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On the Tightness of an LP Relaxation for Rational
Optimization and its Applications

We consider the problem of optimizing a linear rational function subject to totally unimodular

(TU) constraints over {0,1} variables. We work with the LP relaxation of this problem and prove

that its extreme points are integral thereby showing that the LP relaxation is ”tight.” We also

consider a more general variant of this problem by allowing additional (not totally unimodular)

constraints. By extending structural insights about extreme points we present a polynomial time

approximation scheme (PTAS) for the general problem. Examples of such settings in the context

of assortment optimization with multinomial logit choice (MNL) model are also discussed along

with numerical simulations.

1. Introduction

We consider the problem of optimizing a linear rational function over {0,1} variables subject to

totally unimodular (TU) constraints, i.e.

maximize
a0 +

∑n

i=1 aixi
c0 +

∑n

j=1 cjxj

subject to Ax≤ b

x∈ {0,1}n,

(1)

where A is a TU matrix, b ∈Zm, ci ≥ 0 for all i. Many combinatorial optimization problems like

minimum mean cycle, minimum ratio shortest path and assortment optimization over an MNL

choice model involve optimizing a rational objective. Davis et al. (2014) consider a special case of

our problem in the context of assortment optimization. In particular, they consider an MNL choice

model with TU constraints and provide an algorithm to obtain the optimal solution. Megiddo

1
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(1979) consider a similar problem of optimizing a rational objective over specific combinatorial

sets. In that work, they provide an algorithm to compute the optimal solution of the following

problem

maximize
a0 +

∑n

i=1 aixi
c0 +

∑n

j=1 cjxj

subject to x∈D,
(2)

where D is a combinatorial set, such that the following problem can be solved efficiently using a

combinatorial algorithm (only involving addition, subtraction or comparison),

maximize
n∑
i=1

dixi

subject to x∈D.
(3)

Hashizume et al. (1987), Correa et al. (2010) extend the work of Megiddo (1979) to provide

approximation algorithms for problems similar to (2) assuming there are efficient algorithms

to compute approximate solutions for problem (3). Mittal and Schulz (2013) provides a fully

polynomial time approximation scheme (FPTAS) for optimizing a rational objective over a

polytope and their technique can be extended to the case of a combinatorial set, if the extreme

points of the polytope are feasible in the combinatorial set.

Our Contributions. We reformulate the rational optimization problem (1) as an integer program

and show that the LP relaxation of this integer program is tight. We would like to note that, Davis

et al. (2014) takes a similar approach, but their results do not discuss the structure of optimal

solutions of the reformulation. Instead they obtain the optimal solution by solving another linear

program using the optimal value obtained from the relaxation. In contrast, we provide structural

results on the LP reformulation to establish that the relaxation is tight and the optimal solution(s)

of the relaxation solve the rational optimization problem (1). We work with this structural result

to obtain a polynomial time approximate scheme (PTAS) for the rational optimization problem

(1) in the presence of an additional constraint which will be motivated in what follows. We extend

our PTAS approach to an important class of applications of recent interest, a problem referred

to as “joint assortment and display optimization with capacity constraint”. To the best of our

knowledge, this is the first approximation algorithm for this application domain for which it is

known that obtaining an exact solution is “hard”.

Notation. We use the following notations in this paper. We use bold font to denote all vectors

and matrices. For any matrix Y ∈Rm×n and index set T ⊂ {1,2, . . . ,m}, Y(T ) denotes the sub-

matrix corresponding to rows T . The identity matrix is denoted as I and e denotes the vector of
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all ones of appropriate dimension. All vectors are column vectors. For any n ∈N , [n] denotes the

set {1,2, . . . , n}.

Outline. The rest of the paper is organized as follows. In Section 2, we prove tightness of the LP

relaxation. In Section 3, we present applications of the rational optimization problem (1) including

“cardinality constrained assortment optimization” and “joint assortment and display optimization

with cardinality constraints.” In Section 4, we present extensions to more general constraint sets

and applications thereof. Section 5 contains some numerical illustrations.

2. Rational Optimization: LP relaxation

We consider the rational optimization problem (1), Substituting

p0 =
1

c0 +
∑n

j=1 cjxj
, pi = xip0,

we have the following equivalent reformulation of the rational optimization problem (1) with linear

objective function.

maximize
(p,p0)

n∑
i=0

aipi

subject to Ap≤ p0b
n∑
i=0

cipi = 1

pi ∈ {0, p0} ∀ i∈ {1,2, · · · , n}

p0 ≥ 0.

(4)

Note that in the above the reformulation is not a mixed integer program but can be easily reformu-

lated as the following mixed integer program, by rewriting the constraints pi ∈ {0, p0} for all i as

pi ≤ xi ∀ i∈ {1,2, · · · , n}

pi + (1−xi)≥ p0 ∀ i∈ {1,2, · · · , n}

xi ∈ {0,1} ∀ i∈ {1,2, · · · , n}.

(5)

2.1. Tightness of the LP relaxation

We consider the following LP relaxation for (4).

zLP = max
(p,p0)

n∑
i=1

aipi

Ap≤ p0b
n∑
j=0

cjpj = 1

0≤ pi ≤ p0, ∀i= 1, . . . , n,

p0 ≥ 0.

(6)
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where we relax the constraints pi ∈ {0, p0} to 0≤ pi ≤ p0 for all i= 1, . . . , n. Let P be the polytope

defined by the constraints in the above LP formulation, i.e.,

P =
{

(p, p0)∈Rn+×R+

∣∣Ap≤ p0b, cTp + c0p0 = 1, 0≤ pi ≤ p0,∀i
}
. (7)

We show that all extreme points of P are “integral,” i.e., for any extreme point (p, p0) ∈ P, pi ∈

{0, p0} for all i= 1, . . . , n. In particular, we have the following theorem.

Theorem 1. Every extreme point (p, p0) of the polytope P is such that pi ∈ {0, p0} for all i =

1, . . . , n.

We will prove Theorem 1 by establishing a correspondence between extreme points of P and Q,

where

Q= {x |Ax≤ b, 0≤ xi ≤ 1 for all i= 1,2, . . . , n} ,

is the polytope corresponding to relaxed constraints of the rational optimization problem (1).

Lemma 1. If (p, p0) is an extreme point of P, then x = p
p0

is an extreme point of Q. Conversely,

if x is an extreme point of Q, then (p, p0) where

p0 =
1

(c0 + c′x)
, p = p0x

is an extreme point of P.

Proof. Note that for every extreme point of P, there must be n+ 1 linearly independent and

active constraints. Let (p, p0) be an extreme point of P and define

S0 = {i | pi = 0}, S1 = {i | pi = p0},

T = {i |
n∑
j=1

aijpj = bip0}

k= |S0|+ |S1|+ |T |.

(8)

We claim that k ≥ n. This follows by observing that we have |S0|+ |S1| linearly independent and

active constraints from the constraint set S0 ∪ S1, |T | active constraints from the constraint set

T and one active constraint from the constraint
∑n

i=0 cipi = 1. Hence the total number of linearly

independent and active constraints at (p, p0) is at most k+ 1.

Without loss of generality we can assume that k = n; since k > n implies that

|S0|+ |S1|+ |T |+ 1>n+ 1, making some constraints in T redundant.

Define

Bp =

A(T ) −b(T )
I(S0) 0
I(S1) −e

c′ c0

 , Bx =

A(T )
I(S0)
I(S1)

 , bx =

b(T )
0
e

 , (9)
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Note that Bp is the basis matrix corresponding to the extreme point (p, p0). Hence, Bp is full rank.

For the sake of contradiction, assume that Bx is not full rank. There there exists λλλ ∈ Rn,λλλ 6= 0

such that λλλ′Bx = 0, then we have[
λλλ′ 0

]
Bp =

[
λλλ′Bx −λλλ′bx

]
=
[
0 −λλλ′bx

]
,

which implies [
λλλ′ 0

]
Bp

[
p
p0

]
=−p0λλλ′bx,

Since Bp is a full rank, we have λλλ′bx 6= 0 and p0 6= 0, contradicting that,

Bp

[
p
p0

]
=

[
0
1

]
.

Hence, Bx is a full rank.

Clearly x = p/p0 is a feasible point in Q and solves the system of linear equations Bxx = bx. Hence

x is the basic feasible solution corresponding to the basis matrix Bx.

Now we prove the converse. Consider x, any extreme point of Q. Let

p0 =
1

c0 + c′x
, p = p0x.

Clearly (p, p0) ∈ P. We define the quantities S0, S1, T, k as in (8) and Bp,Bx,bx as in (9). Using

similar arguments, claim that without loss of generality we can take k = n. Since x is a basic

feasible solution corresponding to the basis Bx, Bx is full rank.

For the sake of contradiction, suppose Bp is not full rank. Then there exists λλλ∈Rn+1,λλλ 6= 0 such

that λλλ′Bp = 0. Therefore,

λλλ′Bp

[
p
p0

]
= 0, which implies (λλλ([n]))′(Bxp + p0bx) +λn+1(c

′p + c0p0) = 0.

Since Bxx = bx, we have Bxp + p0bx = 0 and λn+1 = 0. Note that,

λλλ′Bp =
[
λλλ([n])′Bx +λn+1c

′ λλλ([n])′bx +λn+1c0
]

andλλλ′Bp = 0

Therefore λλλ([n])′Bx = 0, contradicting the fact that Bx is full rank. Hence, Bp is a full rank matrix

and (p, p0) is the basic feasible solution corresponding to the basis matrix Bp. This completes the

proof. �

Theorem 1 follows from Lemma 1 and the fact that any extreme point x of Q is integral, i.e.

xi ∈ {0,1}.
We emphasize that although Davis et al. (2014) takes a similar approach of reformulating the

rational optimization problem (1) as LP relaxation (6), their result does not focus on the optimal

solutions of the relaxation. Instead they obtain the optimal solution by solving another linear

program using the optimal value of LP relaxation (6). Our Theorem 1, apart from establishing that

the relaxation LP relaxation (6) is tight, also proves that the optimal solution of LP relaxation (6)

is the same as the MIP reformulation (4) and hence it suffices to solve the relaxation.



Author: Article Short Title
6 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

3. Applications: Assortment Optimization over MNL

In this section, we present specific cases of assortment optimization problems referred to as “cardi-

nality constrained assortment optimization” and “joint assortment and display optimization with

cardinality constraints,” as an application of the rational optimization problem (1). We employ

Theorem 1 to obtain its optimal solutions. Davis et al. (2014) presents many other applications

related to assortment optimization and pricing problems under MNL that can be formulated within

the framework of the rational optimization problem (1). Later in Section 4, we further consider a

more general version of “joint assortment and display optimization with cardinality constraints,”

where apart from TU constraints, we allow an additional capacity constraint. Before describing

the optimization problem, we first give some brief background on assortment optimization.

In retail settings, an assortment of products selected by a retailer for display has significant

impact on revenues. Assuming a specific choice model for substitution among products, the assort-

ment optimization problem attempts to find the optimal subset of products satisfying various

constraints (budgetary, space); Kok et al. (2003) provides a detailed review of assortment opti-

mization problems. The Multinomial Logit (MNL) model, owing to its tractability, is a popular

and well studied choice model for assortment selection problems. Talluri and van ryzin (2004),

Rusmeivichientong et al. (2006), Desir and Goyal (2014) and Davis et al. (2014) consider variants

of the assortment optimization problem under an MNL choice model. Assortment optimization

under MNL choice framework is an important class of problems that involves optimizing a rational

objective over {0,1} variables subject to various constraints.

3.1. Assortment Optimization with Cardinality Constraint

We consider an assortment optimization problem, where the retailer needs to select a subset of

products to offer to customers who make their selection according to the MNL choice model. The

objective is to compute an optimal assortment to maximize the expected revenue such that the

total number of products selected does not exceed some upper bound.

We now formulate this problem as a combinatorial optimization of a rational objective over

TU constraints. Let n be the total number of products, the product assortment is represented by

the vector x ∈ {0,1}n, where xi = 1 implies product i is selected and xi = 0 implies product i is

discarded. Typically, under the MNL framework, product i is characterized by its attractiveness

parameter (mean utility) vi. The probability of buying product i, for a given assortment x this is

given by,

pi =
vixi

v0 +
∑n

i=1 vixi
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If ri is the marginal profit for product i, then the expected revenue when the product assortment

is x is given by:

R(x) =

∑n

i=1 rivixi
v0 +

∑n

i=1 vixi
.

Therefore, the optimization problem of maximizing the revenue subject to cardinality constraint is,

maximize
x∈{0,1}n

R(x) =

∑n

i=1 rivixi
v0 +

∑n

i=1 vixi

subject to
n∑
i=1

xi ≤K

xi ∈ {0,1} ∀ i.

(10)

3.2. Joint Assortment and Display Optimization with Cardinality Constraints

Here we consider a joint assortment and display optimization problem, where the retailer needs

to select the subset of products to offer and also decide on the display segment. This problem

arises in retailing and online advertising where the display slot of the product/ad affects the choice

probability. In particular, we consider a model with m display segments and each segment has an

upper bound on the number of products that can be displayed. The customers choose in accordance

with an MNL model, where the purchasing probability of each offered product also depends on

its display segment. The objective is to compute an optimal assortment together with the optimal

display segment for each offered product such that the cardinality constraints for each segment are

satisfied and the expected revenue is maximized.

We now formulate this as a combinatorial optimization of a rational objective over TU con-

straints. Let n be the total number of products and m be the number of display segments. Display

segment j can accommodate at most Kj products for each j (hereafter refered to as “cardinality”

constraints). We assume that every product can only be displayed in one of the available display

segments. Product offer decisions are denoted by xij ∈ {0,1}, which will be the decision variables

in our optimization problem:

xij =

{
1 if product i is displayed in slot j
0 otherwise.

The product assortment and their display slots are represented by n×m matrix X. Here
m∑
j=1

xij = 0

implies that product i is not displayed in any segment.

Apart from the usual attractiveness parameter (mean utility) vi, for each product i we introduce

an additional display parameter βj for all j and assume that the overall attractiveness parameter

for a product i displayed in slot j is βjvi. Thus, if ri is the marginal profit for product i, then the

expected revenue when the product assortment and display arrangement is X is given by:

R(X) =

∑n

i=1

∑m

j=1 riviβjxij

v0 +
∑n

i=1

∑m

j=1 viβjxij
.
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Let v̂ij = viβj, the optimization problem of maximizing expected revenue can be formulated as:

maximize
X∈{0,1}n×m

R(X) =

∑n

i=1

∑m

j=1 riv̂ijxij

v0 +
∑n

i=1

∑m

j=1 v̂ijxij

subject to Ci :
m∑
j=1

xij ≤ 1, i= 1, . . . , n

Cj :
n∑
i=1

xij ≤Kj, j = 1, . . . ,m

xij ∈ {0,1}, i= 1, . . . , n, j = 1, . . . ,m.

(11)

Constraints {Ci} enforce that every product can be displayed only in one of the display segments,

while constraints {Cj} enforce the “cardinality” constraints in each segment. The constraints in

problem (11) are identical to the constraints in a transportation problem and hence are TU, making

problem (11) a special case of the rational optimization problem (1).

4. Extension to More General Constraints

In this section, we consider a more general variant of the rational optimization problem (1), where

constraints are not necessarily TU. In particular, we consider the following problem where we have

a set of TU constraints and one additional constraint such that the overall constraints are not TU:

maximize
a0 +

∑n

i=1 aixi
c0 +

∑n

j=1 cjxj

subject to Ax≤ b

αααTx≤ γ

x∈ {0,1}n,

(12)

where A is a {0,1}m×n TU matrix, b∈Zm, ci ≥ 0 and αi ≥ 0 for all i. Let

Q= {x |Ax≤ b, 0≤ xi ≤ 1 for all i= 1,2, . . . , n}

Q̂=
{
x∈Q

∣∣αααTx≤ γ
}
,

be the polytopes corresponding to the relaxations of (1) and (12) respectively.

Similar to our approach in Section 2, we consider the following LP relaxation for (12),

maximize
(p,p0)

n∑
i=0

aipi

subject to (p, p0)∈P

αααTp≤ p0γ.

(13)

where P is as defined in (7), the polytope corresponding to the LP relaxation of the rational

optimization problem (1) . We have,

P̂ =
{

(p, p0)∈P
∣∣αααTp≤ p0γ

}
,
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as the polytope corresponding to the LP relaxation of the problem (12).

Since constraints in (12) are not TU, the LP relaxation (13) may not be tight. In this section,

we present a polynomial time approximation scheme (PTAS) for (12) under some assumptions on

Q. In other words, for a fixed ε, we compute an (1− ε)-approximation for (12) in time O(n1/ε).

Our PTAS is based on the following structure of extreme points of (13).

Observe that the polytope Q̂ (respectively P̂) is the intersection of the polytope Q (respectively

P) and the hyperplane αααTx≤ γ (respectively αααTp≤ p0γ). Hence, any extreme point of Q̂ (respec-

tively P̂) is either an extreme point of Q or a convex combination of two adjacent extreme points of

Q (respectively P). Therefore, if two adjacent extreme points of Q “differ” only in a small number

of components, then the number of “fractional components” in any extreme point of Q̂ and P̂

is small. We obtain an approximate solution for (12) by ignoring a small number of “fractional

components” from the optimal solution of (13). Specifically, for any two extreme points x1,x2 of

Q, define

d(x1,x2) = |{i | x1i 6= x2i}|

d(Q) = max{d(x1,x2) | x1, x2 are adjacent extreme points of Q} .

Here d(Q) denotes the maximum number of components by which the two adjacent extreme points

of Q can differ. If d(Q) ≤ `, then the number of fractional components for any extreme point of

Q̂ is atmost `. From Lemma 1, we know that there is a correspondence between extreme points

of P and Q. A similar correspondence also holds for extreme points of P̂ and Q̂ can be shown.

Hence, the number of “fractional components” in any extreme point of P̂ is also bounded by `. In

particular, for any extreme point (p, p0) of P̂, let

F((p, p0)) = {i≥ 1 | 0< pi < p0} ,

denote the set of “fractional components” in (p, p0). We have the following result,

Corollary 1. If d(Q)≤ `, then the number of fractional components for any extreme point (p, p0)

of P̂ is bounded by `, i.e. |F((p, p0))| ≤ `.

4.1. PTAS Sketch

In the context of Lemma 1, whenever we refer a solution (p, p0) as optimal (feasible) to problem

(12) in the rest of the paper, it should be interpreted as optimality (feasibility) of x = p/p0.

We consider the case where d(Q) is a constant (say `). From Corollary 1, we know that anl

extreme point to (13) has at most ` “fractional” variables. A simple idea to make the optimal
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solution of (13) feasible for (12) is to ignore the “fractional variables, i.e., let (p, p0) ∈ P̂ be an

optimal extreme point of (13). Define (p̂, p̂0) as

p̂i =

{
0 if pi < p0
p̂0 otherwise

where

p̂0 =
1

c0 +
∑

i:p̂i 6=0

ci
.

Observe that we are ignoring at most ` variables of (p, p0). If the variables we ignored are such

that

aipi ≤
ε

`
R∗ ∀ pi < p0, (14)

then we have ∑
i∈F(p,p0)

aipi ≤ εR∗,

which implies

(1− ε)R∗ ≤
∑

i 6∈F(p,p0)

aipi =
∑
i

aip̂i,

and (p̂, p̂0) is an (1− ε)-approximate solution for (12). Note that in (p, p0) there can be at most⌈
`

ε

⌉
variables such that aipi >

ε

`
R∗. Therefore, to ensure (14) we guess the top

⌈
`

ε

⌉
variables

contributing to the objective in (12), set those variables pi = p0 and solve the resulting linear

program.

In Step 1 of Algorithm 1, we guess all set of solutions that contain at most
⌈
`
ε

⌉
positive variables.

In Steps 3-6, we consider all subset of solutions that have strictly less than
⌈
`
ε

⌉
positive variables and

compute the objective value for those subset of solutions that are consistent with the constraints.

In Step-7, we consider all subset of solutions that have exactly
⌈
`
ε

⌉
positive variables. In Steps 8-9,

we guess the top
⌈
`
ε

⌉
variables contributing to the objective and we solve the linear program zLP by

setting pi = p0 for those variables variables i. In Steps 10-12, we ignore the “fractional variables.” In

Step 16, we pick the solution corresponding to the maximum objective value among the considered

subset of solutions. Theorem 2 establishes the validity of Algorithm 1.

Theorem 2. Let d(Q) ≤ ` and (p̂, p̂0) be the solution obtained by Algorithm 1. Then
n∑
i=0

aip̂i >

(1− ε)R∗, where R∗ is the optimal value of (12).

Proof. Let (p∗, p∗0) be an optimal solution to (12), define S as:

S = {i≥ 1 | p∗i > 0} .
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Algorithm 1 PTAS for (12)

1: Set S =

{
St ⊂ {1,2, . . . , n}

∣∣∣∣ |St| ≤ ⌈`ε
⌉}

.

2: for St ∈ S do

3: if |St|<
⌈
`

ε

⌉
then

4: Obtain (p̂t, pt0) as follows: p̂t0 =
1

c0 +
∑

i∈St ci

p̂ti =

{
p̂t0 if i∈ St
0 otherwise

5: if (p̂t, pt0) is feasible in (12) then Set Rt =
∑n

i=0 aip̂ti

6: end if

7: else Set Qt = {i∈ {1,2, . . . , n} | i /∈ St and ∃ j ∈ St such that aj ≤ ai}

8: Consider the linear program (13) with additional constraints pi = p0 for all i ∈ St and

pi = 0 for all i∈Qt. Let the modified linear program be denoted byzLP(t).

9: if zLP(t) is feasible then Set (p∗t , p
∗
t0) as the optimal extreme point of zLP(t).

10: Set Ŝt = {i | p∗ti = p∗t0}

11: Obtain (p̂t, pt0) as follows: p̂t0 =
1

c0 +
∑

i∈St ci

p̂ti =

{
p̂t0 if i∈ St
0 otherwise

12: Set Rt =
∑n

i=0 aip̂ti

13: end if

14: end if

15: end for

16: Set t∗ = arg max
t

Rt;

17: Output (p̂, p̂0) = (p̂t∗ , p̂t∗0)

In Steps 3-6 of the algorithm we consider all the solutions that have strictly less than
⌈
`
ε

⌉
. Hence,

without loss of generality assume that |S| ≥
⌈
`

ε

⌉
.

Now, without loss of generality, assume that

S = {1,2, . . . , k}, for some k≥
⌈
`

ε

⌉
and

ak ≤ak−1 ≤ · · · ≤ a1

S1 = {1,2, . . . , k∗}, where k∗ =

⌈
`

ε

⌉
.

Note that p∗1 = p∗2 = · · ·= p∗k = p∗0. Therefore,

akp
∗
k ≤ ak−1p∗k−1 ≤ · · · ≤ a1p∗1, which implies ak∗p

∗
k∗ <

ε

`
R∗.



Author: Article Short Title
12 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Now consider a feasible point of (12), (p1, p10) defined as

p10 =
1

c0 +
∑

i∈S1 ĉi
, p1i =

{
p10 if i∈ S1

0 otherwise.
implying p∗1i < p1i for all i∈ S1

and since (p1, p10) is a feasible point to (12), it follows that

∑
i∈S1

aip1i =
n∑
i=1

aip1i <R
∗ which implies

∑
i∈S1

aip
∗
1i ≤R∗

By construction of zLP(1), we must also have p∗1i = 0 for every i > k∗ and ak∗ ≤ ai, implying

aip
∗
1i <ak∗p

∗
k∗ <

ε

`
R∗ for all i > k∗.

Observe that zLP(1)≥R∗ and the variables i in the extreme point (p∗1, p
∗
10) that can be “fractional”

are i > k∗. Therefore,

aip
∗
1i <

ε

`
R∗ ∀ i ∈F(p∗1, p

∗
10).

Thus by Lemma 1 it follows that

∑
i∈F(p∗)

aip
∗
i (1)< εR∗ which implies (1− ε)R∗ ≤ zLP(1)− εR∗ <

n∑
i=0

aip̂i(1).

�

4.2. Examples of Q with small d(Q)

So far, we have assumed that d(Q) ≤ ` and restricted our attention to specific instances of the

rational optimization problem (1) that satisfy this criteria. There are large classes of problems that

can be formulated in the framework of the rational optimization problem (1) and also satisfy our

assumption that d(Q) is small. In this section, we revisit applications discussed in Section 3 and

establish that d(Q) is indeed small, enabling our PTAS approach to solve the more generic version

of these problems.

Assortment Optimization with Cardinality Constraint: The polytope Q corresponding to

the feasible region of cardinality constrained assortment optimization problem (10) is

Q=

{
x

∣∣∣∣∣
n∑
i=1

xi ≤K, 0≤ xi ≤ 1 , i= 1,2, . . . , n

}
.

Note that the polytope Q is the intersection of the n-dimensional hypercube and the hyperplane∑n

i=1 xi ≤K. We know that every extreme point x of Q is such that x∈ {0,1}n and every pair of

adjacent extreme points in the n-dimensional hypercube only differ in two components. Hence, we

have the following result
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Lemma 2. For Q corresponding to the cardinality constrained assortment optimization problem

(10), we have d(Q) = 2.

Joint Assortment and Display Optimization with Cardinality Constraints: The polytope

Q corresponding to the feasible region of cardinality constrained joint assortment and display

optimization problem (11) is

Q=

{
X

∣∣∣∣∣
m∑
j=1

xij ≤ 1 ∀i,
n∑
i=1

xij ≤Kj ∀j, 0≤ xij ≤ 1 , i= 1,2, . . . , n, j = 1,2, . . . ,m

}
.

The constraints in problem (11) are the same as the transportation problem, the number of variables

that are different in two adjacent extreme points of the LP relaxation of problem (11) is bounded by

the maximum cycle length in the corresponding transportation network. Since the transportation

network is a bipartite graph, the maximum cycle length cannot exceed twice the number of nodes

in either of the partitions. Hence, we have the following result,

Lemma 3. For Q corresponding to feasible region of cardinality constrained joint assortment and

display optimization problem (11), we have d(Q)≤ 2m, where m is the number of display segments.

Theorem-2 and the Lemmas 2,3 establishes that there exists a PTAS for the above applications in

the presence of an additional constraint.

5. A Computational Study

In this section, we study the computational performance of our PTAS algorithm for rational opti-

mization over a TU constraint set with one additional constraint. In particular, we consider the

“Cardinality constrained joint assortment and display optimization” problem where there is a

capacity constraint in addition to the display constraints. Each item has capacity ci and there is a

bound C on the total capacity of items selected. The problem formulation is shown below.

maximize
X∈{0,1}n×m

R(X)

subject to Ci :
m∑
j=1

xij ≤ 1, ∀i ; Cj :
m∑
j=1

xij ≤Kj;

n∑
i=1

m∑
j=1

cixij ≤C ; xij ∈ {0,1} ∀ i, j

(15)

It is to be noted that the problem (15) is NP hard and the existing techniques in the assortment

optimization literature cannot be easily extended to solve this problem.
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n(products) m(segments) zPTAS/zLP Time for PTAS(secs)
10 2 0.9408 0.653
50 2 0.996 261.876
50 3 0.947 3606.466
100 2 0.994 2886.35
100 3 0.869 3648.761

Table 1 PTAS Performance, ε= 0.8

5.1. Experimental Setup

To evaluate the performance of our PTAS algorithm we perform 5 experiments by varying the

number of products (n ∈ {10,50,100}) and the number of display segments (m ∈ {2,3}). For each

experiment, we generate 10 random instances of problem (15). The parameters v,c and r are chosen

as uniform random numbers between 0 and 1, as the scale of these parameters does not change

the optimal solution. For every instance, we solve the corresponding LP relaxation and implement

a slightly modified version of the PTAS algorithm. All implementations have been done using

Gurobi libraries in C++. In the modified version of PTAS, we enforce a time limit on the running

time of the algorithm. Specifically, we restrict the time spent in guessing the top variables (steps

8-9 in Algorithm 1) to one hour. Although Lemma-3 bounds the number of fractional variables

to 2m, based on empirical observations, we relaxed the bound to m in order to decrease the

number of computations. Hence, we only considered subsets of size not exceeding
⌈
m
ε

⌉
instead of

the theoretically correct
⌈
2m
ε

⌉
. To avoid trivial cases, the value of the capacity bound C is chosen

appropriately to ensure that the additional capacity constraint is tight and the optimal solution of

LP relaxation has atleast dm/εe positive components.

5.2. Results

Table 1 summarizes performance for our PTAS approach. For each experiment, we report two

quantities of interest namely i) the average ratio of approximate value obtained by the PTAS

method and the LP solution (zPTAS/zLP ) and ii) the average running time of the PTAS method.

It is important to note that the LP solution (i.e. optimal solution to LP relaxation of (15)) is

clearly an upper bound to the optimal solution to (15) itself and hence the ratio zPTAS/zLP is

a conservative measure of PTAS performance. Even though we fixed ε= 0.8, which theoretically

guarantees only a 0.2 approximation, the approximate optimal value is on an average about 85% of

the optimal value. This suggests that one can use a higher value of ε to avoid large computations

and still obtain a reasonable approximation.
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