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Abstract

We consider a model of a service system that delivers two non-substitutable services to
a market of heterogenous users. The first service is delivered subject to a “guaranteed” (G)
processing rate, and the second is a “best-effort” (BE) type service in which residual capacity
not allocated to the guaranteed class is shared among BE-users. Users, in turn, are sensitive
to both price and congestion-related effects. The service provider’s objective is to optimally
design the system so as to extract maximum revenues. The design variables in this problem
consist of a pair of static prices for the two services, a policy that controls admission of G-users
into the system, and the mechanism by which users are informed of the state of congestion
in the system. Since these objectives are difficult to address using exact analysis, we pursue
approximations that are tractable and lead to structural insights. Specifically, we first solve a
deterministic relaxation of the original objective to obtain a “fluid-optimal” solution which is
subsequently evaluated and refined to account for stochastic fluctuations. Using diffusion limits,
we derive approximations that yield the following structural results: (i) pricing rules derived
from the deterministic analysis are “almost” optimal; (ii) the optimal operational regime
for the system is close to heavy-traffic, and; (iii) real-time congestion notification results
in increased revenues. Numerical results illustrate the accuracy of the proposed approximations
and validate the aforementioned structural insights.
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1 Introduction

Recent years have witnessed an explosive growth in services offered over the Internet via the world-

wide-web. These web-based services include electronic commerce, internet telephony, streaming

audio and video, e-mail and information retrieval, to name but a few examples. In an effort to

address the processing requirements of these diverse applications and better segment the market

of potential users, service providers are attempting to offer multiple grades of service so that

users are differentiated according to their quality-of-service (QoS) requirements and willingness to

pay. Inspired by these recent developments, in particular the emergence of information services,

this paper introduces a simple stylized model of differentiated services, and addresses questions of

optimal system design.

The goal of our model is to capture some of the stylized features that characterize information

services. The first feature is that congestion in such services typically manifests itself as a degra-

dation of the processing rate which in turn leads to delays. This should be contrasted with more

traditional service operations where delays are driven by queueing effects. The second is the QoS

levels that are common in the delivery of these type of services. In particular, in many instances

a service provider may offer “real-time” applications that necessitate a guaranteed performance

(e.g., software on demand), and “low QoS” applications that may be delivered subject to rate

degradations (e.g., on-line help desk or database searches).

Motivated by such QoS provisioning, this paper considers a system that delivers two non-

substitutable services or application classes. The first service is delivered subject to a “guaranteed”

(G) processing rate, and the second is a “best-effort” (BE) type service in which residual capacity

not allocated to the G-class is shared among BE-users. An important feature of this model is that

both services are delivered using common processing resources, i.e., capacity is not split in such a

way that a fraction is dedicated to each service class. Demand for service in each application class

is determined by the total cost faced by its users, this being comprised of a class-specific usage fee

and a congestion-related cost.

In terms of probabilistic primitives, we assume that nominal connection requests arrive ac-

cording to independent Poisson processes, and the processing requirements of the two services are

exponentially distributed with potentially different rates. With these assumptions in place, the

system dynamics are Markovian. We note that our formulation and analysis focuses on the overall

demand induced by a given price and congestion level. That is, we do not attempt to model the

flow or packet level dynamics that characterize the means of delivering information services.

The service provider’s objective is to extract maximum revenues by: (i) optimally pricing the

two service classes; (ii) choosing an admission control policy for guaranteed-rate requests; and (iii.)
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selecting the mechanism by which users “learn” about the state of congestion in the system. In

achieving these goals, the service provider is assumed to possess full information on the customer

types. Note that the congestion notification mechanism alluded to above introduces feedback:

delay-averse users may be more reluctant to connect to the system when congestion is high, and

this in turn reduces congestion thus inducing more users to connect. This process then continues

until an equilibrium is reached, a notion that is central to our analysis. In addition to the design

objectives stated above, our analysis strives to illuminate various other aspects that characterize

the performance of the system, e.g., magnitude of congestion-related effects, the nominal operating

point for the system and other equilibrium properties.

The objectives mentioned above are difficult to address directly, even under simplifying Marko-

vian assumptions. In particular, the stochastic modulation of capacity available to BE-users and

the feedback mechanism that is introduced by congestion notification, render the above design prob-

lems intractable as far as exact analysis is concerned. Instead, we propose an approximate analysis

that gives rise to important structural insights and supports simple computations. In hindsight,

this approach is seen to be quite accurate in large capacity systems. The first step of this hi-

erarchical analysis consists of formulating a deterministic relaxation of the original optimization

problem. The solution to this problem yields “fluid-optimal” per-access prices for the two services,

and suggests an admission policy for G-users. The latter amounts to giving “high priority” to the

service class that generates more revenue per unit of capacity per unit time. Since it is natural

to think of this value being higher for services that require strict performance guarantees, we will

hereafter assume that indeed the guaranteed service is given “high priority” in the sense that its

users are always admitted when capacity is available. (As will be argued in what follows, the main

structural insights that arise in this setting are essentially preserved when this priority is switched

to the BE-class.) The second step of this analysis examines the performance of the system under

the “fluid-optimal” solution, assessing the effects of stochastic fluctuations. Subsequently, in the

final step, the fluid-optimal solution is refined to account for stochastic fluctuations so as to fur-

ther optimize system performance and extract additional revenues. In terms of methodology, the

approximate analysis described above hinges to a large extent on diffusion limits. This machinery

enables us to pursue several objectives that would otherwise not be tractable via exact analysis.

The main contributions of this paper are the following.

i.) Pricing and admission rules derived via deterministic analysis. The fluid-optimal

prices and the associated admission control policy for G-users turn out to be “almost optimal.”

Namely, the revenues extracted by these choices when implemented in the stochastic system

are very close to those generated by the optimal rule. (See Theorem 2.)

ii.) System operational regime and structural insights. Under nominal assumptions on
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the revenue functions (essentially, concave increasing), fluid-optimal prices derived via the

deterministic analysis (see Proposition 1) induce an equilibrium operating point where uti-

lization is high, congestion effects are “small,” and stochastic fluctuations are of order square

root of the system “size.” (See (i)-(iv) in Theorem 1.) When the mean service requirement is

identical in the two classes, the system equilibrium can be approximated with high accuracy

via a solution to a simple fixed point equation. (See (10) in Theorem 1).

iii.) Performance analysis when classes are differentiated with respect to their service

requirements. A simple approximation that relies on underlying diffusion limits is proposed,

so as to derive closed-form approximations as in Theorem 1. (See Section 6.)

iv.) Second order price correction. The structural insights that follow from the equilibrium

analysis give rise to a simple “second-order” price correction that refines the fluid-optimal

price so as to extracts higher revenues. (See Section 7.)

v.) The value of real-time congestion notification. A system that informs users of “real-

time” congestion generates more revenue than one that provides static congestion information;

the magnitude of this contribution is seen to be “second-order.” (See Theorem 3.) These

results are established with the aid of diffusion limits. (See Proposition 4).

Numerical results validate the structural insights and illustrate the accuracy of the approximations

discussed above.

The remainder of the paper is structured as follows. This section concludes with a review of the

literature, while Section 2 describes the system model and design objectives. Section 3 pursues a

deterministic analysis and Section 4 derives the system behavior under the deterministic solution.

Section 5 discusses some of the qualitative insights extracted from the analysis in Sections 3 and

4. Sections 6– 8 focus on extensions and refinements of the previous analysis focusing on non-

identical service rates, second order optimization, and the economic value of real-time congestion

notification, respectively. Finally, there are two appendices: Appendix A contains background

material on diffusion limits; and Appendix B contains the proofs.

Literature review. The stylized model that we formulate is similar to the one first introduced

by Das and Srikant (2000) to model Best-effort type traffic in the data network context. They

derived diffusion approximations for this single class system in the so-called Halfin-Whitt heavy

traffic regime. In a previous paper, Maglaras and Zeevi (2003a) studied a variant of the Das-

Srikant model pursuing problems of economic optimization and optimal system design for a single-

class system serving only BE-users. The work in Maglaras and Zeevi (2003a) covered both profit

maximization as well as social welfare objectives adopting an equilibrium formulation that is driven

by the treatment in Mendelson and Whang (1990) [see also Basar and Srikant (2002) for a related
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study of different flavor.] Here, we seek to extend this analysis by considering a canonical two-

class system model and in addition consider further design issues, such as admission control and

congestion notification mechanisms, and their economic value. In contrast to the single-class case

discussed in Maglaras and Zeevi (2003a), the analysis of the two class system covered in the current

paper hinges on diffusion approximations of the type derived recently in Maglaras and Zeevi (2004).

The main result from Maglaras and Zeevi (2004) serves as an auxiliary result in several proofs in

the current paper, and is cited in Appendix A for completeness.

The primary motivation to focus on Guaranteed and Best-effort service classes is driven by

the communication and information services area (see, e.g., Altman, Orda and Shimkin (2000),

Altman and Kushner (1999) Carpenter and Nichols (2002), Gibbens and Kelly (1999) and the

references therein). The prism through which we view the system and its performance focuses on

the users-level or overall demand-level rather than data flows or packets (similar to the study of

Paschalidis and Tsitsiklis (2000)). The notion of service differentiation is of course quite ubiquitous

in operations management and service operations. Two specific application areas that are akin to

the one studied here include call-centers that process “VIP” and “regular” customers (see, e.g, the

recent survey by Gans, Koole and Mandelbaum (2003)), and rental systems that serve customers

with reservations as well as “walk-ins” (see, e.g., Savin, Cohen, Gans and Katalan (2002)). In the

former, users experience congestion by waiting in a queue until agents become available, while in

the latter congestion appears in the form of blocking when there is no remaining capacity. For a

recent discussion of service grades, customer types and scheduling rules in a production system

modelled as a multi-class single-server queue, see Van Mieghem (2000).

Our view of the service provider as having complete knowledge of the user (or demand function)

characteristics is dubbed “full information” in Van Mieghem (2000). In this setting, as argued in

Van Mieghem (2000), the assumption that services are non-substitutable is essentially not restric-

tive, as the system manager can always select not to serve customers that select the “wrong” class.

A similar model to the one we pursue in the current paper, dealing with “incomplete informa-

tion,” substitutable services, and users that have a choice of service level is discussed in Maglaras

and Zeevi (2003b). Finally, McGill and van Ryzin (1999) provide a recent overview of revenue

management that is tangentially related to our work.

A stream of recent research has emphasized the pivotal role played by diffusion limits as a

means to analyze large scale service systems. In this context, a particularly useful framework is the

many-server heavy-traffic limits pioneered by Halfin and Whitt (1981). The interest in the Halfin-

Whitt regime largely stems from its ability to succinctly summarize and elucidate natural statistical

economies scale that are present in many large capacity service system. In particular, Whitt (1992)

and Garnett, Mandelbaum and Reiman (2002) argue that this regime is a desirable operating point

for certain large scale service operations. In Maglaras and Zeevi (2003a) the Halfin-Whitt regime is
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optimal from an economic optimization standpoint in a system that only offers BE-type service. In

the current paper the Halfin-Whitt heavy-traffic regime is also seen to be the outcome of economic

optimization, viz, fluid-optimal prices induce this type of behavior. For some recent applications

and extensions of the Halfin-Whitt results see Whitt (1992), Fleming, Stolyar and Simon (1994),

Das and Srikant (2000), Garnett et al. (2002), Puhalskii and Reiman (2000). In the context of

call centers, Armony and Maglaras (2004b) and Whitt (2004) study the equilibrium behavior of

large capacity systems based on the Halfin-Whitt asymptotics, while Whitt (1999) and Armony

and Maglaras (2004a) study the effect of real-time congestion notification; the latter uses Halfin-

Whitt type diffusion limits. Motivated by the skills-based routing problem in call centers, both

Atar, Mandelbaum and Reiman (2002) and Harrison and Zeevi (2004) study dynamic scheduling

problems in multi-class many-server systems. (For recent surveys of these and other issues related

to call center design see Gans et al. (2003) and Whitt (2002).)

2 Model Formulation and Design Objectives

Our stylized system model attempts to capture four important features of the physical system:

common and finite processing capacity, lack of resource pooling when the system is under-utilized,

differentiated services, and the capability to share processing resources in the Best-effort class.

The system model. The service system is endowed with a finite processing capacity C used to

support two non-substitutable services which will also be referred to as classes: “guaranteed-rate”

(G) service will be denoted as class 1, and a “best-effort” type service will be denoted as class 2.

Hereafter, various quantities will be tagged with subscripts 1 and 2 to denote the two respective

classes. Users requesting class i service arrive to the system according to a Poisson process with rate

λi, and have independent identically distributed (i.i.d.) service requirements that are exponentially

distributed with rate µi. Note that the two services are linked through the common capacity

constraint. The precise details and dynamics of the two service classes are as follows:

(i) Guaranteed-rate (G) service: Let Q1(t) denote the number of G-users in the system at time

t and assume, for simplicity, that C is integer valued. Users of this service that are admitted into

the system always receive one unit of processing capacity. Since the system has finite capacity,

it will not always be possible to deliver this guarantee and thus the service provider will need

to exercise some form of admission control. This will be denoted by the non-decreasing process

U = (U(t) : t ≥ 0), where U(t) counts the cumulative number of such connection requests that

have been blocked (i.e., rejected) up to time t > 0, with U(0) = 0. We will assume that the

admission control U is Markovian, that is, the decision on whether to admit a G-user arriving at

time t depends only on the number of users of each type currently connected to the system. Note
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that the guaranteed rate of service offered to these users implies that Q1(t) ≤ C for all times t.

(ii) Best-effort (BE) service: BE-users are always admitted into the system and the service

provider does not exercise any form of admission control in this service class. When there is sufficient

capacity in the system, BE-users receive a nominal allocation of one unit of processing capacity, and

otherwise they share available capacity in an egalitarian manner resulting in a degraded processing

rate. Specifically, the rate allocated to BE-users at time t is

BE service rate =

{

1 Q1(t) + Q2(t) ≤ C
C−Q1(t)

Q2(t) Q1(t) + Q2(t) > C,

where Q2(t) denotes the number of best-effort users in the system at time t. When Q1(t) = C,

BE-users temporarily do not receive service but remain connected to the system.

Despite the processor sharing characteristic, it can be verified that the dynamics of the process

(Q2(t) : t ≥ 0) are identical to that of an M/M/C(t)/∞ system, where the capacity C(t) =

C − Q1(t) ≥ 0 is a stochastic process modulated by the number of G-users in the system. The

dynamics of (Q1(t) : t ≥ 0) depend on the admission control U that is yet to be specified.

Economic structure and demand model. We assume that the service provider charges

a fixed connection fee pi > 0 for each class i user accessing the system. The BE-users perceive

the disutility associated with rate degradation through the excess delay it induces relative to the

nominal sojourn time based on a unit rate allocation.1 A proxy for this excess delay is inversely

proportional to the rate degradation, i.e.,

D(t) =

(
Q2(t)

C − Q1(t)
− 1

)+

=
(Q1(t) + Q2(t) − C)+

C − Q1(t)
. (1)

We note that in large capacity systems D(t)/µ2 is an asymptotically accurate estimate of the actual

excess delay due to a pathwise version of Little’s law. To facilitate mathematical analysis, we will

take the excess delay to be D(t) := [(Q1(t)+Q2(t)−C)+]/[(C−Q1(t))∨1], where x∨y := max{x, y}.
This ensures that the excess delay is finite almost surely. (As will be evident in what follows, this

assumption does not restrict the generality of the analysis in any meaningful manner.)

We assume an additive linear delay cost for BE-users, which is q > 0 per unit of time of excess

delay; the subscript 2 is dropped from D and q since these quantities are only relevant for the

BE service class. Thus, the cost of joining the system for G-users is given by the price, p1, while

for BE-users this cost is given by p2 + q
µ2

ED, where ED is the expected steady-state delay (the

precise notion of this steady-state is explained below). As a matter of convention, we will denote

steady-state quantities with either an ‘∞’ as their time argument or simply by omitting the time

1Information/communication service providers often quote a service rate to users, and this is often accompanied

by a table that translates rates into waiting times for various job sizes (that the system does not know a priori).
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argument altogether when no confusion arises, e.g., D := D(∞). The arrival rate in each class is

then

λ1(p1) for G-users and λ2(p2 + (q/µ2)ED) for BE-users,

where λi(·) are the respective demand functions for each class of service. Note that the rate of G-

user connection requests, λ1(p1), does not depend on the admission control U , but that a fraction

of λ1(p1) will be denied admission in accordance to the control U(t). Note that a fraction of the

G-user connection request rate, λ1(p1), will be denied admission in accordance to the control U(t),

but that λi(p1) itself does not depend on U . The long-run blocking probability for such users is

b(U) := P(blocking) = lim
t→∞

U(t)

λ1(p1)t
,

which is for now assumed to exist (this is later proved to be the case under a specific admission

policy). The demand functions are assumed to be convex, decreasing, continuously differentiable,

and such that λi(x) → 0 as x → ∞, for i = 1, 2. The inverse demand function will be denoted

by pi(λ); i.e., pi(·) = λ−1
i (·). With slight abuse of notation, we will denote the vector of realized

arrival rates using the same notation as the demand functions only omitting the argument, i.e.,

λ = (λ1, λ2). Finally, put Λi := maxx λi(x), the maximum demand or market potential for each

type of service, respectively, which is assumed to be finite. This allows us to normalize the demand

functions, writing, for example, the arrival rate into each class as

λi(·) := Λiλ̃i(·),

where λ̃i(·) is the normalized demand function taking values in the unit interval.

Equilibrium formulation. As hinted above, we will focus our attention on the equilibrium

steady-state behavior of the system. To be precise, we say that for some price vector p = (p1, p2) and

control U the system admits a unique equilibrium if there exists a unique steady-state probability

distribution for the process ((Q1(t), Q2(t)) : t ≥ 0), such that the expected delay in class 2 when

taken w.r.t. to this distribution, ED, induces a time homogenous vector of external arrival rates

λ1(p1) = Λ1λ̃1(p1) and λ2(p2) = Λ2λ̃2

(

p2 +
q

µ2
ED

)

. (2)

and these arrival rates together with the steady-state blocking probability defined above are, in

turn, consistent with the aforementioned steady-state distribution. For now we will assume that

an equilibrium exists and proceed to pose an optimization problem in terms of the pricing and

admission control decisions. We will return to this issue in Sections 3 and 4 where we propose a

specific admission control policy for which we show that there exists a unique equilibrium. Section

8 will contrast this model with one where state-dependent information is announced to the users.
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Design objectives. The economic optimization problem faced by the service provider is to

maximize the equilibrium revenue rate generated by the system. This optimum is given by

R∗ := sup
p1,p2≥0, U

{

p1λ1(p1)(1 − b(U)) + p2λ2

(

p2 +
q

µ2
ED

)}

, (3)

where the optimization is carried out under the equilibrium distribution. Implicit in this expression

is the dependence of the congestion effects for G and BE users, namely b(U) and ED, on the

admission control U . This formulation assumes that the service provider has full information on the

user characteristics and induced demand functions summarized in the five-tuple (q, µ1, µ2, Λ1, Λ2)

and the two normalized demand functions λ̃i(·), i = 1, 2. The design variables in the above

optimization problem are the prices levied on each provisioned service and the admission control

policy U . Subsequently, in Section 8 we consider the additional decision of selecting the mechanism

by which congestion is “fed-back” to the users (i.e., static vs. dynamic information). In what

follows, it will be useful to consider a version of the maximization problem stated above where the

revenue rates are considered as functions of λ rather than price, p. In particular, put

ri(λi) := λipi(λ) i = 1, 2, (4)

where these functions are assumed to be continuously differentiable, strictly concave and increasing

in the λi’s. This formulation, as well as the assumptions accompanying it, are quite standard in

the revenue management literature; see, e.g, Gallego and van Ryzin (1994).

Discussion of the modeling assumptions. The model we propose assumes that when the

system is under-utilized, spare capacity cannot be redistributed to the users currently in the system;

i.e., there is no resource pooling. The reason for this assumption is that most service systems are

limited by a maximum processing rate. In the context of communication and information services

this is typically due to restricted uploaded and downloaded rates and limited efficiency in executing

tasks in parallel. In terms of probabilistic primitives the assumption regarding the Poisson arrival

streams is not restrictive, however the exponential distribution of the service times is required for

tractability. Note that the expression in (2) implicitly assumes that demand for BE-type service

is affected by users assessing their congestion cost based on their average service time, as opposed

to the use of their actual (random) service requirement. This follows the modeling framework

introduced by Mendelson and Whang (1990), and is reasonable in applications where the user does

not know a priori the precise amount of service that he/she will request. In terms of congestion

cost, we note that the hierarchical solution approach we propose applies also in the case where delay

costs are convex increasing as in Van Mieghem (2000). Finally, our system model assumes that the

two service classes are non-substitutable and users cannot select between them upon accessing the

system. As pointed out in Van Mieghem (2000), when the service provider has full information on

the user characteristics (demand functions) one could allow users a choice of QoS level, then simply

penalize users that select the “incorrect” class.
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3 Deterministic Analysis

The first step in our analysis is to formulate and solve a deterministic relaxation of the design

problem given in (3). To this end, we introduce two new design variables, b and d; the former plays

the role of the blocking probability for G-users, and the latter plays the role of the steady-state

excess delay suffered by the BE-users. This informal description is meant to indicate the logic

behind the deterministic relaxation, and how it is derived from the original optimization problem

(3). This deterministic problem is given by

max p1λ1(p1)(1 − b) + p2λ2 (p2 + (q/µ2)d) (5)

s.t.
λ1(p1)(1 − b)

µ1
+

λ2(p2 + (q/µ2)d)

µ2
≤ C

p1, p2, d ≥ 0, b ∈ [0, 1].

Note that the objective function is the “same” as the one in (3), and the constraint linking the

variables p1, p2, b, d is the stability condition that was implicitly satisfied in the stochastic system

of the previous section due to blocking of G-users and the regulation of the BE demand via the

equilibrium congestion term ED. Treating b, d as optimization variables is of course a relaxation

of the original problem, and therefore the value of the optimization problem (5) provides an upper

bound on the optimal revenue rate for the stochastic system R∗.

The first observation about the solution to this optimization problem is that in terms of revenue

rate maximization it is optimal to never block G-users and never delay BE-users, i.e., b̄ = 0 and

d̄ = 0, where the overbar notation denotes the solution of the deterministic planning problem. This

is proved by contradiction. Suppose that (p1, p2, b, d) is optimal with b > 0. It is easy to see that

the service provider can raise p1 to p′1 such that λ1(p
′
1) = λ1(p1)(1− b) and extract higher revenues

while consuming the same capacity per unit time, which contradicts the optimality of (p1, p2, b, d).

Similarly, one can show that it is never optimal to have BE-users suffer a positive excess delay.

To characterize the optimal prices and associated demand rates for (5) we will assume that the

system capacity is scarce in the following sense. Let p∗i = argmaxp≥0 pλi(p) denote the unconstrained

revenue maximizing price for service class i. We will require that

λ1(p
∗
1)

µ1
+

λ2(p
∗
2)

µ2
≥ C, (6)

i.e., the unconstrained revenue maximizing demand rates consume at least as much capacity as C.

This can be motivated by considering a higher-level profit maximization problem that incorporates

a convex increasing cost of capacity per unit time, denoted by H(C), in which case it is easy to

show that the maximum profit rate p1λ1(p1) + p2λ2(p2) − H(C) over λ1(p1)
µ1

+ λ2(p2)
µ2

≤ C, occurs

when the capacity constraint is binding.
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Given the discussion above, we can now focus our attention on (5) with b = d = 0. Under the

assumptions imposed on the primitives, it is readily seen that the resulting two variable optimization

problem involves maximizing a (strictly) concave function over a convex set. We also assume that

the solution of this deterministic problem is such that it is profitable to offer both service classes

so that the problem does not degenerate to one involving only a single class. Analysis of the

Lagrangean associated with (5), with b, d set to zero, leads to a precise condition that ensures that

the optimum in (5) is achieved at an interior point of the set of feasible rates. This is summarized

in the following proposition.

Proposition 1 Assume that (6) holds and let p̄1, p̄2, b̄, d̄ denote the maximizer of the deterministic

optimization problem (5). Then, b̄ = 0 and d̄ = 0, and p̄1, p̄2 lead to full resource utilization, i.e.,

λ(p̄1)/µ1 + λ2(p̄2)/µ2 = C. If in addition, there exist λ1, λ2 ≥ 0 such that λ1/µ1 + λ2/µ2 ≤ C and

r′1(λ1)µ1 = r′2(λ2)µ2, then then it is optimal to offer both services, i.e., λ(p̄1), λ2(p̄2) > 0.

The fluid-optimal demand rates associated with the solution of (5) are computed through the

demand functions, λ̄i = λi(p̄i).

Proposed policy. The next step is to articulate a pricing and admission control policy for

the original system based on the solution of the deterministic relaxation given above. The pricing

policy will be to set the per-access fees for service classes 1 and 2 equal to p̄1 and p̄2, respectively.

In terms of admission control decisions, the solution to (5) is not very helpful as it prescribes no

blocking and no delay for G and BE users, respectively. Under the pricing structure proposed

above, however, it is natural to consider an admission policy that gives “priority” to G-users

provided that µ1p̄1 ≥ µ2p̄2, and to BE-users otherwise. That is, the system gives priority to the

class that generates higher revenue per unit of capacity per unit time. Direct analysis of the first

order optimality conditions of (5) yield that µ1p̄1 ≥ µ2p̄2 is equivalent to

λ̄1µ1
∂p1(λ)

∂λ

∣
∣
∣
∣
λ̄1

≤ λ̄2µ2
∂p2(λ)

∂λ

∣
∣
∣
∣
λ̄2

,

where pi(·) = λ−1
i (·). In general, this only provides an implicit condition on the underlying

primitives that gives rise to a more “expensive” G-class. This can be further simplified if one

assumes a particular form for the demand functions. For example, in the context of linear de-

mand models, where for any price p the demand λi(p) = Λi − αip, this reduces to the condition

Λ1µ1/α1 ≥ Λ2µ2/α2 .

In the remainder of the paper we will assume that µ1p̄1 ≥ µ2p̄2, and thus that G-users receive

higher priority. Denoting this policy by Ū , we have that Ū(t) only increases (and a G-user is denied

admission) at times where upon arrival of a G-user request Q1(t) = C, i.e., the entire capacity is

already utilized by high-priority users. Note that in this case (Q1(t), t ≥ 0) has the same dynamics

as the number-in-system process in an M/M/C/C system.
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For future purposes, it will be convenient to denote the fluid-optimal revenues, i.e., the value

of the deterministic optimization problem (5), as a function of the fluid-optimal prices,

R̄(p̄1, p̄2) = p1λ1(p̄1) + p2λ2(p̄2), (7)

and note that by construction this serves as an upper bound for the revenue rate in the underlying

stochastic system, i.e., R∗ ≤ R̄(p̄1, p̄2). Finally, the relative workload contributions of each service

class are defined by

κi =
λ̄i/µi

λ̄1/µ1 + λ̄2/µ2
=

λ̄i

Cµi
, (8)

and κ1 + κ2 = 1. Thus, the κ’s represent the fluid-scale fractions of load that emanate from each

service class.

4 System Behavior Under the Deterministic Solution

We now study the performance of the system under the policy extracted from the fluid relaxation,

taking into account the effect of stochastic variability and congestion.

4.1 Equilibrium analysis under the proposed policy

The first step is to establish that under the policy proposed above there exists a unique equilibrium

operating regime. This is addressed in the next two propositions. First, consider a system where

the BE-user class is not sensitive to delay, i.e., q = 0. (Alternatively, this is a system with no

feedback signal.) The next proposition characterizes the stability region for this system, i.e., the

set of input rates λ = (λ1, λ2) such that the system admits a unique steady-state.

Proposition 2 For each capacity C > 0, and arrival vector λ > 0 such that λ1P(Q1<C)
µ1

+ λ2

µ2
< C,

the continuous time Markov chain (Q1(t), Q2(t) : t ≥ 0) admits a unique stationary (steady-state)

distribution. Here P(Q1 = C) = 1 − P(Q1 < C) is the steady-state probability of blocking in an

M/M/C/C queue with arrival rate λ1 and service rate µ1.

Note that (Q1(t) : t ≥ 0) admits a unique stationary distribution for any arrival rate λ1 since the

number-in-system is bounded by C. If we assume that under the unique steady-state distribution,

the expected delay, ED, is continuous in the BE-class arrival rate, λ2, then, for the system with

feedback (q > 0), we have the following result.

Proposition 3 For each capacity C > 0, and price vector p ≥ 0, there exists a unique steady-state

equilibrium.
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The nature of the two-class system and the associated equilibrium formulation make it difficult

to pursue a direct analysis of the Markov chain describing the system dynamics. This difficulty is

exacerbated when the service rates for the two classes differ, i.e., when µ1 6= µ2. (This problem

has been pointed out in many other studies; see, e.g, Davis (1966) and Williams (1980).) With

this in mind, we will first derive approximations to the system equilibrium behavior in the simpler

case, where the service rates are identical. This provides a clean illustration of the main structural

insights and key results. Subsequently, Section 6 will illustrate how these results extend to the case

of non-identical service rates.

4.2 Preliminaries for asymptotic analysis

Our approach will rely on approximations which are accurate in large scale operations, i.e., when

the market potential and the system capacity are both large. To derive these approximations, we

will let the “scale” of the system grow as follows: for n = 1, 2, . . . and i = 1, 2 we set

Cn := n [capacity grows large]

Λn
i := nΛ̄i [capacity grows proportionally to the market potential]

λn
i (·) := Λn

i λ̃i(·) [structure of the demand curve is preserved]. (9)

The second and third assumptions imply that the structure of the demand curve is preserved, while

its magnitude is scaled up linearly. The proportionality factor, Λ̄ = (Λ̄1, Λ̄2) are derived from the

original system parameters by setting Λ̄i := Λi/C, where Λi is the potential demand for ith service

class, and the system capacity is C. Note that in the case of linear costs of capacity, h(C) = h · C
for some h > 0, the assumption that capacity and market potentials grow proportionally would

be a consequence of the profit maximization objective that incorporates capacity costs; for an

illustration of this argument in the single-class context see Maglaras and Zeevi (2003a). Finally, we

note that under the scalings given in (9) the fluid optimal prices p̄i and the workload contributions κi

defined in the previous section are independent of n, while the fluid-optimal demand rates λ̄n
i grow

proportionally to n. We use the superscript n to denote quantities that depend on the (growing)

system capacity, e.g., ρn denotes the system utilization, and the absence of such a superscript

will indicate quantities that are independent of n. For two real-valued sequences an, bn we write

an = o(bn) if an/bn → 0 as n → ∞. Finally, for any differentiable function f : R → R, f ′ will

denote its derivative.

4.3 Main results

System equilibrium characterization. Our first result characterizes the system equilibrium. In

particular, it asserts that the fluid optimal-prices induce “high” resource utilization (heavy-traffic)
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and yet the service quality achieved is high.

Theorem 1 (Equilibrium characterization) Suppose that µ1 = µ2 = µ, the conditions of

Proposition 1 hold, and assume that demand (λn) and capacity (Cn) grow large as in (9) as n → ∞.

Consider the sequence of steady-state utilizations ρn, delays Dn, and queue lengths Qn
1 , Qn

2 obtained

in equilibrium for each n. Then,

i.) system utilization: ρn = 1 − γ√
n

+ o(1/
√

n)

ii.) BE-class delay: E[Dn] =
d(γ)√

n
+ o(1/

√
n)

iii.) G-class blocking: P(Qn
1 = n) = o (e−cn), for some c > 0

iv.) system congestion: P(Qn
1 + Qn

2 ≥ n) = ν(γ) + o(1)

as n → ∞. Furthermore, the parameter γ that characterizes the asymptotic approximations in i)

to iv) above can be explicitly computed as the unique solution of the following equation

γ = −κ2
q

µ

λ̃′
2(p̄2)

λ̃2(p̄2)
d(γ), (10)

where d(γ) is given by

d(γ) =
φ(γ)

κ2γ(γΦ(γ) + φ(γ))
. (11)

Here κ2 is the workload contribution associated with the BE-users for the fluid price vector p̄,

ν(γ) := κ2γd(γ), and Φ(·), φ(·) denote the standard Normal cumulative distribution function and

its density, respectively.

Intuition and “proof sketch.” The essence of the equilibrium analysis hinges on the delay

process D. To this end, the delay experienced by the BE-class (see (1)) satisfies

Dn(t) ≈ (Qn
1 (t) + Qn

2 (t) − n)+

n − Qn
1 (t)

,

where ‘≈’ is used to denote equality up to lower order terms in n. Now, when the mean service

requirements are identical in the two classes and neglecting the blocking of G-users, the number-

in-system process, Qn
1 (t) + Qn

2 (t), has identical dynamics to the number-in-system process in an

M/M/n queue. In particular, (Qn
1 (t) + Qn

2 (t)− n)+ is then simply the queue length at time t ≥ 0,

and the steady-state mean is

E (Qn
1 + Qn

2 − n)+ =
ρn

P(Qn
1 + Qn

2 ≥ n)

(1 − ρn)
,
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where Qn
i := Qn

i (∞). When ρn = 1 − γ/
√

n for some γ > 0, we have that

E (Qn
1 + Qn

2 − n)+ ≈
√

nP(Qn
1 + Qn

2 ≥ n)/γ ,

and limn→∞ P(Qn
1 + Qn

2 ≥ n) = ν(γ) = φ(γ)/(γΦ(γ) + φ(γ)) (see, e.g., Halfin and Whitt (1981,

Proposition 1)). On the other hand, the process Qn
1 is simply the number-in-system in an M/M/n/n

queue with λn
1 = κ1nµ, which follows from (8). (Recall that κ1, κ2 are the relative workload

contributions from each class of service.) Consequently, EQn
1 ≈ κ1n, and n−Qn

1 ≈ κ2n. Combining

these observations, we conclude that EDn ≈ d(γ)/
√

n. Since the blocking probability for the G-

class is small, it follows that the utilization is essentially dictated by the above congestion term,

in particular, ρ ≈ 1 − γ/
√

n. Finally, by taking a Taylor expansion of the demand function for

the BE-class, λ̃2(·), one obtains the equilibrium equation (10). While this sketch captures some of

the intuition that underlies the actual proof, it is also somewhat misleading. In particular, due to

blocking effects a rigorous analysis of the two-class system hinges on diffusion limits.

Implications: performance of the fluid-optimal prices. Theorem 1 suggests that the

revenues generated under the fluid-optimal prices ought to be “close” to optimal, due to the “small”

degradation attributed to stochastic fluctuations. To turn this into a rigorous statement, let us

first introduce the following notation. Let

Rn(p1, p2, U) := p1λ
n
1 (p1)(1 − b(U)) + p2λ

n
2 (p2 + (q/µ2)EDn)

denote the revenue rate achieved under any feasible price pair (p1, p2) and admission control U in

equilibrium, which is assumed to exist, and let

Rn
∗ := sup {Rn(p1, p2, U) : p1, p2 ≥ 0, U}

denote the optimal revenue for a system with capacity Cn = n. Under this notation, Rn(p̄1, p̄2, Ū)

denotes the equilibrium revenue rate under the policy extracted through the fluid relaxation of

Section 3. Also, recall that R̄(p̄1, p̄2) is the value of the deterministic optimization problem, i.e.,

the fluid revenue rate generated by the fluid-optimal prices p̄1, p̄2, and let R̄n = nR̄(p̄1, p̄2) denote

the optimal revenue extracted in (5) when λi(·) is replaced by λn
i (·) and Cn = n.

Theorem 2 (Asymptotic optimality of the deterministic solution) Under the assumptions

of Theorem 1, p̄1, p̄2, Ū are asymptotically optimal in the sense that

Rn(p̄1, p̄2, Ū)

Rn∗
≥ 1 − α√

n
+ o(1/

√
n), (12)

as n → ∞, where α > 0 is a function of p̄1, p̄2. Moreover, Rn(p̄1, p̄2, Ū)/R̄n → 1 as n → ∞.

The above result is reminiscent of the one derived by Gallego and van Ryzin (1994) who estab-

lished “near optimality” of static, fluid-based, pricing rules. A similar result was also derived by
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Paschalidis and Tsitsiklis (2000) for a multiclass loss model. While the problem formulation, set up

and analysis are quite different, these results are driven by aggregation effects that lead to reduced

variability, namely, as the problem scales up, variability only scales as a square-root of the size of

the problem. The asymptotic optimality property described above is in the “first order” sense (or

fluid scale sense) insofar as it does not yield the best possible constant α. To that end, the effects

of the admission control policy are seen to be second order, i.e., are captured in the magnitude of

α. In section 7 we will describe a refinement to the fluid-optimal prices that optimizes second order

performance given the admission policy derived from the fluid relaxations.

The case where BE service gets priority. As mentioned earlier, one could also consider

the situation where the BE-class generates higher revenues per unit of capacity per unit time,

and thus receives higher priority from the service provider. In this case, G-users are blocked

whenever BE-users suffer rate degradation, and the brunt of congestion is borne by the G-users.

The main results we obtained in this section could be derived in this setting as well, and the main

structural conclusions should continue to hold (essentially interchanging the two service classes).

That is, having the high priority BE-class suffering exponentially small congestion, the G-class

being blocked with probability proportional to γ/
√

n, and the overall system utilization being

again ρn ≈ 1− γ/
√

n. We will not attempt to rigorously justify these statements, since this would

necessitate going well beyond the space limitations of the current paper.

5 Qualitative Insights and Accuracy of the Approximations

The heavy-traffic regime. The operational regime where capacity (C) is large and “matches”

demand in a manner that the system probability of congestion is moderate, was first investigated by

Halfin and Whitt (1981) in their seminal paper on many-server heavy-traffic limits in the context of

the M/M/n queue. As observed in the sequel study by Whitt (1992), large capacity systems that

operate in high utilization exhibit statistical economies of scale, manifested as stochastic fluctuations

which are of order square root the “size” of the system. These economies of scale are the primary

reason for the high quality of service that prevails in spite of high utilization. Theorem 1 establishes

that the fluid-optimal prices, derived on the basis of a deterministic analysis, lead the system to

operate in the so-called Halfin-Whitt regime.

Using Theorem 1 to approximate the performance of a given system. The asymptotic

result in Theorem 1 suggests how one can approximate the performance of a system with fixed and

finite capacity C. In particular, one first uses the problem primitives (namely, parameters of the

demand curve λ̃(·), and the market potential Λ) to solve the deterministic problem in Section 3,

arriving at the fluid-optimal prices p̄1, p̄2. Then, one proceeds to solve (10), deriving the equilibrium
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parameter γ and computing d(γ) given by (11) in Theorem 1. These limiting parameters are then

used to approximate key performance measures which are affected by stochastic fluctuations: (i)

the utilization is ρ ≈ 1 − γ/
√

C, and; (ii) the BE-delay is ED ≈ d(γ)/
√

C. Moreover, blocking

effects in the high priority (G) class are indeed negligible relative to congestion-related effects in

the BE-class. The numerical example that follows provides a concrete illustration of the use of

Theorem 1 in approximating the behavior of a given system.

Accuracy of the deterministic analysis. The equilibrium operating point characterized in

Theorem 1 verifies, in hindsight, the accuracy of the deterministic analysis. In particular, the latter

assumes zero delays and blocking effects, deducing that the system operates in 100% utilization,

while the former asserts that stochastic effects perturb the fluid operating point by order 1/
√

C, as

spelled out in statements (i) and (ii) in the previous paragraph. Moreover, Theorem 2 establishes

that the revenues generated by the fluid-optimal prices are near optimal, when capacity (C) and

market potential (Λ) are both large.

A numerical illustration. Throughout the paper we use the following sample problem as a

running example, with the goal of illustrating numerically how the analytical results describe the

structural behavior of the system. We assume a linear demand relationship for both services, of

the form

λi(p) = Λi − αip,

for appropriate parameters Λi, αi for i = 1, 2. The αi’s are the price sensitivity parameters of

the two demand models. Let λ̄i denote the nominal demand rates for each service class computed

through the deterministic revenue maximization problem (5), let p̄i be the corresponding prices, and

let κi be the associated relative workload contributions. Pursuing further the analysis presented

in Section 3, the first order optimality conditions for (5) are (Λi − 2λ̄i)/αi = ν/µi, where ν is the

Lagrange multiplier associated with the capacity constraint, which leads to the solution

λ̄i =
1

2

(

Λi − ν
αi

µi

)

where ν =

(
Λ1

2µ1
+

Λ1

2µ1
− C

)+ (
α1

2µ2
1

+
α2

2µ2
2

)−1

.

The fluid prices are then given by p̄i = (Λi − λ̄i)/αi.

Figure 1 shows the dependence of the equilibrium congestion term EDn and the corresponding

traffic intensity ρn as we vary the system capacity n. The demand model parameters are chosen so

that for n = 50, 100, . . . , 450, Λn
1 = 1.5 · n, αn

1 = n/10, Λn
2 = 2 · n, αn

2 = n/5, µ1 = µ2 = 1, q = 1.

(Under (5), κi = .5 and p̄1 = 10 and p̄2 = 7.50, independent of n.) These results highlight the high

accuracy of the proposed asymptotic approximations when compared to the “exact” results based

on exhaustive simulation. For the latter, we simulate five sample paths of 2,000,000 events each at

different values of d = EDn, until the sample estimate ED̂n is in agreement with the hypothesized

parameter d and the system is in equilibrium; henceforth, quantities obtained via simulation will be
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tagged with a .̂ Moreover, the structural properties given in Theorem 1 appear to be in force even

for systems of moderate capacity. Specifically, the two figures illustrate that the expected delay

suffered by the BE-users in equilibrium decays like d(γ)/
√

n, and the equilibrium traffic intensity

behaves like 1 − γ/
√

n, where γ is the unique solution of the equilibrium equation (10). For the

parameters of this example, γ = .46 and d(γ) = 2.33.
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Figure 1: Equilibrium congestion EDn and traffic intensity ρn under the fluid prices (p̄1, p̄2) as a

function of the system capacity (n). (Error bars represent pointwise 95% confidence intervals for

quantities estimated via simulation.)

The closed-form asymptotic approximations given in Theorem 1 can be used in order to study

the sensitivity of system performance to various model parameters such as (q, α1, α2). Table 1

reports results obtained via both the asymptotic approximations and exhaustive simulation for

a set of representative examples. The parameters used to construct this table are: n = 100,

µ1 = µ2 = 1, Λ1 = 150, and Λ2 = 200. As expected, an increase in the delay sensitivity parameter

q results in a decrease in the equilibrium delay for the BE users and moreover the arrival rate into

the BE service class and the overall traffic intensity also decrease. These effects are “second order”

since they depend on the congestion cost which, in turn, behaves like 1/
√

C. Similarly, as the price

sensitivity parameter for G service increases (this changes the revenue function for this class), the

relative workload contributions extracted from the deterministic optimization problem (5) change,

and the overall revenue rate decreases; both changes affect the first order behavior of the system

by changing the κi’s that define how nominal capacity is split between the two classes. In all five

examples, the revenue rate computed via simulation was very close to the one predicted via the

asymptotic approximations, which is given by

Rn(p̄1, p̄2) ≈ λ̄1p̄1 + (λ̄2 − α2
q

µ2
EDn)p̄2.
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Moreover, both values were close to R̄, obtained from the deterministic optimization problem (5).

(q, α1, α2) κ1 (ED̂, ρ̂) ED (gap) ρ (gap) R̂(p̄1, p̄2) R(p̄1, p̄2) (gap) R̄(p̄1, p̄2)

(1,10,20) .5 (.248, .950) .234 (5.98%) .954 (-.42%) 837.80 840.09 (-.27%) 875

(2,10,20) .5 (.163, .935) .149 (9.40%) .940 (-.53%) 826.16 830.23 (-.49%) 875

(4,10,20) .5 (.102, .919) .093 (9.68%) .926 (-.76%) 814.00 819.50 (-.67%) 875

(1,15,20) .429 (.225, .955) .219 (2.74%) .956 (-.10%) 682.16 682.97 (-.12%) 714.29

(1,20,20) .375 (.228, .954 ) .212 (7.55%) .958 (-.42%) 608.75 611.46 (-.44%) 640.63

Table 1: Sensitivity of the equilibrium behavior (expected delay, system utilization and revenue

rate generated) w.r.t. (q, α1, α2), in a a system with capacity C = 100 operating under the fluid-

optimal prices. The expected delay, system utilization and resulting revenue rate ED, ρ and R are

computed using the asymptotic expressions, while ED̂, ρ̂, and R̂ are simulation-based estimates. R̄

denotes the upper bound on the optimal revenues derived from the deterministic analysis, and %

relative error are defined as (ED̂ − ED)/ED̂ × 100 etc.

6 The Case of Non-identical Service Rates

This section describes an approach that allows us to extend our previous results to the case of

non-identical service rates (i.e., µ1 6= µ2). As noted in Section 4, the key element in characterizing

the equilibrium is the delay process, Dn, which, in turn, is essentially characterized by the number-

in-system process, Qn
1 + Qn

2 . The “intuition and proof sketch” that followed Theorem 1 suggests

that when the service rates are identical, the number-in-system process has a simple Markovian

structure for all n, and its steady-state distribution is simple to characterize. In contrast, when the

service rates are not identical, the number-in-system process is not Markovian, and it is no longer

simple to characterize its steady-state distribution. While this observation places an obstacle, at

least as far as analysis is concerned, the scaling relations of Theorem 1 can be expected to hold

true on the basis of diffusion approximations described in Appendix A.

For the purposes of performance analysis, i.e., in order to approximate the system equilibrium

behavior, we exploit the following simple observation: given a system with different service rates,

we can construct an approximating system that has the same service rates, adjusting arrival rates

so as to capture the effect of the difference in the µi’s. Since this system has equal service rates, it

is amenable to the analysis of Section 4. We now provide a skeleton of the approach culminating

in an approximation for EDn.

Consider a system with capacity C, service rates µ1, µ2 and arrival rates λi = Cκiµi − γi

√
Cµi,

for some appropriate parameters γi such that γ1 + γ2 > 0; the latter is equivalent to ρ < 1. Note
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that for any arrival rates λ1, λ2 and given values κ1, κ2 (extracted from (8)), one can always rewrite

the λi’s in the form given above. For our system γ1 = 0 and γ2 = −κ2
λ̃′

2
(p̄2)

λ̃2(p̄2)

q
µ2

d(γ) + o(1/
√

C);

the latter follows from the fact that ED ≈ d(γ)/
√

C. Our goal is to approximate ED, and thus

characterize the behavior of the underlying system.

The perturbation approximation. Define µ̄ = (µ1 + µ2)/2, and rewrite the service rates as

“small” perturbations around that common value µ̄, viz,

µi = µ̄

(

1 − ζi√
C

)

, (13)

setting ζi :=
√

C(1 − µi/µ̄). Next, rewrite the arrival rates λi = Cκiµi − γi

√
Cµi in the form

λi = Cκiµ̄ −
√

C(γ̄i + κiζi)µ̄, (14)

by setting γ̄i = γiµi/µ̄. Keeping ζ1, ζ2, γ̄1, γ̄2 fixed, define a sequence of systems with

Cn = n, µn
i = µ̄

(

1 − ζi√
n

)

and λn
i = nκiµ̄ −

√
n(γ̄i + κiζi)µ̄. (15)

Note that by setting n = C we recover the parameters of the original system, (C, µ1, µ2, λ1, λ2).

That is, we have embedded the original system in a the sequence of systems defined through (15),

the limit of which is tractable since both µn
1 , µn

2 → µ̄ as n → ∞, and where the difference between

the original values µ1, µ2 is captured via the γ̄i’s. (See Maglaras and Zeevi (2004, Theorem 2)

for details.) Since there is only one value of µ appearing asymptotically, the sum process is now

tractable and its steady-state behavior is essentially characterized through the total traffic intensity

in the system given by

ρn =
∑

i

nκiµ̄ −√
n(γ̄i + κiζi)µ̄

nµ̄
(

1 − ζi√
n

) = 1 − γ̄1 + γ̄2√
n

+ o(1/
√

n)),

which can be rewritten in the form ρn = 1 − γ̄/
√

n + o(1/
√

n) for

γ̄ = γ̄1 + γ̄2 = γ1
µ1

µ̄
+ γ2

µ2

µ̄
.

In contrast, the original system with service rates µ1, µ2 and arrival rates λ1, λ2 had total traffic

intensity 1− (γ1 +γ2)/
√

C; i.e., the approximating scheme eventually reduces to scaling the γi’s by

µi/µ̄, respectively. Finally, using the results of Section 4 we can compute the congestion cost for

the limit system that has same service rates as ED = d(γ̄), where d(·) is given in (11). Returning

to our original system with γ1 = 0 and γ2 = −κ2
q
µ2

λ̃′

2
(p̄2)

λ̃2(p̄2)
d(γ) + o(1/

√
C), we get the equilibrium

equation

γ̄ = −κ2
q

µ̄

λ̃′
2(p̄2)

λ̃2(p̄2)
d(γ̄). (16)

We note that the perturbation approximation pertains to a system that is announcing the true

value of the steady-state delay and not the value derived through the perturbation approximation.
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That is, the users are responding to the “right” information and not an approximation that is

computed through the proposed perturbation approach.

The proposed approximation is quite accurate, as the following numerical study illustrates.

Figure 2 studies the equilibrium congestion cost suffered by the BE class as we vary the ratio

between µ2/µ1. In particular, the congestion cost for the system with µ1 6= µ2 is computed via

simulation and then contrasted against the perturbation approximation which uses µ̄ = (µ1+µ2)/2.

The demand model parameters were: n = 100, Λn
1 = 150, αn

1 = 10, Λn
2 = 200 · µ2, αn

2 = 20 · µ2
2,

µ1 = 1, µ2 ∈ {1, 1.25, 2, 3, 4, 6, 8, 10}, q = 1 (Under (5), κi = .5 for all parameter choices.). As is

evident from this figure (as well as in other test cases studied), the perturbation approximation

described above provides an accurate estimate of the congestion cost, and this accuracy degrades,

as one would expect, when the ratio of the µi’s increases.
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Figure 2: Accuracy of the perturbation approximation in systems with non-identical service rates.

The graph depicts the expected delay as a function of µ2/µ1. (Error bars represent pointwise 95%

confidence intervals for quantities estimated via simulation.)

7 Optimizing Revenues: A Second Order Price Correction

The last three sections have studied the behavior and revenue performance of the fluid prices

derived from the solution of the deterministic revenue maximization problem (5). A key insight is

that under this pricing policy the system will naturally operate in heavy traffic with a low level

of congestion in the BE service class, and the resulting revenue loss due to congestion will be

moderate. The latter was captured through the second order term in Theorem 2. This section will

apply the asymptotic results derived thus far to approximate the performance of a given system
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with capacity C that is assumed to be large, and proceed to optimize the second order revenue loss

term by appropriately fine tuning the corresponding pricing decisions.

Specifically, for a system with large capacity C, the total load into the system ρ is of the form

1 − γ√
C

, the BE congestion ED is of order d(γ)√
C

, and in equilibrium

λ1(p̄1) = κ1Cµ1 and λ2(p̄2 +
q

µ2
ED) ≈ κ2Cµ2 −

√
Cβ2µ2

q

µ2
d(γ),

where β2 = − λ̃′

2
(p̄2)

λ̃2(p̄2)
κ2, and γ is defined via the equilibrium equation γ = β2

q
µ2

d(γ). This leads to
√

Cβ2µ2
q
µ2

d(γ)p̄2 in lost revenues due to congestion effects, which may be significant.

Refining the fluid-optimal price. Building on the scaling relations given in Theorems 1 and

2, we will consider a pricing rule that incorporates a second order price correction term of the form

p∗i = p̄i +
πi√
C

πi ∈ R. (17)

Such prices do not affect the first order behavior of the system, while introducing a second order

correction that affects the equilibrium behavior and the lost revenues due to congestion. Pricing

rules of this form have been shown to be asymptotically optimal in Maglaras and Zeevi (2003a) for

a single-class system offering BE type of service (under the additional assumption that the demand

is elastic).

Under the pricing rule (17), and assuming that C is large, we have that

λ1(p
∗
1) ≈ κ1Cµ1 −

√
Cβ1µ1π1 and λ2(p

∗
2 +

q

µ2
ED) ≈ κ2Cµ2 −

√
Cβ2µ2[π1 +

q

µ2
d(γ)],

where βi = − λ̃′

i(p̄i)

λ̃i(p̄i)
κi, and γ is defined via the equilibrium equation

γ = β1π1 + β2(π2 +
q

µ2
d(γ)). (18)

It is again easy to show that for any π1, π2 ∈ R this expression has a unique solution γ > 0 that

characterizes the system equilibrium. The system revenues under the pricing rule (17) are

R(p∗1, p
∗
2) := λ1(p

∗
1)p

∗
1 + λ2(p

∗
2 + q/µ2ED)p∗2

≈ κ1Cµ1p̄1 + κ2Cµ2p̄2

−
√

C

[

β1µ1p̄1π1 − κ1µ1π1 + β2µ2p̄2(π2 +
q

µ2
d(γ)) − κ2µ2π2

]

, (19)

where the ‘≈’ notation implies equality to within lower order terms in C.

Optimizing revenue rates. Given (19) we can formulate a second order optimization problem

that determines the price correction factors πi as follows:

min
πi∈R

{

β1µ1p̄1π1 − κ1µ1π1 + β2µ2p̄2(π2 +
q

µ2
d(γ)) − κ2µ2π2

}

, (20)
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subject to the equilibrium condition (18). This problem can be readily solved by searching over

the πi’s and using the closed-form expression for d(γ) given in (11). For each value of the vector

π, the above calculation requires the evaluation of the system equilibrium behavior. If the µ’s are

the same this reduces to finding the unique solution of (18). If the µi’s are different, then the

equilibrium equation is modified according to the perturbation approximation described earlier, by

setting µ̄ = (µ1 + µ2)/2 and replacing µ2 by µ̄ and βi by β̄i = βi(µi/µ̄) in (18).

In the context of this second-order analysis, one can also consider a system that offers quality-

of-service (QoS) guarantees of the form ED ≤ δ, for some appropriate bound δ > 0. To incorporate

these guarantees in an asymptotic sense on needs to add the constraint d(γ) ≤ δ
√

C to the opti-

mization problem posed above in terms of the second order price correction terms π1, π2.

Numerical results. We conclude this section with a set of numerical results that illustrate the

effect of second order price corrections on system-wide revenues. To isolate the effect of the pricing

changes we have kept the service rates (µ1, µ2) equal. Given (19), it follows that the magnitude of

the revenue improvement due to the second order price corrections is second order, i.e., it grows

like the square-root of capacity. Table 2 focuses on the dependence of these refinements, in terms

of their effect on pricing decisions and equilibrium revenues, on the demand and delay sensitivity

parameters. All reported results were obtained via the proposed asymptotic approximations, since

as illustrated in the previous sections these tend to be quite accurate. Specifically, R(p̄) := R(p̄1, p̄2)

and R(p∗) := R(p∗1, p
∗
2) were computed via (19) for π1 = π2 = 0 in the first case and the optimal

πi’s obtained from (20) in the second. R̄(p̄) := R̄(p̄1, p̄2) is the revenue rate obtained from the

deterministic formulation (5). The system parameters were: C = 100, µ1 = µ2 = 1, Λ1 = 150, and

Λ2 = 200.

A quick inspection of these results highlights that the absolute magnitude of the revenue im-

provements is modest. This is not surprising in light of the fact that the system is operating in a

regime that is close to heavy traffic and is extracting almost maximum revenues (upper bounded

by R̄(p̄1, p̄2)). However, a more detailed look at the results illustrates that the (%) improvement

in terms of the distance from the upper bound R̄(p̄) - this is computed as the change in revenues

R(p∗)−R(p̄) over the sub-optimality gap under the fluid prices R̄(p̄)−R(p̄) and is reported in the

rightmost column of the table - can be significant.

8 Effects of Congestion Notification

This section considers a system that announces state-dependent congestion information for the BE

(or low priority) service class and analyzes the economic implications of this design decision.
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(q, α1, α2) p̄ p∗ R(p̄) R(p∗) R̄(p̄) R(p∗)−R(p̄)
R̄(p̄)−R(p̄)

(1,2.5,20) (33.33, 8.33) (34.11, 7.93) 2455 2460 2500 9.7%

(1,10,20) (10.00,7.50) (11.00, 6.96) 840 841 875 1.8%

(1,10,40) (9.00, 4.00) (9.68, 3.70) 674 675 700 2.7%

(.25,10,40) (9.00, 4.00) (9.24, 3.82) 684 686 700 6.9%

(.1,10,40) (9.00, 4.00) (8.16, 4.12) 689 691 700 10.5%

(4,10,40) (9.00, 4.00) (9.34, 3.82) 661 662 700 2.6%

Table 2: Sensitivity w.r.t. model parameters (q, α1, α2). The table shows the fluid-optimal price

p̄, the second order corrected price p∗, and the resulting revenues R(p̄) and R(p∗). The rightmost

column displays the improvement (%) in the sub-optimality gap.

The model. The system announces the state-dependent congestion signal

Dd(t) =
(Qd

1(t) + Qd
2(t) − C)+

C − Qd
1(t)

,

which is the excess delay defined in (1). Various quantities that are associated with this system

will be tagged with a superscript d, mnemonic for “dynamic,” reflecting the real-time nature of

this congestion information. The BE-users evaluate the disutility associated with BE service using

Dd(t) in place of the steady-state expected congestion cost ED. The state-dependent congestion

signal results in a system with state-dependent arrival rate parameters given by

λd
1 = Λ1λ̃1(p1) and λd

2(t) = Λ2λ̃2

(

p2 +
q

µ2
Dd(t)

)

. (21)

Note that under the standing assumption that users do not act strategically in response to the

firm’s pricing and congestion notification strategy, this model no longer requires an equilibrium

analysis.

System behavior under the deterministic solution. Following the scaling assumption

given in (9), consider a system with capacity Cn = n and potential demand Λn
i = nΛ̄i. As a

starting point we will optimistically assume that the congestion suffered by the BE-class satisfies

the scaling relations derived for the system with static information, and scales as

Dn,d(t) =
Dd(t)√

n
+ op(1/

√
n), for all t ≥ 0 (22)

for some appropriate limit process Dd(·) to be identified later. Here an = op(bn) if an/bn ⇒ 0 as

n → ∞. The immediate consequence of this assumption is that under the fluid prices p̄1, p̄2 the

arrival rates in to the two service classes are of the form

λn,d
1 = κ1nµ1 and λn,d

2 (t) = κ2nµ2 −
√

nµ2β2
q

µ2
Dd(t) + op(

√
n), for all t ≥ 0, (23)
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where β2 = −κ2
λ̃′

2
(p̄2)

λ̃(p̄2)
. Note that λn,d

2 (t) is now a stochastic process. The overall traffic intensity is

ρn(t) = 1 − β2
q

µ2

Dd(t)√
n

+ op(1/
√

n) for all t ≥ 0.

In the spirit of the results reported in the previous sections, it is natural to posit that Qn,d
i (t)

can be expressed as

Qn,d
i (t) = κin +

√
nXn,d

i (t), (24)

where the κi’s were defined in (8), and the process (Xn,d
1 (t), Xn,d

2 (t) : t ≥ 0) is defined by

Xn,d
i (t) :=

Qn,d
i (t) − κin√

n
for i = 1, 2. (25)

Using the expression in (24), the congestion term can be approximated as follows

Dn,d(t) =
(Qn,d

1 (t) + Qn,d
2 (t) − n)+

n − Qn,d
1 (t)

=

√
n(Xn,d

1 (t) + Xn,d
2 (t))+

κ2n −√
nXn,d

1 (t)

=
1

κ2
√

n
(Xn,d

1 (t) + Xn,d
2 (t))+ + op(1/

√
n),

which is consistent with (22). To justify the heuristic approach taken above we need to establish that

(24) is indeed correct by identifying a well-behaved limit for the process (Xn,d
1 (t), Xn,d

2 (t) : t ≥ 0).

To this end, let (Xn(t) : t ≥ 0) and (X(t) : t ≥ 0) be R
m-valued continuous time stochastic processes

with sample paths in the space of functions having right-continuous paths with left limits. Then,

Xn(·) ⇒ X(·) denotes weak convergence in this functional space with respect to the Skorohod

topology; see, e.g., Billingsley (1968, §3). (Since all limit processes in this paper have continuous

sample paths, it suffices to consider the above convergence w.r.t. the uniform metric on compact

sets [0, T ], with T < ∞.) The next proposition justifies the heuristic described above.

Proposition 4 Assume that demand (λn) and capacity (Cn) grow large as in (9) as n → ∞. If

Xn,d(0) ⇒ ξ for some ξ ∈ R
2, then, under the pricing rule (p̄1, p̄2), Xn,d(·) ⇒ Xd(·) as n → ∞,

where Xd is the unique strong solution of the stochastic differential equation:

dXd(t) = bd(Xd(t))dt + ΣdW (t), Xd(0) = ξ, (26)

where W = (W (t) : t ≥ 0) is standard Brownian motion in R
2. The infinitesimal drift is given by

bd
1(x1, x2) = −µ1x1

bd
2(x1, x2) =

{

−µ2x2 x1 + x2 ≤ 0

−µ2β2
q
µ2

x1+x2

κ2
+ µ2x1 x1 + x2 > 0 ,

(27)
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where β2 = −κ2
λ̃′

2
(p̄2))

λ̃2(p̄2)
and Σ := diag(σ1, σ2), with σ2

i = 2µiκi. Finally,

√
nDn,d(·) ⇒ Dd(·) :=

(Xd
1 (·) + Xd

2 (·))+
κ2

. (28)

That is, Xn,d has a well-defined limit, and the approximation of the congestion signal Dn,d(t)

asserted in (22) is rigorously justified on the basis of (28). The process Xd
1 (·) that approximates

the fluctuations of the G-users evolves as an Ornstein-Uhlenbeck process that is independent of

the congestion information, whereas the drift of the Xd
2 (·) process is modulated by the value of the

Xd
1 (·) process. The congestion suffered by BE users, the demand for BE service, and the associated

revenue rate are all functions of the “sum” process Zd(·) := Xd
1 (·) + Xd

2 (·). For the case where

µ1 = µ2 = µ, Zd is a tractable one-dimensional diffusion that solves the stochastic differential

equation2

dZd(t) = bd
z(Z

d(t))dt + σdW (t),

where W = (W (t) : t ≥ 0) is standard Brownian motion in R, the infinitesimal drift is

bd
z(z) =

{

−µz z < 0

−µαz z ≥ 0,
(29)

where α := β2q/(κ2µ), and the infinitesimal variance is σ2(z) = 2µ. Note that (29) is simply

obtained by adding the two drift components in (27).

The above diffusion is comprised of two O-U processes that are “pasted together;” one describes

the dynamics when the system has spare capacity, z < 0 in diffusion scale, and the other gives the

behavior when the system is in the congested state, z > 0 in diffusion scale. Using results from

Browne and Whitt (1995): (i) when Zd < 0, Zd ∼ N(0, 1), where Zd := Zd(∞); (ii) when Zd ≥ 0,

Zd ∼ N(0, 1/α). Putting the two together we get that P (Zd ≥ 0) = φ(0)
φ(0)+

√
αφ(0)

= 1
1+

√
α

and

P(Zd ≤ z|Zd ≤ 0) = 2Φ(z) z ≤ 0 and P(Zd > z|Zd > 0) = 2Φ(−z
√

α) z > 0. (30)

Given that Dd(t) = (Zd(t))+/κ2, a straightforward calculation leads to

EDd =

√

2

π

1

(
√

α + α)κ2
. (31)

The value of real-time congestion notification. First, note that the revenue rate extracted

at time t depends on the state of the system at that time through the congestion signal Dn,d(t).

For simplicity, the remainder of this section will restrict attention to the case of identical service

rates and prices fixed at p̄ = (p̄1, p̄2), i.e., π1 = π2 = 0, and refer the reader to Sections 6 and 7 for

guidelines on possible extension to the general case. With a slight abuse of notation, we will denote

2One can obtain a similar process for the case µ1 6= µ2 akin to the results of Section 6; details are omitted.
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the revenue rate at time t by R(p̄, Dn,d(t)). Then, using the fact that Dn,d(t) = 1√
n
Dd(t)+op(1/

√
n),

we get that

R(p̄, Dn,d(t)) := λn,d
1 (t)p̄1 + λn,d

2 (t)p̄2

= (κ1nµp̄1) +
(

κ2nµp̄2 −
√

nβ2p̄2qD
d(t)

)

+ op(
√

n). (32)

Finally, using the expected steady-state value EDd given in (31) one can approximate the expected

revenue rate for that system via a non-rigorous interchange of limits as follows

ER(p̄, Dn,d) ≈ (κ1nµp̄1) +
(

κ2nµp̄2 −
√

nβ2p̄2qEDd
)

. (33)

Recall that the revenue rate for the system with static information can be approximated by

R(p̄, EDn) ≈ (κ1nµp̄1) +
(
κ2nµp̄2 −

√
nβ2p̄2qED

)
. (34)

Thus,

∆(ERn) := ER(p̄, Dn,d) − R(p̄, EDn) ≈
√

nβ2p̄2q(ED − EDd). (35)

The next theorem establishes that the above difference is strictly positive as n grows large.

Theorem 3 Suppose that µ1 = µ2 = µ, and let the conditions of Proposition 1 hold. Then,

EDd < ED.

That is, BE-users experience better quality-of-service when real-time congestion information

is provided to them. This, in turn, implies that the mean arrival rate into class 2 is larger when

real-time congestion information is announced, which leads to the increase in revenues. Using the

result of the theorem, we infer that real-time congestion notification results in a gain of order
√

n

in terms of generated revenues.

Numerical results. Figure 3 depicts the increase in revenues and decrease in expected conges-

tion cost that occur in a system with real-time congestion notification. (Note that the simulation

of the system with real-time congestion information involves a Markov chain with state-dependent

parameters, but does not require a calculation of an equilibrium operating point.) The model pa-

rameters were: n = {50, 100, . . . , 450}, Λn
1 = 1.5 ·n, αn

1 = n/10, Λn
2 = 2 ·n, αn

2 = n/5, µ1 = µ2 = 1,

q = 1 (Under (5), κi = .5 and p̄1 = 10 and p̄2 = 7.50, independent of n.). We make three observa-

tions about these plots. First, as shown in Theorem 3, real-time congestion information leads to an

increase in expected revenues that is proportional to the square root of the capacity, which seems

to agree with the results displayed in the figure. Second, the expected delay suffered by BE users in

the system with real-time information is indeed smaller. Finally, the variability in the simulation

estimates for the change in expected revenues is higher in comparison to other results because here

we need to simulate two independent systems.

Acknowledgments: The authors are grateful to the two referees, the associate editor and the

area editor for their constructive comments and helpful suggestions.
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Figure 3: The effect of real-time congestion notification. The left figure shows gains in expected

revenues ∆(ERn) as a function of the system capacity (n), and the right figure shows the behavior of

expected delay as a function of the system capacity. (Error bars represent pointwise 95% confidence

intervals for quantities estimated via simulation.)

A Diffusion Limits: Background and Auxiliary Results

The following theorem, whose proof can be found in Maglaras and Zeevi (2004, Theorem 1 and

Corollary 1), characterizes the limiting dynamics in a system with no congestion feedback signal,

and assumes that the arrival rates into each class are of the form λn
i = κiµin − γiµi

√
n + o(

√
n),

for i = 1, 2, n = 1, 2, . . ., with γi such that γ1 + γ2 > 0. The structural implications of this result

underlie the proof of Theorem 1, as in that theorem it it shown that equilibrium arrival rates are

exactly of the form assumed in the result below. As in the main text, let Xn
i (·) := n−1/2(Qn

i (·)−κin)

and Xn(·) = (Xn
1 (·), Xn

2 (·)) and ‘⇒’ denotes weak convergence in the space of functions which are

right-continuous with left-limits, with respect to the Skorohod topology; see Billingsley (1968, §3).

Theorem 4 (Maglaras and Zeevi, 2002) Assume that the arrival rates are of the form λn
i =

κiµin − γiµi
√

n + o(
√

n), for i = 1, 2, n = 1, 2, . . ., with γi such that γ1 + γ2 > 0. Suppose that

Xn(0) ⇒ ξ for some ξ ∈ R
2. Then, Xn(·) ⇒ X(·) as n → ∞, where X is a diffusion process.

Specifically, X is the unique strong solution of the following stochastic differential equation:

dX(t) = b(X(t))dt + ΣdW (t) X(0) = ξ, (36)
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where W = (W (t) : t ≥ 0) is standard Brownian motion in R
2, the infinitesimal drift function bi(·)

for the i’th component is

b1(x1, x2) = −µ1γ1 − µ1x1

b2(x1, x2) =

{

−µ2γ2 − µ2x2 x1 + x2 ≤ 0

−µ2γ2 + µ2x1 x1 + x2 > 0 ,
(37)

and Σ := diag(σ1, σ2), with σ2
i = 2µiκi. Moreover, X admits a unique stationary distribution and

X(t) ⇒ X(∞) as t → ∞. Finally,

√
nDn(·) ⇒ 1

κ2
(X1(·) + X2(·))+.

The infinitesimal drift in (37) has an intuitive interpretation: the limit process for the G-users,

X1(·), evolves freely as an Ornstein-Uhlenbeck (O-U) process, while the drift of the limit process

for the BE-users, X2(·), is modulated by the number of excess G-users present in the system. Based

on the results given in Theorem 4, and assuming one can justify an interchange of expectation limits

on n and t, we anticipate that EDn ≈ d/
√

n. It turns out that this is sufficient to conclude the

structural results (i)-(iv) in Theorem 1. (This interchange argument is rigorously justified for the

case of µ1 = µ2 in the proof of Theorem 1, and a similar argument can be employed when the µ’s

are different.)

B Proofs

Proof of Proposition 2: The proof relies on a relatively straightforward sample path argument

imitating the construction in Loynes (1962); details are omitted.

Proof of Proposition 3: Using a stochastic ordering argument one can verify that the expected

delay ED(λ1, λ2), considered as an explicit function of the arrival rates, is monotonically increasing

in λ2. In what follows we let d denote ED(λ1, λ2). Note that

∂λ1(p1)

∂d
= 0 and

∂λ2(p2 + q
µ2

d)

∂d
< 0.

The equilibrium regime can be defined via the solution d∗ of the set of equations

λ1 = λ1(p1), λ2 = λ2(p2 +
q

µ2
d∗), and d∗ = ED(d∗),

where ED(d∗) denoted the steady state expected waiting time for class 2 service when the arrival

rates into classes 1 and 2 are λ1 and λ2(p2 + q
µ2

d∗), respectively. Define the function h(d) =

d − ED(d). First note that h(0) < 0, h(∞) > 0, and by assumption h(·) is continuous. Moreover,

since ED(λ1, λ2) is monotonically increasing in λ2 and λ2 is monotonically decreasing in d, it follows
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that ED(d) is monotonically decreasing in d. This implies that h(·) is monotonically increasing in

d, and as a result the equation h(d) = 0 has a unique solution, d∗ that characterizes the equilibrium

regime. (The monotonicity of the functions f(d) = d and g(d) = ED(d) guarantee that the function

h(d) switches sign, and the continuity assumption on ensures the existence of a solution to h(d) = 0;

i.e., h(d) does not switch sign at a point of discontinuity.)

Proof of Theorem 1: We first prove statement (iii) and then statements (i),(ii) and (iv).

Step 1. Proof of (iii). Note that the arrival rate into class 1, namely the G-users, is given by

λn
1 (p̄1) = Λn

1 λ̃1(p̄1) = nµκ1. Since the number of G-users in the system, Qn
1 , follows an M/M/n/n

queue, its steady-state is

P(Qn
1 = k) =

ak
n/k

∑n
j=0 aj

n/j
for k = 0, 1, . . . , n (38)

where an := λn
1/µ = κ1n, by definition of κ1. Let Zn be a r.v. distributed Poisson with mean an.

Then, multiplying numerator and denominator in (38) by exp(−an) we can express the steady-state

of Qn
1 as

P(Qn
1 = k) =

P(Zn = k)

P(0 ≤ Zn ≤ n)
for k = 0, 1, . . . , n. (39)

The following auxiliary result gives an upper bound on the tail of a Poisson r.v.

Lemma 1 For any ǫ ∈ (0, 1 − κ1) we have that

P (Zn ≥ (κ1 + ǫ)n) ≤ e−cn for n = 1, 2, . . .

where c = c(ǫ) > 0.

Thus, P(0 ≤ Zn ≤ n) → 1 as n → ∞. To get a bound on the blocking probability, all we need is to

bound the probability that Zn exceeds n. But, Lemma 1 yields exactly the bound asserted in (iii)

in the theorem. Finally, we note that the above arguments imply that Qn
1/n ⇒ κ1, as n → ∞. To

see why this is true, fix ǫ > 0 and note that

P(Qn
1 ≥ n(κ1 − ǫ)) =

P((Zn − an)/
√

an ≥ −√
nǫκ

−1/2
1 )

P(0 ≤ Zn ≤ n)

→ P(N(0, 1) > −∞) = 1

as n → ∞, since (Zn − an)/
√

an ⇒ N(0, 1) by the central limit theorem for a Poisson r.v.

Step 2. In the sequel we will make use of a fictitious system to upper bound various system

processes. This is a system without blocking, where a G-user arriving when Qn
1 (t) = n is allowed

to join a queue and wait until the first serviced G-user in the system departs. to be served by

the first available idle server. We will denote the associated processes by Q̃n
i (·), and note that

30



Q̃n
i (·) ≥ Qn

i (·), and that the dynamics of Q̃n
1 (·) + Q̃n

2 (·) are that of an M/M/n queue. For this

system, if ρn < 1, then

E(Q̃n
1 + Q̃n

2 − n)+ =
ρn

P(Q̃n
1 + Q̃n

2 ≥ n)

(1 − ρn)
. (40)

This follows from standard formulas for the steady-state distribution of an M/M/N queue, see, e.g.,

Halfin and Whitt (1981). Moreover, observe that Q̃n
1 (·) + Q̃n

2 (·) ≥ Qn
1 (·) + Qn

2 (·) and n − Qn
1 (·) ≥

n− Q̃n
1 (·); i.e., this fictitious system provides a pointwise upper (lower) bound for the dynamics of

the number-in-system (available capacity for BE users) in the original system.

Step 3. We now turn our attention to the proof of (i),(ii) and (iv). The BE-users’ delay is

dn := EDn = E

[
(Qn

1 + Qn
2 − n)+

(n − Qn
1 ) ∨ 1

]

.

Suppose that lim infn→∞ dn > 0. If dn does not converge, take a subsequence such that dnj → c,

as j → ∞, where c > 0, and for simplicity, let this subsequence also be indexed by n. Then,

λn
2 = Λn

2 λ̃(p̄2 + (q/µ)dn) must be such that limn→∞ λn
2/n < κ2µ. Thus, limn→∞ ρn < 1, since

λn
1/n → κ1µ. Using the system defined in Step 2 for ρn < 1 and using (40) we get that

EDn ≤ E(Q̃n
1 + Q̃n

2 − n)+

=
ρn

P(Q̃n
1 + Q̃n

2 ≥ n)

(1 − ρn)

= o(1),

as n → ∞, where the last step follows from (Halfin and Whitt 1981, Proposition 1) that asserts that

in an M/M/n system with
√

n(1−ρn) → ∞, P(Q̃n
1 + Q̃n

2 ≥ n) → 0. Hence, we have a contradiction

and it must be that dn → 0 as n → ∞.

Step 4. To get the convergence rate of dn, note that using a Taylor expansion for λ2(·) we

have

λn
2 = nκ2µ + Λnλ̃′(p̄2)(q/µ)dn + o(ndn),

and since Λn = nΛ̄, we have that ρn = 1 − cdn + o(dn) for some c > 0, as n → ∞. Suppose that
√

ndn → d ∈ (0,∞), or equivalently that ρn = 1 − γ/
√

n. The next lemma studies the behavior of

a system without feedback in this regime. (Its proof is relegated to the end of this appendix.)

Lemma 2 Consider the two-class system that operates without feedback, and with arrival rates set

to be λn
1 = κ1µn and λn

2 = κ2µn − µγ
√

n. Then,

√
nEDn → d(γ) and P(Qn

1 + Qn
2 ≥ n) → ν(γ) (41)

where d(γ) was given in (11) and ν(γ) := κ2γd(γ).
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That is, for a system where
√

n(1 − ρn) → γ ∈ (0,∞),
√

ndn → d(γ) ∈ (0,∞). To establish

the equilibrium relation, (10), that holds for a system with feedback operating in the Halfin-Whitt

regime, it suffices to consider the second order expansion for λn, the total arrival rate into the

system given by

λn = nµ +
√

nµκ2
λ̃′

2(p̄2)

λ̃2(p̄2)
(q/µ)d(γ) + o(

√
n) .

Dividing through by nµ and equating second order terms we obtain the equilibrium condition

γ = −κ2
q

µ

λ̃′
2(p̄2)

λ̃2(p̄2)
d(γ),

which establishes (10). From Maglaras and Zeevi (2003a, Proposition 2) we have that this equation

has a unique solution, γ > 0. (The proof of that statement considers the function h(γ) = γ +

κ2
q
µ

λ̃′

2
(p̄2)

λ̃2(p̄2)
d(γ), and shows that h is continuous and increasing in (0,∞), limγ→0 h(γ) < 0, and

limγ→∞ h(γ) > 0. Hence, h(γ) = must have a unique solution.)

To complete the proof it remains to rule out the cases
√

ndn → 0 and
√

ndn → ∞. To this

end, suppose that
√

ndn → 0, in which case
√

n(1 − ρn) → 0. Observe from (41) and (11) that if

we let γ ↓ 0, then d(γ) ↑ ∞, which contradicts the assumption that
√

ndn → 0. Similarly, suppose

that
√

ndn → ∞, in which case
√

n(1− ρn) → ∞. Again from (41) and (11) we get that as γ ↑ ∞,

then d(γ) ↓ 0, which contradicts the assumption that
√

ndn → ∞. Consequently, it must be that
√

ndn → d(γ) ∈ (0,∞) and
√

n(1 − ρn) → γ ∈ (0,∞), and γ is defined as the unique solution of

equation (10). This establishes assertions (i) and (ii) in the statement of the theorem. Finally, from

Lemma 2,
√

n(1− ρn) → γ implies statement (iv) of the theorem. This concludes the proof.

Proof of Theorem 2: First, recall that by construction of the deterministic relaxation problem

in (5), Rn
∗ ≤ R̄n for all n. By Theorem 1 and Lemma 1, EDn = d/

√
n+ o(1/

√
n) and P(Qn

1 < n) ≤
C1 exp(−C2n) for sufficiently large n and constants C1, C2 > 0. Thus, we can take a Taylor series

expansion of the total revenue generated by the fluid-optimal prices

Rn(p̄1, p̄2, Ū) = Λn
1 λ̃1(p̄1)P(Qn

1 < n)p̄1 + Λn
2 λ̃2(p̄2 + (q/µ)EDn)p̄2

= Λn
1 λ̃1(p̄1)p̄1 + Λn

2 λ̃2(p̄2)p̄2 + n
λ̃′

2(p̄2)

λ̃2(p̄2)
(q/µ)d/

√
n)p̄2 + o(1/

√
n)

= R̄n(1 − α/
√

n) + o(1/
√

n)

as n → ∞, using results (ii) and (iii) of Theorem 1. Thus,

Rn(p̄1, p̄2, Ū)

R̄n
= 1 − α√

n
+ o(1/

√
n)

as n → ∞ for some α > 0. Since Rn
∗ ≤ R̄n for sufficiently large n, the proof is complete.

Proof of Proposition 4: We will first express Dn,d(·) in terms of the Xn,d
i (·)’s, and subsequently

obtain the infinitesimal drift for the Qn,d
i (·) and Xn,d

i (·) processes, respectively. Then, we will

appeal to the proof techniques that underlie Theorem 4 to establish that Xn,d(·) ⇒ Xd(·).

32



Using (25) we can rewrite Dn,d(t) as

Dn,d(t) =
(Xn,d

1 (t) + Xn,d
2 (t))+

κ2
√

n − Xn,d
1 (t)/

√
n

.

Suppose that Qn,d(t) = qn for some qn ∈ Sn = {(qn
1 , qn

2 ) : qn
1 ∈ {0, 1, . . . , n}, qn

2 ∈ {0, 1, . . .}}. Also,

let xn = (qn − κn)/
√

n such that from (25) Xn,d(t) = xn. The congestion signal at time t will be

Dn,d(qn) =
(qn

1 + qn
2 − n)+

n − qn
1

=
1√
n

(xn
1 + xn

2 )+

κ2 − xn
1/

√
n

.

The arrival rates into the two service classes are given below

λn,d
1 (qn) = κ1nµ1 if qn

1 < n and λn,d
1 (qn) = 0 otherwise,

and

λn,d
2 (qn) = κ2nµ2 −

√
nβ2µ2

q

µ2κ2

(xn
1 + xn

2 )+

1 − xn
1/κ2

√
n

+ o(
√

n).

With some of abuse of notation we will also refer to Dn,d(qn) and λn,d
i (qn) by Dn,d(xn) and λn,d

i (xn),

respectively. Under the Markovian dynamics of our system, we have that for any initial state

qn = (qn
1 , qn

2 ) ∈ Sn and δt > 0, the infinitesimal drift rates for each class are given by

E [Qn
1 (t + δt) − Qn

1 (t)| Qn(t) = qn] = [λn
1 (qn) − µ1q

n
1 ] δt + o(δt)

E [Qn
2 (t + δt) − Qn

2 (t)| Qn(t) = qn] = [λn
2 (qn) − µ2 ((n − qn

1 ) ∧ qn
2 )] δt + o(δt) , (42)

as δt ↓ 0. Similarly, the infinitesimal variance for each class is

E

[

(Qn
1 (t + δt) − Qn

1 (t))2 | Qn(t) = qn
]

= [λn
1 (qn) + µ1q

n
1 ] δt + o(δt)

E

[

(Qn
2 (t + δt) − Qn

1 (t))2 | Qn(t) = qn
]

= [λn
2 (qn) + µ2 ((n − qn

1 ) ∧ qn
2 )] δt + o(δt) . (43)

Finally,

E [(Qn
1 (t + δt) − Qn

1 (t)) (Qn
2 (t + δt) − Qn

2 (t)) | Qn(t) = qn] = o(δt) for all n = 1, 2, . . . . (44)

Using (42)-(44) we can derive the infinitesimal rates for the Xn,d process. Specifically,

1

δt
E [Xn

1 (t + δt) − Xn
1 (t) | Xn(t) = xn)] = −µ1x

n
1 + o(1/

√
n)

1

δt
E [Xn

2 (t + δt) − Xn
2 (t) | Xn(t) = xn)] = −µ2β2

q

µ2

xn
1 + xn

2

κ2
− µ2x

n
2 + µ2(x

n
1 + xn

2 )+ + o(1/
√

n)

for small δt and large n. (Note the similarity between these expressions and the limiting infinitesimal

drift given in the statement of the Proposition.) Similar expressions can be obtained for the

infinitesimal variance. Using standard weak convergence arguments for Markov processes, as in
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Maglaras and Zeevi (2004), we can now establish that Xn,d(·) ⇒ Xd(·). To complete the proof of

the proposition note that

Dn,d(t) =
(Xd

1 (t) + Xd
2 (t))+

κ2
√

n
+ o(1/

√
n),

and apply the continuous-mapping theorem.

Proof of Theorem 3: The main challenge is to compare the explicit performance characterization

for the system with real-time information given in (22) with the implicit equilibrium characterization

given for the system with static information in (10) and (11).

We start by giving a skeleton of the proof. Step 1: We will study a fictitious system where

instead of Dn,d(t), the system manager announces the state independent BE congestion estimate
ξ

κ2

√
n
. In terms of limiting behavior, this replaces the state-dependent drift term −µαz+ that

appears in (29), with the constant −µβ2
q
µ

ξ
κ2

. This new system is governed by the behavior given

in Section 4 with γ(ξ) = β2
q
µ

ξ
κ2

. Denote by Z̃(ξ) the steady state random variable associated with

the “sum” process in this system. Step 2: Set ξ = E(Zd)+. We demonstrate that E(Z̃(ξ))+ >

E(Zd)+, which implies that ED̃(ξ) := E(Z̃(ξ))+/κ2 > EDd. Step 3: Now consider the function

h(ξ) = ξ − E(Z̃(ξ))+ It is easy to verify that h(·) is continuous, increasing, and that h(0) < 0 and

h(∞) > 0. This implies that the equation h(ξ) = 0 has a unique solution ξ∗, which defines the

equilibrium of the system analyzed in Section 4; i.e., the equilibrium expected congestion cost for

BE users is ED∗ = ξ∗

κ2
. Given (ii) above we get that for ξ = E(Zd)+, h(E(Zd)+) < 0, which by the

monotonicity property of h(·) implies that E(Zd)+ < E(Z)+, and, in turn, that EDd < ED.

Step 1: Consider the fictitious system that announces to arriving BE-users the congestion

estimate ξ/κ2
√

n, for the particular choice ξ = E(Zd)+. From (31) we get that

ξ = E(Zd)+ =

√

2

π

1

α +
√

α
,

and note that ED = ξ/κ2. Using the analysis of Section 4, we have that the corresponding limit

system is one with parameter γ̃ = αξ =
√

2
π

α
α+

√
α
. For such a system,

E(Z̃(ξ))+ =
φ(γ̃)

γ̃(γ̃Φ(γ̃) + φ(γ̃))
.

Step 2: The goal is to show that E(Z̃(ξ))+ < ξ, when ξ = E(Zd)+. For any fixed α > 0, define

g(α) :=
E(Z̃(ξ))+

ξ
= δ(γ̃)

π

2
(1 +

√
α)2 where ξ = E(Zd)+,

and δ(γ̃) = φ(γ̃)
γ̃Φ(γ̃)+φ(γ̃) . We wish to show that for all α > 0, g(α) > 1. Note that g(α) is continuous

in α for all α > 0. To establish that g(α) > 1, it suffices to show that limα↓0 g(α) > 1, and that

g(α) is monotonically increasing in α.
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Note that as α → 0, γ̃ → 0, δ(γ̃) → 1 and limα→0 g(α) = π
2 > 1. Also, as α → ∞, γ̃ →

√
2
π ,

δ(γ̃) → δ(
√

2
π ) ∈ (0, 1) and limα→0 g(α) = ∞. To complete the proof that g(α) > 1 for all α > 0,

it suffices to show that g′(α) ≥ 0. It will be convenient to express
√

α as a function of γ̃, through
√

α = γ̃
√

2

π
−γ̃

, and rewrite all expressions in terms of γ̃. Specifically, with some abuse of notation

we will analyze the function

g(γ̃) = δ(γ̃)
π

2

1

(
√

2
π − γ̃)2

.

Since ∂γ̃
∂α > 0, it suffices to show that g(γ̃) is increasing in γ̃. To that end we have that

g′(γ̃) =
1

(
√

2
π − γ̃)2



δ′(γ̃) +
2δ(γ̃)

(
√

2
π − γ̃)



 , where δ′(γ̃) = −δ(γ̃)

(

γ̃ +
Φ(γ̃)

γ̃Φ(γ̃) + φ(γ̃)

)

.

Grouping terms we get that

g′(γ̃) =
δ(γ̃)

(
√

2
π − γ̃)2




2

(
√

2
π − γ̃)

− γ̃ − Φ(γ̃)

γ̃Φ(γ̃) + φ(γ̃)





︸ ︷︷ ︸

:=f(γ̃)

.

To conclude that g′(γ̃) ≥ 0 it suffices to show that f(γ̃) ≥ 0 for all γ̃ ∈ [0,
√

2
π ). Note that f(0) = 0

and that lim
γ̃→

√
2

π

f(γ̃) = ∞. Finally, straightforward calculations gives

f ′(γ̃) =
2

(
√

2
π − γ̃)2

− 1 − δ(γ̃) +
Φ2(γ̃)

(γ̃Φ(γ̃) + φ(γ̃))2
≥ 0.

This implies that f(γ̃) ≥ 0, and thus g′(γ̃) ≥ 0, for all γ̃ ∈ [0,
√

2
π ). It follows that g(α) ≥ π

2 for all

α > 0, which completes the proof of step 2.

Proof of Lemma 2: First, note that by Lemma 1, the arrival rate into the system due to class 1

customers that are admitted is λn
1 = nκ1µ + o(

√
n) (since the blocking effects are lower order than

1/
√

n). Setting µ1 = µ2 = µ, we have by Theorem 4 that
√

nDn(·) ⇒ (X1(·) + X2(·))+, where

X(·) = (X1(·), X2(·)) is the 2-dimensional diffusion process identified in Theorem 4. Moreover,

(X(t) : t ≥ 0) admits a unique stationary distribution. Let Xn
i := (Qn

i − κ1n)/
√

n for i = 1, 2,

where Xn = (Xn
1 , Xn

2 ) has the stationary distribution in the nth system in the sequence. (The

existence and uniqueness of this distribution is established in Proposition 2.) We will next establish

an “interchange argument” which concludes that
√

nDn ⇒ κ−1
2 (X1 + X2)

+, where Dn := Dn(∞)

and Xn
i := Xn

i (∞). We then prove that {√nDn} is uniformly integrable, from which it follows

that
√

nEDn → κ−1
2 E(X1 + X2)

+. The latter is then seen to be equal to d(γ).

Step 1. We first prove that Xn ⇒ X, where X is equal in distribution to X(∞), the stationary

marginal of the limiting diffusion (X(t) : t ≥ 0). From the proof of Theorem 1 in Maglaras and

35



Zeevi (2004) and Lemma 11.2.2 in Strook and Varadhan (1979) we have that the sequence of

generators corresponding to the Markov processes Xn(·) converges uniformly on compact sets to

the generator of X(·). Thus, appealing to Theorem 4.9.10 in Ethier and Kurtz (1986), we have that

any weak limit of the sequence of stationary distributions corresponding to (Xn(t) : t ≥ 0) must

be a stationary distribution of (X(t) : t ≥ 0). But since the limit process has a unique stationary

distribution, all weak limit points must correspond to this distribution. Thus, all that is left is to

establish that {Xn} is tight, and therefore must have a subsequence that converges weakly (see,

e.g., section 13 in chapter 3 of Billingsley (1968)).

Step 2. The Poisson limit theory that was used in Step 1 of the proof of Theorem 1 establishes

that {Xn
1 } is tight. Now, for {Xn

2 }, observe that Xn
2 = (Xn

1 + Xn
2 ) − Xn

1 , thus, it suffices to show

that {Xn
1 + Xn

2 } is tight. To prove tightness, consider the following two systems. Let Q̃n
i (t) denote

the number-in-system of class i users, in a system which is identical to the original one, with the

exception that G-users wait in queue when there is no capacity available to serve them. Then, the

proof of Theorem 1 establishes that Qn
i (t) ≤ Q̃n

i (t), for i = 1, 2, all n ≥ 1 and all t ≥ 0, almost

surely. Let Q̂n
i (t) denote the number-in-system of class i users, in a system which is identical to the

original one, only here BE-users are blocked when the total number-in-system from both classes

exceeds capacity, i.e., when Q̂n
1 + Q̂n

2 ≥ n. For this system we have Q̂n
i (t) ≤ Qn

i (t), for i = 1, 2, all

n ≥ 1 and all t ≥ 0, almost surely. Consequently, we have that

(Q̂n
1 + Q̂n

2 − n)√
n

≤ (Qn
1 + Qn

2 − n)√
n

≤ (Q̃n
1 + Q̃n

2 − n)√
n

.

Since (Q̃n
1 (·) + Q̃n

2 (·)) has the dynamics of the number-in-system in an M/M/n queue, it follows

from the results of Halfin and Whitt (1981, Lemma 1) that E|(Q̃n
1 + Q̃n

2 − n)/
√

n|4 is bounded

uniformly in n when the arrival rate is such that
√

n(1 − ρn) → γ > 0. Thus, the upper bound is

uniformly integrable, and hence tight. Now, (Q̂n
1 (·) + Q̂n

2 (·)) has the dynamics of the number-in-

system in an M/M/n/n queue with arrival rate such that
√

n(1 − ρn) → γ > 0. Then, the same

argument used for Xn
1 applies here as well, and we conclude that {(Q̂n

1 + Q̂n
2 − n)/

√
n} is tight.

This establishes that {Xn
1 +Xn

2 } is tight, and thus {Xn} is tight as well. Finally, we conclude that

Xn ⇒ X, where X := X(∞), and the specification of (X(t) : t ≥ 0) is given in Theorem 4. Thus,

by the continuous mapping theorem we have that
√

nDn ⇒ κ−1
2 (X1 + X2)

+.

Step 3. To prove that {√nDn} is uniformly integrable, it suffices to show that supn E|√nDn|2 <

∞. To this end, note that

E|
√

nDn|2 = E

[(
(Qn

1 + Qn
2 − n)+√
n

)2
n2

[(Qn
1 − n) ∨ 1]2

]

≤



E

[

(Q̃n
1 + Q̃n

2 − n)+√
n

]4




1/4
(

E

[
n4

[(Qn
1 − n) ∨ 1]4

])1/4

36



which follows from the Cauchy-Schwartz inequality and the bounding system described in Step 2.

As noted above, E|(Q̃n
1 + Q̃n

2 − n)/
√

n|4 is bounded uniformly in n when the arrival rate is such

that
√

n(1− ρn) → γ > 0. We now turn to the second term on the right-hand-side. Fix ǫ > 0 such

that κ1 + ǫ < 1 (this is feasible since κ1 < 1). Then,

E

[
n4

[(Qn
1 − n) ∨ 1]4

]

=
n∑

j=0

n4

[(j − n) ∨ 1]4
P(Qn

1 = j)

=

⌊(κ1+ǫ)n⌋
∑

j=0

n4

[(j − n) ∨ 1]4
P(Qn

1 = j) +
n∑

j=⌊(κ1+ǫ)n⌋+1

n4

[(j − n) ∨ 1]4
P(Qn

1 = j)

≤ C1P(Qn
1 ≤ ⌊(κ1 + ǫ)n⌋) + C2n

4
P(Qn

1 > (κ1 + ǫ)n)

where the last step follows from the fact that the terms {n/(n − j)4} are bounded by a constant

in the first summation on the right-hand-side, and bounded by n4 in the second summation on the

right-hand-side. Now, by Lemma 1 in the proof of Theorem 1, we have that

P(Qn
1 > (κ1 + ǫ)n) ≤ C1 exp(−C2n)

where the constants depend on ǫ. Thus,

sup
n

{
n4

P(Qn
1 > (κ1 + ǫ)n)

}
< ∞ .

Since {√nDn} is uniformly integrable, we have that
√

nEDn → κ−1
2 E(X1 + X2)

+. But when

µ1 = µ2 = µ, Z = X1 + X2 has the simple stationary distribution identified in Theorem 1 of Halfin

and Whitt (1981); see also Maglaras and Zeevi (2004). Specifically,

P(Z ≤ z|Z ≤ 0) = Φ(γ + z)/Φ(γ) z ≤ 0

P(Z > z|Z > 0) = exp(−zγ) z > 0.

This gives the expression for d(γ) given in (11). Finally, P(Qn
1 + Qn

2 ≥ n) = P(Xn
1 + Xn

2 > 0) and

the latter converges to P(Z > 0) which by the above is easily seen to be equal to κ2γd(γ) =: ν(γ).

This concludes the proof.
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