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Abstract

We study estimation of the tail decay parameter of the marginal distribution

corresponding to a discrete time, real valued stationary stochastic process.

Assuming that the underlying process is short-range dependent, we investigate

properties of estimators of the tail decay parameter which are based on the

maximal extreme value of the process observed over a sampled time interval.

These estimators only assume that the tail of the marginal distribution is

roughly exponential, plus some modest “mixing” conditions. Consistency

properties of these estimators are established, as well as minimax convergence

rates. We also provide some discussion on estimating the pre-exponent, when a

more refined tail asymptotic is assumed. Properties of a certain moving-average

variant of the extremal-based estimator are investigated as well. In passing,

we also characterize the precise dependence (mixing) assumptions that support

almost sure limit theory for normalized extreme values and related first passage

times in stationary sequences.
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1. Introduction

Consider a discrete-time real-valued stationary stochastic process X = (Xn : n ∈ Z+). In many

applications, one is interested in the likelihood that this process takes on very large (or small) values,

and desires methods to estimate this probability from a sequence of observations. Examples of the process X

include the number of packets that await transmission in a switch or network router, backlogged demand for

a certain product, or aggregate financial reserves in an insurance firm. In the case of insurance, the firm faces
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the risk of not meeting its obligations to policy holders if its financial reserves drop below a certain level.

Excess backlog in the other two examples typically translates into reduced quality of service, viz, dropped

packets and re-transmit requests in the former and potential due date violations in the latter.

To fix ideas, let us consider the data network example. In this case X takes on non-negative values, and

in order to maintain smooth network operation, the fraction of dropped packets at a given switch should be

kept below a certain threshold, say δ. Thus, for a given buffer size b the constraint could be in the form

P(X > b) ≤ δ. In practice, the probability distribution is not known a-priori, thus one is faced with the task of

estimating buffer overflows based on the observed traces of X. The problem of estimating tail probabilities is

quite important when one considers admission control schemes so as to ensure certain (probabilistic) service

level guarantees. (See, e.g, the work of Hsu and Walrand [23] and Courcoubetis et. al. [10] on dynamic

bandwidth allocation in data networks, and the recent paper by Bertsimas and Paschalidis [7] on a similar

problem in the context of make-to-stock manufacturing systems.)

It turns out that under very general conditions on the primitive processes and queueing dynamics in the

data network context, a rough exponential-like model for the tail probability can be derived (see, e.g., [19]

and [14] for single server stations, and a network extension in [6]). In particular, this tail asymptotic is of

the form

log P(X > x) ∼ −θ∗x (1)

where log(·) denotes that natural logarithm, and f(x) ∼ g(x) if and only if f(x)/g(x) → 1 as x → ∞.

We note that (1), unlike the celebrated Cramér-Lundberg asymptotic (see, e.g., [15, §1]), only captures the

behavior of the tail probability as a first order term in the exponent, via the tail decay parameter θ∗. We

note that in many instances, deriving a more refined characterization is quite complicated or potentially

intractable, in particular, when one considers as a primitive the complex traffic in modern data networks.

The main goal of this paper is to study the problem of estimating θ∗ in (1), based on a sequence of

observations X1,X2, . . . , Xn from the process X. Note that (1) does not restrict the distribution in any

meaningful manner except for the tail decay. In particular, it is not possible to employ simple and efficient

parametric estimators if consistency is desired. To that end, extreme value theory suggests that under (1)

the sample maximum Mn := max{X1, . . . , Xn} exhibits logarithmic growth in the sample size, in particular,

Mn/ log n → 1/θ∗ in a suitable sense. This, in turn, suggests that an extremal-based estimator

θ̂n := log n/max{1,Mn} , (2)

can be used to construct a consistent estimate of θ∗.

The main contributions of this paper are the following.

1. We determine sufficient and (where possible) necessary conditions on the dependence structure of X

under which θ̂n converges almost surely to θ∗ (Theorem 1). As a corollary, we obtain almost sure limit
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theory for first passage times of “high” level sets (Corollary 1). We also show that if the marginals are

“heavy tailed” in a suitable sense analogous to (1), a simple variant of the extremal-based estimator

(2) can be used to consistently estimate the polynomial tail decay parameter (Theorem 2).

2. Regarding convergence rates, we show that, as expected, the rates of convergence of the extremal-

based estimator are at best logarithmic in the sample size. This rate of convergence is shown to be

minimax (Theorem 3). In addition, if no rate of convergence is assumed in (1), then there is no rate

of convergence for the extremal-based estimator that holds for all distributions with the above tail

behavior (Proposition 1).

3. We examine a variant of the extremal-based estimator which involves local averaging. This moving-

average estimator is shown to be consistent (Propositions 2) and has the potential for certain variance

reduction. The associated rates of convergence are still slow (Proposition 3).

4. When the tail behavior is assumed to be of the form P(X > x) ∼ η exp(−θ∗x), we discuss how extremal-

based estimators can be used to estimate the pre-exponent η. For a particular dependence structure,

we provide necessary and sufficient conditions for consistency of these estimators (Proposition 4).

These results indicate that if all that one is willing to assume is (1) along with some reasonable degree

of mixing, then extremal-based estimators are almost optimal. But, perhaps the more important message,

punctuated by the logarithmic minimax rates, is that estimating tail behavior may not be altogether a

realistic undertaking in this set up.

In terms of methodology, this paper shares several common themes with two other papers. The first is

the work Hall et. al. [22] who consider the closely related problem of estimating the abscissa of convergence

of the Laplace transform of a distribution function P , based on a sequence of i.i.d. observation drawn

according to P . Specifically, suppose that the Laplace transform of P converges for all θ > −θ∗ and diverges

for all θ < −θ∗. Hall et. al. [22] consider the normalized maximum value and related quantities as potential

estimators of θ∗. It turns out, however, that the convergence of the Laplace transform is not sufficient to

obtain consistency of the estimator (2); see Theorem 1 in Hall et. al. [22] and the discussion following it. The

idea of using “extremal-based” estimators was also exploited in the recent work of Berger and Whitt [5], in

the context of extrapolating buffer loss probabilities. The theory they develop requires more refined structure

on the tails of the marginals. In particular, Berger and Whitt [5] focus on a more refined (and consequently

more restrictive) analysis in which weak convergence to an extremal limit law plays the key role. The recent

paper by Paschalidis and Vassilaris [33] considers the problem of estimating buffer losses, however, their

approach is based on a specific stochastic structure that involves Markov modulation of the input process

which supports the use of parametric estimators. We should also mention that in a separate paper [20],

properties of certain extremal-based plug-in tail probability estimators are investigated in the context of
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queueing models that have regenerative structure. Finally, our paper ultimately deals with extreme value

theory, general expositions of which can be found, e.g., in the books by Leadbetter et. al. [26], Resnick [34],

and the more recent book by Embrechts et. al. [15]. In particular, almost sure limit theory in this context

is discussed extensively in Galambos [16], and is also summarized in [15, §3.5]. Some application in the

queueing context can be found in the recent paper by Asmussen [1].

The paper is organized as follows. Section 2 gives some necessary background and preliminaries, while

Section 3 contains the consistency results for the extremal-based estimator, and discusses convergence rates.

Section 4 shows that the logarithmic rates of convergence are the best possible in a minimax sense. Section 5

discusses a moving-average variant of the extremal based estimator, and Section 6 contains some discussion

on estimating the pre-exponent. Finally, Section 7 contains some concluding remarks. Proofs of the main

results are relegated to Appendix A for continuity of ideas. Auxiliary results and proofs are collected in

Appendix B.

2. Preliminaries

Let X = (Xn : n ∈ Z+) denote a real-valued discrete-time stationary stochastic process which has the

following two particular features: it is weakly dependent; and, the tail of its stationary marginal distribution

admits a rough, logarithmic-scale asymptotic such as the tail condition (1), or its Pareto-like analog log P(X >

x) ∼ −θ∗ log x as x → ∞. To quantify the dependence structure, one typically introduces so-called mixing

assumptions. To this end, let σ(X1,X2, . . .) denote the sigma-field generated by the corresponding random

variables. Let Bm
1 = σ(X1, . . . , Xm) and B∞

m+k = σ(Xm+k,Xm+k+1, . . .), then the strong mixing (or α-

mixing) coefficient (of lag k) is defined as follows

α(k) = sup
A∈Bm

1 ,B∈B∞
m+k

|P(A ∩ B) − P(A)P(B)| (3)

where P is the underlying probability measure. The process X is then said to be strong mixing (or α-

mixing), if α(k) → 0 when k → ∞. This form of mixing is the weakest among standard mixing conditions (cf.

Bradley, [9]), and is exhibited by many commonly used stochastic processes under mild conditions. Examples

include stationary ARMA processes with innovations that are absolutely continuous w.r.t. Lebesgue measure,

stationary Markov chains on general state spaces that are Harris recurrent, and certain regenerative processes

with finite cycle time moments (see, e.g., Mokkadem, [29], Athreya and Pantula [2], Glynn [18], and the

examples in [12, §1.3.2, §2.4]).

A more stringent dependence structure is uniform mixing, or φ-mixing. Let

φ(k) = sup
A∈Bm

1 ,B∈B∞
m+k

|P(B|A) − P(B)| (4)

denote the φ-mixing coefficient (of lag k), where the supremum is restricted to all A ∈ Bm
1 such that P(A) > 0.

A process X is then said to be uniform mixing if φ(k) → 0 as k → ∞. It is easily seen that α(k) ≤ φ(k).
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Examples of uniform mixing processes include stationary autoregressive and ARMA processes with bounded

spread-out innovations [2], Gaussian processes with spectral densities that are polynomial in exp{iλ}, and

Doeblin recurrent Markov chains (cf. [9]). Examples of uniform mixing processes with mixing constants that

decay polynomially are given in Kesten and O’Brien [25]. For more discussion of various mixing conditions

and their relation the reader is referred to the monograph by Doukhan [12], and the review paper by Bradley

[9].

In this paper, we treat processes which exhibit short-range dependence and in general do not make any

specific structural assumptions with the exception of the asymptotic tail behavior of the marginals. By

short-range dependent we mean that
∑

k α(k),
∑

k φ(k) < ∞. Many storage processes exhibit short-range

dependence under fairly mild conditions, e.g., a single server queue fed by a renewal process, or a Markov-

modulated arrival process (with the underlying Markov chain being finite state and irreducible) gives rise to

a queue length process that is short-range dependent. One should be aware, though, that in the domain of

communication networks, traffic patterns often exhibit more complicated structure, and the buffer occupancy

process is often no longer short-range dependent (see, e.g., [3]). For some results in the context of estimating

the tail decay parameter in the case of a queue fed by a long-range dependent source modeled as fractional

Brownian motion, see Zeevi and Glynn [37].

The tail asymptotic (1) corresponds to the following class of marginal distributions

F := {F : F̄ (x) = e−θ∗x+o(x), θ∗ > 0} (5)

where we denote by F̄ (x) := P(X > x). Here, and in what follows, we write f(x) = o(x) if f(x)/x → 0

as x → ∞. This condition is refined in various places where more specific structure is needed. We note

that distributions in F are rapidly varying (cf. [15, Appendix A3]). However, the class F also contains

distributions that are not of the von Mises class or in the domain of attraction of a Gumbel limit law (cf.

[15, pp. 141-143]). Thus, this class of distributions does not coincide with more standard classes that are

often used in the context of extreme value theory.

We should also point out that many of the results we obtain extend with a simple modification to the

case where one assumes Pareto-like tail decay, i.e., log P(X > x) ∼ −θ∗ log x. More generally, if there exists

an increasing function g such that y−1 log P(g(X) > y) → −θ∗, then (g(x))−1 log P(X > x) → −θ∗ with

y = g(x), so g(Mn)/ log n → 1/θ∗. We revisit this point later.

3. Strong Consistency and Ramifications

3.1. Rate of growth of maxima and strong consistency of extremal-based estimators

The first issue we address is whether θ̂n, the extremal-based estimator given in (2), is a consistent estimator

of θ∗. This is a direct consequence of the growth properties of the maximal extreme value in the class of
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distributions F with appropriate weak-dependence conditions imposed. The next theorem states that a

modest polynomial decay condition is enough to ensure almost sure convergence of the normalized maxima

in the φ-mixing context. In contrast, for the strong mixing case, we require exponential decay of the mixing

coefficients. Thus, one trades off a weaker measure of dependence, with a more stringent assumption on the

rate of “memory decay”.

Theorem 1. Suppose that X is a stationary process with marginal distribution F ∈ F , which is either: (A1)

uniform mixing with φ(k) = O(k−1−ε) for some ε > 0; or (A2) strong mixing with α(k) = O(e−ck) for some

c ∈ (0,∞). Then,
Mn

log n
→ 1

θ∗
as n → ∞ (6)

almost surely and in Lp for any p ∈ [1,∞).

Here the notation ak = O(bk) is used if there exists C < ∞ such that lim supk→∞ ak/bk ≤ C. As a simple

corollary we also obtain almost sure limits for normalized hitting times. Let T (b) := inf{n ≥ 0 : Xn ≥ b},
then

Corollary 1. Under conditions (A1) or (A2) of Theorem 1 we have

log T (b)
b

→ θ∗ as b → ∞ (7)

almost surely.

Regarding the dependence structure we impose in Theorem 1, it is somewhat surprising that the strong

mixing condition, requiring exponential memory decay, is necessary and sufficient. We show this via a

counterexample. For each p > 2 we construct a stationary strong mixing process X, taking values in R+

with
∑

k α(k)kp−2 < ∞ and
∑

k α(k)kp−1 diverging to infinity. In addition this process has marginals in F ,

however, Mn/ log n → c �= (1/θ∗).

Example 1. We will construct a classically regenerative process, with regeneration set {0}, and which is

piecewise constant over regenerative cycles. Let T (k) = inf{n > k − 1 : Xn = 0}, set T (0) = 0 denoting

by τk = T (k) − T (k − 1) the cycle lengths. Fix p > 2. The explicit construction is as follows. Let Y1 be a

r.v. which is exponentially distributed with mean 1, and conditional on Y1, set τ1 = exp(Y1/p), i.e., a point

mass at exp(y/p) conditional on Y1 = y. Let T (1) = T (0) + τ1. Set X0 = 0, and put (Xn : 1 ≤ n < τ) equal

to Y1 and set YT (1) = 0. Repeat this construction inductively to generate the remaining cycles, with {Yk}
being i.i.d. exponential with mean 1, and T (k) = T (k − 1) + τk, with τk = exp(Yk/p). Clearly the resulting

process is regenerative, with regeneration set equal to {0}. Moreover, Eτ q < ∞ for all q < p and diverges

for the pth power. Now, since this process is classically regenerative aperiodic with Eτ1 < ∞, it follows that

a stationary version of X, say X∗ = (X∗
n : n ≥ 0) exists, with X∗

n
D= X∞, where the distribution of X∞ is

given by the regenerative ratio formula (cf. Asumssen, [1] for details). Specializing this argument, the tails
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of X∞ are found to be

P(X∞ ≥ x) :=
1

Eτ

∫ ∞

y=x

E

[
τ−1∑
i=0

I{Xi≥x}|Y = y

]
PY (dy)

=
1

Eτ

∫ ∞

y=x

E [τ |Y = y] e−ydy

=
1

Eτ

∫ ∞

y=x

ey/pe−ydy

=
1

(1 − 1/p)Eτ
e−(1−1/p)x,

thus, log P(X∞ ≥ x)/x → −θ∗ = −(1 − 1/p), as x → ∞. On the other hand, it is evident that

P (Mτ > x) = e−x

with Mτ := max{X0,X1, . . . , Xτ1−1} denoting the maximum of the process over a regenerative cycle.

Consequently, for Mn := max{X1, . . . , Xn} we have that

Mn/ log n → 1,

almost surely as n → ∞ To see why this convergence holds, note that Mn can be roughly expressed as the

maximum over all consecutive cycle-maxima up to time n. Since X is regenerative, then starting from the

second cycle the latter are independent random variables each having the distribution of Mτ , and the above

assertion follows from the rate of growth of the maximum of i.i.d. exponential r.v.’s (for a rigorous proof see,

e.g., Glasserman and Kou [17] or Glynn and Zeevi [20]). Lemma 3 in the Appendix asserts that for a large

class of regenerative processes, polynomial tails on the cycle lengths are essentially equivalent to the process

being strong mixing with α(n) decaying polynomially. The constructed process is amenable to Lemma 3

and thus has a polynomial strong-mixing rate. By construction, it has marginals in F with θ∗ = (1 − 1/p).

Finally, the asserted convergence in Theorem 1 fails to hold, since Mn/ log n converges to 1 and not to 1/θ∗.

Note that we can repeat this construction for arbitrarily large values of p, i.e., there exist strong mixing

processes that have mixing coefficients decaying as fast as that power, for which Theorem 1 fails.

The main results in Theorem 1 and Corollary 1 carry over straightforwardly if one considers the class of

distributions with Pareto-like tails.

Theorem 2. Suppose that for some θ∗ > 1

log P(X > x) ∼ −θ∗ log x as x → ∞.

Then, under condition (A1) or (A2) of Theorem 1 we have

log Mn

log n
→ 1

θ∗
as n → ∞ ,
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almost surely, and in Lp, and
log T (b)

log b
→ θ∗ as b → ∞ ,

almost surely.

The core of extreme value theory links tail behavior to growth of extreme values; rates of convergence in

(1) imply convergence rates in Theorem 1. To give a simple illustration, suppose that we restrict attention

to distributions with F̄ (x) = exp{−θ∗x + o(log x)}. Then, under condition (A1) of Theorem 1

lim sup
n→∞

log n

log log n

∣∣∣∣ Mn

log n
− 1

θ∗

∣∣∣∣ ≤ 1 a.s. (8)

(The proof of this statement amounts to repeating steps in the proof of Theorem 1 but with the refined tail

condition in place.) In light of this, a natural question is whether restricting the class F by imposing some

rate of convergence in (1) is necessary in order to get rates of convergence of the extremal-based estimator.

To that end, we have the following result.

Proposition 1. For any sequence of positive real numbers rn ↑ ∞ there exists an i.i.d. process with marginal

F ∈ F and corresponding probability measure PF {·}, such that for all C > 0

lim
n→∞ PF

{∣∣θ̂n − θ∗
∣∣ ≥ C

rn

}
= 1

To recapitulate, in absence of a rate of convergence in the tail assumption (1), the extremal-based estimator

may converge to θ∗ at an arbitrarily slow rate. We now turn to several remarks that pertain to the results

established in this section.

1. The tail asymptotic (1) is, in some sense, the “minimal” amount of structure that supports consistency

results such as (6); see [22, Theorem 1] where it is shown, for example, that lim supx→∞(log(1 − F (x))/x =

−θ∗ is not sufficient even for weak convergence of the normalized sample maximum.

2. Theorem 1 and Corollary 1 can also be viewed as providing general conditions on the dependence

structure that ensure that the almost sure growth rates of maximal values are the same as in the i.i.d.

case. Given Example 1, Theorems 1 and 2 are close to providing necessary and sufficient conditions. For

further results on almost sure limit theory for extremes values under various dependence assumptions see

[4, 17, 20, 21, 31, 35] as well as [16, §4] and [15, §3.5] and the references therein. The so-called D and

D′ conditions, see Leadbetter et. al. [26, §3.7], Embrechts et. al. [15, §4.4] and [16], are often used when

one is seeking to establish weak convergence of the centered and normalized maxima to a limit extremal

distribution.

4. Minimax Rates of Convergence

We adopt a non-parametric minimax framework, in which the focus is on the worst case error of an

estimator over a class of distributions. We start with some definitions. Let P denote a stationary probability
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distribution with marginal F (x) := P (X ≤ x). For some C > 0, set

F(C) :=
{

F : F̄ (x) = e−θ∗x+ψ(x), C−1 ≤ θ∗ ≤ C, lim sup
x→∞

|ψ(x)|
log x

≤ C

}
,

where {ψ(x)} is family of functions that are bounded on compact sets uniformly over the class F(C). Note,

that F(C) includes the class of scale changes of Gamma distributions, with magnitude of scale and shape

parameter bounded by C, and obviously F(C) ⊆ F which is associated with (1). Finally, let us define the

class of admissible probability distributions to be

P(C) :=
{

P : F ∈ F(C), and either α(n) ≤ exp(−C−1n), or φ(n) ≤ n−1−C−1
, for all n ≥ 1

}
, (9)

where α(·) and φ(·) are the strong and uniform mixing coefficients corresponding to a probability distribution

P . Let θ̄n be a measurable function from R
n
+ to R+, and set r(θ̄n, θ∗) := EP |θ̄n − θ∗|2, where EP {·} is

expectation w.r.t. a probability distribution P ∈ P(C).

We will measure the worst case risk over the class P(C) as follows,

R(θ̄n,P(C)) = sup
P∈P(C)

r(θ̄n, θ∗) .

Ideally, we would like to assess the minimax risk

R∗(n,P(C)) = inf
θ̄n

R(θ̄n,P(C))

and construct estimators that achieve this risk, so called minimax optimal estimators. Unfortunately, the

evaluation of R∗(n,P(C)) is usually impossible. Thus, we will focus on establishing lower bounds on this

quantity, and subsequently evaluate how “close” are the extremal-based estimators to achieving these bounds.

Let γn ↑ ∞ be such that

lim inf
n→∞ (γn)2R∗(n,P(C)) > Cl (10)

for some positive constant Cl, then we say that 1/γn is the lower rate of convergence. If we can establish

that for some θ̂∗n there exists Cu < ∞ such that

lim sup
n→∞

(γn)2R(θ̂∗n,P(C)) ≤ Cu

then we say that θ̂∗n is asymptotically minimax optimal. The following theorem establishes that the extremal-

based estimator θ̂n is asymptotically nearly minimax optimal (i.e., the upper and lower rates of convergence

differ only by a lower order factor that is logarithmic in this rate). We note that the lower bound is essentially

an immediate consequence of the results in Hall et. al. [22].

Theorem 3. There exist constants Cl, Cu ∈ (0,∞) such that

lim inf
n→∞ (log n)2R∗(n,P(C)) ≥ Cl (11)

lim sup
n→∞

(log n)2

(log log n)2
R(θ̂n,P(C)) ≤ Cu (12)

9



On a final note, if one considers the class of distributions P̃(C), indexed by

F̃(C) :=
{

F ∈ F : F̄ (x) = e−θ∗x+ψ(x), C−1 ≤ θ∗ ≤ C, lim sup
x→∞

|ψ(x)| ≤ C

}
,

instead of F(C), then it is not difficult to verify that

lim
K↑∞

lim sup
n→∞

sup
P∈F̃

P{∣∣θ̂n − θ∗
∣∣ > K/ log n} = 0 .

Thus, for this class of distributions with further restrictions on the marginals, θ̂n is minimax optimal in

probability over P̃(C). For recent work on minimax bounds in estimating the extreme value index under

zero-one loss see [13].

5. A Moving-Average Extremal-Based Estimator

In this section we introduce and study some properties of an estimator of the tail parameter based on a

moving-average (MA) of block-based estimators. To be specific, fix a sequence of increasing positive integers

an, and let mn = �n/(an)�. Let

Man
(i) := max{Xj : j = ian + 1, . . . , (i + 1)an} for i = 0, . . . ,mn

and define
ˆ(1
θ

)
n

:=
1

mn

mn−1∑
i=0

Man
(i)

log an
.

As we shall see in what follows, this estimator has essentially the same consistency properties of the

normalized global maximum. However, on a somewhat more heuristic level, the MA-estimator has the

important property that it is not as biased by initial large observations as the global-max-estimator is.

Another potential advantage of the MA-estimator is that it is less sensitive to the stationarity assumption

which we invoke. Moreover, if one focuses on the mean squared error, then for the global-max we have

E

[
Mn

log n
− 1

θ∗

]2
=
(

1
θ∗

− E
Mn

log n

)2

+ Var
Mn

log n

where as for the MA-estimator

E

[
ˆ(1
θ

)
n

− 1
θ∗

]2

=
(

1
θ∗

− E
Man

log an

)2

+ Var
ˆ(1
θ

)
n

using the standard Bias-Variance decomposition. Then, from the analysis of Section 4 we have that the

bias term is of order O(log log n/ log n) and O(log log an/ log an) for the global-max and MA-estimator,

respectively, for marginals that have Gamma-like tails. Thus, if we take a block size that is an = nγ for

some γ ∈ (0, 1) the Bias term in both estimators is asymptotically of the same order. Now, if the observed

process X is i.i.d., then clearly the variance term of the MA-estimator is m−1
n Var(Man

/ log an) and since
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an = nγ , then roughly σ2
MA ≈ n−(1−γ)σ2

n where σ2
n corresponds to the variance of the normalized global-max

estimator. In a more realistic scenario, suppose that X is mixing concurring with the restrictions in Theorem

1. To fix ideas, say that it is strongly mixing with α(k) = O(exp{−ck}) for some c < ∞. Then, using the

standard covariance inequalities (cf. Doukhan [12, §1.2.2]) we have

∣∣∣∣Cov
(

Man
(i)

log an
,
Man

(j)
log an

)∣∣∣∣ ≤ 8α1/r(|i − j|an)
(

E

[
Man

(i)
log an

]p)1/p(
E

[
Man

(j)
log an

]q)1/q

with p, q, r ≥ 1 such that 1/p + 1/q + 1/r = 1. Since the normalized maximum converges also in Lp for any

p, and since {α1/r(k)} is summable, we have

Var
ˆ(1
θ

)
n

=
1

m2
n

mn−1∑
i=0

mn−1∑
j=0

Cov
(

Man
(i)

log an
,
Man

(j)
log an

)

=
1

mn
Var
(

Man

log an

)
+

1
mn

mn−1∑
i=1

Cov
(

Man
(0)

log an
,
Man

(j)
log an

)

≤ 1
mn

σ2
n +

C

mn
.

Thus, the conclusions of the i.i.d. analysis are still valid in this set up. A similar derivation holds in the case of

uniform mixing. Our first theorem gives conditions that ensure the strong consistency of the MA-estimator.

Proposition 2. Let X be a stationary process which satisfies either assumption (A1) or (A2) in Theorem

1. Then,
ˆ(1
θ

)
n

→ 1
θ∗

as n → ∞ (13)

almost surely and in L1.

The next theorem establishes a central limit theorem for the MA-estimator under an i.i.d. assumption

for the process X. (We note that this assumption is put in place to avoid technicalities in the proof; for an

extension to certain Markov processes see the technical report version of this paper [38].)

Proposition 3. Suppose that X is an i.i.d. process with marginals in the set
{
F : F̄ (x) = e−θ∗x+O(1), θ∗ > 0

}
.

Then,

Zn :=
√

mn

σn

[
ˆ(1
θ

)
n

− E
Man

(0)
log an

]
⇒ N (0, 1)

where (an,mn) are the two sequences defining the MA-estimator, chosen so that (i) an,mn ↑ ∞, (ii) anmn ∼
n and (iii) mn/(log an)4 → ∞, and

σ2
n := Var

Man
(0)

log an
.

We point out that Proposition 3 should be viewed in some sense as a negative result. Roughly speaking,

it asserts that
ˆ(1
θ

)
n

− E
Man

(0)
log an

≈ σn√
mn

N (0, 1) . (14)

11



However, standard rates of convergence in extreme value theory under the tail condition we impose, together

with the uniform integrability results in Lemma 5 indicate that

E
Man

(0)
log an

− 1
θ∗

≈ 1
log an

. (15)

If one views (14) as characterizing the “stochastic error”, and respectively (15) as the “deterministic error”,

then it is clear that the latter dominates for the feasible choices of (an,mn). The central limit theorem is

therefore not useful in characterizing the fluctuations of the MA-estimator around the tail-parameter 1/θ∗.

6. Estimating the Pre-exponent

In this section we impose a more stringent condition on the tail behavior, which in turn allows us to tackle

the problem of estimating the pre-exponent. To fix ideas, we restrict the analysis here to a particular example

which can be easily motivated. Consider a system in which random purchase requests (Vn : n ≥ 1) arrive

according to a discrete-time renewal process with i.i.d. inter-arrival times (Un : n ≥ 1). These sequences

are independent of each other. The service facility answers the demand requests at a constant (unit) rate,

whenever purchase orders are present. Let Zn = Vn − Un, and assume EZi < 0 corresponding to the traffic

intensity ρ := EV/EU < 1. Assume further that Zn are non-lattice r.v.’s and let ϕ(θ) = E exp(θZi). Suppose

that there exists a positive root θ∗ to the equation ϕ(θ) = 1 such that ϕ(θ) converges in a neighborhood

of θ∗. Let X = (Xn : n ≥ 0) be defined via the Lindley recursion Xn+1 = max{Xn + Zn+1, 0}. That is,

Xn measures the delay incurred to the nth request. It can be easily shown that under the above conditions

there exists a stationary version of the delay sequence, which, with some abuse of notation, we continue to

denote X. The Cramér-Lundberg approximation states that for this stationary process

P(X > x) ∼ ηe−θ∗x, as x → ∞. (16)

We refer to η as the pre-exponent and focus our analysis on estimating η. The Cramér-Lundberg approxima-

tion is known to hold in several queueing models (cf. Berger and Whitt [5] and the references therein), and

is also quite common in insurance models and risk theory (cf. Embrechts et. al. [15] for details and further

references).

Let κn ↑ ∞ be a sequence of positive real numbers, and define

p̂n(x) :=
1
n

n∑
i=1

I{Xi>x}

θ̂n :=
log n

max{Mn, 1}
η̂n := p̂n(κn)eθ̂nκn (17)

where I{A} is an indicator function of the set A. Our main result gives a precise characterization of consistency

for η̂n.

12



Proposition 4. Let the process X be a stationary version of the delay process. Then,

(i) If κn = o(log n/ log log n) we have

η̂n

η
→ 1 as n → ∞ ,

almost surely.

(ii) If κn = o(log n) we have

η̂n

η
⇒ 1 as n → ∞ .

(iii) If κn = c log n for c ∈ (0, 1/(2θ∗)), then

η̂n

η
⇒ ζ

where ζ
D= exp{c log(φη) + cθ∗Z} with Z having the normalized Gumbel (or type I) extreme value

distribution, and φ ∈ (0, 1) is the so-called extremal index of X.

For weak convergence of the centered and normalized maximal value in this context see [24], and for point

process weak limits see [35].

Remark 1. Note that the estimator η̂n utilizes the extremal-based estimator of θ∗. As discussed previously,

this estimator has slow (logarithmic) convergence rate. In the particular context we are considering here, the

process X is essentially a reflected random walk. This allows for estimating θ∗ with much faster (parametric)

rates as we sketch in the following arguments. Let R(θ) := E exp{θZ}, ψ(θ) = log R(θ) and set Rn(θ) :=

n−1
∑n

i=1 exp{θZi}. Now, θ∗ is the unique positive root of ψ(θ), and let us assume that ψ′(θ) > 0 in a small

neighborhood around θ∗. Set θ̃n to be a positive root of the equation Rn(θ) = 1. Then, using the mean

value theorem we can write

Rn(θ) = Rn(θ̃n) + (θ − θ̃n)R′
n(θ̄n)

with θ̄n a point on the line segment between θ and θ̃n, so taking θ := θ∗ and rearranging we have

(θ̃n − θ∗) =
n−1

∑n
i=1 (exp{θ∗Zi} − 1)

n−1
∑n

i=1 Zi exp{θ̄nZi}
.

Now,
∑n

i=1 Zi exp{θZi} → R′(θ) = E[Z exp{θZ}] almost surely and uniformly on any interval containing

θ∗, such that the right hand side is finite over that interval. The continuity of R′(θ) together with the above

establishes that
∑n

i=1 Zi exp{θ̄nZi} → R′(θ∗) and consequently,
√

n(θ̃n − θ∗) ⇒ σN(0, 1). This derivation

is only made possible given i.i.d. structure, while the extremal-based estimator applies under more general

dependence assumptions.
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7. Concluding Remarks

In many practical situations, the tail behavior of the marginal distribution admits only a rough char-

acterization, for example logarithmic asymptotics. Consequently, the use of parametric estimators for

estimating parameters governing the tail behavior is not appropriate. Consequently, semi-parametric and

non-parametric estimators are called for. The extremal-based estimators studied here fall exactly in that

category.

These estimators have several potential advantages. In particular, they are: (i) consistent in an almost sure

sense; (ii) nearly optimal in a minimax sense; and, (iii) one can employ moving-average variants which are

more suitable for applications that involve transients. In addition, it is possible to show that in the context of

estimating tail probabilities, extremal-based estimators are superior to simple non-parametric counterparts

in a well defined sense; see, e.g., [20]. An obvious drawback that these estimators suffer from are the slow

(logarithmic) rates of convergence characteristic of extreme values. However, as opposed to certain non-

parametric variants, one can extrapolate rare event probabilities (such as buffer overflows) beyond the given

sample without actually observing the rare events in question. (For more on this point see the discussion in

[20].)

Appendix A. Proofs of the Main Results

Proof of Theorem 1: The upper bound follows straightforwardly from Lemma 1 in Appendix B which

asserts that

lim sup
n→∞

Mn

log n
≤ 1

θ∗
a.s.

To prove the lower bound, consider first a set up with assumption (A1) of the theorem invoked.

Step 1. The first step consists of reducing the problem to deal with an i.i.d. sequence. Fix δ ∈
(0, ε/6), with ε is in the definition of the φ-mixing sequence. We now proceed by ‘chopping up’ the sequence

(X1, . . . , Xn) into blocks of length an = n1−2δ, altogether 2mn = �n2δ� blocks and a remainder of length

rn = can with c ∈ [0, 1). Let

Yi :=
(2i−1)an∨

j=2(i−1)an+1

Xi

where ∨n
i=1Xi := max{X1, . . . , Xn}. Thus, {Yi}mn

i=1 is the sequence of block maxima over odd numbered

blocks. Let yn = [(1 − δ) log n]/θ∗. Then,

P(Mn ≤ yn)
(a)

≤ P

(
mn∨
i=1

Yi ≤ yn

)
(b)

≤ [P (Yi ≤ yn)]mn + mnφ(an)

≤ e−mnP(Y >yn) + mnφ(an) (18)
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where (a) follows since obviously Mn ≤ ∨mn
i=1Yi almost surely, and (b) follows by the mixing assumption, and

the definition of the mixing coefficients. Thus it suffices to show that both terms on the RHS of (18) are

summable.

Step 2. Controlling the tail behavior of the marginal of Y . Set τn := mnP(Y > yn). By the assumed

rate of decay of the mixing coefficients, there must exist a natural number p such that
∑

k φ(pk) ≤ 1/4, say.

The key is to replace Y0 = ∨an
i=1Xi with a p-spaced maximum,

Ỹ0 =
�an/p	∨

i=1

Xip+1

and define Ỹi for i = 1, 2, . . . ,mn in the obvious way. It now follows that

P(Y > yn) ≥ P(Ỹ > yn) (19)

≥
�an/p	∑

i=1

P(Xip+1 > yn)

︸ ︷︷ ︸
In

−
�an/p	∑

i=1

�an/p	∑
j=i+1

P(Xip+1 > yn,Xjp+1 > yn)

︸ ︷︷ ︸
Jn

(20)

Now,

Jn :=
�an/p	−1∑

i=1

�an/p	−1∑
j=i+1

P(Xip+1 > yn,Xjp+1 > yn)

=
⌊

an

p

⌋ �an/p	−1∑
j=1

P(X1 > yn,Xjp+1 > yn)

and it follows that,

τn := mnP(Y > yn)

≥ mn

⌊
an

p

⌋
P(X > yn) −


⌊an

p

⌋ �an/p	−1∑
j=1

P(X1 > yn,Xjp+1 > yn)




= mn

⌊
an

p

⌋
P(X > yn)︸ ︷︷ ︸

I(1)
n


1 −

�an/p	−1∑
j=1

P(X1 > yn,Xjp+1 > yn)
P(X > yn)︸ ︷︷ ︸
I(2)

n


 .

Therefore we need: (i) I(1)
n → ∞ such that

∑
n exp{−I(1)

n } < ∞, and (ii) lim supn I(2)
n ≤ 1/2, say.

Step 3. We verify properties (i) and (ii) above. First, by the choice of yn

P(X > yn) = e−θ∗yn+ψ(yn) ≥ c

n1−δ
,

for some constant c > 0, and for all but finitely many n. Now, by construction, mnan ≥ n/4 for sufficiently

large n, thus

I(1)
n ≥ nδ/4
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for all but finitely many n. Consequently,
∑

n exp{−I(1)
n } < ∞. To verify (ii),

I(2)
n =

�an/p	−1∑
j=1

P(X1 > yn,Xjp+1 > yn)
P(X > yn)

≤
�an/p	∑

j=1

P(X > yn) +
�an/p	−1∑

j=1

φ(jp)

where the inequality follows from the definition of φ-mixing (4). Now,

anP(X > yn) = n−(1−2δ)e−(1−δ) log n+ψ(log n)

↓ 0 as n → ∞

by assumption on ψ(x), and choice of an. For the mixing term, we have

�an/p	−1∑
j=1

φ(jp) ≤ 1/4

Thus, I(2)
n ≤ 1/2 eventually, which implies 1−I(2)

n ≥ 1/2 for all but finitely many n. Combining these steps

we have established that

τn ≥ 1
8
nδ

for all but finitely many n, thus
∑

n e−τn < ∞.

Step 4. The summability of the mixing term in (18) follows from the choice of δ ∈ (0, ε/6), so that there

exists some ε′ > 0 for which mnφ(an) ≤ c/n1+ε′ , for all but finitely many n. Consequently,
∑

n mnφ(an) <

∞. This concludes the proof under assumption (A1) as we have the bound in (18) summable, thus by

Borel-Cantelli

lim inf
n→∞

Mn

log n
≥ 1 − δ

θ∗

and since δ is arbitrary the result follows.

We now prove the result in the theorem when assumption (A2) is invoked. The first thing is to consider

a sequence {Yi}mn
i=1 of random variables which are obtained by equally spaced sampling from the original X

sequence. That is, Y1 = X1, Y2 = X1+an
, . . ., Ymn

= X1+mnan
, with an,mn = �n/an� two sequences of

increasing positive real numbers which will be specified in what follows. To this extent, the equivalent of

(18) is now

P(Mn ≤ yn) ≤ e−τn + mnα(an)

with τn := mnP(Y > yn). Fix ε > 0, and this time, let an = c1 log n with c1(ε) a constant chosen so that

α(c1 log n) ≤ n−(2+ε). Then, clearly

mnα(an) ≤ n−(1+ε)

which is summable. Also,

τn ≥ nδ

an
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which, by choice of an implies that
∑

n e−τn < ∞. The proof is complete by appealing to Lemma 4 in

Appendix B which establishes the uniform integrability necessary for the LP convergence.

Proof of Corollary 1: The proof follows from the relation {Mn ≥ b} = {T (b) ≤ n}, and take a sequence

nb :=
⌊
exp
{

b
θ∗

1 + δ

}⌋
(21)

so that nb → ∞ as b ↑ ∞. Then, by Theorem 1

P

(
Mn >

1 + δ

θ∗
log n

)
→ 0 (22)

and the convergence holds also along the subsequence nb. In particular, substituting (21) into (22), we have

P

(
log T (b)

θ∗b
≤ 1 − δ′

)
→ 0

with δ′ := δ/(1 + δ). The upper bound follows similarly.

Proof of Theorem 2: The proof is a straightforward consequence of the proof of Theorem 1. Let

Yi := log(Xi)+, then it is clear that Y = (Yn : n ∈ Z+) is a stationary sequence satisfying the same mixing

conditions as in Theorem 1. In addition, the tail conditions on the marginals of X translate into

P(Y > x) ∼ −θ∗ log x

which is exactly the tail condition (1) assumed in Theorem 1. Thus its conclusions apply to process Y,

proving Theorem 2.

Proof of Proposition 1: Since the fastest rate of convergence possible for the extremal-based estimator

is 1/ log n, we restrict attention to sequences that exhibit logarithmic or slower growth at infinity. Let

r(n) ↑ ∞ be a sequence of positive real numbers such that lim supn r(n)/ log n < ∞. Let F ∈ F be such that

ψ(x) = x/r(�x�), and consider a sequence of i.i.d. random variables with marginal F . Fix C > 0. Then,

PF {|θ̂n − θ∗| ≥ C/r(n)} ≥ PF

{
log n

Mn
≤ θ∗ − C

r(n)

}

= PF

{
Mn ≥ log n

θ∗ − C/r(n)

}
≥ 1 − e−nF̄ (un)

with un := (log n)/(θ∗−C/r(n)). We now show that for the choice of ψ(x) we have nF̄ (un) ≥ log n/ log log n

for all but finitely many n. By choice of ψ(x) and the definition of the class F we have

log n + log F̄ (un) = ψ(un) − C/r(n)
θ∗ − C/r(n)

log n

=
log n

θ∗ − C/r(n)

(
1

r(un)
− C

r(n)

)

≥ c
log n

log log n
,

17



for all but finitely many n, where the last step follows from the monotonicity of r(·), and since un ∼ a log n.

Thus, nF̄ (un) → ∞, which concludes the proof.

Proof of Theorem 3: We first prove the lower bound which follows closely Hall et. al. [22].

Proof of Lower bound: Hall et. al. [22] consider the problem of discriminating between densities based on

an i.i.d. sample drawn according to one of the following

f1(x) = θe−θx

f2(x) =


 θe−θx, for 0 < x ≤ x0

θeC1(1 + C1ε)e−θ(1+C1ε)x, for x > x0

with C1 a properly chosen constant, ε ∼ 1/ log n and x0 ∼ log n. Write θ1, θ2 for the values assumed by θ∗

when F is the distribution function associated with f1 and f2. Then Hall et. al. show that

lim inf
n→∞ max

j=1,2
Pj

(
|θ̂n − θj | >

1
2
|θ1 − θ2|

)
≥ 1 − Φ(|C1|/2)

for any estimator (i.e., measurable function θ̂n : R
n
+ → R+) , with Φ the standard normal distribution

function. It is not difficult to see that for given C defining the class F(C), we can choose θ∗ and C1 such

that for n sufficiently large the densities f1 and f2 have associated distribution functions in F(C), and thus

P1, P2 ∈ P(C). Then, since θ1 = θ and θ2 = θ(1 + C1ε), we have that there exist some constants c1, c2 > 0

lim inf
n→∞ sup

P∈P(C)

P

(
|θ̂n − θ∗| >

c2

log n

)
≥ c1 .

Consequently, using the Markov inequality we have

lim inf
n→∞ inf

θ̂n

sup
P∈P(C)

(log n)2EP |θ̂n − θ∗|2 ≥ c1c2 > 0 .

In particular, there exists some Cl > 0 such that

lim inf
n→∞ (log n)2R∗(n,P(C)) > Cl

which establishes the lower bound.

Proof of the upper bound: we divide the proof into steps.

Step 1. To simplify notation we write M̃n = Mn ∨ 1. Then

E
(log n)2

(log log n)2
|θ̂n − θ∗|2 = E


∣∣∣∣∣ log n − θ∗M̃n

M̃n

∣∣∣∣∣
2

(log n)2

(log log n)2




≤
√

E

(
log n

M̃n

)4

︸ ︷︷ ︸
In

√
E

(log n − θ∗M̃n)4

(log log n)4︸ ︷︷ ︸
Jn

(23)
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Using Lemma 5 in Appendix B, there exists C < ∞ such that

In ≤ sup
n

E

(
log n

M̃n

)4

≤ C

Step 2. Bounding Jn. It suffices to show that

sup
n

sup
F(C)

∞∑
k=1

P


∣∣∣∣∣ log n − θ∗M̃n

(log log n)

∣∣∣∣∣
4

> k


 < ∞ .

Start with
∞∑

k=1

P

(
M̃n ≥ 1

θ∗
log n +

1
θ∗

k1/4 log log n

)

≤ C4 +
∞∑

k=C4

ne− log n−k1/4 log log n+ψ(log n)

= C4 +
∞∑

k=C4

e− log log n[k1/4−ψ(log n)/ log log n]

≤ C4 +
∞∑

k=C4

e− log log n(k1/4−C)

≤ C4 + C1

∞∑
k=C4

e−k1/4

where the last inequality holds for all but finitely many n. Thus, since {ψ} are bounded on compact uniformly

over F we have that

sup
n

sup
F(C)

∞∑
k=1

P

(
M̃n ≥ 1

θ∗
log n +

1
θ∗

k1/4 log log n

)
< ∞

Note that we did not make any use of the dependence structure in this bound.

Now, for the other side we have

∞∑
k=1

P

(
Mn ≤ 1

θ∗
log n − 1

θ∗
k1/4 log log n

)
(24)

=
Kn∑
k=1

P

(
Mn ≤ 1

θ∗
log n − 1

θ∗
k1/4 log log n

)

≤
∞∑

k=1

e−cnP(X> 1
θ∗ log n− 1

θ∗ k1/4 log log n) + Knrn

≤
∞∑

k=1

e−(log n)k1/4

+ C

≤ C ′
∞∑

k=1

e−c′k1/4
, (25)

for all but finitely many n, where Kn = (log n/ log log n)4 in the first equality, since for k > Kn one has

1
θ∗

log n − 1
θ∗

k1/4 log log n < 0 ,
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and rn is either mnφ(an) or mnα(an). In addition, we used the fact that for sufficiently large n

nP

(
X >

1
θ∗

log n − 1
θ∗

k1/4 log log n

)
≥ (log n)k1/4

.

By definition of Kn and the proof of Theorem 1, we have that Knrn = o(1). Thus, we have

sup
n

sup
P(C)

∞∑
k=1

P

(
Mn ≤ 1

θ∗
log n − 1

θ∗
k1/4 log log n

)
< ∞ .

Combining the two bounds in Step 1. and Step 2. we have established the result.

Proof of Proposition 2: The proof follows straightforwardly from the results in Theorem 1. For a set

ω ∈ Ω′ ⊆ Ω with P(Ω′) = 1 we have
Mn(ω)
log n

→ 1
θ∗

.

Thus, since an ↑ ∞, the same holds for Man
/ log an, and by the Césaro sum property the result follows for

each ω ∈ Ω′. The L1 convergence follows immediately.

Proof of Proposition 3: The proof will be based on the Lindberg-Feller central limit theorem (CLT)

for triangular arrays. First, we can express

Zn =
1√
mn

∑mn−1
i=0 (Man

(i) − EMan
(0))√

VarMan
(0)

Let Yn(i) := Man
(i) − EMan

(0), then clearly EYn(i) = 0, and {Yn(i)}mn−1
i=0 is a sequence of independent

random variables for each n. Let

s2
n :=

mn−1∑
i=0

EY 2
n (i) = mnVarMan

(0)

Sn :=
mn−1∑
i=0

Yn(i)

Rn =
1
s2

n

mn−1∑
i=0

E[Y 2
n (i); |Yn(i)| > εsn] .

Then, according to the Lindberg-Feller CLT for triangular arrays (cf. Billingsley, [8, Theorem 27.2]), if

Rn → 0 for all ε > 0 then,
Sn

sn
⇒ N (0, 1) .

To verify the tail negligibility condition, proceed as follows. First,

E[Y 2
n (i); |Yn(i)| > εsn] ≤

√
EY 4

n (i)
√

P(|Yn(i)| > εsn)

≤
√

EY 4
n (i)

√
EY 2

n (i)
ε2s2

n

=
√

EY 4
n (i)

1
ε
√

mn
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thus,

Rn ≤ 1
VarMan

(0)

√
EY 4

n (i)
1

ε
√

mn
.

Observe that for some Cu < ∞
EY 4

n (i)
(log an)4

= E

[
Man

(i)
log an

− E
Man

(0)
log an

]4

≤ 16E

(
Man

(0)
log an

)4

≤ Cu

by Lemma 4 in the Appendix. Fix γ ∈ R+. Now,

VarMan
(0) = E [Man

(0) − EMan
(0)]2

≥ γ2
P (|Man

(0) − EMan
(0)| > γ)

≥ γ2
P (Man

(0) − EMan
(0) > γ)

by Markov inequality. But, for n sufficiently large

E

[
θ∗Man

(0)
log an

]
=

∫ ∞

0

P(θ∗Man
(0) ≥ x log an)dx

(a)

≤ an

∫ ∞

1

P(θ∗W ∗ > x log an)dx + 1

(b)

≤
∫ ∞

1

Ce−(x−1) log andx + 1

= C

∫ ∞

0

e−x log andx + 1

=
C

log an
+ 1

where (a) follows from the union bound; and (b) follows from the definition of the class of marginal

distributions. Consequently, we have that

P (Man
(0) − EMan

(0) > γ) ≥ P

(
Man

(0) > γ +
log an + C

θ∗

)

= 1 − P
an

(
X < γ +

log an + C

θ∗

)

≥ 1 − exp
{
−anP

(
X > γ +

log an + C

θ∗

)}
and

anP

(
X > γ +

log an + C

θ∗

)
≥ e−θ∗γ−C

by the tail condition, for all sufficiently large n. Thus, we can choose γ > 0 such that for some Cl > 0 we

have

lim inf
n→∞ P (Man

(0) − EMan
(0) > γ) ≥ Cl .
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Consequently, VarMan
(0) ≥ γ2Cl for all but finitely many n. It follows that

Rn ≤ (log an)2

γ2Cl
Cu

1
ε
√

mn

so we can choose an,mn so that m
−1/2
n (log an)2 → 0. In particular, we can choose mn = nγ for some

γ ∈ (0, 1), and have Rn → 0 as n → ∞, which concludes the proof.

Proof of Proposition 4: We divide the proof into steps.

Step 1. Preliminaries: Under the conditions of the the Proposition (Xn : n ≥ 0) form a stationary Markov

chain that is geometrically ergodic, thus (cf. Mokkadem [29, Theorem 1’]) β-mixing with exponential rate

(for a definition of β-mixing, and properties, the reader is referred to Doukhan [12]). Consequently, since

β(k) ≥ α(k) it is also strong mixing with the same rate, and therefore result of Theorem 1 apply. Now,

using a version of the Glivenko-Cantelli theorem for β-mixing processes, given in Lemma 2 in Appendix B,

we have that for any sequence κn of real numbers∣∣∣∣∣ 1n
n∑

i=1

I{Xi≤κn} − P (X ≤ κn)

∣∣∣∣∣ ≤ sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I{Xi≤x} − P (X ≤ x)

∣∣∣∣∣
= O

(√
(log n)2

n

)
a.s.

In particular,

|p̂n(κn) − F̄ (κn)| = O

(√
(log n)2

n

)
a.s.

and consequently

Zn :=
∣∣∣∣ p̂n(κn)
F̄ (κn)

− 1
∣∣∣∣ = O

(√
(log n)2

n

1
F̄ (κn)

)
a.s.

Step 2. We write∣∣∣∣ η̂n

η
− 1
∣∣∣∣ =

∣∣∣∣∣ p̂n(κn)eθ̂nκn

F̄ (κn)eθ∗κn
− 1

∣∣∣∣∣
=

∣∣∣∣
[(

p̂n(κn)
F̄ (κn)

− 1
)

e(θ̂n−θ∗)κn + e(θ̂n−θ∗)κn

]
(1 + o(1)) − 1

∣∣∣∣
≤

∣∣∣Zne(θ̂n−θ∗)κn

∣∣∣ (1 + o(1))︸ ︷︷ ︸
In

+
∣∣∣e(θ̂n−θ∗)κn − 1

∣∣∣︸ ︷︷ ︸
Jn

+
∣∣∣e(θ̂n−θ∗)κn

∣∣∣ o(1)︸ ︷︷ ︸
Kn

(26)

Step 3. Proofs for the separate cases.

(i) : By the condition on κn and the rate of convergence given in (8) in Section 3 we have that

lim sup
n→∞

|(θ̂n − θ∗)κn| ≤ lim sup
n→∞

[
|θ̂n − θ∗| log n

log log n

]
lim sup

n→∞

[
κn

log log n

log n

]
= 0
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Now, by assumption F̄ (κn) ∼ ηe−θ∗κn . Thus, since κn = o(log n), we have√
(log n)2

n

1
F̄ (κn)

∼
√

(log n)2eθ∗κn−(1/2) log n → 0

as n → ∞. Thus, lim supn |Zn| = 0 almost surely, and going back to (26) it is clear that∣∣∣∣ η̂n

η
− 1
∣∣∣∣→ 0

as n → ∞ almost surely.

(ii) : Identical to case (i) except that now we only have |(θ̂n − θ∗)κn| = op(1).

(iii) : From Lemma 2 it is clear that Zn ⇒ 0 for c < 1/(2θ∗) and for c ≥ 1/(2θ∗) the method of proof no

longer yields a convergence result. Thus, writing

log η̂n − log η = log p̂n(κn) + θ̂nκn − log η

= log
p̂n(κn)
F̄ (κn)︸ ︷︷ ︸
In

+ (θ̂n − θ∗)κn︸ ︷︷ ︸
Jn

+ log F̄ (κn) + θ∗κn − log η︸ ︷︷ ︸
Kn

and In = op(1) for c < 1/(2θ∗), and Kn = o(1) by assumption. Since the process is exponentially

mixing, we have by a result of Loynes [27] that θ∗Mn − log n− log φη ⇒ Z where φ ∈ (0, 1) and Z has

the standard Gumbel distribution. Then,

(θ̂n − θ∗) log n = c log n
θ∗Mn − log n

Mn

⇒ cθ∗(Z + log φη)

by the continuous mapping theorem. Putting everything together, and using the converging together

principle, we have the result.

This concludes the proof.

Appendix B. Auxiliary Results and Proofs

Lemma 1. Let {Xi}n
i=1 be a sequence of random variables with common marginal distribution F , and let

θ∗ = sup{θ : EeθX < ∞}. Suppose that θ∗ < ∞, then

lim sup
n→∞

Mn

log n
≤ 1

θ∗
a.s.

Proof: Fix δ > 0. Then,
∞∑

n=1

P

(
Xn >

(1 + δ) log n

θ∗

)
=

∞∑
n=1

P

(
X >

(1 + δ) log n

θ∗

)
≤ Eeθ∗X/(1+δ)

< ∞
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Thus,

lim sup
n→∞

Xn

log n
≤ 1 + δ

θ∗
a.s.

and since δ is arbitrary, we have Xn/ log n ≤ 1/θ∗ eventually, almost surely. Now, for each ω for which the

above convergence holds, there exists an N(ω) such that Xn(ω)/ log n ≤ 1/θ∗ for all n > N(ω). Then,

Mn

log n
=

max{(X1,X2, . . . , XN ), (XN+1, . . . , Xn}
log n

= max

{
N∨

i=1

Xi

log n
,

n∨
i=N+1

Xi

log n

}

(a)

≤
∨N

i=1 Xi

log n
+

n∨
i=N+1

Xi

log i

(b)

≤
∨N

i=1 Xi

log n
+

1
θ∗

where (a) follows since log i ≤ log n for i = N + 1, . . . , n, and (b) follows since Xi/ log i ≤ 1/θ∗ for i > N .

Thus,

lim sup
n→∞

Mn

log n
≤ 1

θ∗

as

lim
n→∞

∨N
i=1 Xi

log n
= 0

which concludes the proof.

Lemma 2. If (Yn : n ≥ 0) is β-mixing such that β(k) = O(k−(2+ε)) for some ε > 0 there exists ε′ ∈
(0,min{ε/3, 1}) such that

sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I{Yi≥x} − P(Y > x)

∣∣∣∣∣ = O

(√
log n

nε′

)
a.s.

If β(k) = O(e−ck) for some c > 0 then

sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I{Yi≥x} − P(Y > x)

∣∣∣∣∣ = O

(√
(log n)2

n

)
a.s.

Proof: The starting point of our analysis is the following result that gives exponential bounds in the

Glivenko-Cantelli theorem (for details see, e.g., Devroye et. al. [11, Theorem 12.4]).

Proposition 5. Let {Xi}n
i=1 be a sequence of i.i.d. real-valued random variables with common distribution

P . Then, for all δ > 0 and n

P

{
sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I{Xi≤x} − P (X ≤ x)

∣∣∣∣∣ > δ

}
≤ 8(n + 1)e−nδ2/32
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Note that the result is ‘distribution free’ in the sense that it holds for any arbitrary probability distribution,

as long as Xi are i.i.d. random variables. We now extend this to the β-mixing case, and conclude the

assertions of Lemma 2.

Step 1. Measure theoretic preliminaries. Let X = (X1,X2, . . .) be a stationary β-mixing process. To

concur with standard definitions in the literature, it will be useful to consider the two-sided stationary

extension of X, and with some abuse of notation continue referring to this process as X. Let P be the

stationary probability measure on (RZ,BZ) associated with X, and let P
0
−∞, P∞

1 denote the semi-infinite

marginals of P. Let F	
k = σ(Xk,X2, . . . , X	). Then, one standard definition of β-mixing is (cf. Bradley [9,

§2, (2.1)])

β(k) = sup
{|P(A) − (P0

−∞ × P
∞
1

)
(A)| : A ∈ σ(F0

−∞,F∞
k )
}

. (27)

Let the one-dimensional marginal of P be denoted as P , and let P0 =
∏∞

−∞ P denote the product probability

measure generated by P . A simple consequence of the definition (27) is the following (cf. Nobel and Dembo

[30, Lemma 2]): if A ∈ σ(X0,Xk, . . . , X(m−1)k) then

|P(A) − P0(A)| ≤ mβ(k) . (28)

Step 2. Given a sequence {Xi}n
i=1 from X, let kn and mn be two sequences of positive integers such

that kn,mn ↑ ∞ as n → ∞ and assume for simplicity of exposition that knmn = n. It will be clear in what

follows that this assumption entails no loss of generality. Now,

sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I{Xi≤x} − P(X ≤ x)

∣∣∣∣∣ = sup
x∈R

∣∣∣∣∣∣ 1n
kn∑

j=1

mn−1∑
	=0

[
I{X�kn+j≤x} − P(X ≤ x)

]∣∣∣∣∣∣
≤ 1

kn

kn∑
j=1

sup
x∈R

∣∣∣∣∣ 1
mn

mn−1∑
	=0

I{X�kn+j≤x} − P(X ≤ x)

∣∣∣∣∣
and note that for δ > 0{

sup
x∈R

∣∣∣∣∣ 1
mn

mn−1∑
	=0

I{X�kn+j≤x} − P(X ≤ x)

∣∣∣∣∣ > δ

}
∈ σ(Xj ,Xj+kn

, . . . , X(mn−1)kn+j) .

We can now apply (28) as follows

P

(
sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I{Xi≤x} − P(X ≤ x)

∣∣∣∣∣ > δ

)

≤ P


 1

kn

kn∑
j=1

sup
x∈R

∣∣∣∣∣ 1
mn

mn−1∑
	=0

I{X�kn+j≤x} − P(X ≤ x)

∣∣∣∣∣ > δ




≤ knP

(
sup
x∈R

∣∣∣∣∣ 1
mn

mn−1∑
	=0

I{X�kn+j≤x} − P(X ≤ x)

∣∣∣∣∣ > δ

)

(a)

≤ knP0

(
sup
x∈R

∣∣∣∣∣ 1
mn

mn−1∑
	=0

I{X�kn+j≤x} − P(X ≤ x)

∣∣∣∣∣ > δ

)
+ knmnβ(kn)

(b)

≤ 8(n + 1)e−mnδ2/32 + nβ(kn)
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where (a) follows from (28), and (b) from Proposition 5, and since knmn = n.

Step 3. First consider the case of β(k) = O(k−(2+ε)). Then, take ε′ ∈ (0, ε), δ = (log n/nε′)1/2 and

kn = cn1−ε′ so as to make the exponential bound summable (e.g., c = 70 will suffice). Also,

nβ(kn) ≤ 1
n1−3ε′+ε

.

Since both terms in the upper bound are summable, we can use Borel-Cantelli to conclude that

sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I{Xi≤x} − P (X ≤ x)

∣∣∣∣∣ = O

(√
log n

nε′

)
a.s.

Similar consideration in the exponential mixing case lead to choice kn = c log n, for some appropriate choice

of c. This gives rise to the asserted convergence rate

sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I{Xi≤x} − P (X ≤ x)

∣∣∣∣∣ = O

(√
(log n)2

n

)
a.s.

which concludes the proof.

Lemma 3. Let X = (Xn : n ≥ 1) be an aperiodic classically regenerative process, with embedded renewal

sequence (T (k) : k ≥ 0). Assume that for some m ≥ 1 the cycle lengths τk = T (k) − T (k − 1) satisfy (a1)

Eτm
1 < ∞, and (a2) F (x) = P(τ ≤ x) has regularly varying tails. Then, X has a stationary version which is

α-mixing and for some constant c > 0

(i) nm−1α(n) = o(1) as n → ∞
(ii) lim infn→∞

α(n)
n(1−F (n)) ≥ c .

Proof: First, since X is positive recurrent, it admits a stationary version. To make the sequence of renewal

epochs stationary, the time to the first renewal must have the distribution of the forward recurrence time.

That is, for k ≥ 0 let S be the random variable with distribution function

P(S > k) =
1

Eτ1

∫ ∞

k

(1 − F (y))dy

where F (y) = 1 − P(τ ≤ y). Now, we can extend the sequence X = (Xn : n ≥ 1) to a two-sided stationary

sequence. For m,n ∈ Z+, let N(−m,n] denote the number of renewals in interval (−m,n]. Define the

following two events

An = {ω : N(−n, 0] = 0} ∈ B0
−∞

Bn = {ω : N(n, 2n] = 0} ∈ B∞
n

where B denotes the underlying σ- field. By definition of the α-mixing coefficients we have that

α(n) ≥ |P (An ∩ Bn) − P(An)P(Bn)|
= P(S > n)

∣∣∣∣P(An ∩ Bn)
P(S > n)

− P(An)P(Bn)
P(S > n)

∣∣∣∣ .
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Observe that

P(An)P(Bn)
P(S > n)

= P(An) ,

and note that P(An) ↓ 0 as n → ∞. Finally, using stationarity we see that

P(An ∩ Bn)
P(S > n)

≥ P(An ∩ Bn ∩ {S > n})
P(S > n)

=
P(S > 3n)
P(S > n)

=

∫∞
3n

(1 − F (y))dy∫∞
n

(1 − F (y))dy

and using Karamata’s theorem (cf. [15, pp. 567–567], we have that

P(S > 3n)
P(S > n)

→ 3γ

as n → ∞, with γ < 0 the index of variation for F , i.e., F ∈ Rγ . Putting all of the above together, we find

that

lim inf
n→∞

α(n)
P(S > n)

≥ 3γ > 0 ,

leading immediately to (ii). The upper bound follows from [18, Proposition 6.10] which asserts that for

an aperiodic positive recurrent regenerative process, the stationary version is strong mixing with α(n) =

o(n−m+1)

Lemma 4. Let X1,X2, . . . be an arbitrary sequence of real-valued random variables with common marginal

distribution F ∈ F . Let Mn = max1≤i≤n{Xi}. Then, for any p ∈ [1,∞)

sup
n≥2

E

(
Mn

log n

)p

< ∞ .

Proof: Fix p ∈ [1,∞), and a distribution F ∈ F . Define

K1 = inf
{

y > 0 : such that
log P (X1 > x)

x
≤ −θ∗

2
, ∀x ≥ y

}

and note that K1 < ∞ follows from the definition of the class F , i.e.,

lim sup
x→∞

log P{X1 > x}
x

≤ −θ∗

2
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and set K := max{K1, 4/θ∗}. Then,

E

[
Mn

log n

]p

=
∫ ∞

0

pyp−1
P (Mn > y log n) dy

=
∫ K

0

pyp−1
P (Mn > y log n) dy +

∫ ∞

K

pyp−1
P (Mn > y log n) dy

(a)

≤ Kp +
∫ ∞

K

pyp−1nP (X1 > y log n) dy

≤ Kp +
∫ ∞

K

pyp−1 exp
{

(log n

(
1 + y

log P(X1 > y log n

y log n

)}
dy

(b)

≤ Kp +
∫ ∞

K

pyp−1 exp
{

log n

(
1 − y

θ∗

2

)}
dy

(c)

≤ Kp +
∫ ∞

K

pyp−1e−
θ∗
4 y log ndy

≤ Kp +
(

4
θ∗

)p
p!

(log n)p

where (a) follows from the union bound; (b), (c) follow from the definition of K, noting that θ∗y/2−1 ≥ θ∗y/4

for y ≥ 4/θ∗ .

Lemma 5. Let X = (Xn : n ≥ 1) satisfy either assumption (A1) or (A2) of Theorem 1, and assume that

the common marginal distribution F ∈ F . Let M̃n = max1≤i≤n Xi ∨ 1. Then, for any p ∈ [1,∞)

sup
n≥2

E

(
log n

M̃n

)p

< ∞ .

Proof: Fix δ > 0, and let an = ((1 − δ)/θ∗) log n. First,

E

(
log n

M̃n

)p

= E

([
log n

M̃n

]p

; M̃n < an

)
︸ ︷︷ ︸

In

+ E

([
log n

M̃n

]p

; M̃n ≥ an

)
︸ ︷︷ ︸

Jn

and note that Jn can bounded as follows

Jn ≤
(

θ∗

1 − δ

)p

.

To bound In use the Cauchy-Schwarz inequality

In ≤
√

E

∣∣∣∣ log n

M̃n

∣∣∣∣2p√
P(Mn ≤ an)

and note that

E

∣∣∣∣ log n

M̃n

∣∣∣∣2p

≤ (log n)2p .

Now, if X is i.i.d. then

P(Mn ≤ an) ≤ e−nP(X>an) ≤ e−nδ

28



thus

sup
n

Jn < ∞

A very similar analysis goes through in the case of mixing processes, the details of which are omitted, but

are obvious from the proof technique of Theorem 1.
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