Multidimensional Stochastic Approximation: Adaptive Algorithms and Applications

Mark Broadie, Columbia University
Deniz M. Cicek, Columbia University
Assaf Zeevi, Columbia University

We consider prototypical sequential stochastic optimization methods of Robbins-Monro (RM), KieferWolfowitz (KW) and simultaneous perturbations stochastic approximation (SPSA) varieties and propose adaptive modifications for multidimensional applications. These adaptive versions dynamically scale and shift the tuning sequences to better match the characteristics of the unknown underlying function, as well as the noise level. We test our algorithms on a variety of representative applications in inventory management, health care, revenue management, supply chain management, financial engineering and queueing theory.
ACM Reference Format:
Mark Broadie, Deniz M. Cicek, and Assaf Zeevi, 2013. Multidimensional Stochastic Approximation: Adaptive Algorithms and Applications ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2014), 28 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

1.1. Background and overview of main contributions

Stochastic approximation is an iterative procedure which can be used to estimate the root of a function or the point of optimum, where the function values cannot be calculated exactly. This can happen, for example, when function values are estimated from noisy samples in a Monte Carlo simulation procedure.

The first type of stochastic approximation algorithm dates back to the work of [Robbins and Monro 1951] and focuses on estimating the root of an unknown function. Following this, [Kiefer and Wolfowitz 1952] introduced an algorithm to find the point of maximum of a function observed with noise, i.e., to solve $\max _{x \in \mathbb{R}^{d}} f(x)=\mathbb{E}[\tilde{f}(x)]$ where \widetilde{f} is a noisy observation of a strongly concave function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. [Kiefer and Wolfowitz 1952] considered the one-dimensional case ($d=1$), but shortly thereafter, a multidimensional version of the KW-algorithm was introduced by [Blum 1954]. His multidimensional KW-algorithm uses a one-sided finite-difference approximation of the gradient in each direction and can be described by the following recursion:

$$
\begin{equation*}
X^{(n+1)}=X^{(n)}+a^{(n)} \widehat{\nabla} \tilde{f}\left(X^{(n)}\right), \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

Here $\hat{\nabla} \widetilde{f}\left(X^{(n)}\right)=\left(\widetilde{f}\left(X^{(n)}+c^{(n)} e_{1}\right)-\widetilde{f}\left(X^{(n)}\right), \ldots, \widetilde{f}\left(X^{(n)}+c^{(n)} e_{d}\right)-\widetilde{f}\left(X^{(n)}\right)\right) / c^{(n)}$, where $\left\{e_{1}, \ldots, e_{d}\right\}$ is the standard basis in \mathbb{R}^{d}. Defining $x^{*}=\arg \max _{x \in \mathbb{R}^{d}} f(x)$, we assume

[^0]the gradient of the underlying function, $\nabla f(x)$, satisfies $\left(x-x^{*}\right)^{T} \nabla f(x) \leq-K_{0} \| x-$ $x^{*} \|^{2}$ and $\|\nabla f(x)\| \leq K_{1}\left\|x-x^{*}\right\|$ for all $x \in \mathbb{R}^{d}$, and for some $0<K_{0}<K_{1}$. The tuning sequences $\left\{a^{(n)}\right\}$ (referred to as "gain") and $\left\{c^{(n)}\right\}$ (referred to as "differencing") are real-valued, deterministic and satisfy certain summability-type conditions (see, e.g., [Kiefer and Wolfowitz 1952] and [Blum 1954] for the multidimensional analogue). In a recent paper [Broadie et al. 2011], these stipulations were relaxed somewhat, allowing for the following broader family of admissible sequences: (A1.) $a^{(n)} /\left(c^{(n)}\right)^{2} \leq$ $a^{(n+1)} /\left(c^{(n+1)}\right)^{2}\left(1+A a^{(n+1)}\right)$ for all $n \geq 1$; (A2.) $\left(c^{(n)}\right)^{2} \leq\left(c^{(n+1)}\right)^{2}\left(1+A a^{(n+1)}\right)$ for all $n \geq 1$; (A3.) $a^{(n)} \rightarrow 0$ as $n \rightarrow \infty$; and (A4.) either (i) $\left(c^{(n)}\right)^{4} / a^{(n)} \leq \tau_{1}$ or (ii) $\left(c^{(n)}\right)^{4} / a^{(n)} \geq$ τ_{2}, for all $n \geq 1$. Here A, τ_{1} and τ_{2} are finite positive constants such that $A<4 K_{0}$. Assuming $\sigma^{2}:=\sup _{x \in \mathbb{R}^{d}} \operatorname{Var}(\widetilde{f}(x))<\infty$, it is proven in [Broadie et al. 2011] that for suitably chosen sequences satisfying the above, the mean-squared-error (MSE) of the iterates, $\mathbb{E}\left(X^{(n)}-x^{*}\right)^{2}$, converges to zero as $n \rightarrow \infty$. (For example, if A4.(ii) holds, then the MSE can be bounded by the ratio of the gain sequence to the square of the differencing sequence, hence if the gain sequence converges to zero faster than the square of the differencing sequence, the MSE converges to zero; for further details see Theorem 1 in [Broadie et al. 2011].)

Most of the literature on stochastic approximation algorithms focuses on their asymptotic performance. To that end, in the case of KW-type algorithms, the choice $a^{(n)}=\alpha /(n+\beta)$ and $c^{(n)}=\gamma / n^{1 / 4}$, for some $\alpha, \gamma \in \mathbb{R}_{+}$and $\beta \in \mathbb{Z}_{+}$, is proven to be optimal in the sense that this choice optimizes the rate of convergence of the MSE; see, [Dupac 1957]. With this choice of sequences, the MSE converges to zero at rate $O(1 / \sqrt{n})$ provided that the constant α in the specification of the $\left\{a^{(n)}\right\}$ sequence is chosen large enough relative to the unknown constant K_{0} which describes the "curvature" of the underlying function. It is well documented, see, e.g., [Kim 2006], that the finitetime behavior of these algorithms is quite sensitive to the specification of these tuning sequences through the parameters α, β and γ, and to the best of our knowledge there is only limited guidance in the literature on how to choose these parameters; see, e.g., [Spall 1992] for some discussion on the use of "pre-processing" to make more informed initial choices.

Roughly speaking, there are three main finite-time performance issues stemming from a "poor" choice of the constants in the tuning sequences. First, if the $\left\{a^{(n)}\right\}$ sequence is "too small" relative to the gradient (since the constant K_{0} is not known in advance), then as shown in [Nemirovski et al. 2009] the theoretical convergence rate guarantees may no longer hold even asymptotically, i.e., the convergence rate degrades. On the other hand, if the $\left\{a^{(n)}\right\}$ sequence is chosen to be "too large" relative to the magnitude of the gradient, the algorithm may take steps which are "too large" in search for the optimum value of the function, and if the domain is constrained to, say, a hypercube or hyper-rectangle, the algorithm may oscillate between boundaries of the domain for a "large" number of iterations. Finally, gradient estimates may be "too noisy" as a consequence of a small $\left\{c^{(n)}\right\}$ sequence. See [Broadie et al. 2011] for a detailed description and analysis of each one of these issues for one-dimensional problems, and further discussion in Section 2.

Main contributions. The main purpose of this paper is to develop algorithms that "automate" any pre-processing and adapt the tuning sequences on the fly. Specifically, this paper introduces a class of multidimensional stochastic approximation algorithms which adaptively adjust the constants α, β and γ in the tuning sequences to match underlying function characteristics (e.g., magnitude of the gradient) and the noise level affecting observations. The multidimensional adaptation ideas are extensions of the one-dimensional KW-algorithm proposed in [Broadie et al. 2011]; they are brought forth as potentially useful heuristics and are not given rigorous justification. (The
main purpose of the paper is to explore these ideas numerically on practical and multidimensional problem instances.) We note that in this paper we focus on a simple forward differencing implementation of KW, while other more general schemes have been analyzed in the literature; see, e.g, [L'Ecuyer and Yin 1998] for example.

The present paper also describes adaptive versions of the RM root-finding algorithm and the simultaneous perturbations stochastic approximation (SPSA) algorithm introduced by [Spall 1992], and focuses on the efficiency of these algorithms on a range of realistic stylized applications. Indeed, another contribution of the paper is the introduction of a set of multidimensional test problems from a range of application domains: inventory management (a multidimensional newsvendor problem); health care (determining ambulance base locations); revenue management (determining airline seat protection levels for different fare classes); supply chain management (cost minimization in a multiechelon production-inventory system), financial engineering (calibration of Merton model parameters to put option prices); and service systems/queueing (a call center staffing problem). In almost all of these test cases, we observe that the finitetime performance is significantly improved by the proposed adaptive adjustments in the tuning sequences. An exception is the financial engineering problem where the objective function behaves differently at the boundaries of the truncation interval compared to closer to the optimal point. In this example, since our adaptation ideas adjust the tuning sequences to the curvature of the underlying function at the boundaries of the truncation interval, they do not improve the finite-time performance significantly.

1.2. Related literature

The Robbins-Monro algorithm. The first stochastic approximation algorithm introduced by [Robbins and Monro 1951], and then extended to multiple dimensions by [Blum 1954], uses the following recursion to estimate the zero crossing of a function:

$$
\begin{equation*}
X^{(n+1)}=X^{(n)}-a^{(n)} \widetilde{g}\left(X^{(n)}\right) \tag{2}
\end{equation*}
$$

where $\widetilde{g}(\cdot)$ is a noisy observation of the function $g(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and $\left\{a^{(n)}\right\}$ is a positive real number sequence. Under some assumptions on the function and the $\left\{a^{(n)}\right\}$ sequence, [Blum 1954] proves that $X^{(n)} \rightarrow x^{*}$ almost surely as $n \rightarrow \infty$ where $g\left(x^{*}\right)=0$; see [Benveniste et al. 1990] and [Kushner and Yin 2003] for more recent convergence results for this algorithm.

The SPSA algorithm. The multidimensional KW-algorithm (1) uses one-sided finite-difference approximation of the gradient to avoid having a large number of function evaluations at every gradient estimation point. Note that for a d-dimensional problem, we need $d+1$ function evaluations to estimate the gradient at each iteration. In order to decrease the number of function evaluations per iteration and increase efficiency, [Spall 1992] introduced the simultaneous perturbations stochastic approximation (SPSA) algorithm which uses a randomization idea that relies on only two function evaluations at every iteration (independent of the dimension of the problem d). More specifically, the algorithm can be described using the following recursion:

$$
\begin{equation*}
X_{k}^{(n+1)}=X_{k}^{(n)}+a^{(n)}\left(\frac{\tilde{f}\left(X^{(n)}+\Delta^{(n)} c^{(n)}\right)-\tilde{f}\left(X^{(n)}-\Delta^{(n)} c^{(n)}\right)}{2 \Delta_{k}^{(n)} c^{(n)}}\right) \tag{3}
\end{equation*}
$$

for $k=1, \ldots, d$, where $\Delta^{(n)} \in \mathbb{R}^{d}$ is a vector of d mutually independent mean-zero random variables $\Delta^{(n)}=\left(\Delta_{1}^{(n)}, \Delta_{2}^{(n)}, \ldots, \Delta_{d}^{(n)}\right)$ satisfying some moment conditions and independent of $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$. For the numerical studies in [Spall 1992], $\Delta_{k}^{(n)}$ are taken to be Rademacher random variables, i.e., $\Delta_{k}^{(n)}= \pm 1$ with probability $1 / 2$ each. [Spall 1992] proves that the iterates converge to x^{*} almost surely, and concludes that
the asymptotic mean-squared-error (MSE), $\mathbb{E}\left[X^{(n)}-x^{*}\right]^{2}$ tends to be smaller in the SPSA algorithm than the KW-algorithm, with the ratio of the two becoming smaller as the dimension of the problem (d) gets larger.
Adaptive stochastic approximation algorithms. The sensitivity of stochastic approximation algorithms to the specification of the tuning sequences is well documented; cf. [Andradóttir 1995], [Andradóttir 1996], [Asmussen and Glynn 2007, §VIII.5a], [Nemirovski et al. 2009], [Vaidya and Bhatnagar 2006]. But, to the best of our knowledge, [Kesten 1958] seems to be the only paper to suggest a formal procedure to adapt the tuning sequence. In particular, he proposes using the same value of $a^{(n)}$ until the sign of $X^{(n)}-X^{(n-1)}$ differs from the sign of $X^{(n-1)}-X^{(n-2)}$. This fix attempts to address the rate degradation problem, but at the same time hinges on the value of $a^{(1)}$ chosen sufficiently "large" relative to the magnitude of the gradient. [Abdelhamid 1973] gives formulas for the optimal values of the constants in the sequences but these formulas require prior knowledge of the value of the first, second and third derivatives of the unknown function which are not generally available; he does not prescribe adaptive adjustments. In another variation of stochastic approximation algorithms, [Polyak 1990] and [Ruppert 1988] present an RM-type algorithm and solves the rate degradation problem asymptotically by using a "larger" $\left\{a^{(n)}\right\}$ sequence that is fixed at the beginning of the algorithm and averaging the iterates. Even so, it may still happen that the iterates do not show convergent behavior for a very large number of iterations (see [Broadie et al. 2011]). Similarly, the algorithm introduced by [Andradóttir 1996] does not adaptively adjust the constants in the sequences. The RM-type algorithm she introduces in [Andradóttir 1996] uses two function evaluations at each iteration, and calculates a "scale-free" gradient estimate but does not address the long oscillatory period problem stemming from an $\left\{a^{(n)}\right\}$ sequence that is "too large." [L'Ecuyer and Glynn 1994] prove convergence of stochastic approximation algorithms using various gradient estimates with different run lengths at each iteration for the GI/GI/1 queue (see also [Tang et al. 2000]); in this work we assume the simulation length is constant throughout the algorithm runs.

A different line of research focuses on Hessian-based stochastic approximation algorithms, see [Ruppert 1985], [Spall 2000], [Venter 1967], and [Wei 1987]. These algorithms require knowledge or estimation of the Hessian matrix and use this information to determine the step-size in each iteration. The knowledge of the Hessian matrix is typically not available in realistic applications and estimation of it via noisy function evaluations has its own caveats besides increasing the number of function evaluations per iteration. Moreover, as the existence of the Hessian matrix is not a required assumption for first order methods like the KW-type algorithms, we maintain our focus on non-Hessian based algorithms and their adaptive versions.

Remainder of the paper. Section 2 introduces the scaling and shifting ideas to adaptively adjust the tuning sequences in multiple dimensions; the full algorithm description is also given in this section. The MATLAB implementation can be downloaded from <www.columbia.edu/~mnb2/broadie/research.html>. Section 3 includes the test problems and finite-time performance comparisons of the scaled-and-shifted algorithms with their non-adaptive counterparts. Concluding remarks are given in Section 4.

2. SCALED-AND-SHIFTED STOCHASTIC APPROXIMATION ALGORITHMS

One of the main factors influencing the performance of the Robbins-Monro algorithm is the choice of the parameters $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{Z}$ in the specification of the step-size sequence $a^{(n)}=\alpha /(n+\beta)$. The performance of the Kiefer-Wolfowitz and SPSA algorithms that use finite-difference estimates of the gradient hinges on the choice of the
parameter $\gamma \in \mathbb{R}$ in the specification of the sequence $c^{(n)}=\gamma / n^{1 / 4}$, in addition to the two parameters α and β. In this section, we first describe in more detail performance issues related to the choice of these constants, and then explain how to adaptively adjust these parameters in multidimensional settings.

In their original paper, [Kiefer and Wolfowitz 1952] argue that it may be too restrictive to impose global assumptions on the unknown function $f(\cdot)$ and it suffices to impose these functional assumptions on a compact set $I_{0} \subset \mathbb{R}^{d}$ which is known to contain x^{*}, the point of optimum. In this paper, iterates of RM, KW and SPSA algorithms are truncated in a similar manner.

2.1. Performance issues and general preliminaries

Performance issues. Let us recap the three possible problems that can arise due to "poor" specification of the parameters in the tuning sequences (see also [Broadie et al. 2011] and [L'Ecuyer et al. 1994] for further discussion). The first issue arises from the step-size sequence, $\left\{a^{(n)}\right\}$ being "too small" relative to the gradient. This results in degradation of the convergence rate of the algorithm (see [Nemirovski et al. 2009] for a simple illustration). The second issue is a long "oscillatory period" which is due to the $\left\{a^{(n)}\right\}$ sequence being "too large" relative to the gradient. That is, one may observe a large number of iterates that "bounce" back and forth on the boundaries of the truncation region. Finally, if the $\left\{c^{(n)}\right\}$ sequence is "too small" relative to the ambient noise level affecting function evaluations, the gradient estimates become very noisy. This causes the iterates to move in random directions governed purely by noise, resulting in poor finite-time performance.

Preliminaries. In this section, we extend the core ideas presented in [Broadie et al. 2011] to a multidimensional setting. Before providing details, we note that if the objective function has different characteristics along different dimensions, the finite-time algorithm performance can be improved by using different tuning sequences along each dimension (see Section 2.4 in [Broadie et al. 2009b]). We assume the knowledge of an initial multidimensional interval $I^{(0)}=\left[l_{1}, u_{1}\right] \times\left[l_{2}, u_{2}\right] \times \ldots \times\left[l_{d}, u_{d}\right]$, which is known to contain x^{*}. (Other choices of this domain are possible but for simplicity and concreteness we restrict attention to a hyper-rectangle.) At each step n, the iterates are projected onto the truncation region $I^{(n)}$. Since the KW-algorithm requires an evaluation of the function at $X^{(n)}$ and $X^{(n)}+c^{(n)}$, we set the truncation region to $I^{(n)}:=\left[l_{1}, u_{1}-c_{1}^{(n)}\right] \times\left[l_{2}, u_{2}-c_{2}^{(n)}\right] \times \ldots \times\left[l_{d}, u_{d}-c_{d}^{(n)}\right]$ and this guarantees all function evaluations are within the initial region $I^{(0)}$. The truncation region for algorithms that use two-sided finite-difference approximation of the gradient (such as SPSA) will be taken to be $I^{(n)}=\left[l_{1}+c_{1}^{(n)}, u_{1}-c_{1}^{(n)}\right] \times\left[l_{2}+c_{2}^{(n)}, u_{2}-c_{2}^{(n)}\right] \times \ldots \times\left[l_{d}+c_{d}^{(n)}, u_{d}-c_{d}^{(n)}\right]$. For RM-type algorithms $I^{(n)}=I^{(0)}$ for all $n=1,2, \ldots$, since the function is evaluated only at $X^{(n)}$ at every iteration.

Next, we explain how to scale and shift the tuning sequences using the scaled-andshifted KW-algorithm (SS-KW for short). With the same notation as in (1), the SS-KW algorithm in multiple dimensions uses the recursion:
$X_{k}^{(n+1)}=\Pi_{I^{(n+1)}}\left(X_{k}^{(n)}+a_{k}^{(n)} \frac{\widetilde{f}\left(X^{(n)}+c_{k}^{(n)} e_{k}\right)-\tilde{f}\left(X^{(n)}\right)}{c_{k}^{(n)}}\right), \quad$ for all $k=1, \ldots, d$ and $n=1,2, \ldots$
Here $\Pi_{I^{(n+1)}}$ is the Euclidean projection operator with respect to the truncation region $I^{(n+1)}$. The scaled-and-shifted Robbins-Monro (SS-RM) algorithm uses only the adaptations of the $\left\{a^{(n)}\right\}$ sequence. The scaled-and-shifted SPSA algorithm (SS-SPSA)
adapts the tuning sequences exactly as in the SS-KW algorithm, the only difference being the gradient estimate is two-sided as discussed above.

In what follows we describe the key building blocks of our proposed class of adaptive algorithms deferring full details to the Appendix (which can be found in the online companion).

2.2. Scaling up the $\left\{a^{(n)}\right\}$ sequence

For flat functions, i.e., functions where the magnitude of the gradient is "small," one needs to choose a "large enough" constant α_{k} in the $a_{k}^{(n)}=\alpha_{k} /\left(n+\beta_{k}\right)$ sequence in order to avoid degraded convergence rates and achieve the theoretically optimal convergence rates. To illustrate this with an example, we set $\widetilde{f}\left(x_{1}, x_{2},\right)=-0.001\left(x_{1}^{2}+x_{2}^{2}+\varepsilon\right)$ where ε is assumed to be a random variable drawn independently from a standard Gaussian distribution every time the function is sampled. The tuning sequences of the KW-algorithm are set as $a_{k}^{(n)}=1 / n, c_{k}^{(n)}=1 / n^{1 / 4}$ for $k=1,2$. Panel (a) of Figure 1 shows a sample path of the iterates of KW-algorithm under this setting. As seen from the figure, even iterate 5000 is still very far from $x^{*}=(0,0)$.

In order to prevent rate degradation due to the "too small" value of α, we scale up α_{k} in $a_{k}^{(n)}=\alpha_{k} /\left(n+\beta_{k}\right)$, and by doing so we force the iterates to "oscillate" between boundaries of the truncation region along every dimension. A boundary hit is registered when the iterate hits an admissible boundary along every dimension at least once. This constitutes an oscillation. The definition of an admissible boundary depends on the position of the iterate and the truncation region. Along dimensions where the iterate is inside the truncation region, both lower and upper boundaries are considered as admissible boundaries. If the iterate is at the boundary of the truncation region along one dimension, then the opposite boundary is admissible along that dimension, i.e., if it is at the lower boundary, say along dimension k, then the admissible boundary along that dimension is $u_{k}-c_{k}^{(n)}$. The number of oscillations, h_{0}, is a parameter of the algorithm; in numerical examples, we use $h_{0}=4$ as the default value.

In each iteration, the derivative estimate $\hat{\nabla} \widetilde{f}_{k}\left(X^{(n)}\right) \quad:=$ $\left(\widetilde{f}\left(X^{(n)}+c_{k}^{(n)} e_{k}\right)-\widetilde{f}\left(X^{(n)}\right)\right) / c_{k}^{(n)}$ is calculated for every $k=1,2, \ldots, d$. Then for each dimension where the iterate has not hit an admissible boundary, a scale-up factor α_{k}^{\prime} is calculated such that the iterate would hit the admissible boundary along that dimension, if the scaled up sequence were to be used. In other words, the value of α_{k}^{\prime} is such that $X_{k}^{(n)}+\alpha_{k}^{\prime} a_{k}^{(n)} \widehat{\nabla} \widetilde{f}_{k}\left(X^{(n)}\right)$ hits the admissible boundary. In order to prevent scaling up the $\left\{a_{k}^{(n)}\right\}$ sequences too much due to a noisy gradient estimate, an upper bound on the scale up per iteration is imposed using the parameter φ_{a} (we use a default value of 10). At the end of the iteration, we set $X^{(n+1)}=\Pi_{I^{(n+1)}}\left(X_{k}^{(n)}+\alpha_{k}^{\prime} a_{k}^{(n)} \widehat{\nabla} \widetilde{f}_{k}\left(X^{(n)}\right)\right)$ and $\alpha_{k} \leftarrow \alpha_{k} \max \left(1, \min \left(\alpha_{k}^{\prime}, \varphi_{a}\right)\right)$. This first phase of the algorithm is called the "scaling phase."

Panel (b) in Figure 1 show iterates 50, 500 and 5000 from the SS-KW algorithm under the same setting as in panel (a). The adaptive SS-KW algorithm scales up the $\left\{a_{k}^{(n)}\right\}$ sequences into $a_{1}^{(n)}=4032 / n$ and $a_{2}^{(n)}=4031 / n$ and this scale-up in the sequences results in much faster convergence to $x^{*}=(0,0)$.

2.3. Shifting the $\left\{a^{(n)}\right\}$ sequence

The second issue that we address is a long oscillatory period caused by the $\left\{a^{(n)}\right\}$ sequence being "too large" relative to the magnitude of the gradient. Note that a "large" $\left\{a^{(n)}\right\}$ sequence may be a result of excessive scaling up in the first phase, or simply due
to the original specification of $a_{k}^{(n)}=1 / n$ not being suitable for the steepness in the underlying function. (If it is the latter, then the $\left\{a_{n}\right\}$ sequence is typically not scaled up during the first phase.)
In order to illustrate the long oscillatory period problem on an example, we set $\tilde{f}\left(x_{1}, x_{2}\right)=-\left(x_{1}^{4}+x_{2}^{4}+\varepsilon\right)$ where ε is assumed to be a standard Gaussian random variable drawn independently at each function evaluation. The tuning sequences are initiated as $a_{k}^{(n)}=1 / n, c_{k}^{(n)}=1 / n^{1 / 4}$ for $k=1,2$. Panel (a) of Figure 2 shows a sample path of the iterates of KW-algorithm under this setting; the initial starting point was picked randomly in the feasible region. As seen from the figure, the iterates move back and forth between two corners of the truncation region. The oscillations continue for $n=6665$ iterations before starting to converge to $x^{*}=(0,0)$.

In order to prevent long periods of oscillation between opposite boundaries of the truncation region, an index shift is done in the step-size sequence $\left\{a^{(n)}\right\}$. If the $k^{\text {th }}$ coordinate of the iterate $X^{(n)}$ is at the boundary of the truncation region $I^{(n)}$, and if

Fig. 1. Scaling up $\left\{a^{(n)}\right\}$ sequences. Panel (a) illustrates a sample path of the KW-algorithm for the function $f\left(x_{1}, x_{2}\right)=-0.001\left(x_{1}^{2}+x_{2}^{2}\right)$ starting from $X^{(0)}=(45.3,9.8)$. As the magnitude of the gradient of this function is very small, using $a_{k}^{(n)}=1 / n$ for $k=1,2$ results in a degraded convergence rate. On the other hand, the SS-KW algorithm, shown in panel (b), starts from the same $X^{(0)}$, and scales up the sequences to $a_{1}^{(n)}=4032 / n$ and $a_{2}^{(n)}=4031 / n$, mostly within the first 50 iteration, and significantly improves convergence.

Fig. 2. Shifting $\left\{a^{(n)}\right\}$ sequences illustrated for the function $f\left(x_{1}, x_{2}\right)=-\left(x_{1}^{4}+x_{2}^{4}\right)$. Panel (a) illustrates the oscillation between corner points of the truncation function when the magnitude of the gradient is very large. The boundaries of the initial truncation interval, $I^{(0)}=[-50,50]^{2}$ are shown with red dots in panel (a). The iterates of the KW-algorithm exhibit the illustrated oscillatory behavior for $n=50, n=500$ and even $n=5000$. The sample path of iterates of the SS-KW algorithm in panel (b) shows much smoother convergence behavior after shifting the sequences to $a_{k}^{(n)}=1 /(n+9730)$, for $k=1,2$. The length of the oscillatory period in SS-KW algorithm is only 14 iterations (down from 6665 iterations in KW-algorithm).
$X_{k}^{(n)}+a_{k}^{(n)} \widehat{\nabla} \widetilde{f}_{k}\left(X^{(n)}\right)$ is beyond the opposite boundary along the same dimension, then the smallest integer β_{k}^{\prime} is calculated such that using $a_{k}^{\left(n+\beta_{k}^{\prime}\right)}$ at iteration n keeps the next iterate within the truncation region $I^{(n+1)}$ along dimension k. For instance, suppose $X^{(n)}=u_{k}-c_{k}^{(n)}\left(X^{(n)}\right.$ is at the upper boundary of the truncation region along dimension k), and $X_{k}^{(n)}+a_{k}^{(n)} \widehat{\nabla} \widetilde{f}_{k}\left(X^{(n)}\right)<l_{k}$ (the initial calculation for the next iterate is beyond the lower boundary along the same dimension), then $\beta_{k}^{\prime}=\inf \left\{s: X_{k}^{(n)}+\right.$ $\left.a_{k}^{(n+s)} \widehat{\nabla} \widetilde{f}_{k}\left(X^{(n)}\right) \geq l_{k}\right\}$. After β_{k}^{\prime} is calculated, the actual shift is set to be the minimum of β_{k}^{\prime} and v_{k}^{a}, a parameter of the algorithm imposing an upper bound on the shift, i.e., $\beta_{k} \leftarrow \beta_{k}+\min \left(\beta_{k}^{\prime}, v_{k}^{a}\right)$ and the step-size sequence becomes $a_{k}^{(n)}=\alpha_{k} /\left(n+\beta_{k}\right)$. The main aim of this upper bound is to prevent overly large shifts due to very noisy estimates of the gradient. If the upper bound is in effect, namely, $\min \left(\beta_{k}^{\prime}, v_{k}^{a}\right)=v_{k}^{a}$, then the value of v_{k}^{a} is doubled. In the numerical tests, we have set $v_{k}^{a}=10$ for all $k=1, \ldots, d$ as the default initial value. We call this second phase of the algorithm the "shifting phase."

Applying the shifting idea to the illustrative example above results in $a_{k}^{(n)}=$ $1 /(n+9730)$ for $k=1,2$ on the same sample path shown in panel (a) of Figure 2. The oscillatory period length decreases to only 14 iterations in SS-KW (down from 6665 iterations in KW). The resulting sample path is shown in panel (b) of the same figure.

A natural question is whether to shift the $\left\{a^{(n)}\right\}$ sequence or scale it down to get a smaller magnitude sequence. The answer is that by shifting instead of scaling down one preserves the "energy" in the sequence. We illustrate this with an example. Suppose the step-size sequence is initialized as $a^{(n)}=1 / n$ which implies $a^{(2)}=1 / 2$, whereas $a^{(2)}=1 / 20$ is the value necessary to stay within the truncation region. Proceeding as prescribed above and shifting the $\left\{a^{(n)}\right\}$ sequence by 18 , we get $a^{(n)}=1 /(18+n)$ which gives $a^{(3)}=1 / 21$. If instead the $\left\{a^{(n)}\right\}$ sequence is scaled down by a factor of 10 then $a^{(n)}=1 / 10 n$ and the next step-size value would be $a^{(3)}=1 / 30$ which is smaller than $1 / 21$. Preserving the "energy" in the $\left\{a^{(n)}\right\}$ sequence, i.e., not decreasing it more than necessary, is important to avoid degrading the convergence rate. The intuition is made precise in [Broadie et al. 2011].

2.4. Scaling up the $\left\{c^{(n)}\right\}$ sequence

This adaptive adjustment is only pertinent to stochastic approximation algorithms that use finite-difference estimates of the gradient, e.g., KW, SPSA, etc. as reviewed in the introduction. For these KW-type algorithms poor finite-time performance may be due to a $\left\{c^{(n)}\right\}$ sequence whose magnitude is "too small." This, in turn, affects two conflicting error terms in gradient estimation. To explain this, let us assume $\widetilde{f}(x)=$ $f(x)+\varepsilon$ for some random variable ε drawn independently at each function evaluation. Then the finite-difference estimate of the gradient along dimension k at iteration n can be written as

$$
\begin{align*}
\widehat{\nabla} \tilde{f}_{k}\left(X^{(n)}\right) & =\frac{f\left(X^{(n)}+c_{k}^{(n)} e_{k}\right)-f\left(X^{(n)}\right)}{c_{k}^{(n)}}+\frac{\varepsilon_{1}-\varepsilon_{2}}{c_{k}^{(n)}} \\
& =f_{k}^{\prime}\left(X^{(n)}\right)+O\left(c_{k}^{(n)}\right)+\frac{\varepsilon_{1}-\varepsilon_{2}}{c_{k}^{(n)}} \tag{5}
\end{align*}
$$

where the second equality follows simply by Taylor expansion, and for a sequence $\left\{b_{n}\right\}$ we write $d_{n}=O\left(b_{n}\right)$ if $\limsup _{n \rightarrow \infty} d_{n} / b_{n}<\infty$. The magnitude of the $\left\{c^{(n)}\right\}$ sequence should be chosen so that the finite-difference estimation bias (the middle term on the RHS of (5)), which is of order $c^{(n)}$, is balanced with the error due to estimation noise (the last term on the RHS of (5)), which is of order $1 / c^{(n)}$. If $\left\{c^{(n)}\right\}$ is chosen too small, then the estimation noise becomes the dominant term in the gradient estimate. The left panel in Figure 3 shows a sample path of KW-algorithm for $\widetilde{f}\left(x_{1}, x_{2}\right)=1000\left(\cos \left(\pi x_{1} / 100\right)+\cos \left(\pi x_{2} / 100\right)+\varepsilon\right)$ where ε is standard Gaussian random variable drawn independently at each function evaluation. With $c_{k}^{(n)}=1 / n^{1 / 4}$, for $k=1,2\left(\right.$ and $a_{k}^{(n)}=1 / n$, for $k=1,2$ as before) iterates of the KW-algorithm, starting at a randomly selected point within the feasible region, move in random directions governed mainly by the noise. On the illustrated sample path, the iterates get closer to $x^{*}=(0,0)$ from iteration 50 to 500 ; but then moves away from it from iteration 500 to 5000.

In the SS-KW algorithm, during the scaling and the shifting phases, the $\left\{c^{(n)}\right\}$ sequences are adaptively adjusted to the noise level. If the iterate $X^{(n)}$ is at the boundary of the truncation region along dimension k, and if the gradient estimate along the

Fig. 3. Scaling up $\left\{c^{(n)}\right\}$ sequences. The left panel plots the iterates 50,500 and 5000 of the KW algorithm for the function $\widetilde{f}\left(x_{1}, x_{2}\right)=1000\left(\cos \left(\pi x_{1} / 100\right)+\cos \left(\pi x_{2} / 100\right)+\varepsilon\right)$, where ε is a standard Gaussian random variable. With $c_{k}^{(n)}=1 / n^{1 / 4}$, for $k=1,2$ iterate 500 is closer to $x^{*}=(0,0)$ than iterate 50 , but then iterate 5000 is further. Given the contours of the underlying function, the error in the gradient estimates is dominated by the noise in the function evaluations rather than the finite-difference estimation error. The right panel shows the sample path for the SS-KW algorithm for the same function, where the noise in the gradient estimates is decreased by scaling up the sequences to $c_{1}^{(n)}=6.7 / n^{1 / 4}$ and $c_{2}^{(n)}=4 / n^{1 / 4}$.
same dimension is pointing out of the truncation region, then the $\left\{c_{k}^{(n)}\right\}$ sequence is scaled up by a factor of γ_{0} in the $c_{k}^{(n)}=\gamma_{k} / n^{1 / 4}$ sequence, where γ_{0} is a parameter of the algorithm. In order to prevent the magnitude of the $\left\{c^{(n)}\right\}$ sequence from growing too large, an upper bound that depends on the width of the initial region is used. In particular, we require $c_{k}^{(n)} \leq c^{(0)}\left(u_{k}-l_{k}\right)$ and once $\left\{c_{k}^{(n)}\right\}$ achieves this upper bound, it is not scaled up any further. The default values for the two algorithm parameters are set to be $\gamma_{0}=2$ and $c^{(0)}=0.2$.

The right panel in Figure 3 illustrates a sample path of the SS-KW algorithm in the same setting as the left panel. After the adaptations, the sequences become $c_{1}^{(n)}=$ $6.7 / n^{1 / 4}$ and $c_{2}^{(n)}=4 / n^{1 / 4}\left(a_{1}^{(n)}=9.4 /(n+15), a_{1}^{(n)}=1.4 /(n+2)\right)$. The scale-up in the $\left\{c_{k}^{(n)}\right\}, k=1,2$ sequences decreases the dominant error and improves the gradient estimate, which in turn improves the convergence behavior of the iterates.

2.5. Multidimensional Scaled-and-Shifted KW Algorithm

Here we present the multidimensional SS-KW algorithm for a ddimensional problem. The MATLAB implementation can be downloaded from <www.columbia.edu/~mnb2/broadie/research.html>. The algorithm parameters, their default values and other symbols used in the algorithm are defined first.

Parameters:

$-h_{0}$: the number of forced hits to boundary points l_{k} and $u-c_{k}^{(n)}$ for all $k=1, \ldots, d$ by scaling up the $\left\{a_{k}^{(n)}\right\}$ sequence (sample default: 4).
$-\gamma_{0}$: the scaling up factor for the $\left\{c_{k}^{(n)}\right\}$ sequence (sample default: 2).
$-k_{a}$: an upper bound on the number of shifts in the $\left\{a_{k}^{(n)}\right\}$ sequence (sample default: 50).
$-v_{k}^{a}$: an initial upper bound on the per iteration shift in the $\left\{a_{k}^{(n)}\right\}$ sequence (sample default: 10).
$-\varphi_{a}$: an upper bound on the per iteration scale up in the $\left\{a_{k}^{(n)}\right\}$ sequence (sample default: 10).

- k_{c} : an upper bound on the number of scale-ups in the $\left\{c_{k}^{(n)}\right\}$ sequence (sample default: 50).
$-c^{(0)}$: the parameter defining the maximum possible value of the $\left\{c_{k}^{(n)}\right\}$ sequence after scale-ups: we require $c_{k}^{(n)} \leq c_{k}^{\max }=c^{(0)}\left(u_{k}-l_{k}\right)$ for all $k=1, \ldots, d, n \geq 1$ (sample default: 0.2).
- $g_{\max }$: the maximum number of gradient estimations allowed to achieve oscillation along each dimension (sample default: 20).
$-m^{\max }$: an upper bound on the iteration number of the last adaptation in the sequences, i.e., after iteration $m^{\max }$ no scaling or shifting is done; we require $m^{\max } \geq h_{0}$ (sample default: total number of iterations).

Intermediary variables:

- g : counter for the number of gradient estimations
- $S_{\text {osc }}$: the set of dimensions along which oscillation is not complete.
$-s h_{k}$: the variable for the number of shifts in the $\left\{a_{k}^{(n)}\right\}$ sequence.
$-s c_{k}$: the variable for the number of scale-ups in the $\left\{c_{k}^{(n)}\right\}$ sequence.

3. NUMERICAL EXAMPLES

Practical applications of stochastic approximation algorithms requires the user to manually or experimentally adjust tuning sequences to underlying problem-specific features. This process typically requires some pre-algorithm experimentation with the objective function followed by ad-hoc sequence adjustments prior to the application of the stochastic approximation procedure. The cost of any extra function evaluations is typically not taken into account in the overall performance evaluation of the algorithm.

In this section, we apply the scaling and shifting ideas introduced earlier and test their efficiency. We first consider scaled and rotated multidimensional quadratic functions in $\S 3.1$. With the scaling and the rotation, these multidimensional quadratic functions replicate various prototypical behavior of objective functions commonly found in variety of settings. We then consider more realistic problems arising in several application domains. We primarily focus on the finite-time performance of standard stochastic approximation algorithms, such as RM, KW and SPSA, and compare them to scaled-and-shifted versions (denoted as SS-RM, SS-KW and SS-SPSA, respectively).

```
ALGORITHM 1: Multidimensional Scaled-and-Shifted KW Algorithm
For all \(k=1, \ldots, d\), set \(\left\{a_{k}^{(n)}\right\}=\alpha_{k} /\left(n+\beta_{k}\right), \alpha_{k}=1, \beta_{k}=0,\left\{c_{k}^{(n)}\right\}=\gamma_{k} / n^{1 / 4}\),
\(\gamma_{k}=\left(u_{k}-l_{k}\right) / 20, X_{k}^{(1)} \in\left[l_{k}, u_{k}-c_{k}^{(1)}\right], s h_{k}=0, s c_{k}=0, n=1\);
repeat
    Calculate \(X^{(n+1)}\) using the recursion given in (4);
    Set \(g=1, S_{\text {osc }}=\{1, \ldots, d\}\);
    repeat
        \(g=g+\left|S_{\text {osc }}\right| ;\)
        for each dimension \(k \in S_{\text {osc }}\) do
            if \(\left(X_{k}^{(n+1)}<u_{k}-c_{k}^{(n)}\right)\) and \(\left(X_{k}^{(n+1)}>X_{k}^{(n)}\right)\) then
                \(\alpha_{k}^{\prime}=\min \left(\varphi_{a},\left(u_{k}-c_{k}^{(n+1)}-X_{k}^{(n)}\right) /\left(a_{k}^{(n)} \widehat{\nabla} \widetilde{f}_{k}\left(X^{(n)}\right)\right)\right), \alpha_{k} \leftarrow \max \left(1, \alpha_{k}^{\prime}\right) \alpha_{k} ;\)
                \(X_{k}^{(n+1)}=u_{k}-c_{k}^{(n+1)}, S_{\mathrm{osc}}=S_{\mathrm{osc}} \backslash\{k\}\)
            end
            else if \(\left(X_{k}^{(n+1)}>l_{k}\right)\) and \(\left(X_{k}^{(n+1)}<X_{k}^{(n)}\right)\) then
                    \(\alpha_{k}^{\prime}=\min \left(\varphi_{a},\left(l_{k}-X_{k}^{(n)}\right) /\left(a_{k}^{(n)} \widehat{\nabla} \widetilde{f}_{k}\left(X^{(n)}\right)\right), \alpha_{k} \leftarrow \max \left(1, \alpha_{k}^{\prime}\right) \alpha_{k} ;\right.\)
                    \(X_{k}^{(n+1)}=l_{k}, S_{\text {osc }}=S_{\text {osc }} \backslash\{k\}\)
            end
            if \(s c_{k} \leq \kappa_{c}\) and \(\left[\left(X_{k}^{(n+1)}>X_{k}^{(n)}=u_{k}-c_{k}^{(n)}\right)\right.\) or \(\left.\left(X_{k}^{(n+1)}<X_{k}^{(n)}=l_{k}\right)\right]\) then
                    \(\gamma_{k}^{\prime}=\min \left\{\gamma_{0}, c^{\max } / c_{k}^{(n)}\right\}, \gamma_{k} \leftarrow \gamma_{k}^{\prime} \gamma_{k} ;\)
                        \(X_{k}^{(n+1)}=\min \left\{u_{k}-c_{k}^{(n+1)}, \max \left\{X_{k}^{(n+1)}, l_{k}\right\}\right\}\)
            end
        end
    until \(\left(g>g_{\text {max }}\right)\) or \(\left(\left|S_{\text {osc }}\right|=0\right)\);
    \(n++;\)
until \(n>h_{0}\);
repeat
    Calculate \(X^{(n+1)}\) using the recursion given in (4);
    for each dimension \(k\) do
        if \(s h_{k} \leq \kappa_{a}\) then
            if \(\left(X_{k}^{(n+1)}>X_{k}^{(n)}=u_{k}-c_{k}^{(n)}\right)\) and \(\left(X_{k}^{(n+1)}<X_{k}^{(n)}=l_{k}\right)\) then
                    Solve \(\left(u_{k}-c_{k}^{(n+1)}-X_{k}^{(n)}\right) /\left(\frac{\tilde{f}\left(X^{(n)}+c_{k}^{(n)} e_{k}\right)-\tilde{f}\left(X^{(n)}\right)}{c_{k}^{(n)}}\right)=a_{k}^{\left(n+\beta_{k}^{\prime}\right)}\) for \(\beta_{k}^{\prime}\);
                \(\beta_{k} \leftarrow \beta_{k}+\min \left(v_{k}^{a},\left\lceil\beta_{k}^{\prime}\right\rceil\right)\)
            end
            if \(\left(X_{k}^{(n+1)}<l_{k}\right.\) ) and ( \(\left.X_{k}^{(n)}=u_{k}-c_{k}^{(n)}\right)\) then
                Solve \(\left(l_{k}-X_{k}^{(n)}\right) /\left(\frac{\tilde{f}\left(X^{(n)}+c_{k}^{(n)} e_{k}\right)-\tilde{f}\left(X^{(n)}\right)}{c_{k}^{(n)}}\right)=a_{k}^{\left(n+\beta_{k}^{\prime}\right)}\) for \(\beta_{k}^{\prime}\);
                    \(\beta_{k} \leftarrow \beta_{k}+\min \left(v_{k}^{a},\left\lceil\beta_{k}^{\prime}\right\rceil\right)\)
            end
            if \(\min \left(v_{k}^{a},\left\lceil\beta_{k}^{\prime}\right\rceil\right)=v_{k}^{a}\) then
                \(v_{k}^{a}=2 v_{k}^{a}\)
            end
        end
        if \(\left(s c_{k} \leq \kappa_{c}\right) \operatorname{and}\left[\left(X_{k}^{(n+1)}>X_{k}^{(n)}=u_{k}-c_{k}^{(n)}\right)\right.\) or \(\left.\left(X_{k}^{(n+1)}<X_{k}^{(n)}=l_{k}\right)\right]\) then
            \(\gamma_{k}^{\prime}=\min \left\{\gamma_{0}, c^{\max } / c_{k}^{(n)}\right\}, \gamma_{k} \leftarrow \gamma_{k}^{\prime} \gamma_{k}\);
            \(X_{k}^{(n+1)}=\min \left\{u_{k}-c_{k}^{(n+1)}, \max \left\{X_{k}^{(n+1)}, l_{k}\right\}\right\}\)
        end
    end
    \(n++\);
until \(n \leq m^{\max }\);
\(\underline{\text { Calculate } X^{(n+1)} \text { using the recursion given in (4) until algorithm terminates. }}\)
```

Remark 3.1. Unless otherwise noted, in all the numerical experiments we choose the starting point randomly in the initial interval. We also initialize the $\left\{a_{k}^{(n)}\right\}$ sequences as $a_{k}^{(n)}=1 / n$ and the constant γ_{k} in the $\left\{c_{k}^{(n)}\right\}$ sequence is set to $\gamma_{k}=$ $\left(u_{k}-l_{k}\right) / 20$ along every dimension $k=1, \ldots, d$ for the scaled-and-shifted versions of the algorithms. Recall that u_{k} and l_{k} denote the upper and lower boundaries of the initial interval in dimension k. Since the same tuning sequence is used along every dimension in the RM, KW and SPSA algorithms, the initial choice for the sequences in these algorithms are $a^{(n)}=1 / n$ and $c^{(n)}=\gamma / n^{1 / 4}$ with $\gamma=\min _{1 \leq k \leq d}\left(u_{k}-l_{k}\right) / 20$. As shown in [Dupac 1957], this choice of sequence results in an optimal convergence rate for the MSE of RM-type algorithms, $O(1 / n)$, and for KW-type algorithms, $O(1 / \sqrt{n})$, respectively.

We consider two main performance metrics. The first is the mean squared error (MSE) of the iterates, namely, $\mathbb{E}\left(X^{(n)}-x^{*}\right)^{2}$, and the associated rate at which the MSE converges to zero. Specifically, this rate refers to the slope of the \log (MSE); the minimal rate is therefore $-1 / 2$. To estimate this rate, we omit the initial 10% of the iterations. For instance, the convergence rate for an algorithm with 20,000 iterations is estimated using iterations 2,000 to 20,000 . The second measure of performance is the average error in function values, $\left|f\left(x^{*}\right)-\mathbb{E} f\left(X^{(n)}\right)\right|$, at the terminal point and the associated convergence rate. In order to estimate this rate, we again ignore the initial 10% of iterations, record the error at every one-fiftieth of the total number of iterations, and finally average the error values over independent runs of the algorithms. For example, for an algorithm with 20,000 iterations, this convergence rate is calculated using average function error at iterations $2,000,2,400,2,800, \ldots, 20,000$. Throughout the paper, the numbers in parenthesis are the standard errors of the estimates.

We define the oscillatory period length, T, as the last iteration in which an iterate has moved from one boundary of the truncation region to the opposite boundary along any dimension. In other words, we define $T=\max _{1 \leq k \leq d} T_{k}$ where

$$
\begin{array}{r}
T_{k}=\sup \left\{n \geq 2:\left(X_{k}^{(n)}=u_{k}-c_{k}^{(n)} \text { and } X_{k}^{(n-1)}=l_{k}\right)\right. \text { or } \\
\left.\left(X_{k}^{(n)}=l_{k} \text { and } X_{k}^{(n-1)}=u_{k}-c_{k}^{(n-1)}\right)\right\} .
\end{array}
$$

In order to compute more reliable estimates for the asymptotic convergence rates in cases where the iterates oscillate persistently, the number of iterations that we ignore in rate calculations is the maximum of the oscillatory period among all paths plus 10% of the total number of iterations. In these instances the median oscillatory period length is also reported.

3.1. Quadratic Functions

Consider the function $\widetilde{f}(x)=-(K x)^{\prime} A x+\sigma Z$ where Z is a standard normal random variable drawn independently at each function evaluation. We assume that the rotation matrix A is of the following form:

$$
A=\left(\begin{array}{ccccc}
1 & \rho & \rho^{2} & \ldots & \rho^{d-1} \\
\rho & 1 & \rho & \ldots & \rho^{d-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{d-1} & \rho^{d-2} & \rho^{d-3} & \ldots & 1
\end{array}\right)
$$

for some $\rho \in(-1,1)$. We further assume the scaling matrix K is a diagonal matrix with $K(i, i)=k_{0} k_{i}$ for some $k_{0}, k_{i} \in \mathbb{R}$ and set $k_{0}=k_{i}=1$ for all $i=1,2, \ldots, d$ unless otherwise noted. The function $f(x):=\mathbb{E} \tilde{f}(x)=-(K x)^{\prime} A x$ has a unique maximum at
$x^{*}=(0, \ldots, 0) \in \mathbb{R}^{d}$ provided that the Hessian matrix $(A K+K A)$ is positive definite. For the RM and SS-RM algorithms, we assume $\widetilde{g}(x)=(A K+K A)^{\prime} x+\sigma Z$. (Note that $g(x):=\mathbb{E} \widetilde{g}(x)=(A K+K A)^{\prime} x$ is the gradient of $\left.f(x)\right)$. If $(A K+K A)$ is positive definite, the unique zero-crossing of the function is also at $x^{*}=(0, \ldots, 0) \in \mathbb{R}^{d}$.

We apply the RM and SS-RM algorithms to find the zero-crossing of the function $g(x)$, and KW, SPSA, SS-KW and SS-SPSA algorithms to find the maximizer of the function $f(x)$ for various A and K matrices and noise levels. The five different problem settings that we consider are given in Table I. In all instances, the initial truncation region, I_{0}, is assumed to be of the form $I^{(0)}=[-a, a]^{d}$ where d is the dimension of the problem.
Table I. Parameters for the scaled and rotated test functions. For the RM and SS-RM algorithms, the function is $g(x)=(A K+K A)^{\prime} x$ where for the other algorithms (KW, SS-KW, SPSA and SS-SPSA), it is $f(x)=-(K x)^{\prime} A x$.

Problem \#	d	ρ	k_{0}	k_{1}	k_{2}	σ	a
1	2	0	1	100	0.01	0.01	1
2	3	0.1	1000	1	1	10	1
3	4	0.5	0.01	1	1	0.001	1
4	5	0.5	0.1	1	1	10	100
5	10	0.5	0.1	1	1	0.05	1

We run each of the algorithms for a total of 20,000 function evaluations. For a d dimensional problem the RM and the SS-RM algorithms have 20,000 iterations, where the KW and the SS-KW algorithms have $\lfloor 20,000 /(d+1)\rfloor$ iterations. Since at every iteration the SPSA and SS-SPSA algorithms require only two function evaluations independent of the dimension of the problem, these algorithms run for 10,000 iterations. In all numerical tests, the starting point is assumed to be independent for each path and uniformly distributed on the initial hypercube, $I^{(0)}$, and the same initial point is used for different algorithms. The averages are estimated using 1000 independent replications of the algorithms.

Problem 1: The first instance is an example of an objective function which has different characteristics along its two dimensions. The values $k_{1}=100$ and $k_{2}=0.01$ cause the objective function to be very steep along the first dimension, and very flat along the second. As seen in Table II, the RM-algorithm suffers from a degraded convergence rate of the iterates, compared to the optimal rate of $O(1 / n)$. This is caused by the $\left\{a_{2}^{(n)}\right\}$ sequence being too small relative to the magnitude of the gradient along the second dimension. The SS-RM recovers the optimal convergence rate of both performance measures. The KW-algorithm also suffers from a degraded convergence rate of the iterates, but because the second dimension does not influence the function values significantly, we do not observe a significant rate degradation in terms of function values. However, the SS-KW algorithm improves performance in both measures. The last two rows of the table shows that scaling and shifting does not improve the degraded convergence rate of SPSA. For the SPSA and SS-SPSA algorithms, the iterates quickly converge to the point of optimum along the first dimension and then the error both in the iterates and the function values are dominated by the behavior along the second dimension. The SPSA suffers from the small $\left\{a_{2}^{(n)}\right\}$ as in the RM and KW algorithms. The SS-SPSA cannot improve the degraded convergence rate since the scaling and shifting is done based on the gradient estimates along the diagonal, not the individual dimensions separately. Because the difference in function values along any diagonal is dominated by the first dimension, the tuning sequences are not adjusted properly by this scaling and shifting approach.

Table II. Results for problem 1. This table gives estimates of $\widehat{\mathbb{E}}\left\|X^{(n)}-x^{*}\right\|^{2}$, and $f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$, and the corresponding convergence rate after 20,000 function evaluations. (The numbers in parenthesis are the standard errors of estimates.)

Algorithm	$\widehat{\mathbb{E}}\left\\|X^{(n)}-x^{*}\right\\|^{2}$	Conv. Rate	$f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$	Conv. Rate
RM	$0.22(0.006)$	$-0.04\left(2 \times 10^{-05}\right)$	$0.002\left(6 \times 10^{-05}\right)$	$-0.04\left(2 \times 10^{-05}\right)$
SS-RM	$9.2 \times 10^{-05}\left(6 \times 10^{-06}\right)$	$-1.00(0.06)$	$9.2 \times 10^{-07}\left(6 \times 10^{-08}\right)$	$-0.99(0.07)$
KW	$0.23(0.007)$	$-0.04(0.003)$	$0.005\left(8 \times 10^{-05}\right)$	$-0.36(0.01)$
SS-KW	$0.04(0.003)$	$-0.36(0.06)$	$0.004\left(4 \times 10^{-05}\right)$	$-0.48(0.01)$
SPSA	$0.27(0.007)$	$-0.08(0.006)$	$0.003\left(7 \times 10^{-05}\right)$	$-0.08(0.006)$
SS-SPSA	$0.14(0.004)$	$-0.08(0.001)$	$0.001\left(4 \times 10^{-05}\right)$	$-0.09(0.001)$

Problem 2: The second problem with $k_{0}=1000$ is an example of a very steep objective function. The RM, KW and SPSA algorithms suffer from long oscillatory periods, a problem mitigated by shifting the $\left\{a^{(n)}\right\}$ sequence in the SS-RM, SS-KW and SSSPSA algorithms. The median oscillatory period for RM is 1148 and is decreased to 31 in SS-RM algorithm. The corresponding values are 1921 and 180 for KW and SSKW, respectively. Scaling and shifting brings the median oscillatory period length from 5977 in SPSA to 60 in SS-SPSA. The benefit of the shorter oscillatory period can be seen in the MSE and the function error values given in the second and fourth columns of Table III. In order to better estimate the convergence rate for RM, KW and SPSA (shown in bold in the table) we run 250 independent replications of these algorithms for 150,000 iterations. Then we ignore the oscillatory period plus 10% of the total number of iterations (15,000 iterations in this example) and use the remaining iterations to estimate the convergence rates. The maximum oscillatory period lengths among the 250 independent runs are 1154 for RM, 2456 for KW and 7438 for SPSA. So in order to estimate the convergence rates, as prescribed before, we use iterations 16,154 to 150,000 in RM, 17,456 to 150,000 in KW and 22,438 to 150,000 for SPSA. As seen from these estimates, all the algorithms eventually achieve the theoretical convergence rates, but the original algorithms start showing convergent behavior only after a long oscillatory period.

Table III. Results for problem 2. This table gives estimates of $\widehat{\mathbb{E}}\left\|X^{(n)}-x^{*}\right\|^{2}$, and $f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$, and convergence rate estimates after 150,000 function evaluations. Because of the long oscillatory period, the RM, KW and SPSA algorithms are run for 150,000 iterations to better estimate the convergence rates (shown below in bold); the numbers in parenthesis are the standard errors of the estimates. The last two columns contain oscillatory period length statistics and show the shorter oscillatory period of scaled-and-shifted algorithms. $T_{\text {med }}$ is the median oscillatory period length calculated using the independent runs of the algorithms, where $T_{\max }$ is the maximum oscillatory period length among all runs.

Algorithm	$\widehat{\mathbb{E}}\left\\|X^{(n)}-x^{*}\right\\|^{2}$	Conv. Rate	$f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$	Conv. Rate	T_{med}	$T_{\max }$
RM	$1.6 \times 10^{-06}\left(4 \times 10^{-08}\right)$	$\mathbf{- 1 . 0 2 (0 . 0 0 5)}$	$0.002\left(4 \times 10^{-05}\right)$	$\mathbf{- 1 . 0 6 (0 . 0 4)}$	1154	1148
SS-RM	$1.6 \times 10^{-06}\left(4 \times 10^{-08}\right)$	$-0.99(0.002)$	$0.001\left(4 \times 10^{-05}\right)$	$-0.98(0.02)$	31	56
KW	$0.13(0.004)$	$\mathbf{- 0 . 5 2 (0 . 0 0 4)}$	$138(4)$	$\mathbf{- 0 . 5 1}(\mathbf{0 . 0 5})$	1914	2456
SS-KW	$0.11(0.004)$	$-0.45(0.004)$	$119(4)$	$-0.45(0.02)$	180	1128
SPSA	$0.06(0.002)$	$\mathbf{- 0 . 6 1 (0 . 0 0 2)}$	$59(2)$	$\mathbf{- 0 . 6 1 (0 . 0 2)}$	6014	7438
SS-SPSA	$8.0 \times 10^{-04}\left(3 \times 10^{-05}\right)$	$-0.48(0.01)$	$0.78(0.02)$	$-0.50(0.03)$	60	935

Problem 3: The third problem is an example of a very flat objective function. The RM, KW and SPSA algorithms suffer from a degraded convergence rate as seen in Table IV. The scaled-and-shifted versions recover the optimal convergence rates, while the improved finite-time behavior, due to scaling up the $\left\{a^{(n)}\right\}$ sequences, is also observed in the MSE and function error values.

Problem 4: The input for the scaled-and-shifted stochastic approximation algorithm is an initial interval that is known to contain the point of optimum. In some cases, lack of information about the underlying function may lead to a "wide," say $[-100,100]$

Table IV. Results for problem 3. This table gives estimates of $\widehat{\mathbb{E}}\left\|X^{(n)}-x^{*}\right\|^{2}$ and $f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$, and convergence rate estimates, after 20,000 function evaluations. (The numbers in parenthesis are the standard errors of the estimates.)

Algorithm	$\widehat{\mathbb{E}}\left\\|X^{(n)}-x^{*}\right\\|^{2}$	Conv. Rate	$f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$	Conv. Rate
RM	$0.88(0.01)$	$-0.03(0.003)$	$0.007(0.0001)$	$-0.05(0.003)$
SS-RM	$3.4 \times 10^{-06}\left(1 \times 10^{-07}\right)$	$-1.00(0.04)$	$2.5 \times 10^{-08}\left(1 \times 10^{-09}\right)$	$-1.00(0.04)$
KW	$0.92(0.01)$	$-0.04(0.003)$	$0.008(0.0001)$	$-0.05(0.003)$
SS-KW	$0.05(0.002)$	$-0.52(0.05)$	$0.0004\left(2 \times 10^{-05}\right)$	$-0.52(0.04)$
SPSA	$0.66(0.01)$	$-0.06(0.003)$	$0.005\left(8 \times 10^{-05}\right)$	$-0.09(0.005)$
SS-SPSA	$0.01(0.0006)$	$-0.47(0.04)$	$5.9 \times 10^{-05}\left(3 \times 10^{-06}\right)$	$-0.48(0.03)$

initial interval, and this example illustrates the performance of scaling and shifting in this case. As seen in Table V, scaled-and-shifted versions improve the finite-time behavior with respect to all the measures given in the table.

Table V. Results for problem 4. This table gives estimates of $\widehat{\mathbb{E}}\left\|X^{(n)}-x^{*}\right\|^{2}$ and $f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$, and convergence rate estimates, after 20,000 function evaluations. (The numbers in parenthesis are the standard errors of the estimates.)

Algorithm	$\widehat{\mathbb{E}}\left\\|X^{(n)}-x^{*}\right\\|^{2}$	Conv. Rate	$f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$	Conv. Rate
RM	$1475(35)$	$-0.18(0.004)$	$66(1)$	$-0.20(0.005)$
SS-RM	$4.6(0.2)$	$-0.99(0.03)$	$0.32(0.02)$	$-1.00(0.04)$
KW	$1913(42)$	$-0.19(0.004)$	$89(2)$	$-0.22(0.006)$
SS-KW	$25(3)$	$-0.50(0.03)$	$2.2(0.1)$	$-0.50(0.05)$
SPSA	$489(13)$	$-0.33(0.005)$	$20.2(0.5)$	$-0.36(0.007)$
SS-SPSA	$13(2)$	$-0.58(0.09)$	$0.58(0.08)$	$-0.58(0.08)$

Problem 5: The performance of scaled-and-shifted stochastic approximation algorithms is examined in the case of a ten-dimensional quadratic function. The benefits of scaling and shifting can be seen in Table VI: scaled and shifted stochastic approximation algorithms have smaller MSE and function error values, and improved convergence rate estimates.

Table VI. Results for problem 5. This table gives estimates of $\widehat{\mathbb{E}}\left\|X^{(n)}-x^{*}\right\|^{2}$ and $f\left(x^{*}\right)-$ $\widehat{\mathbb{E}} f\left(X^{(n)}\right)$, and convergence rate estimates, after 20,000 function evaluations. (The numbers in parenthesis are the standard errors of the estimates.)

Algorithm	$\widehat{\mathbb{E}}\left\\|X^{(n)}-x^{*}\right\\|^{2}$	Conv. Rate	$f\left(x^{*}\right)-\widehat{\mathbb{E}} f\left(X^{(n)}\right)$	Conv. Rate
RM	$0.31(0.005)$	$-0.18(0.001)$	$0.01\left(2 \times 10^{-04}\right)$	$-0.19(0.001)$
SS-RM	$0.0002\left(6 \times 10^{-06}\right)$	$-1.00(0.03)$	$1.4 \times 10^{-05}\left(4 \times 10^{-07}\right)$	$-1.00(0.03)$
KW	$1.08(0.02)$	$-0.18(0.01)$	$0.08(0.001)$	$-0.28(0.03)$
SS-KW	$0.37(0.008)$	$-0.44(0.04)$	$0.03(0.0008)$	$-0.46(0.04)$
SPSA	$0.50(0.009)$	$-0.28(0.01)$	$0.02(0.0004)$	$-0.33(0.01)$
SS-SPSA	$0.07(0.002)$	$-0.48(0.05)$	$0.004(0.0001)$	$-0.49(0.04)$

3.2. Multidimensional Newsvendor Problem

In this section, we illustrate the performance of the SS-KW algorithm on a multidimensional newsvendor problem introduced by [Kim 2006] (Section 2, page 159). A manufacturer produces q products using p different resources. He decides on a nonnegative resource vector $x \in \mathbb{R}_{+}^{p}$ and then observes the random demand, $D \in \mathbb{R}_{+}^{q}$, for each of the products. Once the demand is known, the manager solves an optimization problem to determine the product mix to manufacture. Assuming $c \in \mathbb{R}_{+}^{p}$ is the cost vector for resources, the objective function of the manager is to maximize the expected
profit from the best product mix, $f(x)=\mathbb{E} \widetilde{f}(x)=\mathbb{E}\left[v^{T} y^{*}(x, D)\right]-c^{T} x$. Here, y^{*} is the solution of the optimization problem:

$$
\begin{array}{ccl}
\max & v^{T} y & \\
\text { s.t. } & A y \leq X & \text { (capacity constraints) } \\
& y \leq D & \text { (demand constraints) } \\
y & \geq 0 &
\end{array}
$$

where $v \in \mathbb{R}_{+}^{q}$ is the vector of profit margins for each product and A is a $p \times q$ matrix whose $(i, j)^{\text {th }}$ component specifies the amount of resource i required to produce one unit of product j.

For our numerical experiments, we set $v=(6,5,4,3,2), c$ is set to a vector of ones and A is set to a matrix with all lower triangular entries equal to one and others zero. We assume the demand for the five products has a multivariate normal distribution with mean $(10,15,5,8,10)$, standard deviation $(5,10,2,3,6)$ and correlation matrix

$$
\rho=\left(\begin{array}{ccccc}
1 & -0.2 & 0.3 & 0.5 & 0.1 \\
-0.2 & 1 & -0.1 & -0.3 & -0.1 \\
0.3 & -0.1 & 1 & 0.6 & 0.2 \\
0.5 & -0.3 & 0.6 & 1 & 0.05 \\
0.1 & -0.1 & 0.2 & 0.05 & 1
\end{array}\right) .
$$

In order to evaluate the function at any given resource level, we use 1000 independent draws of the demand function and estimate the expected profit from the best product mix.

The solution of the linear optimization problem is given by $y_{i}^{*}=$ $\min \left\{D_{i}, \min _{i \leq j \leq p}\left(X_{j}-\sum_{k=1}^{i-1} y_{k}^{*}\right)\right\}$ for $i=1, \ldots, q$. The point of maximum of $f(\cdot)$ is estimated to be $x^{*}=(15,30,34,41,51)$ via an exhaustive grid search over integers, and the optimum objective function value is $f\left(x^{*}\right)=\$ 193.9$ estimated with a standard error of 0.2 . The algorithms are set to run for 10,000 iterations and we use 15,000 independent replications to estimate the MSE. The lower and upper bounds of the initial interval I_{0} are set to be the resource levels required to meet the 30 and 99 percentile of the demand distribution, respectively. (The upper bound is (22, 61, 71, $86,110)$ and the lower bound is $(8,18,22,29,36)$.) Because no prior information about the objective function is assumed, the initial starting point of the algorithm, $X^{(1)}$, is set to be uniformly distributed between the upper and lower boundaries.

Table VII compares the KW and the SS-KW algorithms with respect to the two performance measures described before. A figure in the online companion adds further focus on the convergence rate comparison. The improved performance is achieved mainly by adjusting the $\left\{a^{(n)}\right\}$ sequences. The slow convergence of the KW-algorithm is caused by $\left\{a_{k}^{(n)}\right\}$ sequences being too small relative to the gradient, which leads to a degradation in the convergence. Scaling the constant in this sequence in the first phase of the SS-KW algorithm improves the performance; the estimates for median scale-up values for the sequences $a_{k}^{(n)}=\alpha_{k} /\left(n+\beta_{k}\right)$ are $\alpha_{1}=54, \alpha_{2}=124, \alpha_{3}=189, \alpha_{4}=829$,

Table VII. Multidimensional newsvendor problem. This table gives estimates of the MSE value at the final iteration, i.e., $\widehat{\mathbb{E}}\left\|X^{(10,000)}-x^{*}\right\|^{2}$ along with estimates of convergence rate, and reports estimates for the terminal error in expected profits, i.e., $\widehat{\mathbb{E}}\left[\widetilde{f}\left(x^{*}\right)-\widetilde{f}\left(X^{(10,000)}\right)\right]$, along with convergence rate estimates.

	$\widehat{\mathbb{E}}\left\\|X^{(10,000)}-x^{*}\right\\|^{2}$	Conv. Rate	$\widehat{\mathbb{E}}\left[\widetilde{f}\left(x^{*}\right)-\widetilde{f}\left(X^{(10,000)}\right)\right]$	Conv. Rate
KW	$123.3(0.3)$	$-0.18(0.0004)$	$\$ 5.89(0.02)$	$-0.18(0.002)$
SS-KW	$2.70(0.03)$	$-0.59(0.003)$	$\$ 0.15(0.02)$	$-0.65(0.08)$

$\alpha_{5}=286$. (The median shift values are $\beta_{1}=2, \beta_{2}=1, \beta_{3}=12, \beta_{4}=30, \beta_{5}=3$; the median scale-up values for the $\left\{c_{k}^{n)}\right\}$ sequences are 1.)

3.3. Ambulance Base Locations

This problem is introduced and described in detail by [Pasupathy and Henderson 2006]. The problem is to choose the best two ambulance base locations to minimize the long run average response time to emergency calls. We assume calls for an ambulance arrive according to a Poisson process at a constant rate $\lambda=0.15 / \mathrm{hr}$. Independent of this Poisson arrival process, call locations are independent and identically distributed (i.i.d.) on the unit square $[0,1]^{2}$ (distances are measured in units of 30 kilometers), with density function proportional to $h(x, y)=1.6-(|x-0.8|+|y-0.8|)$. (The call location and arrival processes define the "call process," C.) The amount of time an ambulance spends at the call location (the service process, S) has normal distribution with mean $\mu_{s}=45$ minutes and standard deviation $\sigma_{s}=15$ minutes. (The original problem in [Pasupathy and Henderson 2006] assumes a gamma service distribution but we changed this assumption to a normal distribution since it is faster to generate normally distributed random variables.) The lower tail of the service time distribution is truncated at 5 minutes. Each of the two ambulances has its own designated base. On the way to the call, an ambulance travels at a constant speed $\nu_{f}=60 \mathrm{~km} / \mathrm{hr}$ and at a constant speed $\nu_{s}=40 \mathrm{~km} / \mathrm{hr}$ on the way back. All travel is assumed to be in "Manhattan fashion," i.e., the distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.

When a call arrives, the closest free ambulance is directed to the call. If there is no available ambulance, the call is added to a queue which is handled in first-in-first-out (FIFO) order. Once an ambulance arrives at the scene, it stays there during the service time and then is free for new calls. After the service is completed, if there are any calls waiting in the queue, the ambulance travels directly to the next call. If there are no calls waiting, the ambulance proceeds back to its base. If there is a new call arrival while an ambulance is on its way back to its base, the ambulance en route to its base can be re-routed to the call if it is the closest free ambulance at the time of call arrival. The response time is defined as the time from when a call is received until the arrival of the ambulance at the scene. The objective is to minimize the expected response time, taken with respect to the service time distribution, the call arrival process and call locations.

The objective function has multiple optima due to problem symmetry. If the point $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is optimal $\left(\left(x_{1}, x_{2}\right)\right.$ is the location of the first base and $\left(x_{3}, x_{4}\right)$ is the location of the second base), then so are $\left(x_{3}, x_{4}, x_{1}, x_{2}\right),\left(x_{2}, x_{1}, x_{4}, x_{3}\right)$ and ($x_{4}, x_{3}, x_{2}, x_{1}$). In order to avoid problems caused by multiple optima, in our numerical examples, we minimize the expected value of the function $\widetilde{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=W(x, C, S)+35\left(x_{1}-\right.$ $\left.\min \left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)^{2}$ where $W(x, C, S)$ denotes the average waiting time as a function of the base locations x, the service time S, the call process C, and the second term is the penalty to assure the problem has a unique optimum. The average waiting time when both bases are located at the origin - a clearly poor configuration - is estimated as 32.63 (with a standard error of 0.08) minutes. For this objective function, the optimum point is $x^{*}=(0.360,0.670,0.778,0.545)$ which is found by estimating the average waiting time over a four-dimensional grid with spacing of 0.005 . The optimum expected waiting time is estimated as $f\left(x^{*}\right)=11.3175$ minutes (with a standard error of 0.0008).

In the experiments, we assume initial base locations of $(0.5,0.5)$ for both ambulances. We simulate the system for 2,000 hours of operation to estimate the long term average response time for each configuration of ambulance locations. We compare performances of the KW, SS-KW, SPSA and SS-SPSA algorithms. The KW and SS-KW algorithms are run for 4,000 iterations where SPSA and SS-SPSA are run for 10,000 iterations. In

Fig. 4. Ambulance base locations. The log-log plot shows the convergence plots of the KW, SS-KW, SPSA and SS-SPSA algorithms. The x-axis shows $\log \left(n^{\prime}\right)$ where n^{\prime} is the number of function evaluations at iteration n of the algorithms, i.e., $n^{\prime}=5 n$ for KW and SS-KW algorithms and $n^{\prime}=2 n$ for SPSA and SS-SPSA algorithms. The convergence rate is estimated as $-0.77(0.04),-0.75(0.02),-0.92(0.03),-0.99(0.02)$ for KW, SS-KW, SPSA and SS-SPSA, respectively.
other words, all algorithms are run for 20,000 function evaluations. The performance measures are calculated using 300 independent replications and results are summarized in Table VIII. Here and in the rest of the numerical examples, in order to reduce variance, we use common random numbers to estimate the $\mathbb{E}\left[\widetilde{f}\left(x^{*}\right)-\widetilde{f}\left(X^{(n)}\right)\right]$. For a given sample path of $\left\{X^{(n)}\right\}$, we calculate the difference $\widetilde{f}\left(x^{*}\right)-\widetilde{f}\left(X^{(n)}\right)$ using the same random numbers in the calculation of $\widetilde{f}\left(x^{*}\right)$ and $\widetilde{f}\left(X^{(n)}\right)$, take this difference and average over all 300 paths to estimate the expectation of this difference for given n.

As seen from Figure 4, the convergence rate estimates for all three algorithms are on par with each other, with SS-SPSA exhibiting better results. In other words, the original choice of the sequences for the ambulance base location problem does not cause any of the performance issues described in Section 2.1. This example also illustrates that if the original choice of the sequences "matches" the characteristics of the underlying problem, then scaling and shifting them does not degrade performance. In this example, the median values for adaptations of the SS-KW algorithm along the four dimensions are $\alpha=1$ for all dimensions, $\beta_{1}=\beta_{2}=10, \beta_{3}=11$ and $\beta_{4}=13$ in the $\left\{a^{(n)}\right\}$ sequence, and $\gamma=1$ for all dimensions in the $\left\{c^{(n)}\right\}$ sequence. For the SS-SPSA

Table VIII. Ambulance base locations. This table provides estimates for the terminal MSE value, i.e., $\widehat{\mathbb{E}}\left\|X^{(n)}-x^{*}\right\|^{2}$ along with estimates of the MSE convergence rate, and the estimate of the terminal error in average waiting time in minutes, i.e., $\widehat{\mathbb{E}}\left[\widetilde{f}\left(X^{(n)}\right)-\widetilde{f}\left(x^{*}\right)\right]$, along with its convergence rate estimate.

	$\widehat{\mathbb{E}}\left\\|X^{(2000)}-x^{*}\right\\|^{2}$	Conv. Rate	$\widehat{\mathbb{E}}\left[\widetilde{f}\left(X^{(2000)}\right)-\widetilde{f}\left(x^{*}\right)\right]$	Conv. Rate
KW	$1.0 \times 10^{-04}\left(4.5 \times 10^{-06}\right)$	$-0.77(0.04)$	$0.0016(0.0002)$	$-0.71(0.05)$
SS-KW	$1.2 \times 10^{-04}\left(5.1 \times 10^{-06}\right)$	$-0.75(0.02)$	$0.0029(0.0002)$	$-0.73(0.02)$
SPSA	$1.2 \times 10^{-04}\left(5.3 \times 10^{-06}\right)$	$-0.92(0.03)$	$0.0013(0.0002)$	$-0.97(0.03)$
SS-SPSA	$9.2 \times 10^{-05}\left(6.1 \times 10^{-06}\right)$	$-0.99(0.02)$	$0.0012(0.0001)$	$-0.96(0.04)$

algorithm, the values are $\alpha=1$ for all dimensions, $\beta_{1}=\beta_{4}=91, \beta_{2}=90$ and $\beta_{3}=89$ in the $\left\{a^{(n)}\right\}$ sequence, and $\gamma_{1}=7.3, \gamma_{2}=\gamma_{3}=\gamma_{4}=7.1$ in the $\left\{c^{(n)}\right\}$ sequence.

3.4. Airline Seat Protection Levels

This revenue management problem is described in detail by [van Ryzin and McGill 2000]. The problem is to determine the airline seat protection levels to maximize expected revenue. There are four fare classes on a single-leg flight. We assume that demands for different fare classes are mutually independent and low-fare classes book strictly before higher fare classes. There are no cancellations or no-shows, and the demand as well as the seat capacity are both assumed to be real-valued.

Fixed protection levels are defined as the vector $\left(x_{1}, x_{2}, x_{3}\right)$ with $x_{1} \leq x_{2} \leq x_{3}$ where x_{i} is defined as the number of seats reserved for all classes $1,2,3$. There is no protection level for the lowest fare class. Reservations for fare class $i+1$ are accepted only if the remaining number of seats is strictly greater than the protection level, $x_{i}, i=1,2$.

The problem can be summarized as follows:

$$
\begin{aligned}
\max _{x_{1}, x_{2}, x_{3}} f(x) & =\mathbb{E} \tilde{f}(x)=\mathbb{E}\left[\sum_{i=1}^{4} p_{i} s_{i}\right] \\
\text { s.t. } s_{i} & =\left[\min \left(D_{i}, c_{i}-x_{i-1}\right)\right]^{+} \text {for } i=1, \ldots, 4 \\
c_{i-1} & =c_{i}-s_{i} \text { for } i=2,3,4 \\
c_{4} & =164 \text { (total capacity of the leg) } \\
x_{0} & =0
\end{aligned}
$$

where p_{i} is the fare for class i, s_{i} is the number of seats sold to class i, c_{i} is the remaining capacity for class i, and D_{i} is the demand for class i. The fares for first through fourth classes are assumed to be $\$ 1050, \$ 567, \$ 527$, and $\$ 350$, respectively. The demand for each fare class is normally distributed with means $17.3,45.1,73.6$ and 19.8, and standard deviations 5.8, 15.0, 17.4 and 6.6 for classes $i=1,2,3,4$, respectively. The total seat capacity is assumed to be 164 .
[Brumelle and McGill 1993] show that when the demand distributions are continuous (which is assumed here), the optimal protection levels ($x_{1}^{*}, x_{2}^{*}, x_{3}^{*}$) satisfy $r_{i+1}=\mathbb{P}\left(A_{i}\left(x^{*}, D\right)\right)$ for $i=1,2,3$ where $r_{i+1}=p_{i+1} / p_{1}$ and

$$
\left.\left.\begin{array}{l}
A_{1}(x, D)=\left\{D_{1}>x_{1}\right\} \\
A_{2}(x, D)=\left\{D_{1}>x_{1},\right. \\
D_{1}+D_{2}>x_{2}
\end{array}\right\}, \quad . \quad \begin{array}{ll}
A_{3}(x, D)=\left\{D_{1}>x_{1},\right. & D_{1}+D_{2}>x_{2}, \\
D_{1}+D_{2}+D_{3}>x_{3}
\end{array}\right\} .
$$

Using this characterization of the optimal point, for the given set of parameters, the optimal protection levels are calculated to be $x^{*}=(16.7175,43.9980,132.8203)$, and the optimal revenue is $f\left(x^{*}\right)=\$ 85,055$ (the standard error of estimate is $\$ 3$). [van Ryzin and McGill 2000] use this characterization to propose an RM-type algorithm. They define

$$
\begin{equation*}
\widetilde{g}_{i}(x, D)=r_{i+1}-\mathbb{1}\left(A_{i}(x, D)\right) \tag{6}
\end{equation*}
$$

and use the recursion $X_{i}^{(n+1)}=X_{i}^{(n)}-a_{i}^{(n)} \widetilde{g}_{i}(x, D)$ along each dimension $i=1,2,3$ to estimate x^{*}. Under suitable conditions on the $\left\{a^{(n)}\right\}$ sequences, they prove that $X^{(n)} \rightarrow x^{*}$ as $n \rightarrow \infty$. In their numerical tests, for the set of parameters given here, they use $a^{(n)}=200 /(n+10)$, claiming that this choice of the sequence appeared to provide good performance on a range of examples.
We test the SS-RM algorithm against RM algorithms with $a^{(n)}=1 / n$ and $a^{(n)}=$ $200 /(n+10)$ using $\widetilde{g}(x, D)$ as defined in (6). We use 2,000 flight departures in total (i.e.,

2,000 iterations of each algorithm) and, the reported numbers are calculated using 1,000 independent runs of the algorithms. Iterates are truncated below at $(0,15,65)$ and above at $(35,110,164)$. These are the low and high starting levels given in [van Ryzin and McGill 2000]. The performance results are summarized in Table IX and convergence plot are given in the online companion. We use common random numbers to estimate $\mathbb{E}\left[\widetilde{f}\left(x^{*}\right)-\widetilde{f}\left(X^{(2,000)}\right)\right]$.

Table IX. Airline seat protection levels. This table provides estimates for the terminal MSE value, i.e., $\widehat{\mathbb{E}} \| X^{(2,000)}-$ $x^{*} \|^{2}$ along with estimates of the MSE convergence rate, and the estimate for the terminal error in expected total revenue, i.e., $\widehat{\mathbb{E}}\left[\widetilde{f}\left(x^{*}\right)-\widetilde{f}\left(X^{(2,000)}\right)\right]$, along with its convergence rate estimate.

	$\widehat{\mathbb{E}}\left\\|X^{(2,000)}-x^{*}\right\\|^{2}$	Conv. Rate	$\widehat{\mathbb{E}}\left[\widetilde{f}\left(x^{*}\right)-\widetilde{f}\left(X^{(2,000)}\right)\right]$	Conv. Rate
$\operatorname{RM}\left(a^{(n)}=1 / n\right)$	$2268(55)$	$-0.01(0.0007)$	$\$ 3283(120)$	$-0.03(0.001)$
$\operatorname{RM}\left(a^{(n)}=200 /(n+10)\right)$	$2.42(0.08)$	$-1.08(0.04)$	$\$ 3.0(0.1)$	$-0.97(0.02)$
SS-RM	$8.9(0.3)$	$-0.99(0.02)$	$\$ 5.6(0.2)$	$-1.12(0.03)$

The RM-algorithm with $a^{(n)}=1 / n$ converges very slowly (the rate is estimated to be -0.01) as shown in the first line of Table IX. The "hand-picked" sequence in [van Ryzin and McGill 2000] ($a^{(n)}=200 /(n+10)$) significantly improves on that and recovers the theoretically optimal rate of -1.0 . The SS-RM algorithm, which does not require any extra pre-processing for sequence tuning also recovers the optimal convergence rate of -1.0 . Since the adaptive adjustments of the tuning sequences requires some iterations at the beginning of the algorithm (the scaling and shifting phases), the MSE results for the SS-RM algorithm are slightly worse than the RM-algorithm with the handpicked sequences (see the second line in Table IX), but this of course ignores the cost of pre-experimentation. The SS-RM algorithm achieves the improvement in convergence rate by scaling up the $\left\{a^{(n)}\right\}$ sequences. After the adaptations are finished in the SSRM algorithm, the median scale-up in the $\left\{a^{(n)}\right\}$ sequences are $\alpha_{1}=757, \alpha_{2}=763$ and $\alpha_{3}=1144$.

3.5. Multiechelon Production-Inventory Systems

A central problem within supply chain management is the minimization of total average inventory cost in multiechelon production-inventory systems. We focus here on a variant of the problem studied by [Glasserman and Tayur 1995]. In this multiechelon system, every stage follows a base stock policy for echelon inventory. We assume a fixed lead time from production to inventory of one period, continuous demand, periodically reviewed inventories and we allow backlogging for any unfilled order. There are three stages: Stage one supplies external demands and stage i supplies components for stage $i-1, i=2,3$. Stage 3 draws raw materials from an unlimited supply. Each stage needs to specify an echelon-inventory base-stock policy x_{i}. Within each period, first pipeline inventories arrive to the next stage, then demand is realized at stage one and is either fulfilled or backlogged. Finally, the production level for the current period n, at each stage $i=1,2,3, R_{n}^{i}$ is set. In period $n(n=1, \ldots, N)$ stage i sets production to try to restore the echelon inventory position, $\sum_{j=1}^{i}\left(I_{n}^{j}+T_{n}^{j}\right)-D_{n}$ to its base-stock level, x_{i} where I_{n}^{i} is the installation inventory at stage i for $i=2,3$, and I_{n}^{1} is the inventory at stage one minus the backlog in period n, T_{n}^{i} is the pipeline inventory, and D_{n} is the demand in that period. The production at stage $i, i<m$, is constrained by available component inventory I_{n}^{i+1}, as well as the capacity limit of that stage, which is assumed to be $p^{i}=60$ units for each stage. For $i>1$, the amount removed in period n from storage at stage i is the downstream production level. The objective function is the expected average cost which is comprised of the holding cost and the backholding costs.

The problem can be summarized as follows:

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{3}} f(x) & =\mathbb{E} \tilde{f}(x)=\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[C_{n}(x, D)\right] \\
\text { s.t. } \quad C_{n} & =\left[I_{n}^{1}\right]^{-} b+\left(\left[I_{n}^{1}\right]^{+}+T_{n}^{1}\right) h^{1}+\sum_{i=1}^{4}\left(I_{n}^{i}+T_{n}^{i}\right) h^{i} \\
I_{n+1}^{i} & =I_{n}^{i}-R_{n}^{i-1}+R_{n-1}^{i} \\
R_{n}^{i} & =\max \left\{p^{i},\left[x_{i}+D_{n}-\sum_{j=1}^{i}\left(I_{n}^{j}+T_{n}^{j}\right)\right]^{+}, I_{n}^{i+1}\right\} \\
T_{n+1}^{i} & =T_{n}^{i}+R_{n}^{i}-R_{n-1}^{i}, i=1,2,3, n=1, \ldots, N
\end{aligned}
$$

where $[y]^{-}=-\min (y, 0)$ and $[y]^{+}=\max (y, 0)$ for any $y \in \mathbb{R}$. The associated holding cost per unit at each stage is $\left(h^{1}, h^{2}, h^{3}\right)=(\$ 20,000, \$ 10,000, \$ 5,000)$. Backorders at the first stage are penalized at $b=\$ 40,000$ per unit backordered. The demand is assumed to have an Erlang distribution with mean 50 and squared coefficient of variation 0.25. The initial conditions are assumed to be $I_{1}^{1}=x_{1}$ and $I_{1}^{i}=x_{i}-x_{i-1}$ for $i=2,3$ and all other variables are set to zero. In order to estimate the total average cost at each iteration, we delete the first 500 periods as a transient phase and we use the next 10,000 periods (10,500 periods in total). With these parameters, the optimal base-stock levels are calculated as $x^{*}=(81,200,320)$ units using a grid search over integers, and the resulting expected minimum cost is estimated to be $\$ 377,290$ (the standard error of estimate is \$319).

We run the SPSA and SS-SPSA algorithms using an initial interval of $I^{(0)}=$ $[20,200] \times[40,300] \times[60,400]$. Both algorithms are run for 2,000 function evaluations (1,000 iterations) and the MSE estimates are calculated using 100 independent runs of the algorithm. The reason for running the SPSA and SS-SPSA algorithms and not the KW and SS-KW stems from the problem structure. In particular, calculating the gradient estimate using finite differences along each dimensions separately (as in KW and SS-KW) requires changing only one of the base-stock levels while keeping others the same. Because the production at each stage is constrained by the downstream inventory level, changing the base-stock level at a single stage alone typically does not change the objective function value, so the gradient estimate becomes zero. In order to avoid this, we run the SPSA and SS-SPSA algorithms which calculate the gradient along the diagonals, i.e., by changing all three base-stock levels together.

The SPSA algorithm is observed to have a long oscillatory period in this problem. The median oscillatory period for the SPSA algorithm is 414. The SS-SPSA algorithm brings this down to 27 . As seen in the performance results summarized in Table X, the decrease in the oscillatory period length improves the MSE by an order of magnitude and the function error by a factor of 3 . The improvement in the performance can also be seen in the convergence plots given in the online supplement. The decrease in the oscillatory period is achieved mainly by shifting the $\left\{a^{(n)}\right\}$ sequences: the median shifts values are 759,436 and 317 in each dimension, respectively. Moreover, we observe a median scale up of 7.3 in the $\left\{c^{(n)}\right\}$ sequences along all three dimensions which decreases the noise level in gradient estimates. For this example, because of the initial oscillatory behavior of the iterates in the SPSA algorithm, we do not report the convergence rate estimates for this algorithm.

Table X. Multiechelon production-inventory systems. This table provides estimates for the terminal value of the MSE, i.e., $\widehat{\mathbb{E}}\left\|X^{(1,000)}-x^{*}\right\|^{2}$ and the estimate of the terminal error in expected cost, i.e., $\widehat{\mathbb{E}}\left[\widetilde{f}\left(X^{(1,000)}\right)-\widetilde{f}\left(x^{*}\right)\right]$. The rate estimates for the SPSA algorithm are not provided due to the excessively long transient period. The last two columns of the table report statistics for the length of the oscillatory period and show improved finite-time performance of SS-SPSA algorithm over SPSA. $T_{\text {med }}$ is the median oscillatory period length calculated using 100 independent runs of the algorithms, and $T_{\max }$ is the maximum oscillatory period length among all these runs. Numbers in parenthesis are the standard errors of estimates.

	$\widehat{\mathbb{E}}\left\\|X^{(1,000)}-x^{*}\right\\|^{2}$	Conv. Rate	$\widehat{\mathbb{E}}\left[\widetilde{f}\left(X^{(1,000)}\right)-\widetilde{f}\left(x^{*}\right)\right]$	Conv. Rate	$T_{\text {med }}$	$T_{\max }$
SPSA	$4595(428)$	N/A	$\$ 87,761(11,318)$	N/A	414	609
SS-SPSA	$402(99)$	$-0.87(0.13)$	$\$ 30,429(1225)$	$-0.63(0.05)$	27	171

3.6. Merton Jump-Diffusion Model Calibration

We consider the problem of calibrating the Merton jump-diffusion model parameters to European put options on a non-dividend paying asset. The aim is to choose model parameters to minimize the difference between the model and the given market prices. The model described in the seminal paper by [Merton 1976] assumes that the underlying asset price is governed by a geometric Brownian motion with drift, together with a compound Poisson process to model the jump times. Under the risk-neutral probability measure, the stochastic differential equation governing the underlying asset price, S_{t} is

$$
\frac{d S_{t}}{S_{t}}=\left(r-\lambda \mu_{J}\right) d t+\sigma d W_{t}+d J_{t} .
$$

Here, $J_{t}=\sum_{i=1}^{N_{t}}\left(Y_{i}-1\right)$ where N_{t} is a Poisson process with constant intensity λ. When a jump occurs at time t^{-}, the stock price becomes $S_{t^{+}}=S_{t^{-}} \times Y$ where Y is lognormally distributed with mean $\mathbb{E}[Y]=1+\mu_{J}$ and variance σ_{J}^{2}, with $\left(\mu_{J}, \sigma_{J}^{2}\right)$ parameters of the model.

We first assume "true values" for the four model parameters, $\sigma=10 \%, \lambda=1.51$, $\mu_{J}=-6.85 \%$ and $\sigma_{J}=6 \%$ which are the values given in [Broadie et al. 2009a]. For the initial price $S_{0}=\$ 100$ and interest rate $r=4.5 \%$, we calculate the prices of the European put options with maturities and strikes given in Table XI. The market price is estimated using the closed-form formula for the Merton model given in [Merton 1976], which expresses the Merton price as an infinite weighted sum of Black-Scholes prices with modified interest rate and volatility:

$$
p^{\mathrm{JD}}\left(S_{0}, K, \sigma, r, T, \lambda, \mu_{J}, \sigma_{J}\right)=\sum_{k=0}^{\infty} \frac{e^{\lambda^{\prime} T}\left(\lambda^{\prime} T\right)^{k}}{k!} p^{\mathrm{BS}}\left(S_{0}, K, \sigma_{k}, r_{k}, T\right)
$$

Table XI. European put options used in Merton calibration: This table provides the maturity, strike and market prices for the eleven put options used. The maturity used in calculations, T is calculated using $T_{i}=t_{i} / 365.25$.

Maturity, t (days)	Strike, $K(\$)$	Price, $p(\$)$	Implied Vol., $\sigma^{\mathrm{BS}}(p)(\%)$
5	95	0.0670	27.21
5	100	0.5100	11.58
33	90	0.1411	22.45
33	95	0.4207	18.02
33	100	1.4187	13.48
33	105	4.7521	11.78
124	90	0.5564	17.50
124	95	1.2874	16.17
124	100	2.7143	14.83
124	105	5.2248	13.71
124	110	8.9109	12.93

where p^{JD} is the Merton jump-diffusion model price, p^{BS} is the Black-Scholes price, $\lambda^{\prime}=\lambda\left(1+\mu_{J}\right), \sigma_{k}^{2}=\sigma^{2}+k \sigma_{J}^{2} / T$ and $r_{k}=r-\lambda \mu_{J}+k \ln \left(1+\mu_{J}\right) / T$. We truncate the infinite sum when the last term in the sum on the right-hand-side is smaller than 10^{-10} to get the numbers reported in Table XI. These are used as the market prices for these options. Market Black-Scholes (BS) implied volatilities, $\sigma_{i}^{\mathrm{BS}}\left(p_{i}\right)$ for each option $i=1, \ldots, 11$ are calculated as defined in Section 13.11 of [Hull 2005], and are reported in the last column of Table XI.

In our numerical experiment, for given values of the three parameters, $\sigma, \lambda_{, ~ \mu_{J}}$ and σ_{J} we first simulate the diffusion part of the underlying process up to the earliest maturity in one time increment. We then add the jump part of the process to get the price of the underlying for the first maturity for each path. Then, we take this as the "initial price" and repeat the process to simulate the underlying price at the next maturity. Using 10,000 simulations of the final stock price, $S_{T_{i}}^{(j)}$ for $j=1, \ldots, 10,000$ we estimate the price for each option, $\widetilde{p}_{i}\left(\sigma, \lambda, \mu_{J}, \sigma_{J}\right)=\sum_{j=1}^{10,000} \max \left(K_{i}-S_{T_{i}}^{(j)}, 0\right) / 10,000$ for $i=1, \ldots, 11$. The simulated price for option i may be zero if none of the paths end up in the money, i.e., if $S_{T_{i}}^{(j)} \geq K_{i}$ for all $j=1, \ldots 10,000$. Also, even if the simulated option price, $\widetilde{p}_{i}\left(\sigma, \lambda, \mu_{J}, \sigma_{J}\right)$ is positive, it may be lower than $\delta_{i}:=\max \left(0, K_{i} e^{-r T_{i}}-S_{0}\right)$ for $i=1, \ldots, 11$, which is a lower bound on each option price. In order to avoid numerical issues in calculating BS-implied volatilities, we implement a modified implied volatility function. For a fixed small number ε (we use $\varepsilon=0.01$), if $\widetilde{p}_{i}\left(\sigma, \lambda, \mu_{J}, \sigma_{J}\right) \leq \delta_{i}+\varepsilon$ then we estimate the implied volatility for option i using linear extrapolation. If $\widetilde{p}_{i}\left(\sigma, \lambda, \mu_{J}, \sigma_{J}\right) \leq \delta_{i}+\varepsilon$, we define the simulated implied volatility as $\sigma_{i}^{\text {sim }}\left(\widetilde{p}_{i}\right)=m \widetilde{p}_{i}+n$ where $m:=\left[\sigma_{i}^{\mathrm{BS}}\left(\delta_{i}+2 \varepsilon / 3\right)-\sigma_{i}^{\mathrm{BS}}\left(\delta_{i}+\varepsilon / 3\right)\right] /(\varepsilon / 3)$ and n is chosen so that it satisfies $\sigma_{i}^{\mathrm{BS}}\left(\delta_{i}+\varepsilon\right)=m\left(\delta_{i}+\varepsilon\right)+n$. If $\widetilde{p}_{i}\left(\sigma, \lambda, \mu_{J}, \sigma_{J}\right)>\delta_{i}+\varepsilon$, we set $\sigma_{i}^{\operatorname{sim}}\left(\widetilde{p}_{i}\right)=\sigma_{i}^{\mathrm{BS}}\left(\widetilde{p}_{i}\right)$ in our simulations. Here is a numerical example showing how $\sigma_{i}^{\text {sim }}\left(\widetilde{p}_{i}\right)$ is calculated. Assume $S_{0}=100, K=95, r=4.5 \%$ and $T=5 / 365.25$. In this case, $\delta_{i}=0$, and assuming $\varepsilon=0.01$, we get $m=\left(\sigma_{i}^{B S}(0.02 / 3)-\sigma_{i}^{\mathrm{BS}}(0.01 / 3)\right) /(0.01 / 3)=4.45$ and $n=0.15$. For any simulated price less than ε, i.e., if $\widetilde{p}_{i}<0.01$, we set $\sigma_{i}^{\text {sim }}\left(\widetilde{p}_{i}\right)=4.45 \widetilde{p}_{i}+0.15$. The objective is to minimize the implied volatility error defined as the average of squared differences between the market implied volatility, $\sigma_{i}^{\mathrm{BS}}\left(p_{i}\right)$ and simulated implied volatility, $\sigma_{i}^{\text {sim }}\left(\widetilde{p}_{i}\right)$.

Close examination of the dependence of the option prices and implied volatilities to the parameters λ and μ_{J} in the Merton model reveals that the option prices are typically sensitive to the product of these two terms, and not to the values of λ and μ_{J} individually. Therefore, there is more than one set of values for these two parameters that generates option values which are very close to each other and this makes it hard to separately identify these two parameters. In other words, if we fix one of these parameters, then we can use the other to match the target option prices very closely. Because of the difficulty in distinguishing these two parameters, we fix the jump intensity to be $\lambda=1$ jump per year. So, the objective function used in KW and SS-KW algorithm is $f\left(\sigma, \mu_{J}, \sigma_{J}\right)=\mathbb{E}\left(\widetilde{f}\left(\sigma, \mu_{J}, \sigma_{J}\right)\right)=\mathbb{E} \sum_{i=1}^{11}\left(\sigma_{i}^{\mathrm{BS}}\left(p_{i}\right)-\sigma_{i}^{\operatorname{sim}}\left(\widetilde{p}_{i}\left(\sigma, 1, \mu_{J}, \sigma_{J}\right)\right)\right)^{2} / 11$. For this function, the point of optimum is accurately estimated using standard non-linear optimization methods as $\left(\sigma^{*}, \mu_{J}^{*}, \sigma_{J}^{*}\right)=(10.28 \%,-9.74 \%, 4.52 \%)$. The test problem was designed so that it has known solution, but mimics the properties of real problems with similar but more complicated cash flows. With these optimal parameter values, the root-mean-squared implied volatility error for the 11 options in Table XI is 0.036%. The KW and SS-KW algorithms are run to minimize expected implied volatility error using the initial intervals $\sigma \in[1 \%, 30 \%], \mu_{J} \in[-30 \%, 0 \%]$ and $\sigma_{J} \in[1 \%, 15 \%]$. We run the algorithms for 3,000 iterations and the estimates of MSE are calculated using 500 independent runs of the algorithm.

The calibration problem described above has an objective function that is quite steep at the boundaries and very flat near the point of optimum. Due to this, the KWalgorithm exhibits a degraded rate of convergence as seen in the first row of Table XII. In the SS-KW algorithm, the median scale-up and shift values in $a_{k}^{(n)}=\alpha_{k} /\left(n+\beta_{k}\right)$ sequences are $\alpha_{1}=28, \alpha_{2}=33, \alpha_{3}=16$; and $\beta_{1}=\beta_{2}=10, \beta_{3}=2$; whereas the median scale-up in $\left\{c_{k}^{(n)}\right\}$ for $k=1,2,3$ equal to 1 . Even though the $\left\{a^{(n)}\right\}$ sequences are scaled up, the achieved convergence rate is still slower than the theoretically best values. The scale up factors are calculated based on the magnitude of the gradient at the boundaries, but when the iterates are close to the point of optimum, these scale up factors become inadequate; hence the slow convergence rate. On the other hand, when we look at the performance measures in terms of function error, as seen in the last two columns of the Table XII, we observe that even relatively minor adaptations improve the performance. Both the function error after 3000 iterations and the convergence rate of this error measure are improved by a factor of two. Convergence figure in the online supplement also exhibits the improved performance.

Table XII. Merton jump-diffusion model calibration problem. This table provides estimates for the terminal MSE value, i.e., $\widehat{\mathbb{E}}\left\\|X^{(3000)}-x^{*}\right\\|^{2}$, along with the MSE convergence rate estimate, and estimates for the terminal error in function value, i.e., $\widehat{\mathbb{E}}\left[\widetilde{f}\left(X^{(3000)}\right)-\widetilde{f}\left(x^{*}\right)\right]$, along with its convergence rate estimate. The average implied volatility error after 3000 iterations, $\sqrt{\widehat{\mathbb{E}} \tilde{f}\left(X^{(3000)}\right)}$ is 0.6% for the KW and 0.4% for the SS-KW algorithms. Numbers in parenthesis are standard errors of estimates.				
	$\widehat{\mathbb{E}} \\| X^{(3000)}-x^{*}$	Conv. Rate	$\underline{\mathbb{E}}\left[\tilde{f}\left(X^{(300)}\right)-\tilde{f}\left(x^{*}\right)\right]$	onv. Ra
KW	$3.9 \times 10^{-03}\left(1.5 \times 10^{-04}\right)$	-0.05 (9.0×10 ${ }^{-04}$)	$3.1 \times 10^{-05}\left(1.2 \times 10^{-06}\right)$	0.13 (0.004)
SS-KW	$6.9 \times 10^{-04}\left(2.4 \times 10^{-05}\right)$	-0.08 (0.02)	$1.4 \times 10^{-05}\left(5.3 \times 10^{-07}\right)$	-0.27 (0.03)

3.7. Call Center Staffing

We consider a call center staffing problem described in detail by [Harrison and Zeevi 2005]. There are two customer classes and two server pools. Callers of each class arrive according to a non-homogeneous Poisson process with stochastic intensities $\Lambda_{1}(t)$ and $\Lambda_{2}(t)$. Servers in pool 1 can only serve calls of class 1 while servers in pool 2 can serve both classes of customers. So there are three processing activities: server 1 serving class 1 , server 2 serving class 1 and server 2 serving class 2 . There are x_{k} servers in pool k for $k=1,2$. Service times are assumed to be exponentially distributed with rate $\mu_{j}=0.25$ customer per minute for each processing activity $j=1,2,3$. We assume services can be interrupted at any time and later resumed from the point of preemption without incurring any penalty costs. Customers of both classes who are waiting in the queue abandon the queue with exponentially distributed inter-abandonment times with mean one minute and the abandonment process is independent of the arrival and service time processes. Each abandonment by a class one customer incurs $p_{1}=\$ 5$ penalty cost, and by a class two customer incurs $p_{2}=\$ 10$. We set the length of the planning horizon to be $T=480$ minutes. The cost of employing a server for a work day (480 minutes) is $c_{1}=\$ 160$ and $c_{2}=\$ 240$ for servers one and two, respectively. The problem is to choose the number of servers in each pool, x_{1} and x_{2} to minimize the total staffing and penalty costs. We define $h(x)=\mathbb{E} \widetilde{h}(x)=c^{T} x+\mathbb{E}\left[p^{T} q(x, S, A)\right]$ where $q(x, S, A) \in \mathbb{Z}^{2}$ represents the vector of number of abandonments depending on the random service time process, S and the arrival process, A for a given vector of pool sizes, $x \in \mathbb{Z}^{2}$. Here, the expectation is taken with respect to both processes.

The problem in its original form is an integer-variable problem but the stochastic approximation algorithms require problems to have a continuous feasible set. In order
to be able to use stochastic approximation algorithms in this problem, we use twodimensional linear interpolation to define function values at non-integer points (we use the interp2 function in MATLAB in our implementation). In order to evaluate the objective function at a point $\left(x_{1}, x_{2}\right)$, we run four simulations at points ($\left\lceil x_{1}\right\rceil,\left\lceil x_{2}\right\rceil$), $\left(\left\lceil x_{1}\right\rceil,\left\lfloor x_{2}\right\rfloor\right),\left(\left\lfloor x_{1}\right\rfloor,\left\lceil x_{2}\right\rceil\right)\left(\left\lfloor x_{1}\right\rfloor,\left\lfloor x_{2}\right\rfloor\right)$ using common random numbers and we use these function evaluations to approximate the function value at $\left(x_{1}, x_{2}\right)$. In other words, the final objective is to minimize

$$
f(x)=\mathbb{E} \tilde{f}(x)=\mathbb{E} \mathbb{I}\left\{h\left[\left(\left\lceil x_{1}\right\rceil,\left\lceil x_{2}\right\rceil\right)\right], h\left[\left(\left\lceil x_{1}\right\rceil,\left\lfloor x_{2}\right\rfloor\right)\right], h\left[\left(\left\lfloor x_{1}\right\rfloor,\left\lceil x_{2}\right\rceil\right)\right], h\left[\left(\left\lfloor x_{1}\right\rfloor,\left\lfloor x_{2}\right\rfloor\right)\right]\right\}
$$

over $x_{1}, x_{2} \geq 0$, where $\mathbb{I}\{\cdot\}$ is the two-dimensional linear interpolation operator.
In order to model the call arrival intensity processes, we follow [Harrison and Zeevi 2005] and split the planning horizon into 16 subintervals of length $\Delta=T / 16 \mathrm{~min}$ utes each. We assume $Z=\left(Z_{n}: n \in \mathbb{Z}\right)$ is an i.i.d. sequence of \mathbb{R}^{2}-valued normally distributed random variables with zero mean and covariance matrix

$$
\Sigma=0.25\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

where $\rho=0.5$. Let $Y_{n}=\left(Y_{n}: n \in \mathbb{Z}\right)$ be given by the recursion $Y_{n+1}=1.5 e+0.5 Y_{n}+$ Z_{n+1} where $e=[1,1]^{\prime}$. Then $\left\{Y_{n}\right\}$ is a stationary autoregressive process in \mathbb{R}^{2} with a bivariate normal marginal distribution with mean $[3,3]^{\prime}$ and covariance matrix $\Sigma_{Y}=$ $(4 / 3) \Sigma$. Considering the first coordinate of Y to be the instantaneous arrival rate of class 1 and the second coordinate of class 2 , the call arrivals exhibit both interclass correlation and temporal correlation. Using this autoregressive process, the call arrival intensity process is $\Lambda_{1}(t)=15 Y_{1, j} / 3$ and $\Lambda_{2}(t)=10 Y_{2, j} / 3$ for all t in subinterval j. The expected number of arrivals over the entire day is 15 calls per minute for class 1 and 10 customers per minute for class 2 . With this parameter setting, the optimal server sizes are $x^{*}=(59,54)$ resulting in a total cost of $\$ 24.62 \mathrm{~K}$ which are determined using an exhaustive grid search over integers.

Although this problem can easily be extended into higher dimensions, the benefit of having this example in two dimensions is the ability, with the current choice of problem parameters, to decouple the staffing problem from the dynamic scheduling decisions which involve allocating the servers to incoming and waiting calls. In particular, with this set of parameters, it is optimal to give priority to class 2 customers. So when a class 2 customer arrives, if all the servers in the second pool are busy and if one of them is serving a class 1 customer, then that server interrupts the service and starts serving a class 2 customer. If there is any idle server in the first pool, then we assume the service of the interrupted customer is continued by this server in first pool.

In order to solve this problem we run the KW and SS-KW algorithms for 500 iterations using the initial interval $I^{(0)}=[15,100]^{2}$. We stop at iteration 500 because beyond this point, the value of the $\left\{c^{(n)}\right\}$ sequences are less than one and since the original problem is only defined on integers, once the $\left\{c^{(n)}\right\}$ values are less than one, continuing the algorithm does not further improve the convergence. The performance results are estimated using 250 independent replications of the algorithms and are given in Table XIII. As seen in the first row of the table, the KW-algorithm suffers from a degraded convergence rate. On the other hand, the SS-KW algorithm improves the convergence rate significantly by scaling up the $a_{k}^{(n)}=\alpha_{k} /\left(n+\beta_{k}\right), k=1,2$ sequences by a median scale up factor of $\alpha_{1}=1047$ and $\alpha_{2}=1461$. The improved performance also is observed in the function error values and convergence rates of function errors (see the last two columns of Table XIII and convergence figure in the online supplement).

Table XIII. Call center staffing. This table gives estimates for the terminal MSE value, i.e., $\widehat{\mathbb{E}}\left\|X^{(500)}-x^{*}\right\|^{2}$, along with its convergence rate estimate, and the estimate for the terminal error in function value, i.e., $\widehat{\mathbb{E}}\left[\widetilde{f}\left(X^{(500)}\right)-\widetilde{f}\left(x^{*}\right)\right]$, along with its convergence rate estimate.

	$\widehat{\mathbb{E}}\left\\|X^{(500)}-x^{*}\right\\|^{2}$	Conv. Rate	$\widehat{\mathbb{E}}\left[\widetilde{f}\left(X^{(500)}\right)-\widetilde{f}\left(x^{*}\right)\right]$	Conv. Rate
KW	$1053(43)$	$-0.02(0.002)$	$6.3(0.4)$	$-0.04(0.003)$
SS-KW	$2.6(0.2)$	$-1.0(0.1)$	$0.02(0.005)$	$-1.28(0.28)$

4. CONCLUDING REMARKS

We have extended the scaling and shifting ideas first introduced in [Broadie et al. 2011] to multiple dimensions. We tested the algorithms on a range of applications and found that the scaled and shifted stochastic approximation algorithms SS-RM, SS-KW and SS-SPSA typically exhibit improved finite-time performance when compared to their non-adaptive counterparts RM, KW and SPSA. If the original choice of the tuning sequences "matches" the characteristics of the underlying function (as in the ambulance base locations problem of Section 3.3), then the adaptations do not change the sequences significantly and the performance of the algorithm does not deteriorate. In most of the previous applications of stochastic approximation algorithms, where "good" finite-time performance is achieved, the user typically must adjust the tuning sequences manually, by hand-picking the constants in the sequences. Scaled and shifted stochastic approximation algorithms effectively eliminate the need for this pre-processing, or more precisely, automate and incorporate it into the online run of the algorithm.

In this paper we did not consider nor analyze the sensitivity of the proposed adaptive tuning ideas to various other components and algorithm primitives. These include the differencing operator (we have only used forward differencing), exploiting Hessianbased information or further differentiability assumptions, and measuring the full effect and sensitivity of performance to a priori bounds we impose on the adaptations made to the sequences. As noted early on, this paper has focused on numerical analysis and does include supporting theory. Addressing the aforementioned elements may constitutes interesting and potentially fruitful future research directions.

REFERENCES

S. N. Abdelhamid. 1973. Transformation of observations in stochastic approximation. The Annals of Statistics 1 (1973), 1158-1174.
S. Andradóttir. 1995. A stochastic approximation algorithm with varying bounds. Operations Research 43, 6 (1995), 1037-1048.
S. Andradóttir. 1996. A scaled stochastic approximation algorithm. Management Science 42, 4 (1996), 475498.
S. Asmussen and P.W. Glynn. 2007. Stochastic Simulation. Springer-Verlag, New York.
A. Benveniste, M. Métivier, and P. Priouret. 1990. Adaptive Algorithms and Stochastic Approximations. Springer-Verlag, New York Berlin Heidelberg.
J.R. Blum. 1954. Multidimensional stochastic approximation methods. The Annals of Mathematical Statistics 25, 4 (1954), 737-744.
M. Broadie, M. Chernov, and M. Johannes. 2009a. Understanding index option returns. Review of Financial Studies 22, 11 (2009), 4493-4529.
M. Broadie, D.M. Cicek, and A. Zeevi. 2009b. An adaptive multidimensional version of the Kiefer-Wolfowitz stochastic approximation algorithm. In Proceedings of the 2009 Winter Simulation Conference, Austin, Texas, M.D. Rossetti, R.R. Hill, B. Johansson, A. Dunkin, and R.G. Ingalls (Eds.).
M. Broadie, D.M. Cicek, and A. Zeevi. 2011. General bounds and finite-time improvement for the KieferWolfowitz stochastic approximation algorithm. Operations Research 59, 5 (2011), 1211-1224.
S. L. Brumelle and J. I. McGill. 1993. Airline seat allocation with multiple nested fare classes. Operations Research 41 (1993), 127-136.
V. Dupac. 1957. O Kiefer-Wolfowitzově approximační methodě. Časopis pro Pěstování Matematiky 82 (1957), 47-75.
P. Glasserman and S. Tayur. 1995. Sensitivity analysis for base-stock levels in multiechelon productioninventory systems. Management Science 41, 2 (1995), 263-281.
J. M. Harrison and A. Zeevi. 2005. A method for staffing large call centers based on stochastic fluid models. Manufacturing \& Service Operations Management 7, 1 (2005), 20-36.
J.C. Hull. 2005. Options, Futures, and Other Derivatives ($6^{\text {th }}$ ed.). Prentice Hall, New Jersey.
H. Kesten. 1958. Accelerated stochastic approximation. The Annals of Mathematical Statistics 29, 1 (1958), 41-59.
J. Kiefer and J. Wolfowitz. 1952. Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics 23, 3 (1952), 462-466.
S. Kim. 2006. Gradient-based simulation optimization. In Proceedings of the 2006 Winter Simulation Conference, Monterey, California, L.F. Perrone, F.P. Wieland, J. Liu, B.G. Lawson, D.M. Nicol, and R.M. Fujimoto (Eds.).
H.J. Kushner and G.G. Yin. 2003. Stochastic Approximation and Recursive Algorithms and Applications. Springer-Verlag, New York.
P. L'Ecuyer, N. Giroux, and P.W. Glynn. 1994. Stochastic optimization by simulation: Numerical experiments with the M/M/1 queue in steady-state. Management Science 40, 10 (1994), 1245-1261.
P. L'Ecuyer and P.W. Glynn. 1994. Stochastic optimization by simulation: Convergence proofs for the GI/GI/1 queue in steady-state. Management Science 40, 11 (1994), 1562-1578.
P. L'Ecuyer and G. Yin. 1998. Budget-dependent convergence rate of stochastic approximation. SIAM Journal on Control and Optimization 8, 1 (1998), 217-247.
R. Merton. 1976. Option pricing when underlying stock returns are discontinuous. J. Financial Economics 3 (1976), 125-144.
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. 2009. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization 19, 4 (2009), 1574-1609.
R. Pasupathy and S.G. Henderson. 2006. A testbed of simulation-optimization problems. In Proceedings of the 2006 Winter Simulation Conference, Monterey, California, L.F. Perrone, F.P. Wieland, J. Liu, B.G. Lawson, D.M. Nicol, and R.M. Fujimoto (Eds.).
B.T. Polyak. 1990. New stochastic approximation type procedures. Automat. i Telemekh 7 (1990), 98-107.
H. Robbins and S. Monro. 1951. A stochastic approximation method. The Annals of Mathematical Statistics 22, 3 (1951), 400-407.
D. Ruppert. 1985. A Newton-Raphson version of the multivariate Robbins-Monro procedure. The Annals of Statistics 13, 1 (1985), 236-245.
D. Ruppert. 1988. Efficient estimators from a slowly convergent Robbins-Monro process. Technical Report 781. School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York.
J.C. Spall. 2000. Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans. Automat. Control 45, 10 (2000), 1839-1853.
J. C. Spall. 1992. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Automat. Control 37, 3 (1992), 332-341.
Q.-Y. Tang, P.L. L'Ecuyer, and H.-F. Chen. 2000. Central limit theorem for stochastic optimization algorithms and infinitesimal perturbation analysis. Discrete Event Dynamic Systems: Theory and Applications 10, 1 (2000), 5-32.
R. Vaidya and S. Bhatnagar. 2006. Robust optimization of random early detection. Telecommunication Systems 33, 4 (2006), 291-316.
G. van Ryzin and J. McGill. 2000. Revenue management without forecasting or optimization: An adaptive algorithm for determining airline seat protection levels. Management Science 46, 6 (2000), 760-775.
J.H. Venter. 1967. An extension of the Robbins-Monro procedure. The Annals of Mathematical Statistics 38, 1 (1967), 181-190.
C.Z. Wei. 1987. Multivariate adaptive stochastic approximation. The Annals of Statistics 15, 3 (1987), 11151130.

Online Appendix to:
 Multidimensional Stochastic Approximation:
 Adaptive Algorithms and Applications

Mark Broadie, Columbia University
Deniz M. Cicek, Columbia University
Assaf Zeevi, Columbia University

This is an online companion to the paper "Multidimensional Stochastic Approximation: Adaptive Algorithms and Applications," by Broadie, Cicek and Zeevi. It contains an illustrative example detailing how scaling and shifting impacts the evolution of the tuning sequences and convergence figures for the algorithms tested in the Numerical Examples section.

A.1. Illustrative Example

We provide here an illustrative example of the adaptations in the tuning sequences. Suppose $\tilde{f}(x)=-(K x)^{\prime} A x+\sigma Z$ where

$$
A=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right) \quad \text { and } \quad K=\left(\begin{array}{cc}
0.001 & 0 \\
0 & 0.001
\end{array}\right)
$$

and Z is a standard normal random variable, $\sigma=0.01$. The initial interval is assumed to be $I(0)=[-1,1]^{2}$. We set the tuning sequences as $a_{k}^{(n)}=\alpha_{k} /\left(n+\beta_{k}\right)$ and $c_{k}^{(n)}=$ $\gamma_{k} / n^{1 / 4}$ for $k=1,2$ and set $\alpha_{1}=\alpha_{2}=1, \beta_{1}=\beta_{2}=0$ and $\gamma_{1}=\gamma_{2}=0.1$ initially. (We initialized as $\gamma_{k}=0.1$ instead of $\gamma_{k}=1$ since the width of the initial interval is two.)

The initial starting point for the illustrated path is $X^{(1)}=(0.9,-0.54)$. Here's an explanation of what happens in each iteration (see Table XIV for exact numbers):
-Iteration 1: The gradient points towards opposite boundary along both dimensions; we scale up both the $\left\{a_{1}^{(n)}\right\}$ and the $\left\{a_{2}^{(n)}\right\}$ by 10 (which is the upper bound on the scale up factor per iteration) and move to the northeast corner of the truncation interval. This completes the first oscillation. Note that the truncation interval at this iteration is $\left[-1,1-c_{1}^{(2)}\right] \mathrm{x}\left[-1,1-c_{2}^{(2)}\right]$ which is why the next iterate along second dimension is at $X_{2}^{(2)}=0.92$, not 1 .
-Iteration 2: The gradient estimate pushes the iterates out of the truncation interval along both dimensions, so we cannot hit the opposite boundary along any dimensions. The $\left\{c_{k}^{(n)}\right\}$ sequences are scaled up along both dimensions.
-Iteration 3: The gradient estimate along the first dimension points outwards, so we scale up the $\left\{c_{1}^{(n)}\right\}$ sequence. We hit the opposite boundary only along the second dimension by scaling up the $\left\{a_{2}^{(n)}\right\}$ sequence by 9.63 .
-Iteration 4: Gradient estimate pushes the iterate outside of the truncation interval along the first dimension again, so we scale up the $\left\{c_{1}^{(n)}\right\}$ sequence to its maximum value. After this iteration the $\left\{c_{1}^{(n)}\right\}$ sequence is not scaled up anymore. The iterate still cannot complete the second oscillation. The next iterate is still at the same boundary as before along the first dimension. It's now in the interior of the truncation interval along the second dimension.

[^1]DOI:http://dx.doi.org/10.1145/0000000.0000000

App-2
-Iteration 5: We get a gradient estimate pointing towards the opposite boundary along the first dimension, so we scale up the $\left\{a_{1}^{(n)}\right\}$ sequence. This completes the second oscillation. Note that $X_{1}^{(6)}=1-c_{1}^{(6)}$.
-Iteration 6: The $\left\{a_{2}^{(n)}\right\}$ sequence is scaled up and the opposite boundary is hit along the second dimension.

- Iteration 7: The $\left\{a_{1}^{(n)}\right\}$ sequence is scaled up, the third oscillation is completed.
-Iteration 8: The opposite boundary is hit along the first dimension, without any scale up in the $\left\{a_{1}^{(n)}\right\}$ sequence. We scale up the $\left\{c_{2}^{(n)}\right\}$ sequence since the iterate was already at the upper end of the truncation interval along the second dimension and the gradient estimate was positive. Although the iterate was at the lower boundary before and was pushed beyond the upper boundary along the first dimension, we do not shift the $\left\{a_{1}^{(n)}\right\}$ sequence since we are still in the scaling phase.
- Iteration 9,10 and 11: The gradient estimate pushes the iterate outside the interval. The $\left\{c_{2}^{(n)}\right\}$ sequence is scaled up at iteration 9 . It hits its upper bound and is not scaled up anymore.
- Iteration 12: $\left\{a_{2}^{(n)}\right\}$ is scaled up and the last oscillation is completed. By the end of this iteration, the scaling phase of the algorithm ends.
-Iteration 13: The iterate was at the upper boundary along the first dimension and overshoot the lower boundary along the same dimension. So, we shift the $\left\{a_{1}^{(n)}\right\}$ sequence by the maximum shift of 10 . The new upper bound on the shift along the first dimension is updated as $v_{1}^{a}=20$. By this shift the algorithm is correcting for a large scale up in the $\left\{a_{1}^{(n)}\right\}$ sequence due to noisy observation in the scaling phase.
-Iteration 14: The iterate oscillates from the lower boundary to the upper boundary along the second dimension, so the $\left\{a_{2}^{(n)}\right\}$ sequence is shifted by 10 . We update $v_{2}^{a}=$ 20.

Figure 5 shows a typical oscillation in the scaling phase of the algorithm. Figure 6 illustrates an instance, where due to a noisy gradient estimate, one oscillation takes more than two iterations.

Figure 7 illustrates how the $\left\{a_{k}^{(n)}\right\}$ sequence is shifted.

Fig. 5. Typical oscillations. The figure shows the contours of the underlying function and how the first two oscillations are achieved by scaling up the $\left\{a_{k}^{(n)}\right\}$ sequences. The iterate $X^{(1)}$ is at the lower boundary of the truncation region along the x-axis and in the interior along the y-axis. Therefore the only admissible boundary along the x-axis is the upper boundary where both boundaries are defined to be admissible along y-axis. The gradient estimate at this point in each direction is positive (as shown by the solid arrows) and points towards an admissible boundary. Scaling up the $\left\{a_{1}^{(n)}\right\}$ and $\left\{a_{2}^{(n)}\right\}$ sequences (shown by the dotted arrows) an admissible boundary is hit along both dimensions. (The next iterate is at the point ($1-c_{1}^{(2)}, 1-$ $c_{2}^{(2)}$) which is the upper boundary of the truncation region.) The first oscillation is achieved by moving from $X^{(1)}$ to $X^{(2)}$. At the next iteration, the gradient is estimated at $X^{(2)}$, and it points towards the admissible boundaries along both dimensions, so the $\left\{a^{(n)}\right\}$ sequences are scaled up and the next iterate is at the point $X^{(3)}$. This completes the second oscillation.

Fig. 6. Two oscillations in three iterations. As explained in Figure 5, since the iterate $X^{(1)}$ is in the interior of the truncation region along both dimensions, both boundaries are admissible in each direction. Therefore the first oscillation is completed by scaling up both of the $\left\{a_{1}^{(n)}\right\}$ and the $\left\{a_{2}^{(n)}\right\}$ sequences and moving from $X^{(1)}$ to $X^{(2)}$. Now let us consider the gradient estimate at $X^{(2)}$ along the two axes separately (the two solid arrows shown here). Along the x-axis, even though the true gradient is positive, due to high noise level we get a negative gradient estimate which points outwards along the x-axis. But since the iterate $X^{(2)}$ is already at the lower boundary of the truncation region along this dimension, the only admissible boundary is the upper boundary. Therefore the iterate cannot hit the admissible boundary along this dimension by scaling up the $\left\{a_{1}^{(n)}\right\}$ sequence. On the other hand, the gradient along the y axis points toward the lower boundary, which is the admissible boundary and moving from point $X^{(2)}$ to $X^{(3)}$, only $\left\{a_{2}^{(n)}\right\}$ sequence which corresponds to the sequence used along the y-axis is scaled up. (The scale up is shown in dotted arrow in panel (a).) Then the gradient at $X^{(3)}$ is estimated and it points towards the opposite boundary along both dimensions as seen in panel (b). Moving from $X^{(3)}$ to $X^{(4)}$, the $\left\{a_{2}^{(n)}\right\}$ sequence is not scaled up since an admissible boundary is already hit along this dimension within the second oscillation. Only the $\left\{a_{1}^{(n)}\right\}$ sequence is scaled up to hit the admissible boundary and this completes the second oscillation.

Fig. 7. Shifting $\left\{a^{(n)}\right\}$ sequence. The figure shows the contours of the underlying function and an instance where the $\left\{a_{1}^{(n)}\right\}$ sequence is shifted to decrease the step-size sequence. The iterate $X^{(n)}$ is at the lower end of the truncation region along the x-axis. Using the original value of the $\left\{a_{1}^{(n)}\right\}$ sequence with the estimated gradient (shown in solid arrow) pushes the iterate beyond the upper end of the truncation region, which is at $1-c_{1}^{(n)}$ along the same dimension. Because the iterate moves from one boundary to the opposite along the x-axis, the $\left\{a_{1}^{(n)}\right\}$ sequence is shifted so that the next iterate, $X^{(n+1)}$ is within the truncation region after the shift. Only the $\left\{a_{1}^{(n)}\right\}$ sequence is shifted since the iterate does not move from one boundary to the opposite along the y-axis.

Table XIV. A sample path of iterates illustrating the adaptations. The first column is the iteration number. The second and third columns represent where the next iterate would be without the adaptations, i.e. $X_{k}^{(n+1)}=X_{k}^{(n)}+a_{k}^{(n)} \widehat{\nabla} \tilde{f}_{k}\left(X^{(n)}\right)$. for $k=1$, 2 , respectively. The next four columns contain the new sequences to be used for future iterations after adaptations. The last two columns are the next iterates after the adaptations in the sequences are in place. The four oscillations are completed at the end of iterations $1,5,7$ and 12 which means the scaling phase of the algorithm takes 12 iterations. Then shifting phase starts; we shift the $\left\{a_{1}^{(n)}\right\}$ sequence at iteration 13 , and the $\left\{a_{2}\right\}$ sequence at iteration 14. During both phases, we also scale up the $\left\{c_{k}^{(n)}\right\}$ sequences as prescribed in Section 2.4. There is no more scale up in the $\left\{c_{1}^{(n)}\right\}$ sequence after iteration 4 and no more in the $\left\{c_{2}^{(n)}\right\}$ sequence after iteration 9 since at these iterations, the sequences hit the upper bound.

| n | $\widehat{\nabla} \widetilde{f}_{1}\left(X^{(n)}\right)$ | $\widehat{\nabla} \widetilde{f}_{2}\left(X^{(n)}\right)$ | $X_{1}^{(n+1)}$ | $X_{2}^{(n+1)}$ | $a_{1}^{(n)}$ | $a_{2}^{(n)}$ | $c_{1}^{(n)}$ | $c_{2}^{(n)}$ | $X_{1}^{(n+1)}$ | $X_{2}^{(n+1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.12 | 0.06 | 0.78 | -0.48 | $10 / n$ | $10 / n$ | $0.1 / n^{1 / 4}$ | $0.1 / n^{1 / 4}$ | -1.00 | |
| 2 | -0.17 | 0.11 | -1.85 | 1.45 | $10 / n$ | $10 / n$ | $0.2 / n^{1 / 4}$ | $0.2 / n^{1 / 4}$ | -1.00 | 0.85 |
| 3 | -0.08 | -0.06 | -1.27 | 0.6 | $10 / n$ | $96.3 / n$ | $0.4 / n^{1 / 4}$ | $0.2 / n^{1 / 4}$ | -1.00 | -1.00 |
| 4 | -0.01 | 0.04 | -1.03 | 0.01 | $10 / n$ | $96.3 / n$ | $0.6 / n^{1 / 4}$ | $0.2 / n^{1 / 4}$ | -1.00 | 0.01 |
| 5 | 0.07 | 0.03 | -0.86 | 0.67 | $100 / n$ | $96.3 / n$ | $0.6 / n^{1 / 4}$ | $0.2 / n^{1 / 4}$ | 0.62 | 0.67 |
| 6 | 0.02 | -0.01 | 1.00 | 0.57 | $100 / n$ | $963 / n$ | $0.6 / n^{1 / 4}$ | $0.2 / n^{1 / 4}$ | 0.63 | -1.00 |
| 7 | -0.02 | 0.03 | 0.34 | 3.54 | $553 / n$ | $963 / n$ | $0.6 / n^{1 / 4}$ | $0.2 / n^{1 / 4}$ | -1.00 | 0.88 |
| 8 | 0.06 | 0.25 | 3.04 | 30.74 | $553 / n$ | $963 / n$ | $0.6 / n^{1 / 4}$ | $0.4 / n^{1 / 4}$ | 0.65 | 0.77 |
| 9 | 0.04 | 0.08 | 3.26 | 9.53 | $553 / n$ | $963 / n$ | $0.6 / n^{1 / 4}$ | $0.7 / n^{1 / 4}$ | 0.66 | 0.60 |
| 10 | 0.002 | 0.05 | 0.79 | 5.59 | $553 / n$ | $963 / n$ | $0.6 / n^{1 / 4}$ | $0.7 / n^{1 / 4}$ | 0.67 | 0.61 |
| 11 | 0.03 | 0.03 | 2.22 | 3.13 | $553 / n$ | $963 / n$ | $0.6 / n^{1 / 4}$ | $0.7 / n^{1 / 4}$ | 0.68 | 0.62 |
| 12 | 0.02 | -0.003 | 1.40 | 0.34 | $553 / n$ | $5661 / n$ | $0.6 / n^{1 / 4}$ | $0.7 / n^{1 / 4}$ | 0.69 | -1.00 |
| 13 | -0.08 | -0.03 | -2.58 | -14.66 | $553 / n+10)$ | $5661 / n$ | $0.6 / n^{1 / 4}$ | $0.7 / n^{1 / 4}$ | -1.00 | -1.00 |
| 14 | -0.04 | 0.01 | -2.02 | 4.62 | $553 /(n+10)$ | $5661 / n+10)$ | $0.6 / n^{1 / 4}$ | $0.7 / n^{1 / 4}$ | -1.00 | 0.64 |

A.2. Convergence Figures

This section presents graphs of convergence rate estimates for the various stochastic approximation algorithms considered in the examples studied in section 3.2 and sections 3.4 through 3.7.

Figure 8 exhibits the improvement in the convergence rate estimate as well as the MSE of the iterates in the newsvendor problem.

Fig. 8. Multidimensional newsvendor problem. The log-log plot shows the improved convergence rate of the SS-KW algorithm over the KW-algorithm. The KW-algorithm converges at a rate estimate of -0.18 with standard error of estimate of 0.0004 where the SS-KW algorithm improves this rate estimate to -0.59 with standard error of estimate of 0.003 .

Fig. 9. Airline seat protection levels. The log-log plot shows the improved convergence rate of the SS-RM algorithm over the RM-algorithm with $a^{(n)}=1 / n$ (the estimated rate of convergence for the latter is -0.01). The performance of the SS-RM algorithm in terms of MSE values is also close to that of the RM-algorithm using the pre-adjusted sequence of $\left(a^{(n)}=200 /(n+10)\right.$) (dubbed RMwAdj in the figure). The SS-RM algorithm converges at an estimated rate of -0.99 and at the rate -1.08 for RMwAdj (see TableIX for standard errors).

Convergence plots for MSE of each algorithm for airline seat protection level problem are given in Figure 9. The SS-RM algorithm achieves the improvement in convergence rate by scaling up the $\left\{a^{(n)}\right\}$ sequences. The dotted-line labeled as RMwAdj shows the convergence of the iterates generated using a hand-picked (after some preexperimentation with the objective function) gain sequence.

The SPSA algorithm is observed to have a long oscillatory period in the multiechelon production-inventory systems problem. The median oscillatory period for the SPSA algorithm is 414 . The SS-SPSA algorithm brings this down to 27 . The decrease in the oscillatory period length improves the MSE as seen in Figure 10.

Fig. 10. Multiechelon production-inventory systems. The log-log plot shows the improved convergence of the SS-SPSA algorithm over the SPSA algorithm.

The objective function in the Merton jump-diffusion model calibration problem is quite steep at the boundaries and very flat near the point of optimum. As a result, KW-algorithm converges to the optimum point at a degraded rate. Even though SS-KW algorithm does not recover the theoretically optimal rate of convergence, it improves the performance as seen in Figure 11.

Figure 12 shows the improved convergence in SS-KW algorithm over KW-algorithm for the call center staffing problem. The improvement in the SS-KW algorithm is achieved mainly by scaling up the $\left\{a^{(n)}\right\}$ sequences.

Fig. 11. Merton jump-diffusion model calibration: The log-log plot shows the improved convergence of $\widehat{\mathbb{E}} \tilde{f}\left(X^{(n)}\right)-f\left(x^{*}\right)$ for the SS-KW algorithm compared to the KW-algorithm.

Fig. 12. Call center staffing: The log-log shows the improved convergence rate of the SS-KW algorithm compared to the KW-algorithm.

[^0]: This work was supported by NSF grants DMII-0447652 and DMS-0914539.
 The authors are all with the Graduate School of Business, Uris Hall, 3022 Broadway, NY NY 10027
 e-mail: mnb2@columbia.edu, dcicek05@gsb.columbia.edu, assaf@gsb.columbia.edu
 Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
 (C) 2014 ACM 1539-9087/2014/01-ART1 \$15.00

 DOI:http://dx.doi.org/10.1145/0000000.0000000

[^1]: (C) 2014 ACM 1539-9087/2014/01-ART1 \$15.00

