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Abstract

This paper considers pricing and capacity sizing decisions, in a single-class Markovian model
motivated by communication and information services. The service provider is assumed to
operate a finite set of processing resources that can be shared among users, however, this shared
mode of operation results in a service rate degradation. Users, in turn, are sensitive to the
delay implied by the potential degradation in service rate, and to the usage fee charged for
accessing the system. We study the equilibrium behavior of such systems in the specific context
of pricing and capacity sizing under revenue and social optimization objectives. Exact solutions
to these problems can only be obtained via exhaustive simulations, in contrast, we pursue
approximate solutions that exploit large capacity asymptotics. Economic considerations and
natural scaling relations demonstrate that the optimal operational mode for the system is close
to “heavy traffic.” This, in turn, supports the derivation of simple approximate solutions to
economic optimization problems, via asymptotic methods that completely alleviate the need for
simulation. These approximations seem to be extremely accurate. The main insights that are
gleaned in the analysis are the following: Congestion costs are “small,” the optimal price admits
a two-part decomposition, and the joint capacity sizing and pricing problem decouples and
admits simple analytical solutions that are asymptotically optimal. All of the above phenomena
are intimately related to statistical economies of scale that are an intrinsic part of these systems.

Keywords: shared resources, heavy traffic, equilibrium, pricing, many-server limits

1 Introduction and Overview

In recent years there has been an explosive growth in the usage of the Internet, and in particular

in the scope of services made available under the auspices of the so-called “World-Wide-Web”
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(WWW). Examples include internet telephony, streaming audio, e-mail and information retrieval,

to name but a few. In addition, many Internet visionaries foresee the future of personal computing,

and in particular of hand-held appliances, as mainly providing an entry port to the WWW, with

most common software being accessed on remote servers rather than locally on the desktop or

hand-held device. The rapid development of this technology is a constant challenge for service

providers, as economic objectives, viz, revenue management, are blended in with the structural

properties of these systems.

This paper focuses on a class of systems that deliver communication and information services

with the following four features: large capacity, an upper bound on the service rate that can be

allotted to each user, resources that can be shared among the users, and elastic demand. They bare

many similarities with traditional OR/OM models; demand is stochastic, customers are sensitive to

both price and congestion effects, and there is a finite amount of resources (processing and storage

capacity) that constrains the performance of the system. In contrast with traditional models,

however, there is typically no physical inventory of goods and no queueing related phenomena in

these systems; congestion effects arise from the sharing of resources by the users. Thus, delays are

not due to jobs or users waiting to receive service, rather they arise from a rate of service that is

lower than nominal. In particular, any number of users can simultaneously access the service, but

when the combined demand exceeds a nominal load, the system’s processing capacity gets divided

among them, and the rate of service experienced by the users degrades. On the other hand, when

the demand is less than the nominal load, resources cannot be “pooled” to provide better-than-

nominal service to the users. Internet telephony, or bandwidth provision via cable-modems are

examples of physical systems that share these features. 1

Our formulation assumes that the pricing mechanism used by the service provider (SP) is a

fixed “pay-per access” charge, i.e., users pay a static usage fee for accessing the system. This is easy

to implement, transparent to the user, and provides a good starting point for the more complex

problem of dynamic pricing. Taking into account the users’ sensitivity to price and service level,

and capacity related costs (initial investment, operational costs, and equipment devaluation), the

service provider is faced with the problem of jointly selecting the system’s capacity and a fixed

pricing rule to optimize system profits (monopoly pricing) or total utility (social pricing).

This paper strives to contribute to the analysis and understanding of the above problems along

three dimensions. The first dimension concerns model formulation. We propose a simple Markovian

model for the dynamics of systems with finite capacity and resource sharing capabilities (queueing
1In many applications, there is a binding constraint on the rate at which the user can access these services (typically

due to other capacity constraints, e.g., the maximum speed supporting the users’ connection to the network), as well

as intrinsic limitations on the extent to which resources can be pooled on the server end.
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and inventory effects are absent in our formulation). This is essentially an M/M/∞ model where

the total available processing capacity shared by all busy servers is constrained and the capacity that

can be dedicated to each individual user therefore is upper bounded. User utility depends on the

fixed usage fee as well as the anticipated service degradation; these effects, in turn, are captured

via a probabilistic choice model that determines user behavior and aggregate demand. Due to

these dynamics, an intrinsic “feedback” between congestion and demand is present (an increase

in the former reduces the latter and vice versa), thus, we invoke an equilibrium framework that

determines the system’s nominal operating point. Despite the Markovian nature of the model, the

intrinsic equilibrium structure renders the exact analysis of the optimization objectives essentially

intractable, thus, one has to resort to approximate procedures.

The second dimension highlights the relation and connections between economic analysis, and

the optimal operation of the system. We essentially show that if the demand for services is elastic,

then economic optimization of the class of systems described in the previous paragraph is achieved

in an operational regime where high resource utilization and positive probability of congestion are

both present. One informal interpretation of this result is that “heavy traffic is economically opti-

mal,” with the understanding that this statement holds under structural and economic assumptions

on the model and demand process. This observation allows us, in turn, to port analysis tools that

support straightforward approximate solutions to the original economic optimization problems.

Moreover, the optimal operating regime provides a simple (but, perhaps, not immediately obvious)

classification of the various scaling relations that prevail in such large capacity systems that are

optimized subject to economic criteria. Most notably, users experience only minor service degra-

dation effects in spite of the high resource utilization, which is the key driver behind the economic

optimality of the heavy traffic regime. These effects are directly related to the nominal capacity in

a manner that reveals statistical economies of scale, and are similar to what has been observed in

other large stochastic service systems such as call centers and communication networks.

Finally, the third dimension concerns the mode of analysis and solution methodology. As men-

tioned previously, economic arguments lead to the optimality of heavy traffic, which, in turn, allows

us to harness some simple analytical insights from that framework. In particular, we develop a

tractable approximation to the original economic optimization problems that yield analytical char-

acterizations of the equilibrium behavior, as well as the optimal pricing and capacity decisions.

Simple “rules of thumb” for both pricing and capacity sizing follow from basic scaling relations.

This mode of analysis culminates in a “recipe” that involves simple numerical calculations, thus,

completely circumventing the need for tedious optimization rooted on exact analysis. The latter

approach is used, however, to illustrate the accuracy of the results obtained via these approxima-

tions.
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The outline of this paper is as follows. The introduction concludes with a short literature review.

Section 2 presents the model and formulates the optimal pricing problem. Section 3 reviews some

machinery, and analyzes the behavior of large capacity systems with shared resources. Section 4

studies the pricing problem under a revenue maximization objective, and Section 5 extends the

analysis to the problem of jointly optimizing over system capacity and price. Section 6 discusses

the social pricing counterpart. Finally, Section 7 offers some concluding remarks. Throughout,

proofs are relegated to the Appendix.

The work we present here is most closely related to, and inspired by, two quite disparate

strands of research. The first is the framework advocated in the paper of Mendelson (1985), and

subsequently extended by Mendelson and Whang (1990); a closely related paper is by Stidham

(1985). Our basic setup in which the service system is embedded in a micro-economic framework,

and the optimal pricing problem is studied as an equilibrium model, follow these papers. Although

queueing per se is not explicitly present in our problem, the second stream of research that inspires

our analysis is rooted in queueing theory. In their seminal paper, Halfin and Whitt (1981) present

a powerful framework for analyzing queueing systems with “many” servers. Whitt (1992) discusses

how scaling relations that emerge in the so-called Halfin-Whitt regime give rise to simple “rules-

of-thumb” for the design and dimensioning of large scale service systems (e.g., customer contact

centers). Our approach blends the economic setup of Mendelson and Whang, in which the problem

is phrased, with the analytical tools of Halfin and Whitt that are ultimately used to solve it.

The literature studying the use of pricing to manage the impact of externalities in congestion

sensitive systems is extensive and appears to date back to Naor (1969); it has since been extended

and generalized in various directions by numerous authors. In terms of blending an equilibrium

analysis with insights from heavy traffic queueing theory, the recent paper by Van Mieghem (2000)

is probably the most akin to ours, though the setup, objective and use of the asymptotic analysis are

different. Revenue management in the context of Internet service provision was recently studied by

Paschalidis and Tsitsiklis (2000) in a Markov decision process framework where customers are only

assumed to be price sensitive. Although they focus on dynamic pricing, an important conclusion of

their study is that static pricing rules can achieve near optimal performance. A similar insight was

derived in Gallego and van Ryzin (1994) in the “classical” context of selling a set of goods within a

finite time horizon. A recent review of the revenue management literature can be found in McGill

and van Ryzin (1999).

The study of large capacity service systems in the spirit of Halfin and Whitt (1981) is currently

an active area of research. Garnett et al. (2001) study approximate design rules for large call

centers, while Borst et al. (2000) consider dimensioning of call centers; the latter is related to our

capacity sizing problem of Section 5. The flavor of the analysis in our paper is close to that in
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the work of Armony and Maglaras (2001) and Whitt (2003). Both papers deal with multi-server

queueing systems with congestion sensitive demand but without economic considerations, and study

the system equilibrium behavior using asymptotic methods. The relation between economics and

heavy traffic has also been highlighted in a recent paper by Harrison (2001), though the framework

and asymptotic regime are both different than ours.

The model that we posit with capacity constraints and shared resources is closely related to

the recent work of Das and Srikant (2000), who analyze the performance of a congested link in a

packet switched network, also appealing to the limit theory of Halfin and Whitt. Finally, we refer

to Courcoubetis et al. (2000), Gibbens and Kelly (1999) and the references therein for an overview

of Internet-related pricing literature that is tangentially related to this paper.

2 Problem Formulation

The system model. External arrivals to the system, in the form of connection requests, are

modelled as a homogenous Poisson process with rate Λ. Each user has an i.i.d. service requirement,

which is assumed to be exponentially distributed with known mean 1/µ. Our stylized system model

attempts to capture three important features of the physical system: finite capacity, no resource

pooling when the system is under-utilized, and the capability to share processing resources among

users. We model this as an M/M/∞ system with capacity constrained to C units. Specifically, let

N(t) denote the number of users connected at time t ≥ 0, then the processing rate experienced by

the user is

service rate =

{
1 N(t) ≤ C

C
N(t) N(t) > C.

Without loss of generality, we take C to be an integer corresponding to the number of nominal

processing resources, assuming that such a notion is applicable. The capacity limitations play a

crucial role in our modelling framework. Each nominal processing resource can be dedicated to

handle a separate user request, providing service at unit rate (measured, e.g., in Kbits/second),

and resources cannot be pooled when N(t) < C. However, when the number of connection requests

exceeds the nominal capacity C, processing resources are shared in an egalitarian way among users;

the system is then said to be operating in a congested state. The system dynamics are equivalent to

those of an M/M/C queue, though queueing effects are absent in our conceptual formulation and

quality of service is succinctly summarized in the service rate or throughput rate that is allocated

to the user.

Economic structure, user choice model and system equilibrium. We assume that

5



the service provider charges a fixed connection fee $p > 0 when users access the system. Service

degradation, due to lost throughput when the system is congested, is manifested in the form of

delay experienced by the users. In communication and information services, users typically observe

the rate of transmission, which indicates the degradation in service. In particular, it is reasonable

(and, as we argue, not restrictive for our purposes) to assume that the rate of service serves as a

proxy to assess delay in the following manner. The rate delivered to the user at time t ≥ 0 can be

written as min(C/N(t), 1), and the user conceives delay as the inverse of the latter. Associating the

nominal service level with a unit delay (i.e., the situation where a dedicated resource is allocated

to the user), we define the user’s conceived excess delay 2 as

D(t) =

{
0 N(t) ≤ C
N(t)

C − 1 N(t) > C.
(1)

We assume that a cost of $q > 0 is associated with each unit of excess delay that the user expe-

riences.3 Users have independent identically distributed (i.i.d.) reservation prices for the service,

which are independent of the arrival process and service requirements. They join the system if

their reservation price is greater or equal to the steady-state expected value of the “full price.”

Specifically, user valuations are denoted by v ≥ 0 and are distributed according to a probabil-

ity distribution P . We will assume that the cumulative distribution function F is continuously

differentiable, the density f is everywhere positive on its support, and the first moment is finite.

As indicated previously, we will focus our attention on the equilibrium steady-state behavior of

the system. An equilibrium roughly corresponds to a demand rate λ∗ and a resulting congestion

cost qED∗ such that both are time-independent and together satisfy the demand relationship4

λ∗(p) := ΛP (v > p + qED∗) , (2)

where Λ is the maximal potential arrival rate into the system. (The maximal potential arrival rate

may also be interpreted as the effective “market size” for the applications offered by the service

provider.) In particular, given the reservation price and the full cost of accessing the service, the

risk-neutral user decides to join the system with probability P (v ≥ p + qED∗). In the sequel, a

superscript ‘*’ is used when various quantities are considered relative to the equilibrium distribution.
2In fact, in large capacity systems D(t)/µ, due to a pathwise version of Little’s law, is asymptotically a correct

approximation to the actual excess delay. In our asymptotic analysis both formulations lead to the same analysis and

results.
3Perhaps it is more realistic to assume that delay costs are convex increasing, as in Van Mieghem (2000), however,

as we show in Section 3, systems with large capacity are characterized by “small” excess delay. Hence, convex delay

costs reduce to the linear structure assumed above via a first order Taylor series approximation.
4To be precise, we say that for some price p the system admits a unique equilibrium if there exists a unique

steady-state probability distribution for the process (N(t) : t ≥ 0), such the expected excess delay per-user when

taken w.r.t. to this distribution, ED∗, induces a time homogenous external arrival rate λ∗ through (2) and λ∗, in

turn, is consistent with the aforementioned steady-state distribution.
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We note that users knowledge of their average excess delay may be due either to repeated visits

to the system in which the excess delay is observed, or alternatively, we may assume that the service

provider makes this information available to the users to facilitate their decision whether to join

the system or not.5 The reader should also note that the expected excess delay (ED∗) depends on

the price p though this dependence will be suppressed for notational clarity. The following result

establishes the intuitive fact that the system always admits a unique equilibrium.6

Proposition 1 For each capacity C > 0, and price p > 0 there exists a unique equilibrium.

The user choice model determines the nature of the demand function (the two notions are

essentially equivalent). That is, the choice model defines the exogenous arrival rate into the system

according to (2). The following examples illustrate how different admissible user choice models

induce different demand functions. With slight abuse of notation, set λ(x) = ΛP (v > x).

Examples. (1) Linear demand: if v is distributed uniformly U [0, Λ
α ], then λ(x) = Λ − αx; (2)

Exponential demand: if v is distributed exponentially with mean 1
α , then λ(x) = Λe−αx; and, (3)

Iso-elastic demand: if v is distributed Pareto with shape parameter α > 0, then λ(x) = Λx−α.

Now, the elasticity of a demand function at a price x is given by

ε(x) := −∂λ(x)
∂x

x

λ(x)
.

A demand function is said to be elastic over an interval [a, b] if ε(x) > 1 for all x ∈ [a, b]. The key

economic assumption that we impose is the following.

Assumption 1 The demand function λ(x) is elastic over the set {x : 0 ≤ λ(x) ≤ Cµ}.

For example, in the first two of the three examples of demand functions above, demand is elastic

for certain values of the price x and inelastic for others; in the third model elasticity is constant

and equal to the shape parameter α. Intuitively, a demand function is elastic if a decrease in

price (and increase in demand) result in an increase in the revenue rate xλ(x). In terms of the

probabilistic primitives, it is equivalent to saying that xf(x)/F̄ (x) > 1, where F̄ (·) = 1 − F (·).
5It is more realistic to assume that state-dependent information is provided or observed by the users, however this

information structure entails a transient analysis which is more involved and will not be pursued.
6The intuition behind this result is straightforward: for a fixed price, λ is strictly decreasing in the delay, while

the delay ED is strictly increasing in ρ, and thus in λ. These observations indicate that a unique fixed point should

exist. This point is the so-sought equilibrium.
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Empirical studies of the demand for bandwidth seem to support the assumption of elastic demand;

for example, Lanning et al. (2000) estimated the elasticity to be around 1.4-1.5.7

The service provider’s objective. We assume that the service provider has at her disposal

the four-tuple (q, Λ, µ, P ) summarizing the congestion cost, the choice model and its parameters, and

the service requirement. Suppose that capacity is fixed and given at C. With the price mechanism

fixed, the service provider’s objective is to choose the connection price (p) so as to optimize an

economic objective. Specifically, we consider the goal of revenue maximization under the unique

system equilibrium. (Section 6 discusses extensions to the problem of social welfare maximization.)

This formulation assumes the service provider is operating in a monopolistic context. Under any

pricing decision p, the system evolves as a continuous time Markov chain. Since every user that

connects to the system pays $p, and the probability of this happening in the next δt time units is

roughly λδt, we have that the revenue rate in equilibrium is

R(p) = pλ(p + qED∗). (3)

We will consider the following two formulations:

1. Optimal pricing: Capacity of the system is fixed a-priori. A price p is sought that optimizes

system revenues.

2. Joint capacity sizing and pricing: Capacity C together with a price p are sought that jointly

optimize system revenues.

Both problems are considered also w.r.t. a social welfare objective in Section 6

Mode of analysis. As we have noted in the introduction, solving the aforementioned opti-

mization problems is not straightforward. The reason is that the equilibrium framework requires

us to solve the steady-state distribution of an M/M/C model, and this cannot be done in closed

form. (The distribution can only be expressed via a finite sum, where the number of terms as well

as their magnitude depends on C, and the dependence on λ is quite complicated.) Perhaps more

importantly, we believe that this mode of analysis only reveals some of the potentially interesting

insights pertaining to the operation and economic value of this class of service systems. (For further

discussion see Section 3.3.)
7While such detailed studies are not available for many other more recently introduced information services, we

expect this assumption to hold true, especially in this early stage of their adoption. For example, informal inspection

of the cable modem industry seems to indicate that, at least in its initial phase, prices have been dropping while

demand has been increasing in a manner that overall revenues have also been increasing.
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The other viable option is simulation-based optimization searching for the pair (λ∗, ED∗) that

satisfies (2) for the given price p. This is quite cumbersome, as it involves generating a large number

of sample paths to accurately estimate the steady-state quantities of interest. Furthermore, the

equilibrium pairs (λ∗, ED∗) must be determined for a wide range of prices in order to search for

the optimal usage fee p. The class of systems we are attempting to model here typically has large

nominal capacity, thus the simulation-based approach tends to be computationally intensive. Just

like the direct numerical approach, this method is not very revealing. Our approach will emphasize

natural scaling relations resulting in “rules-of-thumb” that generate some insight at the expense

of settling for approximate solutions. It will also illuminate an interesting connection between

economic optimization and heavy traffic limit theory which is of interest in its own right.

3 Analysis of Large Capacity Systems

This section motivates and develops an approximating model for the original system when its

capacity is “large”; these approximations highlight a series of fundamental scaling relations.

3.1 Background and underlying assumptions

To make the forthcoming results more transparent, we first consider the “physical” modes in

which the system can operate. Recall that the steady-state probability of congestion is given

by P (congestion) := P (D∗ ≥ 0) = P (N∗ ≥ C), where N∗ denotes the number of steady state con-

nections in a system with capacity C in equilibrium. Then, following Garnett et al. (2001), we

consider the following three modes of operation.

• Cost-driven regime: the system is under-capacitated, users almost always experience ser-

vice degradation. In this regime, P(congestion) ≈ 1.

• “Rationalized” regime: the system has balanced capacity, users experience degradation

some of the times they use the system. In this regime, P(congestion) ≈ ν ∈ (0, 1).

• Quality-driven regime: the system is over-capacitated, users hardly ever experience service

degradation. In this regime, P(congestion) ≈ 0.

From a purely operations standpoint, the cost-driven regime will tend to under-emphasize conges-

tion effects, while the quality-driven one will tend to stress quality of service, at the expense of

over-capacitating the system. The “rationalized” regime may potentially offer a good compromise

in terms of trading-off congestion costs, capacity costs and utilization.
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The use of the probability of congestion as a proxy for quality of service is quite common. As

it was shown by Halfin and Whitt (1981) and later on argued in Whitt (1992) this is a natural and

canonical measure of the system operational characteristics. In fact, in their 1981 paper, Halfin

and Whitt showed that in an M/M/C system, P(congestion) → ν ∈ (0, 1) as C grows large if and

only if the load in the system is of the form ρ = 1 − γ/
√

C; note that this is a statement for the

“rationalized” regime. The parameters ν and γ are related through a one-to-one expression given

later on, and the system behavior basically depends on this parameter. In addition, the “natural”

scales emerging when capacity is large are of order
√

capacity. Specifically, queue lengths tend to

be of that order, and as a result the waiting times will be of order 1/
√

capacity (this is the time

required to clear the backlogs).

These observations have important design and operation ramifications for service networks.

For example, systems that strive to offer a certain level of quality of service as measured by the

probability of congestion ν, can do so while operating at increasing utilization rates as given by

1 − γ/
√

C as their capacity C grows larger. This demonstrates the statistical economies of scale

enjoyed by large service systems, and explains, for example, the high utilization rates experienced

in modern-day call centers that go hand-in-hand with good quality of service; see, e.g., Garnett

et al. (2001). Another important manifestation of this fact is captured by the familiar square-root

staffing rule that dictates that in order to handle a load of λ requests per unit time, the system

should have about λ + γ
√

λ servers (assuming µ = 1).

The remainder of this section will characterize the asymptotic performance of our model operat-

ing in the “rationalized” regime, while its capacity and potential demand grow proportionally large.

In particular, we will derive here an analogue of Proposition 2.1 of Halfin and Whitt (1981) that

characterizes congestion in an M/M/C queue. Our analysis extends the one in Halfin and Whitt

(1981) along the following directions: congestion effects are manifested through sharing rather than

queueing; the arrival rate into the system is governed by rational user behavior and captured via

an equilibrium analysis; and, the system manager has the added capability of selecting a static

price to affect demand. The key questions that will be addressed are the following: (a) how large

is the congestion term given that a non-trivial fraction of all arriving users will suffer some level

of congestion? (b) what is its effect on the equilibrium demand for the service? (c) what are (if

any) the implications to the pricing rules that one needs to consider? Armed with these insights,

Section 4 will show that if one considers the objective of revenue maximization, the “rationalized”

regime turns out to be the optimal mode from a pure economics standpoint.

The validity and applicability of the theory we are about to expose hinges on one simple

assumption: capacity and potential demand (market size) are large. In particular, we will let

the potential demand Λ and the corresponding capacity C grow proportionally large according to
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Cµ = κΛ for some appropriate κ > 0, while the user valuation distribution F is unaltered. 8 That

is, the market potential Λ increases, the user characteristics (valuations) stay the same, and the

system size grows proportionally to Λ in order to serve this larger market. Finally, in the absence

of congestion effects p̄ defined by

p̄ := F̄−1(Cµ/Λ) = F̄−1(κ) (4)

is the price that matches demand to capacity; i.e., ΛP (v ≥ p̄) = Cµ.

3.2 Main results

We now turn to one of the main theoretical building blocks that are the key in deriving approximate

solutions to the pricing and capacity sizing problems. In the sequel we will specify results in terms

of “C → ∞” highlighting that C is a system quantity. Implicit in this statement is that Λ is also

growing such that Cµ = κΛ. (In order to recover an approximation for the behavior of a given

system of interest one should just “plug in” the appropriate values of C and κ into the derived

expressions.) In the sequel we make explicit the dependence of the price on the system capacity

using the notation p(c).

Theorem 1 Assume that potential demand Λ and the capacity C grow proportionally large such

that Cµ = κΛ for some κ > 0. Then, for any usage fee p(C) > 0 such that

P (congestion) → ν ∈ (0, 1) as C → ∞, (5)

it follows that,

(i) user demand scales as λ∗ = Cµ − γ∗√Cµ + o
(√

C
)

and system utilization scales as

ρ∗ :=
λ∗

Cµ
= 1 − γ∗

√
C

+ o(1/
√

C),

where γ∗ is uniquely defined in terms of ν.

(ii) The usage fee p(C) must be of the form

p(C) = p̄ +
π√
C

+ o(1/
√

C),

where p̄ was defined in (4), and π is a function of γ∗.
8The assumption that the valuation distribution is unaltered as Λ changes may require that some other parameters

of the distribution are scaled appropriately as functions of Λ. This depends on the specific form of that distribution.

For example, in the linear demand model v ∼ U [0, Λ
α
], and thus in order to keep the distribution unaltered as Λ

changes one needs to scale the price sensitivity α proportionally to Λ. For the other two examples, the valuation

distributions only depend on the parameter α and thus requires no change.

11



(iii) System congestion scales as

E[delay per user] = ED∗ =
d√
C

+ o(1/
√

C),

where d is an explicit function of γ∗.

Hereafter we use the notation f(x) = o(g(x)) if and only if f(x)/g(x) → 0, and f(x) ≈ g(x) to mean

f(x) = g(x)+ o(
√

x) or f(x) = g(x)+ o(1/
√

x) as x → ∞, depending on the context, and where no

confusion arises. The theorem demonstrates that in the “rationalized” regime, the system operates

“close” to full utilization according to 1− ρ∗(C) ≈ γ/
√

C, and congestion is small, roughly d/
√

C.

The latter highlights the statistical economies of scale that such systems enjoy, and the fact that the

associated congestion becomes a second order phenomenon. This specifies the appropriate regime

for asymptotic analysis. In addition, the price control must admit the decomposition p ≈ p̄+π/
√

C,

where p̄ is explicitly identified in terms of exogenous problem parameters (Λ, µ) and the capacity

(C). Note that due to the assumption that potential demand and capacity scale proportionally, p̄

is indeed a constant independent of the system size. This implies that the pricing problems reduce

to selecting the optimal value of π that will optimally balance the lost revenues with the congestion

costs.

Discussion. We turn to several comments on the content of the theorem, and the various

quantities appearing there.

1. Converse implications. The theorem is in fact an if and only if result. That is, the

assumption that the probability of congestion has a non-degenerate limit and each of the conditions

(i)-(iii) are all equivalent. We do not spell this out, however the proof of the theorem should suggest

why this is true.

2. Parameter relations. The second order parameters (π, γ, d) are all uniquely determined by

ν, the limiting congestion probability. For our purposes, it will be more useful to consider π as the

free variable. In fact, since our study focuses on pricing objectives and price is the intrinsic design

variable, second order “congestion related effects” (ν, γ, d) should really be considered subordinate

to π. We will pursue the analysis assuming that this shift in focus has been made. To explain the

nature of the infinitesimal parameters, first note that ν is the limit of P(N∗ ≥ C) as C → ∞, and

is given explicitly in (2.3) of Halfin and Whitt (1981)

ν =
φ(γ)

γΦ(γ) + φ(γ)
, (6)

where φ(x) and Φ(x) denote the density and cumulative distribution function of a standard normal

random variable. Note that ν ∈ (0, 1) implies that 0 < γ < ∞. Given the one-to-one relationship
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in (6), we will henceforth omit further reference to ν, and focus attention on γ. The following gives

relations between γ, d and π (see the Appendix for details)

γ = (π + qd(γ))
f(p̄)
F̄ (p̄)

where d(γ) =
φ(γ)

γ(γΦ(γ) + φ(γ))
. (7)

The expression for d(γ) can be easily derived by noting that d := limC→∞
√

CED∗. Plugging in the

expression for the expected excess delay given in (9), namely,
√

CED∗ = ρP(N∗ ≥ C)/(
√

C(1−ρ)),

noting that
√

C(1 − ρ) → γ, P(N∗ ≥ C) → ν, and ρ → 1 as C → ∞, we get the stated relation

using the expression for ν given in (6).

It remains to establish the uniqueness of γ (its unique value was denoted by γ∗ in the statement

of the theorem). This is resolved in the next proposition, where (8) follows from (7).

Proposition 2 Assume (5) in Theorem 1 holds and fix any value of π ∈ R. Then, γ∗(π) > 0 is

uniquely defined as the solution of

1
q

(
F̄ (p̄)
f(p̄)

γ − π

)
=

φ(γ)
γ(γΦ(γ) + φ(γ))

. (8)

3. System equilibrium calculations. Note that the system equilibrium is now characterized

via the second order arrival rate γ∗, which in turn can be obtained through a simple numerical

computation. As discussed previously, γ∗ is the key quantity that is used to derive approximations

for the equilibrium demand rate λ∗ ≈ Cµ − γ∗√Cµ, and the equilibrium congestion cost qED∗ ≈
qd(γ∗)/

√
C. These simple “rules-of-thumb” will facilitate the analysis of the optimization problems

stated in Section 2, thus, allowing us to circumvent the difficulties involved in direct calculations

of the equilibrium, or a simulation-based approach.

3.3 Comments on exact analysis and complete resource pooling

Exact analysis. As mentioned in the Introduction and Section 2, one can also undertake an exact

analysis of the M/M/C model. To illustrate the main ideas of this approach and contrast it with the

approximate analysis pursued above, consider the profit maximization objective described in (3).

Given the definition of the excess delay, D = (N/C−1)+, a straightforward calculation that follows

from Section 1 in Halfin and Whitt (1981) yields that when the traffic intensity ρ := λ∗/Cµ < 1

the steady state congestion term is given by

ED∗ =
ρν(ρ, C)
C(1 − ρ)

, (9)
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where ν(ρ, C) = P(N∗ ≥ C) is the probability that an arriving user finds the system in the congested

state, explicitly given in equation (1.2) of Halfin and Whitt (1981). Taking derivatives with respect

to the price $p at the equilibrium point in (3), the first order condition is given by

∂R(p)
∂p

= F̄ (p + qE[D∗(p)]) − pf(p + qE[D∗(p)])
(

1 + q
∂E[D∗(p)]

∂p

)
= 0 ,

where we have made explicit the dependence of the delay on the price p. After lengthy yet straight-

forward calculations this can be reduced to9

p =
F̄ (p + qED∗)

f(pqED∗)
+

qρν(ρ, C)
C(1 − ρ)2

(
1 + C(1 − ρ)2 + ρ(1 − ν(ρ, C))

)
.

To solve this equation one needs to first be able to evaluate what is the equilibrium ρ for each

choice of $p, and then find the unique optimizer prm. Although this approach seems obvious, it

is not straightforward to pursue. In Section 4 we undertake this analysis using the large capacity

asymptotics that were discussed above. This approach is revealing in several regards.

An alternative model with complete resource pooling. We briefly discuss an alternative

mode of analysis in which resources may be pooled not only when the system is congested. That is,

unlike the model formulated in this paper, this alternative system always devotes its full capacity

(C) to process user service requirements. The underlying Markov chain in this case is identical to

that of an M/M/1 system, where the server works at rate C instead of unit rate. Our interest, as

before, is focused on large capacity systems with high traffic flows. We therefore assume that the

demand rate scales as λ(C) = λC while the average service requirement is, as before, held fixed at

1/µ.

Let W denote the total time a user spends in the system in steady-state. Then, for an M/M/1

system Little’s law yields that EW = 1/(Cµ − Cλ). Now, if we fix the utilization ρ = λ/µ, then

the expected time in the system decays like 1/C as C grows large. In the so-called “rationalized”

regime, i.e., where the arrival rate scales like λ(C) = Cµ − γ
√

Cµ as C grows large, the expected

time in the system will scale like 1/
√

C. These scaling relations are consistent with the ones present

in an M/M/C system: if ρ < 1, then the congestion experienced due to resource sharing decays

as 1/C as C grows large; if the system is assumed to operating in the “rationalized” regime, the

congestion scales like 1/
√

C. Since the congestion delay seems to drive the user choice dynamics, it

would appear that the simpler M/M/1 model should give rise to the same insights derived on the

basis of the M/M/C model (that does not support complete resource pooling). A closer inspection,

however, reveals that the two models are actually quite different.

In the sequel, we focus on the rationalized regime (the following section will establish its eco-

nomic optimality). The key step is to parse the expected time in the system EW into two compo-
9The authors would like to thank one of the referees for pointing out this explicit derivation.
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nents: the actual service time, and the excess delay. Then, for the M/M/1 model the congestion

cost is of order 1/
√

C, while the service time is of order 1/Cµ and the total number of jobs in the

system is of order
√

C. In sharp contrast, in the M/M/C system the congestion term is of order

1/
√

C, while the time in service is of order 1/µ and the total number of jobs in the system is roughly

C, plus or minus fluctuations of order
√

C. Thus, the models give rise to fundamentally different

dynamics along the following two components: (i) the number of users in the system; and, (ii) the

relative time scales in the system. In particular, in the M/M/1 system, congestion (≈ 1/
√

C) �
actual time in service (≈ 1/Cµ). In contrast, in the M/M/C system, congestion (≈ 1/

√
C) 	

actual time in service (≈ 1/µ).

The above differences have an immediate bearing on economic analysis. To this end, note that

the probability of a user joining the system is P(v ≥ p+q×(congestion)). While this expression does

not include the time in service, this is implicitly assumed to be accounted for in the valuation v. In

other words, one could rewrite the choice probability as P(v′ ≥ pC + q
µ + q× (congestion)), while in

the M/M/1 system the corresponding choice probability would be P(v′ ≥ p1+ q
Cµ +q×(congestion)).

Since the congestion terms are of order 1/
√

C in both cases and ΛP(joining the system) ≈ Cµ, it

must be that pC +
q

µ
≈ p1 +

q

Cµ
. As C grows large, the first order price term in the M/M/1 model,

denoted by p̄1, will be such that p̄1 = p̄ + q
µ . In particular, this implies that the economic decisions

extracted on the basis of the two models will differ significantly, emphasizing the need to carefully

match the “right” model to the application of interest. (We note in passing that systems that

motivate the study in this paper are probably not adequately modeled using the complete resource

pooling assumption.)

4 Revenue Maximization

The previous section established that the “rationalized” regime is a reasonable and appealing mode

of operation for large capacity systems, insofar as it balances quality and efficiency considerations.

This section builds on this observation, and blends it into the economic objective of the system

manager, namely, revenue maximization. To that end, the main result of the section asserts that

under the assumption that demand is elastic, the “rationalized” regime is the optimal mode to

operate the system from purely economic considerations. Consequently, the insights of Theorem 1

can be applied towards solving the pricing problem.

Economic optimality of the “rationalized” regime. First, we show that as capacity

grows, revenue maximization implies that the system approaches the heavy traffic regime. Second,

we show that revenue maximization implies the price decomposition asserted in Theorem 1, and
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consequently the “rationalized” regime is economically optimal. The main assumption underlying

our analysis is that capacity is “scarce,” and this is spelled out by assuming that demand is elastic

(i.e., ε > 1) in the feasible range λ ∈ [0, Cµ).

Informally, the elasticity assumption implies that the service provider is always “better off”

(as measured by her monopolistic objective) inducing a higher equilibrium arrival rate. That is,

in the absence of congestion costs, she should set a price that induces the maximum arrival rate

sustainable by the system, given by Cµ. This, of course, puts the system in heavy traffic and results

in significant congestion costs, thus reducing the equilibrium arrival rate. The relevant question is

by how much?

Extending the revenue rate definition in (3), we set, for each C > 0, R(p, C) := pΛP (v ≥
p + qED∗), and denote the optimal price prm(C) ∈ argmaxp R(p, C). The associated equilibrium

traffic intensity is denoted by ρrm(C), making the dependence of these quantities on C explicit

(in the sequel this may be omitted when no confusion arises). The following proposition asserts

that under demand elasticity, profit maximization implies that large capacity systems operate in

heavy-traffic.

Proposition 3 Let Assumption 1 hold and assume in addition that capacity scales proportionally

to potential demand. Then, ρrm(C) → 1 as C → ∞.

The intuition behind this result is fairly straightforward. First, Theorem 1 has already es-

tablished that as the system approaches heavy traffic along the “rationalized” regime (ρ(C) ≈
1 − γ/

√
C), congestion costs behave like O(1/

√
C) and become negligible. While this does not

imply that the system manager would choose to operate the system in this regime, it does estab-

lish the feasibility of sustaining high utilization and good quality of service, simultaneously. The

demand elasticity implies that if congestion is negligible, the service provider will price to induce

a high rate of demand, since this results in increased revenues. [In a recent paper, Harrison (2001)

considers an example of a queueing system that is driven by its economic and physical structure to

operate in heavy-traffic; the set up and analysis there are quite different from the one we pursue

here.]

Proposition 3 suggests that the optimal price ought to be close to p̄, which is the static price

that “places” the system in heavy traffic. It says nothing, however, about the actual structure of

the optimal price, the associated level of congestion, how close is the system to the heavy traffic

regime, and what are the revenues realized by the optimized system. The next theorem addresses

all of these questions.

16



Theorem 2 Let Assumption 1 hold and assume in addition that capacity scales proportionally to

potential demand. Then, for large C, the optimal price is given by

prm(C) = p̄ +
πrm

√
C

+ o(1/
√

C),

where p̄ is the price that places the system in heavy traffic given in (4), and πrm is the defined via

the following optimization problem

πrm = argmin
π∈R

{p̄γ∗(π) − π} (10)

where γ∗(π) is defined for each π ∈ R as the unique solution of (8).

Given (10), the first order condition that characterizes the revenue maximizing price is

p̄ =
F̄ (p̄)
f(p̄)

− q
∂d(γ)
∂γ

∣∣∣∣
γ∗

. (11)

This equation is used to define the optimal second order social price πrm, taking as given the

definition of p̄ (the heavy traffic inducing price), and the notion of the equilibrium γ∗(π).

Discussion and ramifications. One key insight that follows from Proposition 3 and The-

orem 2 is that economically optimized systems with large capacity, shared resources, and elastic

demand operate under high nominal resource utilization rates; i.e., they give rise to heavy traffic

as the nominal operating point. It is important to note that although the statement of Theorem 2

bares resemblance to Theorem 1, it is not derived from it. However, the converse implications of

Theorem 1 (see Remark 1) establish that the structure of the optimal price in itself implies that

the system operates in the “rationalized” regime. Consequently, the equilibrium traffic intensity is

given by ρrm(C) = 1−γrm/
√

C +o(1/
√

C), where γrm := γ∗(πrm) satisfies (8), or equivalently, the

equilibrium demand is given by Cµ − γrm
√

Cµ + o(
√

C). These expressions describe the precise

way by which the system should approach heavy traffic in order to optimally balance revenues

with congestion costs. Moreover, the mode of operation for the “optimized” system is such that

the probability of congestion is moderate, i.e., congestion is not completely avoided, nor is it the

standard fare.

Theorem 2 specifies the form of the optimal price, and a simple numerical optimization routine

that computes it to within very high accuracy. Specifically, this Theorem asserts that we can

restrict attention to the “rationalized” regime, and to pricing rules of the form p = p̄ + π/
√

C.

Let us first give some intuition pertaining to the derivation of the optimal price. Using the scaling
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relations of Theorem 1, the revenue rate can be expressed as:

R(p, C) = λ∗(p + qED∗)p

=
(
Cµ − γ∗(π)

√
Cµ + o(

√
C)

) (
p̄ +

π√
C

+ o(1/
√

C)
)

≈ Cµp̄ −
√

Cµ (p̄γ∗(π) − π) ,

where the first equality is a restatement of Theorem 1 parts (i) and (ii). Hence, as capacity grows

large, the problem of selecting the optimal static price to maximize revenues reduces to the problem

of choosing π ∈ R to minimize the second order term of lost revenues above, which is exactly (10)

in the statement of the proposition. The tradeoff in (10) is evident: as π increases we have that

λ∗(p) decreases and thus γ∗(π) increases (as a consequence of Theorem 1). Revenue maximization

essentially reduces to a second order analysis that answers the following question: “how far from

heavy traffic should the system be in order to optimally balance lost revenues and congestion costs?”

Algorithmically, we can compute the optimal price as follows. Taking as input the endogenous

variable, i.e., fixed capacity (C), and the exogenous parameters of the problem, viz, potential

demand (Λ), user choice model (F ), and user mean service requirement (1/µ), we proceed as

follows. First, set the parameter p̄ that appears in the limit problem in terms of original problem

data as in (4), viz, p̄ = F̄−1(κ), where κ = Cµ/Λ. Second, compute the equilibrium γ∗(π) using

(8) for each π in a fine grid. Finally, evaluate p̄γ∗(π) − π for each value of π in the grid, and seek

the minimum value. The system revenues can be computed using the expansions for R(p, C) given

above.

The closed form expressions derived thus far can be used to check analytically or numerically

the sensitivity of various performance quantities with respect to the congestion parameter q (as

well as other model parameters). The key insights derived from this sensitivity analysis are: (i)

first order effects in general, and the heavy traffic price p̄ in particular, are independent of q; (ii)

for fixed price, the equilibrium arrival rate and the associated revenue rate are decreasing in q;

(iii) the revenue maximizing price is increasing in q; (iv) the equilibrium demand at the revenue

maximizing price, the associated congestion cost, and the resulting revenues are decreasing in q.

Numerical results. We now turn to some numerical results that illustrate the accuracy of

the proposed approximations. We consider a system with capacity C, potential demand Λ = 2.5 ·C
(connection requests per minute), µ = 1, and a linear demand model with α = 1·C. User sensitivity

to congestion is described via the cost q = $1 per unit of lost throughput (per user). Figure 1 depicts

three graphs: revenues; price; and, congestion cost as a function of capacity. Each graph has two

plots, one describing results for the simulation based optimization, and the other depicting the

results obtained via the proposed approximations. Two things, essentially one of the same, stand
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Figure 1: Accuracy of the approximations: (a) optimal revenue rate; (b) the optimal price; and

(c) expected congestion cost per user, qED∗. The “ + ” plots correspond to the simulation-based

optimization results, while the solid line plots correspond to the values derived from the approximate

(second order) analysis.

out on close inspection.

First, we observe that the approximation is quite accurate over a range of system sizes. In

particular, the optimal price p which was derived via exhaustive simulation-based optimization has

the predicted behavior of p ≈ p̄ + π/
√

C, where p̄ = 1.5 for this problem data. To reiterate this

point, the simulation-based optimization did not assume this structure, rather, it emerges as a

consequence of the profit maximization objective. The exhaustive search for the optimum is quite

tedious given the necessity to seek equilibrium pairs (λ∗(p), qED∗(p)) that satisfy (2). The accuracy

of the simple approximation derived from Theorem 2 completely alleviate this computational effort.

The second interesting point is not explicitly depicted in the graphs, though it can be inferred in

an obvious manner: the “optimized” system operates in “heavy traffic”. In fact, it is easy to see

that the utilization behaves like (1 − ρ∗(C)) ≈ O(1/
√

C).
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5 Joint Capacity Sizing and Pricing

So far capacity (C) was taken to be exogenously fixed, or the outcome of some a-priori optimization.

We now consider the problem of jointly choosing the system capacity and the price, in order to

maximize profits. Inputs to this design problem are the model parameters summarized by the four-

tuple (q, Λ, µ, P ), and the cost of capacity (appropriately amortized over time), which is assumed

to be linear and given by $wµ per unit of capacity. That is, we are assuming that there are no

economies of scale in the cost structure (in practice, this is typically attributed to increased system

complexity).

The monopolistic service provider is faced with the following profit maximization problem:

max
C,p≥0

R(p, C) − wCµ. (12)

Let us denote by Crm and prm the corresponding maximizers (not necessarily unique). To ensure

the service provider can always extract some positive profit by operating such a set of resources,

we assume that P (v > w) = F̄ (w) > 0. Once again, exact solutions are difficult to derive in the

absence of a simple characterization of the equilibrium behavior. Our approach targets approximate

solutions, and builds on the foundations developed in Sections 3 and 4. The key result was obtained

in Theorem 2, where it was shown that for elastic demand (ε > 1) and any choice of capacity C, the

revenue maximizing price places the system in the “rationalized” regime, where congestion costs

per user are of order 1/
√

C, equilibrium demand is λ∗ = Cµ − γ∗√Cµ and the optimal price is of

the form p = p̄ + π/
√

C. The same result holds true when C is a decision variable, provided that

the demand elasticity is still valid. Specifically, for any value of capacity C (including the optimal

choice Crm), the revenue maximizing price places the system in the “rationalized” regime, where

R(p, C) ≈
(
Cµ − γ∗(π)

√
Cµ

)
×

(
p̄(C) +

π√
C

)
≈ Cµp̄(C) −

√
Cµ (p̄(C)γ∗(π) − π) .

Substituting the above into the profit maximization problem (12), we arrive at the following ap-

proximate formulation:

max
C≥0,π∈R

[Cµp̄(C) − wCµ]︸ ︷︷ ︸
Capacity sizing

−
√

Cµ (p̄(C)γ∗(π) − π)︸ ︷︷ ︸
Pricing

.

For large systems, the two terms are essentially decoupled suggesting the following heuristic:

(i) Capacity sizing: choose the capacity Ĉrm that maximizes the nominal profit rate assuming

that the system will operate in heavy traffic and neglecting any stochastic effects. This fixes the

first order price term ˆ̄prm := p̄(Ĉrm) that places the system in heavy traffic.
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(ii) Pricing: given the optimal choice for capacity Ĉrm, choose the second order price component

π̂rm to minimize the performance degradation due to congestion.

A solution Ĉrm to the capacity sizing problem will serve to approximate Crm, the optimal capacity

decision, while p̂rm = ˆ̄prm + π̂rm/
√

Ĉrm will approximate the optimal price prm.

A more explicit characterization of the approximate solution (given by the decoupling heuristic)

can be obtained if we are willing to assume a first order optimality condition for the optimization

problem (i). For example, problem (i) is concave in the design variable C for all three demand

models mentioned in Section 2. The unique solution satisfies Ĉrm in (0, λ̃/µ), which implies that

the increasing costs of capacity force the optimized system to operate in a region where the demand

is elastic. The first order condition for an optimizer is

∂

∂C
[Cµp̄(C) − wCµ] = µp̄(C) − Cµ

Λ
µ

f(p̄(C))
− wµ = 0. (13)

Recall that p̄(C) = F̄−1(κ), where κ = Cµ/λ, thus (13) can be rewritten as µF̄−1(κ)−κ/f(F̄−1(κ)) =

w. Under the aforementioned concavity assumption, this equation has a unique solution denoted by

κ̂, which determines the optimal capacity as a fraction of the potential demand, i.e., Ĉrmµ = κ̂Λ.

Since P (v > w) > 0, it easy to deduce that κ̂ ∈ (0, 1). Given κ̂, problem (ii) can be used to select

the second order price correction term π̂rm = argmin {F̄−1(κ̂)γ(π) − π : π ∈ R}. This is also

uniquely determined by κ̂. In summary, the proposed solution is to set

Ĉrm = κ̂Λ/µ and p̂rm = p̄(Ĉrm) +
π̂rm√
Ĉrm

= F̄−1(κ̂) +
π̂rm√
Ĉrm

(14)

where κ̂ is determined by (13). The solutions Ĉrm, p̂rm scale with Λ according to (14). In the

sequel, it will be convenient to recognize this dependence by writing Ĉrm(Λ), p̂rm(Λ). The associ-

ated profit rate is P̂(Λ) = R(p̂rm(Λ), Ĉrm(Λ)) − wĈrm(Λ)µ. As the market size realized via the

potential demand Λ grows large, the approximate analysis becomes exact and the performance of

this heuristic becomes optimal.10

Theorem 3 Let Assumption 1 hold. Then, the revenue rate under the capacity and price pair

Ĉrm(Λ), p̂rm(Λ) is asymptotically optimal in the sense that

P̂(Λ)
P(Λ)

→ 1, as Λ → ∞

where P(Λ) = max{R(p(Λ), C(Λ)) − wC(Λ) : C(Λ)µ ≥ 0, p(Λ) ≥ 0}.
10Previous asymptotic results were phrased in terms of C growing large. Given that C is now a decision variable,

the natural proxy for system size is the potential demand Λ which reflects the market size.
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Given that the profit rate is of the form [Cµp̄(C) − wC] −√
Cµ(· · · ) + o(

√
C), the asymptotic

optimality result asserts that the proposed heuristic correctly matches the first order profit term

of the optimally designed system. This implies that asymptotically the optimal level of capacity is

“close” to κ̂Λ and that the optimal price is close to p̂rm. 11

Finally, the following numerical example depicted in Figure 2 illustrates the accuracy of this

approximate solution. The results are derived for a linear demand model with Λ = 200 connection

requests/min, α = 50, q = 1, µ = 1 per min and w = $1. For the linear demand model, p̄(C) =

F̄−1
(

Cµ
Λ

)
= Λ−Cµ

α . The capacity sizing problem becomes: maxC≥0{CµΛ−Cµ
α − wCµ}. The

corresponding optimizer is given by Ĉrmµ = Λ
2 − αw

2 = 75. Also, p̄(Crm) = Λ
2α + w

2 = $2.5.

Optimizing over the second order term π in the way outlined above gives p̂rm = $2.604. In

contrast, the optimal capacity level and price obtained via exhaustive simulation was Crm = 79

and prm = $2.529. The differences are indeed small (and asymptotically negligible).
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Figure 2: Joint capacity sizing and pricing: Λ = 200 requests/min, α = 50, q = 1; µ = 1 per

min, w = $1. Decoupled calculation: Ĉrm = 75 and p̂rm = $2.604. Optimal values obtained via

simulation: Crm = 79 and prm = $2.529.

The use of a second order “correction” to control the congestion costs also appears in Borst et al.

(2000), where this is achieved by adjusting the system’s capacity. In contrast to our work, they do

not model the choice behavior (demand is fixed) and there is no pricing or equilibrium analysis. To

recapitulate, the key insight that emerges is that the capacity sizing and pricing problems decouple
11The same approach may still be applicable under more general cost structures, e.g., Theorem 3 can be extended

to the case of linear demand and quadratic cost of capacity. The key requirement is that capacity costs do not

dominate revenues as capacity grows large.
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and both can be easily solved. Capacity is selected to maximize profits to first order, while pricing

is selected in order to optimally balance revenues with congestion costs; the optimally sized and

priced system operates in heavy traffic.

6 Social Welfare Optimization

We now turn to a brief discussion of large capacity systems that operate under a social welfare

objective. Since the main results, as well as their derivation, are essentially mirroring the approach

taken in the previous section, we will focus here only on a sketch of the main ideas.

Social welfare maximization (social pricing). This formulation assumes that the system is

to be operated with the objective of maximizing the total utility. In equilibrium the total expected

cost per connection is given by p + qED∗. Define

V (p) := Λ
∫ ∞

p+qED∗
vf(v)dv, (15)

to be the total value generated per unit time for all subscribers that select to join the system. The

system-wide value created per unit time is

U(p) = V (p) − qλ∗
ED∗ − pλ∗(p)︸ ︷︷ ︸

users
+ pλ∗(p)︸ ︷︷ ︸

SP

= V (p) − qλ∗
ED∗, (16)

and the service provider’s objective is to choose the price p to maximizes the system-wide value.

We proceed using standard arguments to characterize the socially optimal price; see Mendelson

and Whang (1990). It is convenient to consider V (·) and U(·) as functions of the rate variable

λ, rather than the price p (with slight abuse of notation). The optimal pricing problem will then

be phrased in terms of choosing the optimal equilibrium demand rate λ∗, which, in turn, will

uniquely define the socially optimal price p. Differentiating U with respect to λ, and evaluating the

derivative at the point λ∗ (let us denote this as U ′(λ∗) for simplicity) gives the following first order

condition: U ′(λ∗) = V ′(λ∗) − qED∗ − λ∗q
∂ED∗(λ)

∂λ

∣∣∣∣
λ∗

= 0. From λ∗ = ΛF̄ (p + qED∗), it follows

that the utility of the marginal user that joins the system when the equilibrium demand rate is

λ∗ is V ′(λ∗) = p + qED∗ = F̄−1(λ∗/Λ). Substituting this in the expression above gives the socially

optimal price, psoc

psoc = λ∗q
∂ED∗

∂λ∗ . (17)

That is, it is socially optimal to charge each user the externality (or congestion) cost that he imposes

on the system. Exact evaluation of the socially optimal price is again quite complicated due to
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the equilibrium formulation, and thus relies on exhaustive simulation or numerical approximation

of the steady-state equilibrium probabilities. As we show next, the corresponding asymptotic

characterization is much simpler to work with, and the task of social optimization is computationally

trivial.

An argument similar to that of Section 4 shows that maximizing social welfare will also “drive”

the system to operate in the “rationalized” regime. Counterparts to Proposition 3 and Theorem

2 can be derived under the same modelling assumptions with one change: here we do not require

demand elasticity. 12 Using the scaling relations derived in Theorem 1 we can derive the appropriate

social optimization objective for the asymptotic system, and proceed with the second order analysis

to approximate the optimal price. In the following derivation we will use the fact that ED∗ =

d∗/
√

C + o(1/
√

C), where d∗ := d(γ∗); see Section 3. Starting from (16) we can write

U(λ∗) ≈ Λ
∫ ∞

p̄+ 1√
C

(π+qd∗)
vf(v)dv − (Cµ − γ

√
Cµ)q

d∗√
C

≈ Λ
∫ ∞

p̄
vf(v)dv − 1√

C
Λp̄fτ (p̄)(π + qd∗) − qµ

√
Cd∗

= V (Cµ) −
√

Cµ

(
p̄

f(p̄)
F̄ (p̄)

(π + qd∗) + qd∗
)

. (18)

Since γ = f(p̄)
F̄ (p̄)

(π + qd∗), asymptotically the social optimization problem reduces to choosing the

second order price term π to min
π∈R

{p̄γ∗(π) + qd∗(γ∗(π))} , making the dependence on γ∗ and π

explicit. Recall also that d(γ) = ν(γ)/γ. This is readily solvable given the characterization of the

equilibrium γ∗(π) in (8). Taking derivatives with respect to γ, the first order optimality condition

is given by ∂/∂γ∗ (p̄γ∗ + qd∗) = 0, which implies that

p̄ = −q
∂d(γ)
∂γ

∣∣∣∣
γ∗

. (19)

Note the similarity between (19) and (11) derived under the revenue maximization objective.

Discussion. Expression (19) is closely related to (17), and has a natural interpretation. Recall

that the optimal pricing rule is of the form p = p̄ + π√
C

, thus for very large capacity systems

each subscriber pays p̄. The right-hand-side of (19) is the externality cost, where the negative

sign accounts for the fact that as γ∗ increases the arrival rate into the system decreases. Hence,

the socially optimal equilibrium corresponds to the operating point γsoc where the externality cost

−q ∂d∗
∂γ∗ equals the first order price p̄ paid by the users. Parenthetically, it follows from (11) that

12In the absence of congestion costs the social value function U(·) becomes U(p) = Λ
∫ ∞

p
vf(v)dv, which is de-

creasing in p. That is, as we lower price and λ(p) increases, the system-wide value increases. This characteristic

of the social value function is essentially the equivalent of the elasticity assumption and will drive the economically

optimized system to heavy traffic.
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under revenue maximization the service provider charges a fixed premium over the externality cost.

Moreover, using (19) and the explicit expression for d∗ = d(γ∗) given in (7) we can evaluate the

term ∂d∗
∂γ∗ as a function of γ∗, and solve for the socially optimal equilibrium denoted by γsoc. This

characterization together with the definition of the equilibrium in (8) specify the socially optimal

price, viz, psoc = p̄ + πsoc/
√

C, where πsoc =
(
F̄ (p̄)/f(p̄)

)
γsoc − qd(γsoc).

Joint capacity sizing and social pricing. This problem is treated in an identical manner

to the revenue maximization counterpart. The objective is now to solve the problem

max
C≥0,p≥0

(
Λ

∫ ∞

p+qED∗
vf(v)dv − λ∗qED∗

)
− wCµ,

which leads to the following asymptotic formulation:

max
C≥0,π∈R

[
Λ

∫ ∞

p̄(C)
vf(v)dv − wCµ

]
︸ ︷︷ ︸

Capacity sizing

−
√

Cµ (p̄(C)γ∗(π) + qED∗)︸ ︷︷ ︸
Pricing

.

For large systems, this problem therefore decouples into two parts: (i) choose the capacity to

maximize the social surplus; and (ii) choose the price π to minimize performance degradation due

to congestion. Problem (i) is a simple maximization of a concave function. (This follows from the

the general assumptions on the choice model, and the form of the heavy-traffic price p̄ = F̄−1(κ).)

Exploiting the decoupling of the capacity sizing and pricing decisions, we can compare the optimal

capacity levels and prices for the approximating revenue and social optimization problems. Let

Ĉrm, Ĉsoc and p̂rm = p̄rm + πrm√
C

, p̂soc = p̄soc + πsoc√
C

be the optimal capacities and prices for the

two approximating problems, essentially optimizing the respective objectives up to and including

second order terms. Then, simple analysis shows that

Ĉsoc > Ĉrm and p̄soc < p̄rm . (20)

Moreover, one can show that asymptotically as the market size grows large, this implies that the

actual optimal capacity and price decisions will also be ordered in the same way, i.e., Csoc > Crm

and psoc < prm. That is, the socially optimal solution will have higher capacity and charge less

than the revenue maximizing one, which is consistent with similar comparisons made in the context

of various other systems dating back to the seminal paper by Naor (1969).

7 Concluding Remarks

Motivated by the proliferation of communication and information services, this paper introduces

and analyzes a model for systems with large capacity, and resources that can be shared among
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users when the system is congested but cannot be pooled when the system is underutilized. Such

systems exhibit statistical economies of scale in the sense that they become more “efficient” as their

capacity increases. A tractable asymptotic analysis leads to several structural insights.

(i) Operating regime: The system should operate close to “heavy traffic,” where nominally all

resources are fully utilized. This is optimal in the context of revenue maximization (under the

assumption that demand is elastic), and under a social optimization objective.

(ii) Pricing: The optimal price admits a simple decomposition; the service provider computes

a price to bring the system to “heavy traffic,” and subsequently applies a second order correction

term that depends on the size of the system, to optimally balance congestion effects.

(iii) Joint capacity and pricing decisions: Given the natural scaling relationships intrinsic to

such systems, the capacity sizing and pricing problems decouple. Capacity is chosen to maximize

profits (or total system value) assuming that the system is fully utilized and neglecting stochastic

variability. The price is then adjusted to optimally balance congestion costs.

Several interesting directions of future research arise. One natural extension concerns a system

that supports differentiated services. In the information and communication service context, in

particular, for systems that share resources, the natural first step is to consider a menu with two

service grades: “guaranteed” and “best effort.” The former refers to users that are guaranteed

a constant rate of service irrespective of the state of the system, while the latter refers to users

that share the remaining capacity (and thus are prone to service degradation). To this end, the

Halfin-Whitt many-server asymptotic regime supports certain diffusion approximations that can

be used to facilitate the study differentiated services [some preliminary results along these lines are

derived in Maglaras and Zeevi (2002)].

While this paper has focused on steady-state analysis, the diffusion approximations that were

pioneered by Halfin and Whitt (1981) could be used to approximate transient behavior in such

systems, adding another important layer to the current static analysis. Finally, an even more

challenging problem concerns dynamic pricing mechanism that extend the static fixed-price setting

considered herein. In particular, the results in the current paper strongly suggest that this would

revolve around second-order analysis as well.
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A Proofs

For notational clarity we will denote the capacity of the system as Cn = n. Since most of our

results concern the asymptotic regime where C (thus, n) grows arbitrarily large, various variables

and quantities will be appropriately indexed by a subscript n. The proofs of Propositions 1 and 3

are omitted and are available in a technical report version of the paper.

Proof of Theorem 1: The convergence of the sequence of equilibrium traffic intensities follows

from Proposition 1 in Halfin and Whitt (1981). First note that the Markov chain associated with

the system under investigation in this paper is identical to that associated with an M/M/n system.

Halfin and Whitt (1981) considered a sequence of M/M/n queues and showed that limn→∞ P(Nn ≥
n) = ν ∈ (0, 1) if and only if limn→∞

√
n(1 − ρn) = γ > 0, where ν(γ) = φ(γ)/(γΦ(γ) + φ(γ)).

Applying their result to our sequence of systems (with capacities Cn) operating in equilibrium,

we get that P(congestion) → ν ∈ (0, 1) implies that
√

n(1 − ρ∗n) → γ∗ > 0. By Proposition 1 in

Halfin and Whitt (1981), it also follows that the two conditions are equivalent. The next step is to

establish the limit for the expected congestion cost (part (iii)); later on, this will be combined with

the structure of the customer choice model to derive the asymptotic decomposition of the pricing

rule (part (ii)).

The starting point is the relation for the expected excess delay given in (9), which we repeat

here for completeness ED∗
n = ρP(N∗

n ≥ n)/(n(1− ρ∗n)). From here, using Halfin and Whitt (1981),

it follows that if
√

n(1 − ρ∗n) → γ∗, then
√

nED∗
n → d(γ∗) := ν(γ∗)/γ∗ .

In the sequel we will also use the notation d(γ) when we want to make explicit its dependence

on γ. The right hand side in the above expression is d(γ∗) appearing in part (iii) of the statement

of the main result. Finally, we will use (i) and (iii) to establish the desired price decomposition.

For n sufficiently large, (iii) implies that ED∗
n = d/

√
n + o(1/

√
n). Using this expansion, Taylor’s

theorem and the smoothness of the choice distribution in the definition of λ∗
n, we get that

λ∗
n = ΛnP (v ≥ pn + qED∗

n)

= ΛnP (v ≥ pn) − Λnf(pn)q
d√
n

+ o(
√

n)

= nµ − γ∗√nµ + o(
√

n),

where the last equality follows from (i), i.e.,
√

n(1 − ρ∗n) → γ∗. Now, by assumption Λn = nµκ−1,

thus the last equality implies that ΛnP (v ≥ pn) = nµ+δ
√

nµ+o(
√

n), for some appropriate choice

of δ ∈ R. This, in turn, implies that the price pn must be of the form pn = p̄ + π/
√

n + o(1/
√

n),

where p̄ is selected such that P (v ≥ p̄) = κ, that is, p̄ = F̄−1(κ). This establishes part (ii) of the

Theorem. Finally, using this structural form of pn, Taylor’s theorem, and the smoothness of the
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choice model distribution we can express λ∗
n in the form

λ∗
n = ΛnP (v ≥ p̄) − Λn

f(p̄)√
n

(
π + qd + o(

√
n)

)
+ o(

√
n). (21)

Using λn = nµκ−1 we have in the limit as n → ∞ that γ∗ = (π + qd(γ∗)) f(p̄)/F̄ (p̄).

Proof of Proposition 2: Consider any converging subsequence {nj} such that √nj(1−ρ∗nj
) →

γj > 0. As noted in the proof of Theorem 1, we have that √njED∗
nj

→ d(γj) = ν(γj)/γj . Next, we

take a Taylor expansion of the expression for λ∗
nj

λ∗
nj

= ΛnjP
(
v ≥ pn + qED∗

nj

)
= ΛnjP (v ≥ p̄) − 1√

nj
Λnjf(p̄) (π + qd(γj)) + o(

√
nj).

Rewrite Λnj as njµ/F̄ (p̄) to get that λ∗
nj

= nµ −√
njµ

f(p̄)
F̄ (p̄)

(π + qd(γj)) + o(√nj), which implies

that γj = (f(p̄)/F̄ (p̄)) (π + qd(γj)). Solving for d(γj) we get that

d(γj) =
1
q

(
F̄ (p̄)
f(p̄)

γj − π

)
. (22)

The expression for d(γj) and (22) imply that the equilibrium γj must satisfy (8). Now, observe that

(8) can be rewritten as h(γ) := q−1F̄ (p̄)/f(p̄)γ−γ−1φ(γ)(γΦ(γ)+φ(γ)) = q−1π. By inspection h(·)
is a continuous increasing function on the positive half-line, and h(0) = −∞. [This follows since

φ(γ) is a decreasing function on the positive half line, while Φ(γ) is increasing.] Thus, h(γ) = q−1π

has a unique solution γ∗(π) for all π ∈ R. Consequently (8) has a unique solution γ∗(π) which

implies that all converging subsequences have the same limit γ∗(π).

Proof of Theorem 2: The main idea is to establish that the “rationalized regime” leads to

profit maximization, and then appeal to Theorem 1 in Section 3 to conclude that the price structure

must be of the form asserted in the current theorem. The only added task is to establish that the

second order price correction π is indeed the solution to the given optimization problem, stated in

the theorem. The proof is divided into three steps.

Step 1. Proposition 3 asserts that ρrm
n → 1 as n → ∞. We will now determine the rate of this

convergence, which in turn will imply that prm → p̄. To this end, consider the price sequence {prm
n }

that is revenue maximizing, i.e., prm
n ∈ argmaxp{R(p, n)} for each n ≥ 1. Here R(p, n) extends the

definition in (3) denoting the revenue rate for a system with capacity Cn = n, and making this

dependence explicit. In what follows, all system quantities are considered in equilibrium, and we

omit the ‘*’ superscript for notational clarity. Let us denote the resulting expected excess delay by

dn := ED∗
n. Recall from (9) we have that dn = ρnP(N∗

n ≥ n)/(n(1 − ρn)). Suppose that ρrm
n → 1

so that lim infn→∞ n(1− ρrm
n ) ≤ M , for some finite positive constant M > qµ/p̄. Then, it must be
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that
√

n(1 − ρrm
n ) = o(1), where an = o(1) if an → 0 as n → ∞. By Proposition 1 of Halfin and

Whitt (1981) we then have that P(N∗
n ≥ n) → 1 and thus lim supn→∞ dn ≥ M−1. Now,

λn

nµ
=

ΛnF̄ (prm
n + qdn)
nµ

→ 1,

thus, it follows that prm
n + qdn → p̄. But since dn ≥ M−1 infinitely often, it follows that

lim infn→∞ prm
n ≤ p̄ − q/M and consequently

lim inf
n→∞

R(prm
n , n)

R(p̄, n)
≤ 1 − q

Mp̄
,

where the right hand side is strictly less than 1 by choice the M . Therefore, prm
n cannot be

the revenue maximizing price, in contradiction. We conclude that for any positive constant M ,

lim infn→∞ n(1 − ρrm
n ) ≥ M , and therefore since M is arbitrary we must have n(1 − ρrm

n ) → ∞.

Thus, dn = o(1) and this yields that prm
n → p̄.

Step 2. Here we establish that prm
n → p̄ in combination with the demand elasticity assumption

imply that
√

n(1 − ρrm
n ) → γ. First, since λn = nµ(1 − γn) we have

λn = nµ − nµf(p̄)
F̄ (p̄)

(πn + dn) + O
(
n2(πn + qdn)2

)
, (23)

where γn := 1 − ρrm
n , and πn = prm

n − p̄. [The second equality above follows from the equilibrium

condition that “ties together” dn, πn and γn, see (22)]. Thus, we can express the revenue rate as

follows

R(prm
n , n) = λnprm

n = nµp̄ − nµ (p̄γn − πn)︸ ︷︷ ︸
ψ(γn)

+O(nπnγn)

where the last term on the right hand side is of lower order. Taking a closer look at the second

order term above, and using (23) we have that

ψ(γn) = nµ (p̄γn − πn)

= nµ

(
γnp̄ − F̄ (p̄)

f(p̄)
γn + qdn

)

=
√

nµ

[√
nγn

(
p̄ − F̄ (p̄)

f(p̄)

)
+ qdn

√
n

]
(24)

Now, if
√

nγn = o(1), then from (9) and Proposition 1 of Halfin and Whitt (1981) which asserts

that P(N∗
n ≥ n) → 1, we have that

√
ndn → ∞. Consequently, ψ(γn)/

√
n → ∞. On the other

hand, if
√

nγn → ∞ then by Proposition 1 of Halfin and Whitt (1981) and using (9), it follows that

lim supn→∞
√

ndn < ∞. In addition, the demand elasticity assumption implies

ε = − ∂ΛF̄ (p)
∂p

p

ΛF̄ (p)
= f(p)

p

F̄ (p)
> 1
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thus, it follows that F̄ (p) < pf(p). Consequently, ψ(γn)/
√

n → ∞. Now, if
√

nγn → γ > 0, then

ψ(γn)/
√

n → c > 0, which minimizes the rate of growth of the lost revenues, due to second order

effects. Thus, 1/
√

n is the economically optimal rate of convergence to heavy-traffic.

Step 3. To conclude the proof we again appeal to Proposition 1 of Halfin and Whitt (1981)

which asserts that if
√

n(1 − ρrm
n ) → 1, then P(N∗

n ≥ n) → ν ∈ (0, 1). Consequently, the “rational-

ized regime” is the economically optimal regime, viz, supporting the best possible rate of growth

of revenue (up to second order effects). Moreover, by Theorem 1 it follows that the price sequence

corresponding to this regime is of the form prm
n = p̄+ π√

n
+o

(
1√
n

)
. Thus, πn = π/

√
n. Finally, the

optimal choice of π is obtained by minimizing the effects of the second order term ψ(γn). Spelling

this out, using (24), we have πrm = argminπ∈R{γ∗(π)p̄− π}, where here we have made explicit the

fact that γ depends on π (through (8)).

Proof of Theorem 3: Consider the profit maximization problem max {R(p(Λ), C(Λ)) −
wC(Λ)µ : C(Λ), p(Λ) ≥ 0}, and define κ(Λ) := C(Λ)µ/Λ. We will prove that κ(Λ) → κ̂ ∈ (0, 1)

as Λ → ∞, where κ̂ is defined via Ĉ = κ̂Λ/µ, the unique root of (13). It then follows that the

decoupled heuristic of (14) is asymptotically optimal.

To shorten notation, the superscript “rm” will be dropped in the sequel. First, recall that

κ̂ ∈ (0, 1) and that Ĉ(Λ)µ/Λ = κ̂ for all Λ. Also, note that p̄(Ĉ(Λ)) = F̄−1
τ (κ̂) := p̄(κ̂). It is easy

to show that under the proposed heuristic 1
Λ [R(p̂(Λ), Ĉ(Λ)) − wĈ(Λ)µ] → κ̂p̄(κ̂) − wκ̂ > 0.

Let’s assume that κ(Λ) → κ ∈ [0, 1]. If κ = 0, then 1
Λ [R(p(Λ), C(Λ)) − wC(Λ)µ] → 0, which

contradicts the optimality of (p(Λ), C(Λ)). Hence κ > 0. From Section 4 we know that systems with

large capacity C(Λ) under the revenue maximizing price operate in heavy traffic and their profit

rate can be expressed in the following form: C(Λ)µp̄(C(Λ))−wC(Λµ−√
C(Λ)µ(· · · )+o(

√
C(Λ)).

It follows that
1
Λ

[R(p(Λ), C(Λ)) − wC(Λ)µ] → κp̄(κ) − wκ,

where p̄(κ) := limΛ→∞ p̄(C(Λ)). Since κ̂ is assumed to be the unique optimizer of the capacity

sizing problem, i.e., it is the uniquely defined via (13), it follows that κp̄(κ) − wκ ≤ κ̂p̄(κ̂) − wκ̂,

with equality achieved only when κ = κ̂. In order to establish that κ = κ̂ we need to ensure that

this asymptotic profit rate is achieved by the optimal policy. This is clearly true since our proposed

heuristic achieves that rate, and the optimal policy can only do better. It follows that κ = κ̂. Using

the asymptotic expansions for the profit rates under the optimal policy and under the heuristic of

(14) we immediately establish the asymptotic optimality result.

30



References

[1] M. Armony and C. Maglaras. On customer contact centers with the call-back option. Preprint,

2001.

[2] S. Borst, A. Mandelbaum, A. and M. Reiman. Dimensioning of Large Call Centers. preprint,

2000.

[3] C. Courcoubetis, F. Kelly and R. Weber. Measurement-based usage charges in communications

networks. Oper. Res., 48:535-548, 2000.

[4] A. Das and R. Srikant. Diffusion approximations for a single node accessed by congestion

controlled sources, IEEE Trans. on Aut. Control, 45:1783-1799, 2000.

[5] G. Gallego and G. van Ryzin. Optimal dynamic pricing of inventories with stochastic demand

over finite horizons. Mngt. Sci., 40:999-1020, 1994.

[6] O. Garnett, A. Mandelbaum and M. Reiman. Designing a call center with impatient customers.

M&SOM, 4:208-227, 2002.

[7] R. Gibbens and F. Kelly. Resource pricing and the evolution of congestion control. Auromatica,

35:1969–1985, 1999.

[8] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers. Op.

Res., 29:567-588, 1981.

[9] J. M. Harrison. A broader view of Brownian networks. To appear Ann. Appl. Prob., 2002.

[10] S. Lanning, D. Mitra, Q. Wang and M. Wright. Optimal planning for optical transport net-

works. Phil. Trans. Royal Soc. London A, 1773:2183–2196, 2000.

[11] C. Maglaras and A. Zeevi. Diffusion approximations for a Markovian service system with

“guaranteed” and “best effort” service levels. Working paper, Columbia Univeristy, 2002.

[12] J. McGill and G. van Ryzin. Revenue management: research overview and prospects. Trans.

Sci., 33:233-256, 1999.

[13] H. Mendelson. Pricing computer services:queueing effects. Com. ACM, 28:312-321, 1985.

[14] H. Mendelson and S. Whang. Optimal incentive-compatible priority pricing for the M/M/1

queue. Oper. Res. 38:870–883, 1990.

[15] P. Naor. On the regulation of queue size by levying tolls. Econometrica, 37:15-24, 1969.

31



[16] I. Paschalidis and J. Tsitsilkilis. Congestion-dependent pricing of network services. IEEE/ACM

Trans. on Networking, 8:171-184, 2000.

[17] S. Stidham. Optimal control of admission to a queueing system. IEEE Trans. on Aut. Control,

30:705-713, 1985.

[18] J. Van Mieghem. Price and service discrimination in queueing systems: incentive compatability

of Gcµ scheduling. Mngt. Sci., 46:1249-1267, 2000.

[19] W. Whitt. Understanding the efficiency of multi-server service systems. Mngt. Sci., 38:708-723,

1992.

[20] W. Whitt. How multiserver queues scale with growing congestion-dependent demand. To ap-

pear in Op. Res., 2003.

32



Addendum: Additional Proofs

Proof of Proposition 1: Fix a capacity Cn = n, and price p > 0, such that P (v > p) > 0

(otherwise there is nothing to prove). Fix ξ > 0 and, with some abuse of notation, let the expected

excess delay for an arrival rate λ(p + qξ) be denoted by ED(ξ). The equilibrium demand rate and

expected excess delay are now defined via the solution ξ∗ of the set of equations

λ(p + qξ∗) = ΛP (v > p + qξ∗) and ξ∗ = ED(ξ∗),

if such a solution exists. To this end, let h(ξ) = ξ −E[D(ξ)]. Now, λ is a decreasing function when

considered w.r.t. the variable ξ, and ξ (the expected excess delay per-user) is, in turn, increasing

in λ. This suggests that there exists a fixed point ξ∗ that solves the above equations. To make this

rigorous, note that h′(ξ) = 1 − ∂
∂ξ ED(ξ) > 0, since ED(ξ) is decreasing in ξ. Differentiability of

ED(ξ) follows from two observations. First, ED∗, considered here as a function of λ∗, is continuously

differentiable in [0, nµ). This follows from (9) and the expressions for the steady-state probability

of congestion, P(N ≥ n), for an M/M/n queue [see, e.g, Halfin and Whitt (1981)]. Second, λ(·)
is continuously differentiable due to the smoothness of the choice model. Thus, by the chain rule,

ED(ξ) is continuous and differentiable. Since h(0) < 0 and h(∞) > 0, it follows that h(ξ) = 0 has

a unique solution ξ∗, and the associated variables λ∗ := λ(p + qξ∗) and ED(ξ∗) = ξ∗ characterize

the unique equilibrium of the finite capacity system. Finally, the traffic intensity is then given by

ρ∗ := λ∗/(nµ) which is strictly less than 1.

Proof of Proposition 3. First, by Proposition 1 we have that ρ∗n = λ∗/(nµ) < 1 for all n ≥ 1.

Thus,

lim sup
n→∞

ρ∗n ≤ 1 (25)

Consider a price sequence {prm
n } that is profit maximizing, i.e., prm

n ∈ argmaxp R(p, n) for each n,

where R(p, n) extends the definition in (3) denoting the revenue rate for a system with capacity

Cn = n. Recall that Λn := nµ/κ. Now, suppose that lim infn→∞ ρrm
n ≤ 1 − δ for some δ ∈ (0, 1),

where ρrm
n is the utilization in a system with capacity n under the price prm

n , in equilibrium. Then,

ρrm
n =

Λn

nµ
P (v > prm

n + qEDn)

= κ−1P (v > prm
n + qEDn)

= κ−1P (v > prm
n ) − κ−1f(prm

n )qEDn + O
(
[EDn]2

)
.

Using (9) we have that EDn ≤ (1−δ)/nδ for infinitely many n, thus lim infn→∞ EDn = 0. From here

it follows that lim infn→∞ κ−1F̄ (prm) ≤ 1−δ. Consequently, we have that P (v > prm
n ) ≤ κ(1−δ/2),

say, for infinitely many n. Consider now the price sequence p̃n = p̄, where p̄ = F̄−1(κ), i.e., the

price that places the system in heavy-traffic. The assumptions on the choice model together with
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the above imply that for some δ′ > 0 we have prm
n ≥ p̃n(1 + δ′) for infinitely many n. Now, due to

demand elasticity we have xF̄ (x) ↑ as x ↓, and thus, using the assumed smoothness of the choice

model, we have that for some δ′′ > 0,

lim sup
n→∞

R(p̃n, n)
R(prm

n , n)
≥ 1 + δ′′,

in contradiction to the claimed optimality of {prm
n }. Thus, it must be that lim infn→∞ ρrm

n ≥ 1− δ,

and since δ was arbitrary, this implies that for the profit maximizing price sequence lim infn→∞ ρrm
n ≥

1, which together with (25) establishes that ρrm
n → 1 under the profit maximization objective. This

concludes the proof.
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