with p � 	 and q � ��� respectively� Step d� follows from the boundedness of the

derivatives of �wTx� b�� that is

kD���

�k� �

�����
���d
Z
������d

D�
��

x �wTx � b�dw

�����
�

� c�

and rewriting the summation over the derivatives of f � Finally� step e� is established by

the assumption of f � W r
p L� so that jjf jjW r

p
� L� By the proof of the two properties�
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Proposition 
 is proved� �

Proof of Lemma � The proof of the lemma is straightforward� based on the results of

Proposition 


distfW r
p � Tng � sup

f
inf
dk

������fx��
X

��k�M

dk
Tkx�

�x�

������
p

� sup
f

inf
dk

�����fx��x��
P

��k�M dkTkx�

�x�

�����
p

�a�

� c��
�� sup

f
inf
dk

������fx��x��
X

��k�M

dkTkx�

������
p

�b�

� c��n
�r�d� ���

Step a� is established by plugging in the lower bound jj�jjp � c� see property 	 of � in

Proposition 
�� Step b� is a consequence of a well known fact in approximation theory�

stating that any function in W r
p can be closely approximated by a linear combination of

Chebychev polynomials� The degree of approximation is related to the number of terms

in the combination n�� the dimensionality d� and the class W r
p � as in ���� This result

may be applied since in Proposition 
 we have established that fx��x� � W r
p � The

boundedness of the coe�cients dk can be directly demonstrated by making use of the

results of Mhaskar in �	��� In particular� note that the coe�cients dk are identical to

the parameters Vkf� de�ned through ��	�� in �	��� From the construction in �	��� one

may show using straightforward algebra� that jdKj � On�� We omit the details of this

derivation� Note also that this factor is �washed out� by the exponential growth of the

coe�cients aj�k which dominates the �nal bound on the linear parameters ck�

Proof of Lemma � The main idea behind the proof of Lemma � is to show that the

two expressions in the denominator and numerator in ��� can be made arbitrarily close�

%From Lemma � below we know that for any h � �� �md���� and k � ��� m�d there exist

a p � ��� m�d and bounded coe�cients aj�k such that������Tkx��
X

��j�p

aj�k��h
j� p�Tx� b�

������
�

� Kh� �	�
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That is� the numerator expressions in ��� can be made arbitrarily close� Let us de�ne

� � �p��dh� and proceed to evaluate the normed di�erence of the denominator expressions�

#� �
��������x�� �p���

X
��j�p

��h
j� p�Tx� b�

������
�

�a�
�

������
���d
Z
������d

�wTx � b�dw� �p���
X

��j�p

��h
j� p�Tx� b�

������
�

�b�
�

�������p��
h��d
X

��j�p

Z
����h�d

��w � h
j� p� � b�Tx�dw � �p���
X

��j�p

��h
j� p�Tx� b�

������
�

�c�
� �p��
h��d

������
X

��j�p

Z
����h�d

f��w � h
j� p� � b�Tx�� ��h
j� p�Tx� b�gdw
������
�

�d�

� cd��h �
�

In step a� we simply plug in the de�nition of �� so it appears explicitly in the expression�

Step b� consists of partitioning the integration region ���p��dh� �p��dh�d into cells of size

��� 
h�d� The number of these cells is equal to the cardinality of p i�e�� the number of

terms in the summation�� In step c� we represent the second term as an integral over w

in the region ��� 
h�d� and utilize the linearity of the integration operator� Step d� follows

from the mean value theorem� applied to the integrand i�e�� the di�erence of sigmoid

functions�� Formally we have

k��w � h
j� p� � b�Tx�� ��h
j� p�Tx� b�k � ckr�k�kwk� � cd��h

where the second inequality follows from the de�nition of w � ��� 
h�d� thus kwk� � 
dh�

A corollary of �
� is

�p���
X

��j�p

��h
j� p�Tx� b� � c� �#�

� c� � cd��h � c�
 ���

where the third inequality follows from taking jhj � c�
cd���� As a result of �
� and

��� we have����� 	

��x�
� 	

�p���
P

��j�p ��h
j� p�Tx� b�

�����
�

� cd��
c�
�k��x�k � c�h ���
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where � � �p��dh� and the bound on �� follows from Proposition 
� The following series of

inequalities establishes of Lemma ��

#� �
�����Tkx��x��

�
P

��j�p aj�k��h
j� p�Tx � b�

�p���
P

��j�p ��h
j� p�Tx� b�

�����
�

�a�

�
�����Tkx���x�

� Tkx�

�p���
P

��j�p ��h
r� p�Tx � b�

�����
�

�

�

����� Tkx�

�p���
P

��j�p ��h
j� p�Tx � b�
�

P
��j�p aj�k��h
j� p�Tx � b�

�p��d
P

��j�p ��h
j� p�Tx � b�

�����
�

�b�

� jTkx�j
����� 	

��x�
� 	

�p���
P

��j�p ��h
j� p�Tx� b�

�����
�

�

�

����� 	

�p���
P

��j�p ��h
j� p�Tx � b�

�����
�

������Tkx��
X

��j�p

aj�k��h
j� p�Tx� b�

������
�

�c�

� c�h�



c�
Kh � c�d��h ���

Step a� is established by simply adding and subtracting the term Tk&�� and applying

the triangle inequality� where Tk denotes by the numerator of the �rst expression and &�

the denominator of the second expression in the de�nition of #�� Step b� is derived by

factoring out the common terms in each normed expression� and step c� follows from

the bounds established in Lemma �� �
� and ���� We also use the fact that jTkx�j �Qd
i	� j cosk arccos xi�j � 	� Thus� we have proved Lemma � �

We present now the lemma establishing the claim in �	��

Lemma 
� For any multi�integer k � ��� m�d and h � �� �md����� there exists a vector

p � ��� m�d and a bounded set of coe�cients aj�k such that������Tkx��
X

��j�p

aj�k��h
j� p�Tx� b�

������
�

� Kh� ���

where K � dn����de
n� Moreover� the parameters aj�k can be upper bounded as follows�

jaj�kj � n�e�n�dn��d
�
�
h

�dn��d
�

Proof The proof relies on the approach pursued in Lemma ��
 of �	��� However� we

o�er a slightly modi�ed proof which will� for completeness� be presented in full� Moreover�

we believe that ��
�� occurring in the proof in �	�� is erroneous� although this a�ects

only the constants and not the essential points� In any event� a major point in the proof�
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not stressed in �	��� is the boundedness of the coe�cients aj�k which is required for the

estimation bound�

We follow �	�� and de�ne for each multi�integer p � p�� � � � � pd�� pi � ��

��p�wTx� b�
�
�

��jpj�

�wp�
� � � ��wpd

d

h
�wTx� b�

i
� xp��jpj�w � x � b�� ���

where jpj � p� � p� � � � �� pd and xp �
Qd

i	� x
pi
i � Furthermore� let

�p�xb� � ��p�wTx � b�jw	� � xp��jpj�b�� ���

and thus

xp � �p�xb�
�
��jpj�b�

���
� ���

For any �xed b� consider a �nite di�erence of order p �	���

#p
h�x�b� �

X
��l�p

�	�jlj
�
p

l


��h
l� p�Tx � b�� ���

Note that #p
h�x�b� represents a ridge function �neural network� with

Qd
i	�pi � 	� hidden

units� In Lemma � below we show that

����p�xb�� 
h��jpj#p
h�x�b�

��� � k��jpj���k��bjpjh� �	�

where k � k��b is the supremum norm restricted to the interval of size 
� centered at b

see Assumption 
�� Now� the Chebychev polynomial Tkx� can be expanded as in ��� �

where the coe�cients �k�p are constants dependent only on k and p� From ��� we then

conclude that

Tkx� �
X

��p�k

�k�p�p�xb�
�
��jpj�b�

���
� �
�

Adding and subtracting h�jpj#p
h�x�b� on the r�h�s� of �
� and using the triangle inequality

we obtain ������Tkx��
X

��p�k

�k�p
�
��jpj�b�

���
h�jpj#p

h�x�b�

������
� X

��p�k

�k�p
�
��jpj�b�

��� ����p�xb�� h�jpj#p
h�x�b�

���
� X

��p�k

�k�p
�
��jpj�b�

��� k��jpj���k��bjpjh

� m� 	�d
C�

!C�
C�

mdh� ���
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where we have used Lemma � in the �nal step� imposing the constraint h � �md���� The

bound on K may be obtained from ��� by using the bounds on C� � C� and !C��

Now� from ��� and ��� we conclude that for h � �md��� we have������Tkx��
X

��p�k

X
��l�p

cp�l��h
l� p�Tx� b�

������ � Kh� ���

where cp�l � �k�p
�
��jpj�b�

���
h�jpj�	�jlj

�
p

l

�
� At this point we observe that the double

sum in ��� may be reduced to a single sum using the identity

X
��p�k

X
��l�p

cp�l��h
l� p�Tx� b� �
X

�k�j�k

bj�hj
Tx� b��

where bj �
P
fl��l�p	jg cp�l� In order to complete the proof we need to show that the coe��

cients bj are bounded� This is easily established on noting that jbjj � md max��p�l�M jcp�lj
and noting that

jcp�lj �

������k�p
�
��jpj�b�

���
h�jpj

�
p

l

�����
� C�

C�

�
	

h

�dm

edm� ���

which establishes the desired result upon using the bounds on C� and C� � �

Finally� we present the proof of �	��

Lemma �� Let �p�xb� and #p
h�x�b� be de�ned as in ��� and ���� respectively� Then

for h � 	�md there holds

����p�xb�� 
h��jpj#p
h�x�b�

��� � k��jpj���k�jpjh�
Proof Using standard results from the theory of approximation �	�� allows us to replace

the di�erence operator #p
h�x by an integral representation

#p
h�x�b� � xpI

jpj
h �x�� ���

where

I
jpj
h �y�

�
�
Z h

�h
� � �

Z h

�h
��jpj�

h�
�� � � � �� �p��y� � � � �� �jpj�pd�� � � � � �jpj�yd

�
� b

i
d� �

���
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where � � ��� � � � � �jpj�� Note that by Assumption 
 the derivative in the integrand exists

for h � 	�md� We then have

Ax
�
� ��p�b�� 
h��jpj#p

h�x�b�

� xp
�
��jpj�b�� 
h��jpjIph�

�jpj�x�
�
� ���

where we have used ��� and ���� Using ��� and the mean value theorem we conclude

that there is a � � ��� jt � xj�� where t � p�h� � � � � pdh�� such that

I
jpj
h �x� � 
h�jpj��jpj�b� ��� ���

Since kxk� � 	 we then have

jAxj � j��jpj�b�� ��jpj�b� ��j � k��jpj���k�j�j � k��jpj���k�jpjh ���

which concludes the proof� �
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