
Pointwise Stationary Fluid Models for Stochastic
Processing Networks∗

Achal Bassamboo
†

Northwestern University
J. Michael Harrison

‡

Stanford University
Assaf Zeevi

§

Columbia University

Submitted: July 2005 Last revised: July 17, 2007

Abstract

Generalizing earlier work on staffing and routing in telephone call centers, we con-
sider a processing network model with large server pools and doubly stochastic input
flows. In this model the processing of a job may involve several distinct operations,
and alternative processing modes are also allowed. Given a finite planning horizon,
attention is focused on the two-level problem of capacity choice and dynamic system
control. A pointwise stationary fluid model (PSFM) is used to approximate the sys-
tem’s dynamics, which allows development of practical policies with a computational
burden that is manageable. Earlier work in more restrictive settings suggests that our
method is asymptotically optimal in a parameter regime of practical interest, but this
paper contains no formal limit theory. Rather, it develops a PSFM calculus that is
broadly accessible, with an emphasis on modeling and practical computation.

Short Title: Pointwise Stationary Fluid Models

Keywords: admission control, dynamic routing, doubly stochastic arrivals, approximation,
pointwise stationary, abandonments, stochastic networks.

1. Introduction

In this paper we formulate a general model of a stochastic processing network, a central

feature of which is that exogenous arrival rates are allowed to vary both temporally and

stochastically. As in the antecedent work cited immediately below, we assume that each

∗Research supported in part by NSF grant DMI-04-4765
†Kellogg School of Management, Northwestern University, e-mail: a-bassamboo@nwu.edu
‡Graduate School of Business, Stanford University e-mail: harrison michael@gsb.stanford.edu
§Graduate School of Business, Columbia University e-mail: assaf@gsb.columbia.edu

1

of the server pools that provide the system’s processing capacity has many servers. In the

context of that model we study two interrelated problems: capacity choice and dynamic

system control. This class of models generalizes in a substantial way our earlier work on

the interrelated problems of staffing and routing in telephone call centers [13, 3, 4] by al-

lowing multiple processing operations for individual jobs or customers, and in the notion of

differentiated processing modes that will be illustrated in Section 5.

Adopting essentially the same framework as in [12], we conceptualize a stochastic pro-

cessing network in terms of resources, activities and units of flow; the historical antecedents

of that conceptualization are discussed further in [11]. In addition to its greater flexibility

for representing physical processing capabilities, the network model considered here has a

more general economic structure than the call center models analyzed in [13, 4, 3]. These

features will be explained in Section 2, after some formal definitions have been introduced.

We are concerned with a two-stage decision problem: at the higher level, the system

manager must choose a vector b = (b1, . . . , br) whose components may be loosely described

as the capacities of various processing centers. At the lower level, given b, the system

manager must choose a dynamic policy for allocating capacity to processing activities over a

fixed and finite time interval. By assumption, the capacity vector b remains fixed over that

time interval, but our analytical framework can easily be adapted to settings where b is reset

periodically subject to certain realistic constraints (see Section 8).

We propose in this paper a tractable modeling framework for the two-level problem

of design and control described above. The proposed framework substitutes a seemingly

crude pointwise-stationary fluid model (PSFM) for the finely structured stochastic processing

network; it allows one to develop practical policies with a computational burden that is

manageable for systems of realistic size. The term PSFM reflects a blend of two concepts:

fluid models, and pointwise stationarity. The former are macroscopic approximations of

the original system that suppress low-level stochasticity, substituting mean flow rates for

stochastic primitives. The rigorous justification of such models is based on the functional

law of large numbers, the application of which is often referred to as “taking fluid limits.”

(Examples of recent work dealing with fluid analysis of non-stationary queuing systems

include [15] and [21].) The term “pointwise stationary approximation” (PSA) was introduced

in [9] in the context of a simple Markovian queuing model with non-stationary arrivals. It

reflects the idea of using steady-state analysis at each instant in time while “freezing” the

arrival rate. This idea was made rigorous in [19]; for further refinements see [16]. The recent

2

paper [10] surveys work on setting staffing levels in service systems to meet time-varying

demand.

The PSFM and the method we develop for its analysis are direct generalizations of earlier

work on call centers, where two types of evidence were advanced to justify the approach:

numerical examples were analyzed to show the accuracy of our proposed procedure on small

but arguably representative systems, and limit theory was developed to show the “asymptotic

optimality” of that procedure in a parameter regime of practical interest. Here there will be

little mention of formal limit theory, but building on the intuition developed in [4, 3, 13],

we shall describe conditions under which we believe our proposed approach is a good one.

Our intention is to make a transition in this paper from the formal, foundational flavor of

[3] and [4] to a PSFM “calculus” that is broadly accessible, the primary emphasis being on

modeling and practical computation.

The remainder of the paper is structured as follows. In Section 2 we formulate a conven-

tional, “exact” model of the stochastic processing network described verbally above. Section

3 specifies our approximating PSFM for that system. Adopting the approximate model

thereafter, we formulate in Section 4 the design and control problems referred to above, then

“solve” those problems (that is, explain how an optimal capacity plan and an optimal control

strategy can be computed) and interpret the solution. Section 5 is devoted to an elaborate

example of back-office processing operations, which serves to illustrate both the multi-stage

processing and the differentiated processing modes that are allowed in our current model

formulation. The goal of that discussion is to demonstrate in a concrete setting the power

and flexibility of our modeling framework, not to provide a worked-out numerical example.

In fact, numerical values are provided for just some model parameters, and discussion of the

example is terminated before the PSFM model has even been completely formulated. To

further illustrate our PFSM-based solution procedure, Section 6 examines a variant of the

simple network with discretionary routing that was originally studied by Wein [18].

Section 7 has a somewhat different character from the rest of the paper, because there

we strive to show how substantive new modeling issues can be addressed by extending or

modifying our PSFM framework. To be more specific, we consider in that section a problem

of dynamic server allocation in a system where arriving jobs are given accurate estimates of

their waiting times. This real-time “delay notification” will induce some jobs to balk rather

than enter the queue, which ultimately has a favorable effect on system performance. We first

prove a preliminary result that establishes consistency of a suitable waiting time estimate

3

(that is, an estimate that properly anticipates the balking behavior of future arrivals). We

then show that a complete solution to the problem is still obtainable in our augmented

PSFM framework, although real-time delay notification represents a substantial escalation

in model complexity. Section 8 discusses various extensions of our PSFM framework, and

Section 9 recapitulates the assumptions regarding model parameters that are needed to

justify a pointwise-stationary fluid model.

2. A General Processing Network Model

We consider a system comprised of r server pools, the kth of which contains bk identical

servers working in parallel; a rigorous justification of the approximation proposed in this

paper requires that b1, b2, . . . , br all be large, but in numerical examples studied to date, good

results have been obtained with as few as 5-10 servers per pool. A server might represent,

for example, an agent in a call center, a computer in a web server farm, or a machine in

a manufacturing context. (To avoid overly narrow interpretations, one could use the term

“processing resource” instead of “server.” We prefer the latter term because it is shorter and

more vivid.) By assumption, discrete units called jobs arrive exogenously from outside the

system; jobs eventually leave when their processing is complete. Another essential concept

in our modeling framework is that of a processing activity: servers engage in activities in

order to transform jobs or to remove them from the system under study. There is stochastic

variability associated with both the exogenous arrival process and the endogenous processing

activities.

In the model studied here, as in [12], jobs are divided into m different classes. Each job

arrives with a class designation that summarizes what is known initially about its processing

requirements (and may carry other information about the job as well). Each of the activities

available to the system manager involves a server from some particular pool k processing jobs

of some particular class i. The activity produces a transition event after a random amount

of time; that transition event is called a service completion, and the random amount of time

is called the service time. The service completion may result either in the job’s departure

or else in its transition from class i to another class i
′

. (In the latter case we say that the

activity “creates” a job of class i
′

as output.) The probabilities of these different transitions

are specific to the activity: it might be possible for a different server pool to process class

i jobs, or for servers from pool k to process class i jobs in a different mode (see Section 5),

4

and in either of those cases the transition probabilities when the service completion occurs

could be different.

As an example, Figure 1 portrays a stochastic processing network that was introduced

in [18]. Here jobs of class 1 arrive exogenously and are processed by servers from pool 1

(this is designated as activity 1), after which they become class 2 jobs and are eventually

processed by servers from pool 2 (this is designated as activity 2). Jobs of class 3 also arrive

exogenously, and they may be processed either by servers from pool 1 (this is designated

as activity 3) or by servers from pool 2 (this is designated as activity 4); after service is

completed they depart the system.

PSfrag replacements

server pools

completed services

buffers

activities

exogenous arrivals

internal flow

1 1 2 2

3

4
5

µ1 µ2

µ3 µ4

µ5

Figure 1: Schematic representation of a network with three job classes (m = 3), two server
pools (r = 2) and four activities (n = 4).

We denote by n the total number of processing activities available to the system man-

ager. For each j = 1, . . . , n we denote by i(j) the job class being processed in activity j, by

k(j) the server pool doing the processing, and by plj the probability that activity j “creates”

a class l job as output. In system equation (6) below, readers will see how the “switching

5

probabilities” plj influence the random evolution of our controlled processing network; and

further comments will be provided immediately thereafter. It is the jobs created by pro-

cessing activities that constitute the “internal flows” referred to above. We assume that the

service times associated with activity j are exponentially distributed with rate µj, and that

the service times are independent of arrival processes and of one another.

Let R and A be an m × n matrix and an r × n matrix, respectively, defined as follows:

for each j = 1, . . . , n set Rij = µj if i = i(j), Rij = −pijµj if i 6= i(j); set Akj = 1 if

k = k(j) and Akj = 0 otherwise. Thus one interprets R as an input-output matrix: its (i, j)th

element specifies the average rate at which activity j processes jobs of class i; a negative

(i, j)th element is interpreted to mean that activity i “produces” jobs of class i. The matrix

A defined above is a capacity consumption matrix: its (k,j)th element is 1 if activity j draws

on the capacity of server pool k and is zero otherwise. We define an m × n matrix B by

setting Bij = 1 if i(j) = i and Bij = 0 otherwise; thus B is an incidence matrix whose

elements indicate which job classes are processed by the various activities. For the system

in Figure 1 we have

R =

µ1 0 0 0
−µ1 µ2 0 0
0 0 µ3 µ4

 , A =

[
1 0 1 0
0 1 0 1

]
, and B =

1 0 0 0
0 1 0 0
0 0 1 1

 . (1)

Blocking and reneging. As stated above, jobs of various classes arrive exogenously

and randomly over time; the term “exogenous” is used to distinguish these arrivals from

the internal flows of newly created jobs that are described below. Newly arrived and newly

created jobs may be “accepted” or may be “blocked”; jobs that are blocked leave the system

immediately and have no influence on future arrivals or other future events. (For an alter-

native treatment see [8].) Those jobs that are accepted but cannot be served immediately

are stored in infinite-capacity buffers dedicated to their job class, and are then processed in

a first-in-first-out (FIFO) manner within the job class when the server becomes available.

These jobs may renege if forced to wait too long before the commencement of service.

To represent reneging in our formal mathematical model, each class i job is endowed

with an exponentially distributed “impatience” random variable τ with finite mean 1/γi,

independent of the impatience random variables of other jobs, and of service times and

arrival processes. A job reneges when its waiting time in the class-specific buffer (exclusive

of its own service time) exceeds τ time units. Let Γ = diag(γ1, . . . , γm) denote the reneging

rate matrix.

6

To repeat, we assume in our initial model formulation that any job can be blocked at

the time of its arrival or creation; however, there are penalties for such blocking (see below).

The process of deciding which jobs to accept and which to block is often called “admission

control” or “input control” in the stochastic systems literature, and those terms will be used

occasionally as synonyms for blocking in this paper. Of course, the assumption that any

job can be blocked, either when first arriving in the system or after changing classes, is a

strong one, but it is not crucial: as we shall explain in Section 8, our analysis and conclusions

remain valid when admission control is impossible for some job classes, provided that jobs

of those classes renege at a fast enough rate; and conversely, under mild assumptions on the

cost structure, the reneging rate may be zero for some classes whose arrivals can be rejected.

Poisson-exponential assumptions. In the initial specification of our network model,

we assume exponential service and reneging time distributions, and doubly stochastic Poisson

arrival processes. As we shall discuss later in Section 3, the Poisson-exponential assumptions

are not essential for our analytical framework, but they simplify its exposition. (However,

rigorous limit theory that supports the PSFM formulation has only been derived to date

under these simplifying assumptions.)

The assumption of doubly stochastic Poisson arrivals, which played a central role in our

previous work on telephone call centers [13, 3, 4], means the following: at any given time, new

arrivals into classes 1, . . . ,m occur according to independent Poisson processes with intensity

parameters λ1, . . . , λm, but the vector λ = (λ1, . . . , λm) of instantaneous arrival rates is itself

evolving as a stochastic process with arbitrary distribution. This very general representation

of system inputs, allowing average arrival rates to vary both temporally and stochastically,

is necessary for realism in many application contexts, but it makes exact analysis virtually

impossible.

Probabilistic structure of the exogenous arrival process. We consider a complete

probability space (Ω,H,P) on which are defined 2m +mn mutually independent, unit rate

Poisson processes denoted by N
(`)
i = (N

(`)
i (t) : 0 ≤ t < ∞) for i = 1, . . . ,m and ` = 1, 2,

and N
(3)
ij = (N

(3)
ij (t) : 0 ≤ t < ∞) for i = 1, . . . ,m and j = 1, . . . , n . The 2m Poisson

processes corresponding to ` = 1, 2 will be used to construct the arrivals and reneging jobs

for each customer class, and the mn Poisson processes corresponding to ` = 3 will be used

to construct service completions and internal flows associated with the various processing

activities. On the same space there are defined m continuous, non-negative arrival rate

processes Λi = (Λi(t) : 0 ≤ t ≤ T) satisfying E[
∫ T

0
Λi(t)dt] <∞ for i = 1, . . . ,m, independent

7

of the Poisson processes N
(`)
i . Here T represents the planning horizon. Of course, there may

be job classes i for which Λi ≡ 0; we denote by E (mnemonic for exogenous arrivals) the

complementary set of classes i ∈ {1, . . . ,m} such that E{
∫ T

0
Λi(t)dt} > 0. Now define

Fi(t) = N
(1)
i

(∫ t

0

Λi(s)ds

)
, i = 1, . . . ,m, (2)

interpreting Fi(t) as the cumulative number of class i arrivals up to time t. This is a standard

construction of a doubly stochastic Poisson process (cf. [6]). Put F = (F (t) : 0 ≤ t ≤ T)

where F (t) = (F1(t), . . . , Fm(t)). The construction of reneging jobs and completed services

under a given control will be done in an analogous manner using the Poisson processes N (2)

and N (3); see (6) below.

Control formulation. The system manager confronts a two-stage decision problem.

First, choose a capacity vector b = (b1, ..., br) in R
r
+ , whose kth component is the number of

servers to be employed in station k during the specified planning period. This decision will

be referred to as a capacity choice or capacity plan interchangeably, and by assumption it

cannot be revised as actual arrivals are observed during the period.

Second, the system manager chooses a dynamic control for the purpose of workflow

management, which has two components: admission control and server allocation. Math-

ematically, a dynamic control is defined as a pair of stochastic processes (X,U), where

U = (U(t) : 0 ≤ t ≤ T) takes values in R
m
+ and has sample paths that are nondecreasing

and right-continuous with left-limits, and X = (X(t) : 0 ≤ t ≤ T) takes values in R
n
+ and

has sample paths that are Lebesgue integrable and right-continuous with left-limits. Writing

U(t) = (U1(t), . . . , Um(t)) for the admission control, and X(t) = (X1(t), . . . , Xn(t)) for the

server allocation policy, we interpret Ui(t) as the cumulative number of class i jobs that are

blocked up until time t, and Xj(t) as the number of servers engaged in activity j at time t.

The reader should note that integrality constraints are relaxed in our formulation of both

capacity choice and dynamic control. The approximating framework advanced in Section 3 is

only applicable if the non-zero components of b are large, so the distinction between integer

and non-integer valued decision variables is not significant; see further discussion in Section

3.

A control (X,U) is said to be admissible if it is non-anticipating in an appropriate sense

(see below) and there exist processes Z and Q, both taking values in R
m
+ , both having time

domain [0, T] and both necessarily unique, that jointly satisfy conditions (3)-(6) below for

8

0 ≤ t ≤ T . We interpret Zi(t) as the number of class i jobs in the system at time t, and

Qi(t) as the number of class i jobs who are waiting for service at time t. We call Z and Q the

jobcount process and queue length process, respectively. The relationships that (X,U, Z,Q)

must jointly satisfy for all t ∈ [0, T] are the following:

Ui(t) − Ui(s) ≤ Fi(t) − Fi(s) +
∑

{j:i(j)6=i}

N
(3)
ij

(∫ t

s

µjpijXj(s)ds

)
for all s ∈ [0, t), (3)

AX(t) ≤ b, (4)

Q(t) = Z(t) −BX(t) ≥ 0, (5)

Zi(t) = Fi(t) −N
(2)
i

(∫ t

0

γiQi(s)

)
−

∑

{j:i(j)=i}

∑

{i′:i′ 6=i}

N
(3)
i′j

(∫ t

0

µjpi′jXj(s)ds

)
(6)

+
∑

{j:i(j)6=i}

N
(3)
ij

(∫ t

0

µjpijXj(s)ds

)
− Ui(t) for i = 1, ...,m.

Condition (6) is the system dynamics equation: the first term on the right-hand-side repre-

sents exogenous arrivals of class i jobs; the second term represents reneging by class i jobs;

the third term represents service completions for class i jobs; the fourth term represents

the creation of class i jobs by endogenous activities; and the last term represents blockage

of class i arrivals. Because the service requirements and impatience random variables are

exponentially distributed, we can express all the terms in (6) as time changes of unit rate

Poisson processes. In particular, the instantaneous service rate associated with activity j

and reneging rate for class i are µjXj and γiQi, respectively. Further, activities in the set

{j : i(j) = i} “consume” class i jobs, and activities in the set {j : i(j) 6= i} may “produce”

class i jobs depending on the probabilities pij. As mentioned above, an admissible control

is non-anticipating with respect to the filtration generated by prior arrivals, services and

abandonments, i.e., the minimal filtration generated by the terms on right hand side of the

system dynamics equation (6), cf. pp 196 − 197 of [6].

From this restriction to non-anticipative controls, plus familiar properties of the Poisson

process, one sees that (6) is consistent with the verbal interpretation of the parameters plj

that was given earlier. To be specific, consider an activity j, a job class i such that i = i(j),

and another job class l 6= i. Now suppose that the processing of a class i job is undertaken

by means of activity j. The associated service time is exponentially distributed with mean

j, and plj is the probability that the job makes a transition to class l when its service is

complete, independent of all previous events.

9

The first admissibility constraint (3) requires that the number of blocked jobs be no

greater than the number of arrivals (due to both exogenous arrivals and internal flows)

during any time interval for each class. Constraint (4) requires that the number of servers

in a given pool who are engaged in processing activities at a given time not exceed the total

number of servers available in that pool. In our third constraint, (5), the ith component

of the vector BX(t) represents the total number of class i jobs being processed at time t,

and (5) requires that this not exceed the jobcount for class i at time t. Given a control

(X,U), one can view the jobcount process Z and the queue length process Q as the unique

solution of (5) and (6), which can be constructed jump-to-jump starting from time zero.

Because the primitive processes N (`) are independent Poisson processes, the probability of

simultaneous jumps is zero, and hence there almost surely exists a pair (Z,Q) satisfying the

aforementioned relationship.

Economic data. The system manager’s economic objective will be discussed further

in Section 4; here we list the economic data and introduce some terminology. As in [4] we

assume that a penalty pa
i ≥ 0 is incurred each time a class i job reneges (the letter a is

mnemonic for “abandonment”), a penalty pb
i ≥ 0 is incurred each time a class i arrival is

blocked, and holding costs are continuously incurred at rate hi ≥ 0 (expressed in dollars

per time unit, for example) for each class i job in the system. Also, we are given a cost

ck > 0 to employ a server in pool k over the entire planning horizon (k = 1, . . . , r). The

new economic element referred to in Section 1 is the following: we assume that each activity

j generates variable cost at a (possibly negative) rate of vj per time unit; if an activity

j produces a lump-sum cost of expected magnitude δj upon completion of the associated

service, we represent this in our framework by setting vj = µjδj, where µj is the average

service rate (the reciprocal of the mean service time) for activity j. The value of this added

model feature will be illustrated in Section 7.

Structural restrictions of the model. Compared with the general formulation of

a “stochastic processing network” laid out in [12], the model described in this section is

restrictive in two regards. First, we assume that each processing activity involves a single

server from a specified pool, whereas simultaneous resource requirements were allowed in

[12]. Second, in the current formulation the units of flow are discrete “jobs,” each activity

involves a single job from a specified class as input, and the activity produces at most one

job as output; one naturally thinks of the output job, if there is one, as a relabeling of the

input job to reflect a change in its status or condition. In contrast, the framework developed

10

in [12] allowed materials flowing through the system to be either discrete or continuous, and

allowed activities with multiple inputs, multiple outputs, or both. As we shall explain in

Section 8, the restrictions highlighted in this paragraph are not essential for the analytical

framework we develop, but they are natural for the applications we have in mind and they

simplify the exposition.

3. The Pointwise Stationary Fluid Model

The system dynamics under a control (X,U), as described in (6), are not analytically

tractable for either performance evaluation or control purposes. In this section we describe

the pointwise stationary fluid model (PSFM) of the stochastic processing network given in

Section 2. It is vastly simpler than the original stochastic model and supports tractable

analysis.

To better understand the nature of the PSFM that we are about to describe, first consider

the fluid analog of the original system model, which is obtained by replacing all Poisson

streams by fluid flows at their respective rates. Using this substitution one gets the following

system dynamics:

Zi(t) =

∫ t

0

Λi(s)ds−

∫ t

0

(RX)i(s)ds−

∫ t

0

γiQi(s)ds− Ui(t) for i = 1, ...,m, (7)

for all t ∈ [0, T]. Further assume that the process U can be expressed in integral form,

i.e., for all i = 1, ...,m there exists a non-negative real-valued process Yi such that for all

t ∈ [0, T],

Ui(t) =

∫ t

0

Yi(s)ds. (8)

We interpret Yi(t) as the rate at which the jobs of class i are blocked at time t. One can

then express the system dynamics informally in the following differential form:

dZ(t)

dt
= Λ(t) −RX(t) − ΓQ(t) − Y (t), (9)

for all t ∈ [0, T], where Y (t) = (Y1(t), . . . , Yn(t)). This fluid approximation is based on the

functional strong law of large numbers, and hence provides an accurate approximation to

the original stochastic system when the flow of work through the system is “large”. While

this approximation eliminates “lower order” stochastic fluctuations, it still leaves us with a

11

complicated control problem because the system dynamics are given by a differential equation

with “random driver” Λ(·).

The main idea underlying the proposed PSFM is to further simplify (9) by eliminating

transient dynamics. Imagine that at time t ∈ [0, T] we “freeze” all time-dependent quantities,

except the jobcount and queue length variables, in the system whose dynamics are described

by (9). In particular, for all times s ≥ t we fix Λ(t) = λ, X(t) = x, and Y (t) = y. Further,

let qt(s) and zt(s) denote the queue length and job count vector. Then one has

dzt(s)

ds
= λ−Rx− Γqt(s) − y, (10)

for s ≥ t. Further, (qt(s), zt(s)) satisfy zt(s) = qt(s) + Bx for all s ≥ t. The subscript t

captures the dependence of these quantities on the values that have been frozen at time t.

For any initial condition (zt(t), qt(t)) ∈ [0,∞)× [0,∞), it is straightforward to verify that the

queue length and headcount converge exponentially fast with a characteristic time constant

proportional to the reneging rate. In particular, if we take an infinite time horizon, then

(zt(s), qt(s)) → (z̄t, q̄t) as s→ ∞, (11)

where (z̄t, q̄t) satisfy the following relationship:

λ = Rx+ Γq̄t + y, and z̄t = q̄t +Bx. (12)

To obtain the PSFM equivalent of the original processing network we simply “unfreeze”

(λ, x, y) in (12), and consider again the original time interval [0, T]. The dynamic evolution

of the system under a control (X,Y) is then determined by the following instantaneous

flow-balance equation:

Λ(t) = RX(t) + ΓQ(t) + Y (t), (13)

for all t ∈ [0, T]. Hence, the PSFM is obtained by first disregarding routine stochastic

fluctuations, considering a fluid model of the original system dynamics, and then compressing

the evolution of these dynamics over infinite time to a single point t ∈ [0, T]. The latter

compression explains our use of the term “pointwise stationary.”

For the PSFM we define an admissible control as a pair of processes X and Y , taking

values in R
n
+ and R

m
+ respectively, that satisfy

AX(t) ≤ b (14)

12

and

RX(t) + Y (t) ≤ Λ(t) (15)

for all t ∈ [0, T]. It is easy to see that the set of admissible controls is non-empty. We

associate with an admissible control (X,Y) a triple of processes (U,Q,Z) via (8), (13), and

Z(t) = BX(t) +Q(t). (16)

for 0 ≤ t ≤ T . Here (13) serves to define the queue length process Q for the admissible

control (X,Y). (Of course, it is essential in this regard that every class i = 1, . . . ,m have a

strictly positive reneging rate γi, as assumed in Section 2. However, the PSFM construction

can be extended to models where γi = 0 for some classes i, provided that other conditions

are satisfied; see Section 8 for further discussion of this matter.) U and Z have the same

interpretation as in Section 2, namely, U(t) is a vector whose coordinates represent the

cumulative number of jobs blocked until time t, and Z is the jobcount process.

Discussion. When does the PSFM described above provide a “reasonable” approxima-

tion of the original system? The reduction from the original dynamics to (9) is based on a

high flow volume assumption, while the reduction from (9) to (13) is appropriate when the

system exhibits high turnover rates, i.e., arrival rates, service rates, and reneging rates are

large. (Note that the convergence in (11) is “fast” when the reneging rates are large.) In

this environment, the PSFM combines fluid-flow dynamics with negligible transient behavior.

(For a more formal treatment and supporting limit theory cf. [3, 4].)

In terms of distributional assumptions, the stochastic model in Section 2 assumes the

arrival process is doubly stochastic Poisson, and the service times and impatience variables

have an exponential distribution. The memoryless property of the exponential distribution

allows us to express the system dynamics (6) as a simple time change of Poisson processes.

When the service times and impatience random variables follow general distributions, the

analysis in [21] suggests an approximating PSFM whose instantaneous flow balance equation,

analogous to (13), has the form

Λi(t) = (RX)i(t) + fi(Qi(t)) + Yi(t), i = 1, . . . ,m, (17)

where the input-output matrix R depends on mean service times (and not on other char-

acteristics of the service time distributions) exactly as in Section 2, and fi(·) is a function

that specifies the abandonment rate for class i jobs. When the impatience distribution is

13

exponential with parameter γi, then fi(qi) = γiqi, and in the general case fi(·) depends on

the distribution of the impatience random variable. We believe that (17) can be justified

as a rigorous approximation of the underlying stochastic system in the spirit of the limit

theory developed in [4, 3]; see [21] for a fluid analysis of a single-server system with general

“impatience” distribution and an explicit characterization of fi(·) in that context. It is also

reasonable to speculate that the PSFM would still be a valid approximation to the original

system dynamics when the arrival process is more general than doubly stochastic Poisson,

e.g., a point process with stochastic intensity; cf. [6].

4. Design and Control via Pointwise Stationary Fluid

Models

In this section we state the economic objective of the system manager in the context of our

original stochastic processing network. We then state the solution prescribed by the PSFM

for the capacity planning problem and the dynamic control problem, and afterward explain

the logic that supports our prescription.

4.1 Economic objective

Consider the stochastic processing network described in Section 2, and recall from Section

1 the meanings of the economic parameters pa
i , p

b
i , hi, vj and ck. Given a planning horizon

T > 0, the total cost associated with a capacity vector b and corresponding admissible

control (X,U) is

r∑

k=1

ckbk +
m∑

i=1

(
pb

iUi(T) +

∫ T

0

hiQi(s)ds+ pa
iN

(3)
i

(∫ T

0

γiQi(s)ds

))
+

n∑

j=1

∫ T

0

vjXj(s)ds.(18)

The objective of the system manager is to choose a capacity vector b and an admissible

control (X,U) that jointly minimize the expected total cost.

In the above formulation, the reneging and blocking penalty terms can be viewed as “du-

alizing” constraints on the fraction of reneging jobs and fraction of blocked jobs, respectively,

with the class-specific penalties pa
i and pb

i interpreted as Lagrange multipliers. (A rigorous

justification of this statement will be given in a separate paper.)

14

4.2 PSFM-based design and control policies

The exact formulation presented above is not analytically tractable, so now we recast the

system manager’s problem in the context of our approximating PSFM. Let p = (p1, . . . , pm)

be defined via

pi := min

(
pb

i , p
a
i +

hi

γi

)
, (19)

for all i = 1, ...,m. Elements of the vector p are referred to as effective loss penalties. To

understand the basis for that terminology, consider an operating environment in which, as a

matter of policy, each newly arrived or newly created job is either assigned to an unoccupied

server immediately, or else never served at all. (In our approximating PSFM, an optimal

policy has essentially this character, but the manager of a real system will typically not

interpret this policy prescription literally. That is, a system manager has discretion regarding

how a PSFM-based policy will be “translated” in a realistic operating environment; see

section 4.3 and 4.4 of [3], and section 4.2 in [4] for further details and discussion of such an

implementation.) Once the system manager has relegated a class i job to the latter category,

meaning that the s/he has decided to “lose” the class i job rather than serve it, there is still

a choice to be made between blocking the job and just waiting for it to abandon. If the

blocking option is chosen, a penalty of pb
i is incurred; if the abandonment option is chosen,

the expected time required for the job to abandon is 1/γi. Thus the expected total cost

incurred is pa
i + hi/γi. Of course, the system manager will choose the less expensive means

of “losing” the customer. Thus the expected cost per class i customer lost is pi.

Now consider the following LP: choose x ∈ R
n to

minimize p · (λ−Rx) + v · x (20)

subject to Rx ≤ λ, Ax ≤ b, x ≥ 0,

where v = (v1, . . . , vn) and x ·y represents the scalar product of vectors x and y. For λ ∈ R
m
+

and b ∈ R
r
+, let x∗ := φ(λ, b) be an optimal solution of LP (20), and let π(λ, b) be the

optimal value of the LP. Thus φ : R
m
+ × R

r
+ → R

n
+ maps the right-hand-side of (20) to the

solution set. Assuming that the exogenous arrival rates Λ(·) are observable, we propose the

following PSFM-based solution. (In Section 8 we will discuss relaxing the assumption that

Λ is observable.)

15

Capacity planning. Let b∗ be the solution to the following stochastic programming

problem: choose b ≥ 0 to

minimize c · b+ E

[∫ T

0

π(Λ(t), b)dt

]
. (21)

It can be easily shown that under general conditions the objective function is convex and

there is a finite minimizer b∗ in (21); see Harrison and Zeevi [13]. As noted there, it is a

simple exercise in Fubini’s theorem to show that the optimization problem (21) can be recast

as follows:

minimize c · b+ T

∫

R
m

+

π∗(λ, b) dF (λ), (22)

where the cumulative distribution function F is given by

F (λ) :=
1

T

∫ T

0

P{Λ(t) ≤ λ} dt for λ ∈ R
m
+ . (23)

One interprets F (λ) as the expected fraction of time (within the planning period under

study) during which Λ(·) ≤ λ. While the formulation that uses the distribution F (λ) is

perhaps not very useful operationally, it is conceptually illuminating. In particular, it is

evident that the optimization problem articulated above is a two-stage LP with recourse: at

the first stage a system manager chooses the capacity vector b and incurs cost c · b; then

a random demand vector λ with distribution F is observed, and given that observation,

the system manager chooses at the second stage a vector x of activity levels that solve the

linear programming problem (20). The particular kind of two-stage problem embodied in

(22) is sometimes called a multi-dimensional newsvendor problem. With regard to numerical

solution techniques, various exact methods can be used when the distribution F concentrates

its mass on a relatively small number of points; in the more general case, methods based on

Monte Carlo simulation can be used. (The reader is refereed to [13] for further discussion of

numerical solution methods.)

Dynamic server allocation. For each t ∈ [0, T] set

X∗(t) = φ(Λ(t), b∗). (24)

For each time t ∈ [0, T], given the arrival rate vector Λ(t), the optimal control vector X ∗(t)

tells how servers in each pool should be allocated to different processing activities. That is,

roughly speaking, X∗(t) partitions each server pool into sub-pools that are dedicated to jobs

of particular classes, plus (possibly) a residual set of servers who are kept idle because there

16

is no work for them to do at time t. If the number of class i jobs present at time t is greater

than the total number of servers from different pools who are dedicated to class i, then the

remaining class i jobs are to wait in queue for later service.

Because X∗(t) depends on Λ(t), which may change continuously, the partitioning of

server pools referred to above may change continuously as well. Of course, a practical imple-

mentation of our PSFM-based prescription would have to make some compromise with this

idealization. One might, for example, reassess Λ and recompute X∗ at relatively short time

intervals (fifteen-minute intervals would be plausible in a call center context), reassigning

servers in accordance with that calculation as they complete services which were under way

at the review point.

Admission control. Partition the job classes into two sets Sa and Sb defined as follows:

Sa =

{
i ∈ {1, . . . ,m} : pi = pa

i +
hi

γi

}
(25)

Sb = {1, . . . ,m} \ Sa.

Then for each i = 1, . . . ,m set

Y ∗
i (t) =

{
Λi(t) − (RX∗(t))i if i ∈ Sb,

0 if i ∈ Sa.
(26)

The optimal admission control Y ∗ described by (26) does not block any jobs from classes

belonging to the set Sa. On the other hand, (26) implies Qi ≡ 0 for i ∈ Sb, which means

that jobs from those classes are to be blocked if they cannot be served immediately.

4.3 Supporting logic

This section explains the logic underlying the PSFM-based prescriptions detailed above. We

start by formulating the PSFM approximation to (18). Substituting the integral representa-

tion (8) of the admission control U , and defining m-vectors pa, pb and h in the obvious way,

one finds that the total cost associated with capacity vector b and corresponding admissible

PSFM control (X,Y) can be expressed in vector notation as

J (b,X, Y) := c · b+

[∫ T

0

(pb · Y (t) + h ·Q(t) + pa · ΓQ(t))dt

]
+

∫ T

0

v ·X(t)dt. (27)

Now solving for Q(t) in the PSFM flow balance equation (13), and substituting this in (27)

gives

J (b,X, Y) = c · b+

∫ T

0

((pb − hT Γ−1 − pa) · Y (t) + (hT Γ−1 + pa) · (Λ(t) −RX(t)) + v ·X(t))dt.(28)

17

In the PSFM, the system manager’s problem can be stated in the following hierarchical form:

first, choose b ≥ 0 before Λ is observed; then as Λ is observed, and given b, choose X(t) at

each time t to satisfy X(t) ≥ 0, AX(t) ≤ b and RX(t) ≤ Λ(t); and finally, given b and X,

choose Y (t) at each time t to satisfy 0 ≤ Y (t) ≤ Λ(t) −RX(t).

Given both b and X, one sees that the integrand (that is, the instantaneous cost rate)

in (28) is minimized at time t by setting Yi(t) = 0 if (pb
i − pa

i − hi/γi) ≥ 0 and setting

Yi(t) = (Λ(t)−RX(t))i [the maximum value it can take based on the admissibility condition

(15)] otherwise. This is the admission control specified in (26). The above analysis reduces

the total cost to

J (b,X, Y ∗) = c · b+

∫ T

0

(p · (Λ(t) −RX(t)) − v ·X(t))dt, (29)

where p is the effective loss penalty vector. It is easy to see that for any given capacity

vector b the dynamic control X∗(t) = φ(Λ(t), b) minimizes the integrand in (29) for each

time instant t ∈ [0, T] and for every realization of the arrival rate Λ. Thus we have the

following result.

Proposition 1 For any given capacity vector b, let (X∗, Y ∗) be the dynamic control defined

by (24) and (26) (taking b as input). Then for any other admissible control (X,Y) we have

J (b,X∗, Y ∗) ≤ J (b,X, Y). (30)

Substituting the optimal server allocation rule X∗ in (29), we arrive at the stochastic pro-

gramming problem (21). The next result summarizes the optimality of (b∗, X∗, Y ∗).

Proposition 2 Let b∗ be the solution of the optimization problem (21). Then the capacity

vector b∗ and the dynamic control (X∗, Y ∗) defined in (24) and (26) (taking b∗ as input)

jointly minimize E[J (b,X, Y)], where J (·, ·, ·) is given by (27).

5. A Back-office Processing Example

In a standard call center model there is at most one activity for a given i and k (that is,

servers from a given pool can process jobs from a given class either in one way or else not

at all), and all service completions result in job departures. To illustrate the power of our

current, more general modeling framework, Tables 1, 2 and 3 describe a system for processing

credit applications. New applications are described as either “simple” or “complex” based

18

on certain superficial characteristics. Of the simple applications, 15% are eventually found to

be “tenuous,” which means that the credit decision is not clear-cut and hence must be made

by a senior agent. The other 85% of simple applications can be processed to completion by

a junior agent. In contrast, 38% of the complex new applications are eventually found to be

tenuous, and a junior agent can tackle a complex new application in either of two modes.

The first of those (activity 2) is to proceed with the intention of processing to completion; if

the application turns out to be tenuous, then the junior agent will finish all “pre-processing

tasks” (obtaining a credit report, filling in missing information on the application form, etc.)

and then put it aside for later disposition by a senior agent. The second way a junior agent

can tackle a complex new application (activity 3) is to simply undertake the pre-processing

tasks and pass it along to a senior agent, which saves a good deal of wasted effort when

the application turns out to be tenuous. Activities 2 and 3 illustrate the phenomenon of

“differentiated processing modes” referred to in Section 1.

There is no need to explicitly include job class 0 in our mathematical model of this clerical

operation; the natural system representation has r = 2 server pools, m = 5 job classes and

n = 8 processing activities. From Tables 1, 2 and 3 we derive the following input-output

matrix R, resource consumption matrix A, and incidence matrix B (recall that the rows of

R correspond to job classes, rows of A correspond to servers pools, rows of B correspond to

job classes, and columns of each matrix correspond to activities):

R =

1/32 0 0 1/21 0 0 0 0
0 1/57 1/21 0 1/40 0 0 0

−1/213 0 0 0 0 1/28 0 0
0 −/150 0 0 0 0 1/35 0
0 0 −1/21 0 0 0 0 1/30

,

and

A =

[
1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1

]
, B =

1 0 0 1 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

.

The next step in the model specification is to identify the reneging rate γi for each

job class i = 1, . . . , 5. In the context of telephone call centers, reneging is usually called

“abandonment,” and it is natural to assume that only callers waiting in queues abandon.

19

pool number description of servers

1 junior agents (limited training and experience)
2 senior agents (fully trained and experienced)

Table 1: Server pools for credit agency example

However, in our credit agency example reneging might correspond to a potential customer

withdrawing his or her application because credit has been secured elsewhere, and in that

case the potential for reneging continues while the job is being processed. That structural

change is easy to accommodate in our analytical framework, but discussion of the matter will

be postponed to Section 8. The ability to have different reneging rates for different job classes

is potentially important in many contexts: one can imagine, for example, that customers

submitting credit applications might be notified when their applications pass certain initial

hurdles, and that such notifications reduce the customers’ propensity to look elsewhere for

credit.

The only remaining “physical flow” information required in modeling the credit agency

example is a probabilistic description of the system inputs over a chosen time horizon [0, T].

As explained in Section 4, a striking feature of the PSFM formulation is that all necessary

information about the input process is captured by a single probability distribution on R
m
+ .

In the current example, because there are no exogenous arrivals of job class 3, this amounts

to a single distribution on R
2
+.

With regard to economic data, one must first specify the penalties pa
i and pb

i associated

with reneging and blocking of each job class i (reflecting the expected present value of

current and future lost business). It may be appropriate to stipulate positive holding costs

hi in addition to reneging and blocking penalties, if processing delays are thought to have a

negative influence on future business, or simply to reflect the decrease in present value when

the receipt of revenue is retarded by processing delays.

Recall from Section 2 that our general model formulation also includes activity-specific

variable cost rates vj. The power of that model feature is well illustrated by the current

example: it may be that junior agents are more likely than senior agents to make mistakes

in processing complex applications, and those mistakes eventually lead to higher default

rates for the applications processed by juniors. The data presented in Tables 1, 2 and 3 do

not reflect such quality considerations, but they can be accounted for in the variable cost

rates associated with different activities.

20

job class description

0 fully processed applications (leaving the system)
1 simple new applications
2 complex new applications
3 pre-processed simple applications known to be tenuous
4 pre-processed complex applications known to be tenuous
5 pre-processed complex applications not further classified

Table 2: Job classes for credit agency example

activity
number

server pool input
class

mean service
time(mins)

output
class

probability

1 1 1 32
0 0.85
3 0.15

2 1 2 57
0 0.62
4 0.38

3 1 2 21 5 1

4 2 1 19 0 1

5 2 2 40 0 1

6 2 3 28 0 1

7 2 4 35 0 1

8 2 5 30 0 1

Table 3: Processing activities for credit agency example

6. Dynamic Control of a Network with Discretionary

Routing

In this section we apply the PSFM framework to solve a dynamic control problem associated

with the simple network pictured in Figure 1. Given reneging penalties pa
i , blocking penalties

pb
i , and holding cost rates hi for each class i (i = 1, 2, 3), we define the effective loss penalties

pi via (19). We assume throughout that

p1 < p2. (31)

This means that it is economically preferable to lose a class 1 job (either by blocking the job

or by allowing it to renege, depending on which of those modes is less costly) than to lose it

21

later as a class 2 job. Condition (31) is what one would expect in virtually any application

context. Another assumption on the cost structure is that v1 = 0, . . . , v4 = 0. That is, there

are no additional variable costs associated with processing activities. Thus, the last term in

the total cost expression (18) is absent, as is the term v · x in the objective function of the

LP (20) that is associated with our approximating PSFM.

We assume throughout this section that the capacity vector b = (b1, b2) is fixed, and we

address the system manager’s dynamic control problem using the PSFM framework explained

earlier. As in any example where variable activity costs are absent, the system manager’s

control problem in the PSFM context amounts to deciding, at each time t given the observed

vector Λ(t), which job flows to “give up on.” That is, given that Λ(t) = λ, components of

the non-negative vector λ−Rx appearing in the objective function of the LP (20) represent

flow loss rates for the various job classes, and the objective at time t is to minimize the

instantaneous cost rate associated with such losses. If there exists an x ≥ 0 such that

Ax ≤ b and Rx = λ, meaning that all exogenous arrivals can be processed to completion

without losses, then it is optimal to take X(t) = x when Λ(t) = λ, and the corresponding

minimum instantaneous cost rate is π(λ, b) = 0.

Given our economic assumption (31), and given the special structure of the example

under discussion, it is obvious (and easy to prove rigorously) that in solving the LP (20) one

can restrict attention to server allocation vectors x satisfying µ1x1 = µ2x2, or equivalently,

x2 = αx1 where α = µ1/µ2. (32)

That is, one need only consider x vectors which process class 1 jobs and class 2 jobs at

the same rate, thus ensuring that no class 2 jobs are lost. Of course, we can use (32) to

eliminate x2 from the LP formulation (20), and doing so symmetrizes the roles of server pool

1 and server pool 2, as follows: in the reduced system model that one gets by using (32)

to eliminate x2, there is one activity that processes class 1 jobs, creates no new jobs, and

consumes capacity from both server pools; and there are two activities that process class 3

jobs, create no new jobs, and consume the capacity of either one server pool or the other.

To further reduce the system manager’s problem, let us assume that server pool 1 is

the limiting factor in the processing of class 1 jobs. That is, let us assume µ1b1 ≤ µ2b2, or

equivalently,

δ := b2 − αb1 ≥ 0. (33)

22

(Because of the symmetry noted in the previous paragraph, a precisely analogous reduction

applies in the case where µ1b1 > µ2b2, as readers can easily verify.) Now let us fix for the

moment a feasible value for x1 in the LP (20), meaning that 0 ≤ x1 ≤ λ1 and x1 ≤ b1. This

choice commits x1 servers from pool 1 and αx1 servers from pool 2 to the processing of class

1 arrivals, so one sees from Figure 1 that the maximum rate at which class 3 arrivals could

be processed is

µ3(b1 − x1) + µ4(b2 − αx1) = (µ3 + αµ4)(b1 − x1) + µ4δ.

Let us denote by u3(x1) this upper bound on the processing rate for class 3. Viewed as a

function of x1, the lowest achievable loss rate for class 3 is [λ3 − u3(x1)]
+, and thus one can

state the system manager’s optimization problem (20) as follows: choose the single decision

variable x1 to

minimize p1(λ1 − µ1x1) + p3[λ3 − (µ3 + αµ4)(b1 − x1) − µ4δ]
+ (34)

subject to µ1x1 ≤ λ1, x1 ≤ b1 and x1 ≥ 0.

Now the optimization problem (34) is equivalent to the problem of minimizing the in-

stantaneous cost rate in the reduced system pictured in Figure 2, which can be solved by

inspection: first allocate δ∧ (λ3/µ4) servers from the right-hand pool to process class 3 jobs;

and if there are still class 3 arrivals left over, allocate the capacity of the left-hand pool via

the obvious greedy algorithm, giving class 1 priority if p1µ1 ≥ p3(µ3 + αµ4) and giving class

3 priority otherwise. Each unit of the activity represented by the diagonal arrow in Figure

2 corresponds to allocating one server from pool 1 of our original system to activity 3, and

allocating α servers from the original pool 2 to activity 4.

To translate this verbal description into optimal values for the original decision variables

x1, . . . , x4, let us consider for concreteness the case where p1µ1 ≥ p3(µ3 +αµ4). (The comple-

mentary case where p1µ1 < p3(µ3 +αµ4) is just slightly more complicated, and its treatment

is left as an exercise.) As stated above, an optimal solution will then give priority to class 1

in allocating servers from the left-hand pool in Figure 2, which means that

x∗1 = x∗2/α = (λ1/µ1) ∧ b1.

Also, the system manager in Figure 2 will dedicate as many servers as possible from the

right-hand pool to the processing of class 3 arrivals, which is expressed mathematically as

x∗4 = (λ3/µ4) ∧ δ.

23

PSfrag replacements

servers servers
b1 δ

µ1 µ4µ3 + αµ4

arrival rate λ1 arrival rate λ3
loss penalty p1 loss penalty p3

1 3

Figure 2: An equivalent reduced system

Finally, if there are more class 3 arrivals to be processed, the system manager will allocate

to class 3 as many of the still-uncommitted servers in the left-hand pool as possible, which

means that

x∗3 = [(λ3 − µ4x
∗
4)/(µ3 + αµ4)] ∧ (b1 − x∗1).

This completes the specification of the optimal server allocations in our original system

model, given that Λ(t) = λ. It remains only to determine the optimal input control policy.

Let us define the sets Sa and Sb as in (25). If i ∈ Sb (i = 1, 2, 3), then the general solution

developed in Section 4 calls for blocking any newly arrived or newly created class i jobs that

cannot be served immediately. On the other hand, if i ∈ Sa (i = 1, 2, 3), then the general

solution dictates that class i jobs never be blocked, regardless of system status at the time of

their arrival or creation. In our idealized PSFM, the identity x∗
2 = αx∗1 ensures that servers

will always be available in pool 2 for processing newly created class 2 jobs, so it makes no

difference whether 2 ∈ Sa or 2 ∈ Sb, but the general articulation of the optimal input control

policy given immediately above is still valid.

24

7. Real-time Delay Announcement in Call Centers

This section illustrates how the PSFM framework can be used to analyze the problem of

dynamic control and capacity planning in a parallel server network where waiting times

are announced to arriving customers. The motivating application is that of a multi-class,

multi-skilled telephone call center operation. In that context arriving jobs are customers and

servers are multi-skilled agents (or customer service representatives) who are grouped into

pools based on their common skill sets.

Problem formulation. Consider the general stochastic processing network described in

Section 2, but with no internal flows, i.e., an arriving job leaves the system after completing

service at one processing station. For such a network the input-output matrix R has non-

negative entries, these being the rates of service for the various combinations of customer

class and server pool. An example of such a parallel server network is given in Figure 3.

Customers of various classes arrive to the network randomly over time. On arrival, customers

are either blocked by means of a “busy signal,” or admitted into the system. In the latter

case they are given an estimate of their waiting time in the queue. (We assume that this

estimate reflects the true anticipated waiting time in the system for a customer arriving at

time t based on the queue length at that time; in particular, this quantity is not manipulated

in any way by the system manager so as to affect customer expectations.) Blocked customers

leave the system instantaneously (represented by the dotted horizontal lines in Figure 3).

Based on the waiting time estimate, customers who are not blocked then decide whether to

wait for service or balk. (Balking is represented by horizontal dashed lines emanating from

the rectangular box.) Those customers who do not balk but cannot be served immediately

wait for their service in infinite-capacity buffers dedicated to their class. The system manager

then routes these customers to agents when agents become available, according to a server

allocation policy as described in Section 2.

We assume that each customer of class i is endowed with a random variable τi with cumu-

lative distribution function Gi (i = 1, . . . ,m), independent of all other stochastic primitives.

This variable characterizes the customer’s “willingness to wait,” that is, the realized value

of τi is the smallest announced delay that will cause a customer to balk. The role of τi is

analogous to that of a “reservation price” that characterizes consumers in demand theory.

(For technical reasons we assume that the distribution Gi has a density with finite support

for all i ∈ {1, . . . ,m}; see the proofs of Proposition 3 and 4 for further details.)

25

PSfrag replacements

arriving customers

blocking

storage buffers

activities

server pools

reneging

balking

Λ1(t) Λ2(t) Λ3(t)

Λ̃1(t) Λ̃2(t) Λ̃3(t)

notification of waiting time

2

2

2

n

3

3

4

γ2
γ3
γ1

1

1

1

completed services

Figure 3: Schematic representation of a parallel server network that announces waiting times
to arriving customers. In this network there are three customer classes, two server pools and
four activities.

A customer of class i admitted to the system at time t ∈ [0, T] will balk if τi ≤

W̃i(Q(t), X(t)), where W̃i(Q(t), X(t)) is the waiting time estimate announced to class i

customers arriving at time t, based on the queue length vector Q(t) and the server allocation

vector X(t). Consequently, the effective arrival rate for class i at time t is given by

Λ̃i(t) = (Λi(t) − Yi(t))Ḡi(W̃i(Q(t), X(t))),

where Λi(t) is the nominal arrival rate into class i, Yi(t) is the blocking rate for class i, and

Ḡ(·) := 1 −G(·).

The system manager must choose a capacity vector b = (b1, . . . , br) whose components

26

are the numbers of servers staffing each pool, and a dynamic control (X,U) consisting of an

admission control U and server allocation policy X, subject to the admissibility constraints

in Section 2. (For simplicity, we ignore integrality constraints on the server allocations.) The

total cost under a capacity vector b and dynamic control (X,U) is given by

r∑

k=1

ckbk +
m∑

i=1

(
pb

iUi(T) +

∫ T

0

hiQi(s)ds

)
, (35)

where pb
i and h are the blocking penalty and holding cost rate defined in Section 4. The

system manager’s objective is to minimize the expected total cost, given by the expectation

of (35). The above formulation can be easily modified to impose an economic penalty for

customers who balk, but we have chosen not to pursue this extra layer of generality. (It is not

difficult to see that if one introduces a linear cost of balking into the objective function, the

main results derived in what follows can be easily modified to cover that setting.) For further

work on the effects of announcing waiting time in service systems see, e.g., [1, 2, 14, 20]; the

former three papers use fluid and diffusion approximations to make the problem tractable.

Waiting time estimates from queue lengths. We come now to the question of how

a system manager should estimate the waiting time for class i fluid entering at time t. In

the context of our approximating PSFM, the “right answer” is

W̃i(Q(t), X(t)) = Qi(t)/(RX)i(t), (36)

as follows. (a) The denominator (RX)i(t) on the right side of (36) is the instantaneous rate

of fluid removal from buffer i at time t. (b) As explained in Section 3, a key assumption

underlying the PSFM is that Λ(·) changes slowly compared to the time that a quantum of

fluid remains within the system. Thus the server allocation vector X under a good control

policy also remains approximately constant over such a time span. (c) The numerator Qi(t)

on the right side of (36) is the amount of class i fluid that must be removed from the buffer

before class i fluid arriving at time t can enter service.

The PSFM formulation and its solution. Given a capacity vector b, we define an

admissible control (X,Y) exactly as in Section 3: the key constraints are that AX(t) ≤ b

and RX(t)+Y (t) ≤ Λ(t) for all t ∈ [0, T], with the additional constraint that if for any time

t ∈ [0, T] and i ∈ {1, . . . ,m} (RX)i(t) = 0, then Yi(t) = Λi(t). The physical interpretation

of the above constraints is as follows: first, the system manager cannot assign servers to

activities beyond the total number of servers available in each pool; second, the total rate

27

of service and blocking in each customer class cannot exceed the arrival rate into that class;

finally, if at any point in time the system manager decides not to serve a given customer class,

then further arrivals into that class are blocked. (To facilitate the proof, we also assume that

if for any t ∈ [0, T] we have (RX)i(t) = 0, then Qi(t) = 0.)

Proposition 3 For each admissible control (X,Y) there exists a unique non-negative queue

length process Q such that

(Λi(t) − Yi(t))Ḡi(W̃i(Q(t), X(t))) = (RX(t))i for all i = 1, . . . ,m, and t ∈ [0, T]. (37)

The left-hand-side of (37) represents the net arrival rate for class i customers at time t,

and the right-hand-side represents the net output rate due to service completions. Thus

(37) simply characterizes the stationary point for the system at each time instant, which is

an obvious modification of the PSFM-based system dynamics (13) to account for balking.

The formulation described above assumes that announcement of waiting times results in an

effective arrival rate Λ̃ which is consistent with this information; in the PSFM the arrival

rate translates “instantaneously” to queue lengths (see the discussion in Section 3).

In our PSFM formulation the system manager seeks admissible controls (X,Y) and a

staffing vector b to minimize

c · b+ E

[∫ T

0

(pb · Y (t) + h ·Q(t))dt

]
. (38)

Now given a staffing level b, as in Section 4, we can minimize the second term in (38) by

minimizing the integrand for each point in time and for each realization of the arrival rate

process Λ. For brevity, we define a function ψ : R
m
+ × R

n
+ → [0, 1]n as follows

ψi(q, x) := Ḡi

(
qi

(Rx)i

)
. (39)

Let Ψ(q, x) = diag(ψ1(q, x), . . . , ψn(q, x)). For λ ∈ R
m
+ and b ∈ R

r
+, let π(λ, b) be the optimal

value of the following optimization problem: choose x ∈ R
n
+, y ∈ R

m
+ and q ∈ R

m
+ to

minimize h · q + pb · y (40)

subject to (λ− y)Ψ(q, x) = Rx,

Ax ≤ b,

x ≥ 0, q ≥ 0, y ≥ 0.

28

The first constraint in the optimization problem (40) is a restatement of (37) that serves

to define the queue length vector q, and the second constraint is a restatement of the ad-

missibility condition (14). The above optimization problem thus minimizes the cost rate in

the PSFM at each time instant in [0, T] subject to admissibility conditions on the chosen

control.

Proposition 4 For every λ ∈ R
m
+ and b ∈ R

r
+, there exists a finite valued solution (x∗, y∗, q∗)

for the optimization problem (40). Further, there exists a measurable function φ : R
m
+×R

r
+ →

R
n
+ × R

m
+ × R

m
+ such that φ(λ, b) solves (40).

Put (X∗(t), Y ∗(t), Q∗(t)) = φ(Λ(t), b) for all t ∈ [0, T]. The optimal controls are then given

as follows: the system manager allocates X∗(t) servers to each activity at each time t ∈ [0, T],

and blocks customers in class i when Qi(t) > Q∗
i (t).

The optimal capacity vector b∗ is given by the following stochastic optimization problem:

choose b ≥ 0 to

minimize c · b+ E

[∫ T

0

π(Λ(t), b)dt

]
, (41)

where π(λ, b) is the value of the optimization problem (40), and the expectation operator is

with respect to the distribution of the arrival rate Λ.

8. Discussion of the Model Assumptions

In this section we return to various issues that have been flagged as topics for further discus-

sion in the body of the paper. Most of these involve potential generalizations of the network

model laid out in Section 2, and of the PSFM approximation we have proposed for that

model.

Cost structure and economic objective. We have assumed in this paper that the

holding cost rate for class i jobs at time t is a linear function of the queue length Qi(t).

One reason for restricting attention to linear holding costs is the following: the heart of

our PSFM formulation is the instantaneous flow balance equation (13), and the asymptotic

theory developed earlier in [4, 3] only provides rigorous justification for an integrated form

of (13). With a linear cost structure, the cumulative holding cost associated with class i jobs

is proportional to the integral of Qi(·), and hence the existing asymptotic theory suffices.

A more delicate limit theory would be needed to rigorously justify the PSFM with non-

linear holding costs. On the other hand, for those who are prepared to accept our PSFM

29

formulation without the support of a formal limit theory, the analysis in Section 4 can easily

be modified to incorporate non-linear holding cost functions.

Reneging structure. As mentioned in Section 1, there are many applications (such as our

credit agency example) where a job may renege while being processed. The PSFM framework

can easily be modified to encompass such applications. For example, if the reneging rate is

exactly the same for class i jobs being processed as for class i jobs in queue, the PSFM under

an admissible control (X,Y) is defined by the following modification of the instantaneous

flow-balance equation (13):

Λ(t) = RX(t) + ΓZ(t) + Y (t).

The most general reneging structure that comes readily to mind is the following: there are

reneging rates γ1, . . . , γm associated with jobs waiting in buffers 1, . . . ,m (as in our original

formulation), and reneging rates ω1, . . . , ωn associated with jobs being processed via activity

1, . . ., activity n. This structure leads to the modified flow-balance equation

Λ(t) = RX(t) + ΓQ(t) +BΩX(t) + Y (t),

where Γ = diag(γ1, . . . , γm) and Ω = diag(ω1, . . . , ωn). The policy prescriptions developed

in Section 4 extend to this more general setting without new complications.

Weaker assumptions about blocking and reneging. Up to now we have assumed

that newly arrived and newly created jobs of any class can be blocked by the system manager,

and that all job classes renege at positive rates when queued. The former assumption serves

only to simplify notation and exposition; a careful review of Sections 2-4 shows that some

of the input control processes Ui can be forced to zero without materially changing any of

our conclusions. Indeed, by associating with class i jobs a sufficiently large blocking penalty

pb
i , one can assure that those jobs are never blocked in our PSFM-based policy prescription,

given that γi > 0 and that hi and pa
i are finite (see Section 4.2).

On the other hand, suppose there exists a job class i for which γi = 0 (no reneging).

Let us assume that hi > 0, and that newly arrived and newly created class i jobs can be

blocked with penalty pb
i < ∞ . In the obvious way, we interpret (19) to mean that the

effective loss rate for class i jobs is pi = pb
i in this case, and with one exception to be noted,

the development in Sections 3 and 4 can proceed exactly as before. In particular, we have

i ∈ Sb, which means that newly arrived or newly created class i jobs are to be blocked if

they cannot be served immediately.

30

The exception noted above is the following: when γi = 0 for some classes i, it cannot

be said that (13) serves to define the queue length vector Q(t) under any control policy

(X,Y) satisfying the admissibility conditions (14)-(15), because the diagonal matrix Γ is

then singular. However, this indeterminacy in the PSFM formulation can be eliminated by

adding the following complementarity condition:

either Qi ≡ 0 or Yi ≡ 0 or both (i = 1, . . . ,m). (42)

That is, the PSFM is well posed mathematically if one defines an admissible control as a

triple (X,Y,Q) taking values in R
n
+×R

m
+ ×R

m
+ and satisfying (13)-(15) plus (42). Condition

(42) restricts attention from the outset to control policies that, for each job class, either

exercise no input control at all or else block any new arrival into that class which cannot be

served immediately. (Of course, this is a characteristic of the PSFM-based policy prescription

in Section 4.2.)

In the discussion immediately above concerning a job class i for which γi = 0, we implicitly

made the following assumption: the holding cost rate hi is large enough, relative to the time

scale on which Λ(·) evolves, that no rational system manager would hold class i jobs in buffer

storage while waiting for the demand environment to change. If the holding cost rate were

small enough to make such a strategy potentially attractive, our PSFM formulation would

not be appropriate. (See further comments in Section 9.)

Broadening the definition of an activity. As mentioned in Section 1, the model

structure considered in this paper could be generalized to allow any or all of the follow-

ing features: activities that consume continuous materials, rather than discrete “jobs,” as

inputs; activities that require multiple inputs, such as assembly operations; and activities

that produce several outputs, such as refinery operations with by-products. These added

features make construction of the “conventional” system model (see Section 2) substantially

more complicated, but in terms of the PSFM eventually obtained, they manifest themselves

in relatively simple ways: the input-output matrix R may have several positive entries in

a given column to reflect multiple inputs, and may have several negative entries in a given

column to reflect multiple outputs. This generalization in the form of the R matrix does

not affect the analysis in Section 4; the PSFM-based policy prescription and its interpreta-

tion are essentially unchanged. Earlier work on stochastic processing networks [11, 12] has

also considered activities that consume the capacity of several different resources, such as

industrial operations that involve both capital equipment and skilled labor, which leads to a

31

capacity consumption matrix A that may have several positive elements in a given column.

The construction and analysis of the PSFM that we have presented in Section 4 continue

to make mathematical sense in this case. However, the interpretation offered there for the

optimal control X∗, which involved dedicating servers to specific activities over short inter-

vals of time, may be too simplistic, depending on the precise manner in which resources are

employed.

Estimating arrival rates. Throughout this paper we have proceeded as if the arrival

rate vector Λ(t) were directly observable. However, what one actually observes in virtually

all applications are individual arrivals, and then the “underlying arrival rates” must be

estimated by some sort of averaging. In our approach, the estimation procedure obviously

affects the PSFM-based resource allocation vectors X∗(t), because X∗(t) is computed from

Λ(t) via linear programming; in earlier work [4, 3] we have described and justified dynamic

control formulations that estimate arrival rates “on the fly.” The estimation of arrival rates

is also important in determining our PSFM-based staffing vector b∗, because the stochastic

program (21) takes as input the distribution of the arrival rate process Λ(·). In [5] we

describe and rigorously justify a data-driven optimization scheme that computes b∗ directly

from arrival data; this constitutes an integrated approach to the estimation of Λ(·) and

numerical solution of (21).

Frequent adjustment of capacity levels. In Section 4 we have formulated the capac-

ity choice problem with a fixed time horizon T , assuming that the capacity vector b, once

chosen, must remain unchanged over [0, T]. In some large telephone call centers, where the

“processing resources” are multi-skilled human agents, work schedules can be staggered so as

to change capacity levels every 30 minutes, and to apply our method in such an environment

one would undertake a separate analysis for each 30-minute segment of the working day. For

example, with a 12-hour work day one would solve 24 separate staffing-and-control prob-

lems, each with its own arrival rate data, and each with a time horizon of T = 30 minutes.

However, such an approach involves several important assumptions. The first is that capac-

ity levels during various sub-intervals must be specified in advance, as opposed to dynamic

capacity adjustment in response to observed demand. (This is a realistic restriction in many

settings.) The second implicit assumption in our approach is that staffing costs associated

with different sub-intervals are separable: there are no “smoothing costs” incurred when staff

levels change abruptly from one hour to the next, nor do union contracts or personnel poli-

cies impose any restrictions on the staffing combinations that are available across the day.

32

In reality, of course, scheduling constraints and smoothing costs do exist, and accounting

for such considerations requires a more sophisticated version of our basic method. Roughly

speaking, one needs to link the stochastic programs that set staffing levels for various sub-

intervals within the work day, eventually solving a large, multi-stage stochastic optimization

problem.

9. On the Conditions Justifying a PSFM

Expanding on the comments made in Section 3, one may summarize as follows the conditions

needed to justify a PSFM formulation of the system manager’s problem. First, the volume

of work to be done demands a large number of servers. Second, the arrival processes and

service processes are “fast” compared to the rate of change in the demand rate Λ. And

finally, even when capacity is insufficient to process all arriving demand, no job ever stays

in the system long enough to see a significant change in Λ(·). This occurs when each job

class either abandons at a relatively fast rate or else is too expensive to store in the time

scale at which changes occur in the demand environment; in the latter case a rational system

manager will block such jobs when they cannot be processed immediately.

We conjecture that one may obtain a PSFM as a limit of the conventional network

model described in Section 2. To be more specific, the asymptotic parameter regime we

have in mind involves first a fluid limit (where one increases all arrival rates by a large

factor κ, increases the number of servers in each pool by that same factor κ, and rescales

queue lengths and jobcount variables by κ as well), then a further acceleration of all arrival,

service and abandonment processes by a common large factor, which leads to “instantaneous

equilibration” in response to any change in Λ(·). A rigorous asymptotic theory of this kind

was developed in earlier work [4, 3] for a less general class of processing system models.

A. Proofs

Proof of Proposition 1. The argument provided in the text of Section 4.3 is missing only

technical details, which we omit in the interest of brevity. A complete proof is available from

the authors upon request.

Proof of Proposition 2. The proof follows from Proposition 1 by taking expectation of

both sides and maximizing over the staffing level b.

33

Proof of Proposition 3. Fix time t ∈ [0, T] and recall that by assumption (X(t), Y (t))

satisfy Λ(t) ≥ RX(t) + Y (t). Fix i ∈ {1, . . . ,m}, and consider the equation (Λi(t) −

Yi(t))Ψi(qi) = (RX(t))i. Note that the left-hand-side is non-increasing and continuous in q

and the right-hand-side is a constant. The result then follows from the fact that Ψ(0) = 1

and Ψ(qi) = 0; where the function Ψ(·) is defined in (39).

Proof of Proposition 4. Eliminating y from the optimization problem (40) we get the

following optimization problem: choose x ∈ R
n
+ and q ∈ R

m
+ to

minimize h · q + pb · (λ− (Rx)Ψ−1(q, x)) (43)

subject to Rx ≤ λΨ(q, x),

Ax ≤ b, x ≥ 0, q ≥ 0.

Define the correspondence

D(λ, b) := {(x, q) : Rx ≤ λΨ(q, x), Ax ≤ b, x ≥ 0, q ≥ 0},

such that D : R
m
+ × R

m
+ → 2R

n

+
×R

m

+ . Note that the correspondence is closed-valued and the

image of (λ, b) is a subset of C = {(x, q) : Ax ≤ b, q ≤ M2}, where existence of M2 < ∞

follows from the assumption that Gi has a density with finite support. Since C is a compact

set we have that D is also compact-valued. Next we shall show that D is continuous, i.e.,

both upper-semicontinuous and lower-semicontinuous.

For upper-semicontinuity, consider any sequence {(λ1, b1), (λ2, b2), . . .} such that (λn, bn) →

(λ, b) as n → ∞. Further consider any sequence (xn, qn) ∈ D(λn, bn). Since (λ, b) is finite,

there exists M < ∞ such that (xn, qn) ≤ M . Thus, there exists a subsequence such that

(xn(m), qn(m)) → (x, y) as m → ∞. Since G is atomless, we have that Ψ is a continuous.

Thus, we have (x, q) ∈ D(λ, b).

For lower-semicontinuity, we will use the characterization given in Proposition 9.6, [17].

Consider any closed set F ∈ R
n
+ × R

m
+ . Define

λi := sup{(Rx)iψ
−1
i (q, x) : (q, x) ∈ F},

bi := sup{(Ax)i : (x, q) ∈ F}.

It is easy to verify that the upper inverse of F under D is D−1
+ (F) = {(λ, b) : λi ≥ λi for all i =

1, . . . ,m and bk ≥ bk for all k = 1, . . . , r}. Since D−1
+ (F) is closed, the correspondence D

is lower-semicontinuous. Thus, the correspondence D is compact-valued and continuous.

34

Further, continuity of Ψ in (43) implies that the objective function is continuous in (λ, x, q).

Then, using the Maximum Theorem (cf. [17]) we have that the point-to-set mapping Φ,

defining the solution set of the optimization problem (43), is compact-valued and upper-

semicontinuous. Further, Φ is a non-empty correspondence as {(0, 0)} ∈ D(λ, b) for all

(λ, b) ∈ R
m
+ ×R

r
+. The result then follows by using a measurable selection theorem (see, e.g.,

Theorem 4, page 342 of [7]). This completes the proof.

References

[1] M. Armony and C. Maglaras. On customer contact centers with a call-back option:

customer decisions, routing rules, and system design. Operations Research, 52:271–292,

2004.

[2] M. Armony, N. Shimkin and W. Whitt. The impact of delay announcements in many-

Server queues with abandonment. Working paper, 2005.

[3] A. Bassamboo, J.M. Harrison, and A. Zeevi. Design and control of a large call center:

Asymptotic analysis of an LP-based method. Operations Research, 54:419–435, 2006.

[4] A. Bassamboo, J.M. Harrison, and A. Zeevi. Dynamic routing and admission control in

high-volume service systems: Asymptotic analysis via multi-scale fluid-limits. QUESTA,

51:249–285, 2006.

[5] A. Bassamboo and A. Zeevi. On a data-driven method for staffing telephone call centers.

2006. Working paper.

[6] P. Bremaud. Point Processes and Queues: Martingale Dynamics. Springer Verlag, New

York, 1981.

[7] W. Cheney. Analysis for Applied Mathematics. Springer, 2001.

[8] F. de Véricourt and Y.-P. Zhou. Managing response time in a call-routing problem with

service failure. Oper. Res., 53:968–981, 2005.

[9] L. Green and P. Kolesar. The pointwise stationary approximation for queues with

nonstationary arrivals. Management Science, 37:84–97, 1991.

35

[10] L. V. Green, P. J. Kolesar, and W. Whitt. Coping with time-varying demand when

setting staffing requirements for a service system. 2005. Working Paper.

[11] J. M. Harrison. Stochastic networks and activity analysis. In Y. Suhov, editor, An-

alytic Methods in Applied Probability In Memory of Fridrih Karpelevich, pages 53–76,

Providence, RI, 2002. American Mathematical Society.

[12] J. M. Harrison. A broader view of Brownian networks. Annals of Applied Probability,

13:1119–1150, 2003.

[13] J. M. Harrison and A. Zeevi. A method for staffing large call centers based on stochastic

fluid models. Manufacturing & Service Operations Management, 7:20–36, 2005.

[14] C. Maglaras and A. Zeevi. Pricing and design of differentiated services: Approximate

analysis and structural insights. Operations Research, 53:242–262, 2005.

[15] A. Mandelbaum, W. A. Massey, and M. Reiman. Strong approximations for Markovian

service networks. Queueing Systems, Theory and Applications (QUESTA), pages 149–

201, 1998.

[16] W. A. Massey and W. Whitt. Uniform acceleration expansions for Markov chains with

time-varying rates. Annals of Applied Probability, 8:1130–1155, 1998.

[17] R. K. Sundaram. A First Course in Optimization Theory. Cambridge University Press,

Cambridge, 1996.

[18] L. M. Wein. Brownian networks with discretionary routing. Operations Research,

39:322–340, 1991.

[19] W. Whitt. The pointwise stationary approximation for Mt/Mt/s queues is asymptoti-

cally correct as the rates increase. Management Science, 37:307–314, 1991.

[20] W. Whitt. Improving service by informing customers about anticipated delays. Man-

agement Science, 45:192–207, 1999.

[21] W. Whitt. Fluid models for many-server queues with abandonments. Operations Re-

search, 54:37–54, 2006.

36

