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ABSTRACT

We extend the scaled-and-shifted Kiefer-Wolfowitz (SSK&orithm developed byroadie, Cicek, and Zeevi (2009

multiple dimensions. The salient feature of this algoriibriat it makes adjustments of the tuning parameters tlegdtad the
underlying problem characteristics. We compare the perémce of this algorithm to the traditional Kiefer-Wolfowitk\W)

one and observe significant improvement in the finite-timégpmance on some stylized test functions and a multidinoer@s
newsvendor problem.

1 INTRODUCTION

Simulation-optimization refers to optimization of furmtis whose values cannot be computed analytically and ateated
via simulation. Because of the nature of simulation, thenogation uses noisy observations of the objective fumctio
Stochastic approximation is one of the most widely studietukation-optimization methods, since the pioneeringgrap
by Robbins and Monro (195J9ndKiefer and Wolfowitz (1952)ntroduced the method. (Séashner and Yin (2003and
references therein for a literature review.) Consider tiing problem:

maxf(x) = E[f(X)]

xeRd

where f is a noisy observation of : R9 — R. In order to solve this problem wheh= 1, Kiefer and Wolfowitz (1952)
proposed the following stochastic approximation schemsackforth referred to as the KW algorithm:

1)

Xn+1—Xn+an<f(xn+cn);f(xn_C")>, n=12,...
n

where the “tuning sequenceda,} and {c,} are real-valued and deterministic. Under the assumptian tie func-
tion f(x) has a unique point of maximum and is strongly concave, anthdurassumptions on the tuning sequences,
Kiefer and Wolfowitz (1952)prove that the{X,} sequence converges in probability o= argmax_pd f (x), the point of
maximum. Because it may be too restrictive to impose suchnagsons on the functiorf(-) over the entire domain,
Kiefer and Wolfowitz (1952)argue that it is enough to have these functional assumptioltson a compact sdp  RY,
which is known to includec*, and they prescribe a truncation method that restrictstimmevaluations to this compact set
(seeBroadie, Cicek, and Zeevi (2009)r further discussion).

A multidimensional version of the KW algorithm was introguacby Blum (1954) His algorithm uses a one-sided
finite-difference approximation of the gradient in eactediion and can be described by the following recursion:
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g(xm
X (1) — x (M 4 5 9(§n> )’ n=12,. . @)
Here g(X™) = (F(X™ +cMep) — F(XM),..., F(XM 4 cMey) — F(XM)), where{e,...,e4} is the standard basis iRY.
Blum (1954)proves thatX(", defined by the recursion ir2), converges almost surely to the point of maximun A
version of this algorithm, where iterates are truncated gingilar manner to the original KW algorithm, will serve agth
benchmark stochastic approximation procedure for coreparpurposes. We call this version of the KW algorithm the
truncated Kiefer-Wolfowitz-Blum algorithfTKWB for short).

Stochastic approximation algorithms have been mostlyistutiom the perspective of their asymptotic performance.
To that end, the choica™ = a/(n+ ) andc!™ = y/n%/4, for somea,y < R andf € Z, is seen to be optimal in the sense
that it optimizes the rate of convergence of the mean-squamer (MSE) JE[X(" —x*]2, of the algorithm; se®upac (1957)
and Broadie, Cicek, and Zeevi (2009r two different proofs. At the same time, the behavior of K¥de algorithms can
be quite sensitive to the specification of these tuning secgsethrough the parametars andy; seeKim (2006) To the
best of our knowledge, there is no clear guidance in thealitge on how to choose these parameters. A further issue is
that if the tuning sequences do not “match” the charactesisif the underlying function and noise level, the theacsdti
convergence rates may no longer hold; see, duglitsky et al. (2007)

In this paper, we propose a multidimensional version of a t§j¢ algorithm, recently introduced Byoadie et al. (2009)
that adaptively adjusts the tuning sequences to betterhntlaéc problem structure. The algorithm uses suitable sgalird
shifting of the tuning sequences, and will therefore berretéto as thescaled-and-shifteBW algorithm or SSKW for short.
The benefit of using different tuning sequences along eadesion is explained. We illustrate numerically that th&85
algorithm outperforms the TKWB algorithm for four test fuioms, each representative of a fundamental performasce.is
We also compare the finite-time performance of the TKWB ank\8%lgorithms on a well-studied simulation-optimization
problem, the multidimensional newsvendor problenKah (2006)

The rest of the paper is organized as follows. Secf@ontains a brief discussion of the three possible issuasrhg
result in poor finite-time behavior of the TKWB algorithm,chaxplains the remedies implemented in the SSKW algorithm.
(The full description of the multidimensional SSKW algaérit is given in Appendix.) SectioBidescribes the multidimensional
newsvendor problem and includes finite-time performaneceparisons of the TKWB and SSKW algorithms. We summarize
the results and give concluding remarks in Secdon

2 THE MULTIDIMENSIONAL SCALED AND SHIFTED KW ALGORITHM
Unlike the TKWB recursion given in2), we use differenl{a‘((m} and{cf(”)} sequences in each dimensibe-1,...,d. (For

brevity, we will omit the subscriptk” when no confusion arises.) The motivation for this modiiica will be presented in
Section2.4. Using the same notation as i8)( the recursion for the SSKW algorithm is:

FX™ £ cMa ) — F(xm
X‘En+1)=Xén)+af(n) ( % (?)() ( )7 forallk=1,...,dandn=1,2,... 3)
C

KW-type algorithms are prone to poor finite-time performanthe main issues are as follows:

1. along oscillatory period where the iterates oscillateveen different boundaries of the truncation interval due t
an {a(™} sequence which is “too large,”

2. a degraded convergence rate of MSE due to settingafé} sequence “too small,” and

3. iterates not exhibiting convergent behavior due to paadignt estimates caused by{e"} sequence which is
“too small”

Next we illustrate these issues and explain how the SSKWrithgo addresses them. Paif) = a/(n+ ) andc™ = y/n,
for some constants, y € R andf3 € Z. The key is to adapt these three parameters without relyirkgnowledge of the gradient
or the underlying function; the only information needed isaltidimensional intervalg = [I1,u1] X [l2,Uz] X ... X [lg, 4],
which is known to contain the optimal solutiog.

We consider three different test functions in two dimensioin all numerical illustrations, we udg = [~50,50]?,

X1 = (30,30) and initially setaf(”) =1/n, cl((“) =1/n%4 for all k=1,...,d. These sequences will be used throughout the
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Figure 1: Oscillatory behavior. Panel (a) shows a sample pfthe the first coordinate of iterates in the TKWB algoritfon

the functionf (xg,%2) = —(x§ +x3) with a™ = 1/n, ¢V = 1/n%4. The oscillatory behavior is observed for 4988 iterations.
Panel (c) show a sample path in the SSKW algorithm in the sattie®, using the same noise random sequence. The shift
of B =4925 corresponding ta(ln> =1/(n+4925 is finalized after 34 iterations. The sequermé'a = 1/nY/* is not scaled

nor shifted. Panels (b) and (d) give the relative frequen‘c)ﬂl(goOQ using 50,000 simulation replications for the TKWB and
SSKW algorithms, respectively. Similar behavior is obserin the second coordinate.

TKWB algorithm, and will be adaptively modified in the SSKWgatithm. In each of the examples, the reported MSE
results, slopes and medians are computed using 50,000atpfis. Standard errors of estimates are calculated g &€
independent batches of 1000 replications in each.

2.1 The Problem of a Long Oscillatory Period

A long oscillatory period is typically observed if the stsize sequencea™}, is “large” relative to the gradient. This
initial oscillatory behavior does not affect the asymputatite of convergence, but the algorithm may have poor fiiite-
performance, essentially until th[a(m} sequence becomes suitably small. Figlif&) illustrates a single path of the first
coordinate of the iterates in TKWB algorithm for the functid (xy,x,) = — (X +x3) + & wheree is a standard normal
random variable. In all numerical illustrations the noésis independent at each function evaluation. The mediaria®scy
period length in our tests was 4988 iterations.

Our remedy for this problem is to adaptivespift the {a("} sequence when any coordinate of the itec4t® falls
outside its current truncation interval, i.e.,)()f”) ¢ I&”) = [Ik,uk—cl((m] foranyk=1,...,d, we calculate the integg8 so

that substitutingai((n> = aﬁ”w )i the iteration would keep the iterate within the truncatioterval (the truncation interval

usesly because one-sided finite difference approximation is usestjuation 8)). Figurel(c) plots a single path of the first
coordinate of the iterates in SSKW algorithm, using the sémmetion and same random numbers as in panel (a). Using
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a(ln) =1/(n+4925) results in a significant decrease in the oscillatory perath to 34. (The median shift and oscillatory

period length were 4925 and 34, respectively.) Figurgsy and1(d) show the histograms O(1<5000), the first coordinate
of the estimate of the point of maximum at iteration 5,000mi&ir results hold for the second coordinate, and are odhitte
for brevity. The MSE at iteration 5000 for the TKWB algoriths126.11, whereas the corresponding value for the SSKW
algorithm is 048 as a result of the decrease in the oscillatory period tengt

(@) (b)

30.2 0.06
>
(8]
c
30.0 <
\ g 0.04
B LL
S 29.8 s .
29.6 o o o % :
04
29.4 0
0 20 9981 10000 0 20 40
Iterationn X l(10,000)
(c) (d)
S0 0.06
>
Q
c
(O]
>
g 0.04
g\—i e o o L
<t 0 /\M o
3 0.02
(O]
04
_50 O
0 20 9981 10000 0 20 40
Iterationn X 1(10,000)

Figure 2: Degraded MSE convergence rate. Panel (a) shows@eaath of the the first coordinate of iterates in the TKWB
algorithm for the functionf (x3,x) = —0.001(x2 +x3) with a™ = 1/n, ¢ = 1/n'/4. The convergence rate of the MSE is
—0.004 (standard error is.6x 10°8). Panel (c) shows a sample path in the SSKW algorithm in tieessetting, using

the same noise random sequence. The adaptive scale mp=0f0222 leading toa(ln) = 40222/n, is achieved after four

iterations. Panels (b) and (d) give the relative frequerfcys 0000 using 50,000 simulation replications for the TKWB and
SSKW algorithms, respectively.

2.2 The Problem of Degraded Convergence Rate

The tuning sequences” = a/(n+ ) andc™ = y/n for somea,y e R and € Z, result in an optimal asymptotic MSE
performancelE||X(" —x*||2 ~ 1/4/n, but this is predicated on being set to be greater than a well-defined threshold that
depends on the gradient of the unknown function. (Betitsky et al. (2007andBroadie et al. (2009or formal statement
of the condition and illustrative example.) Figuzéa) shows the first coordinate of the iterates in TKWB aldwmitfor the
function f (xg,x2) = —0.00L(x§+x§)+e wheree¢ is normally distributed with zero mean and standard demiatf 0.001.
Using a least squares fit of I0dSE) vs. logn), from n= 5,000 ton = 10,000, the empirical convergence rate of the MSE
is seen to be-0.004 (with a standard error of.Gx 1078).

In order to prevent this problem, wacale upthe {af(”)} sequence adaptively over initial iterations of the aldomi

by increasing the constant so that iteraten hits the boundary of the current truncation inter\lérl? =[l,u— ci((”)] in each
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Figure 3: Noisy gradient estimates. Panel (a) shows a sapwgile of the the first coordinate of iterates in the TKWB
algorithm for the functionf (x;,x2) = 1000 cog 71x1 /100) + cog 1x2/100)) with a™ = 1/n, ¢ = 1/n'/4, Panel (c) show

a sample path in the SSKW algorithm in the same setting, usiaggame noise random sequence. At the end of iteration
9, the tuning sequences are adaptively changed%: 19.39/n and c(ln> = 8/n/4. Panels (b) and (d) give the relative

frequency Ofxl(lo,ooo) using 50,000 simulation replications for the TKWB and SSKWyoathms, respectively.

dimension, i.e., eithe)(k(”) =l or Xém = uk—cf(”) for k=1,...,d. Hence, during this initial phase of the algorithm, we
force the iterates to oscillate between boundary pointhefcorresponding truncation interval in all dimensionsatlfany
iteration the gradient estimates are pointing towards ttherior in some dimensions, s&; C {1,2,...d}, and pointing

outward in the other dimensions, we scale{uxé”)} for k € Dy, iterate along these dimensions and re-estimate the gitadie
until the iterate oscillates from one boundary point to tippasite one in all dimensions.

Achieving this type of oscillation may require more than @stimate of the gradient along some dimensions. Suppose,
for instance, we have a two-dimensional problem and attitera, X(" = (Il,uz—c(zm) and also suppose that the gradient
estimate in both dimensions are positive. Because thetetésaat the lower boundary of the truncation interval along t

first dimension and the gradient estimate is positive aldmng dimension, we can scale L{pn(l”)}, if necessary, so that
X1<”+1> = ul—c(l”H). So, we achieve oscillation along the first dimension. Ondtier hand, since the gradient is positive
along the second dimension, it is “pushing” the iterate idet®f the truncation interval. So we do not scale{lqém} at

this point. Next, we iterate along the first dimension to tlénp(u; —c(lnﬂ),uz—c(zn)) and re-estimate the gradient. Now

suppose we have a gradient estimate which has a negativedirgionent and positive second component. Because the
gradient is again pushing the iterate outside of the triocanterval along the second dimension, we still do not esagl

{a(zm}. So, oscillation in the second dimension is still not achiévWe again iterate along the first dimension (this time

we do not change{a(lm} since it is already scaled up), say to pofgtu, — c(zn)) wherel; <y <u; — c(1”+l>, andl; <y is
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satisfied by truncation, if necessary. We then estimate thdignt at(y, u, —0(2“) ), iterate along the first dimension and if

the second component of the gradient is now negative, theaghieve the oscillation, we scale @a(zn)} S0 thatXZmH)
and setX(™1) = (y 1,). With this, oscillation is achieved in all dimensions. (Wersthe algorithm if oscillation along
every dimension is not achieved within some number of gradistimations.) Figur@(c) illustrates a single path of the
first coordinate of the iterates in SSKW algorithm, using $laene function and same random numbers as in panel (a). In
the SSKW algorithm, at the end of four “forced” boundary hitse {a(ln)} sequence becomes 4082n (the median scale

up factor is 4002). The rate of convergence-8.501 (standard error is.009). Figure®(b) and2(d) give the histograms of
X1(10,000). We observe that final estimates of the SSKW algorithm havi®I8k value of 0047 at iteration 10,000 (standard
error of estimate is 2 10~%). The TKWB estimates are still close to the initial startipgint of Xll = 30, due to the step
size being too small with respect to the gradient values. NIIB& at iteration 10,000 for the TKWB algorithm is 1730
(standard error of estimate isx910~4).

2.3 The Problem of Noisy Gradient Estimates

Excessively noisy function evaluations cause poor gradistimates and result in iterates that do not exhibit cayerr
behavior for long periods. If théc™} sequence is too small and the noise level is high, the differén the function
values in finite-difference estimates might be dominateadige, and the iterates may move in random directions gedern
by the noise. Figure(a) illustrates the first coordinate of the iterates in TKWIBaaithm for the functionf (xi,x) =
1000(cog711x1/100) + cog11x2/100) ) + € wheree is normally distributed with zero mean and standard desietif 100. The

MSE values at iterations 50, 500, 5000 and 10,000 are 163,428 and 305, respectively.
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Figure 4: The effect of using the same tuning sequence inimlensions. Panels (a) and (b) show a sample path of both

coordinates of the iterates in the SSKW-1 algorithm usirggghme{a™} and {c("} sequences along all dimensions for
the functionf (x1,xp) = —0.001x§—x‘2‘. Panels (c) and (d) show a sample path of the SSKW algorithim eiiferent tuning
sequences along all dimensions.
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Our remedy for this problem is to adaptivedgale upthe {c"} sequence to provide better gradient estimates. There
are two sources of error in the finite difference estimatibthe gradient. Thévias which decreases g™} gets smaller,
and the noise in the function evaluations for which a lafge?)} decreases the error. If the main source of the error in the
gradient estimation is the function evaluation noise, isgalip might help by balancing the two sources of error. One of
the possible indicators of noisy function evaluations gaypoor gradient estimates is the existence of gradiemasts
at the boundary which are pointing outside of the curremdation interval. Assuming the initial intervdp, contains the
true point of optimum, the gradient at the boundarie$pofnust point towards the interior of the truncation interviaing
some dimensions. If at some iterationthe iterate is at the current truncation interval bounddoyng dimensiork, and the

gradient estimate in the next iteration is pointing outgfi¢he truncation interval along the same dimension, therseate
up the{cf(”)}. For instance, ii)(én> =y, i.e., the iterate is at the lower boundary point, and theligra estimate in the next
iteration is negative, i.e. (XM +c”) — f(X(M) <0, then we set” := yoc\” and use this sequence for future iterations.
The amount of scale up at every such instanggis a user-defined parameter (the default value that we userinumerical
experiments igp = 2). Figure3(c) illustrates a single path of the first coordinate of tlezdtes in SSKW algorithm, using

the same function and same random numbers as in panel (d)eA&nhd of iteration 9, théa,(l”)} sequence is set to 13/n

(the median scale up factor for this sequence is 10) anc{ct_ﬂé} sequence is set to/BY* (the median scale up factor
for this sequence is also 8). The MSE at iterations 50, 5000%hd 10,000 are 696, 143, 44 and 31, respectively. The

histograms 09(1(10’00(’) are shown in panels (b) and (d) of Figu3e
(@) (b)
0.03 0.4
> >
(8] (@]
c c
g 203
g 0.02 g
- 0.2
£ 0.01 2
E E 0.1
0 0
-50 5-4-3-2-1 0 1 2 3
X(lo,ooo)
2
(d)
0.20 0.08
> >
(8] (&)
c c
$ 015 g 0.06
o o
o e
‘- 0.10 - 0.04
[} [}
2 2
< 0.05 S 0.02
o 4 l
0 0
-50 0 50 -5-4-3-2-1 0 1 2 3
(10000 (10000
1 2

Figure 5: Using same tuning sequence in all dimensions.|Pémeand (b) give the relative frequency)qcflo’ooo) andxz(lo’ooo),

respectively, using 50,000 simulation replications foe tRSKW-1 algorithm for the functiori(x1,X2) = —0.001x§—x‘2‘.
Panels (c) and (d) has the corresponding histograms for $&\Galgorithm.
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2.4 Different Tuning Sequences in Each Dimension

In general, we need differeda(™} and {c("} sequences in each dimension to be able to adapt to diffehemacteristics
of the unknown function. For instance, if a two-dimensiofuaction is “steep” along one dimension and “flat” in the athe
one, then, loosely speaking, in order to achieve good fiite- behavior we need a smdla™} sequence in the steep
dimension and a large sequence in the flat one. Moreover, ifiseethe saméc("} sequence in both dimensions, a small
{c(M} sequence would result in gradient estimates being govergetie noise along the “flat” dimension since the true
finite difference estimate of the gradient would be small. tB& other hand, a largéc™} sequence would cause poor
finite-difference estimates especially along the “steeipéaion where we could have used a smallef’} sequence and
get better gradient estimates.

In order to illustrate the disadvantage of using the samégusequences along all dimensions, we run the SSKW
algorithm and a modified version of it (called “SSKW-1") thates the same tuning sequences in all dimensions for the
function f (xg,%2) = —O.Olef—x‘z‘Jre wheree¢ is a standard normal random variable. Figd(a), (b) illustrates the two
coordinates of the iterates in a sample path of SSKW-1 alguori In both dimensions, with the forced boundary hits,
iterates initially exhibit oscillatory behavior. Then, daeise of the steep gradient in the second dimension, theithlgo
starts shifting thga™} sequence to prevent oscillation, but this causes rate datja along the first dimension where the
function is too flat. After a few shifts, the change in the feebrdinate at each iteration becomes too small, which tesul
in almost constant iterate values in panel (a). Figd(®, (d) shows the two coordinates for the SSKW algorithmhwit

different sequences. After all the adaptations, the sezpsehecoma|” = 2746/n, " = 1/(n+4884), c|” = 37.2/n%/4
and 0(2”) =2/nY/4. Due to the high noise level relative to the gradient alorgyfitst dimension, the scale-up in tl{e(ln)}
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Figure 6: Multidimensional newsvendor problem. Panels (@) and (c) show sample paths of the estimation error at each

iteration in first, third and fifth coordinates in the TKWB afithm, usinga” = 1/n andc™ = 1/n'/4. Panels (d), (e) and
(f) show the corresponding sample paths in the SSKW algaritising same random number sequence.
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(the median scale-up is 32) is much larger thar{dﬁ“} (the median scale-up is 1). Figubeshows the histograms of the

final estimatesxl(lo’ooo) and X2(10,000) for SSKW-1 in panels (a) and (b), and for SSKW in panels (c) @)d The MSE
values at iteration 10,000 are 384 (with standard error cdr) 35 (with standard error of3l) for SSKW-1 and SSKW
algorithms, respectively.

3 APPLICATION TO A MULTIDIMENSIONAL NEWSVENDOR PROBLEM

In this section, we illustrate the performance of the SSK@bathm on a multidimensional newsvendor problem intraatlic

by Kim (2006) A manufacturer produces products usingp different resources. The manager decides on a non-negative
resource vectok € RP and then observes the random demddd; R?, for each one of the products. Once the demand is
known, the manager solves the following optimization peoblto determine the product mix to manufacture:

< X (capacity constraints)
y < D (demand constraints)
wherev € R‘j is the vector of profit margins for each product afids a p x g matrix whose(i, j) component specifies
the amount of resourderequired to produce one unit of produict Assumingc € RR is the cost vector for resources, the

objective function of the manager is to maximize the exgkat@ximal profit,[1(X) = E[vTy*(X,D)] —c"X. For numerical
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histograms for the SSKW algorithm.
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tests, we set = (6,5,4,3,2), c is a vector of ones and is a matrix with all lower triangular entries equal to one and
others zero. We assume the demand for the five products hadtimamate normal distribution with meafi0,15,5, 8, 10),
standard deviation5,10,2,3,6) and correlation matrix

1 -02 03 05 01
-02 1 -01 -03 -01

p= 03 -01 1 06 02
05 -03 06 1 005

01 -01 02 005 1

In order to evaluate the function at any given resource Jeveluse 1000 independent draws of the demand and estimate
the expected maximal profit. The point of maximum is estimatebex* = (15,30,34,41,51) via an exhaustive grid search
over integers using long simulation runs. The algorithnessat to run for 1@O00 iterations and we use Z®0 independent
replications to estimate the MSE. The lower and upper bouwfidbe initial intervallp are set to be the resource levels
required to meet the 30 and 99 percentile of the demand liisitvn, respectively. (The upper bound is (22, 61, 71, 86,
110) and the lower bound is (8, 18, 22, 29, 36).) Because rw priormation about the objective function is assumed, the
initial starting point of the algorithmX (¥, is set to be uniformly distributed between the upper ancetooundaries. The
initial tuning sequences were set @8 = 1/n andc(™ = 1/n'/4. For this problem, we set the parametet¥ = 0.1 and

ka = 10 in the SSKW algorithm (see Append).

Figure6(a), (b) and (c) shows the estimation error in first, third &iftd coordinates in a sample path for TKWB algorithm.
The MSE at iterations 50, 500, 5000 and 10,000 are 320, 2B5aid 128, respectively. The main issue is the rate degoadati
due to using a too smafla™} sequence along third and fifth dimensions, which can be wbddn panels (b) and (c) of
Figure6. Panels (d), (e) and (f) in the same figure gives the correfipgiplots for the SSKW algorithm. At the end of iteration

52, the adaptations of the tuning sequences are finishedhandate set aa(ln) = 2837/(n+ 10), a(zn) =25221/(n+23),

a) = 69.82/n, & = 577.97/(n+70), & = 95.17/n, ¢\" = 3.48/nV/4, ¢V = 7.65/n%/4, ¢V = 4/nV/4, ¢V — 12.05/n%/4

and c(5n) = 4/nl/4. The resulting MSE values at iterations 50, 500, 5000 an@Qare 535, 101, 36 and 27, respectively.
Figure7 shows the relative frequency of estimation error at iterati0,000.

Table 1: Summary of results. This table provides the MSE esalt iterations 50, 500 and 5000 and the convergence rate
estimates for the five different test cases. The standaoiseaf MSE estimates are all within 2% of the MSE values and
the standard errors of the rate estimates are provided engfeses. The last column gives the median oscillatornyogeri
length along the first dimension for SSKW algorithm and therall oscillatory period length in TKWB algorithm. The
convergence rate estimate for TKWB algorithm in the first mdth cases are presented for completeness but are gctuall
not valid estimates for asymptotic convergence rate dubdaddng oscillatory period.

MSE Convergence Median oscillatory
Function Algorithm 50 500 5000 Rate period length
b SSKW 17.4 2.95 0.48 -0.62 (0.002) 34
1 72 TKWB 5000 5000 26.11 -3.27 (0.002) 4988
SSKW 0.72 0.21 0.066 -0.50 (0.009) 4
—0.0016¢+3) TKWB  1767.7 17513 17352 -0.004 {510 8) 0
1000cog7x;/100)+  SSKW 696 143 44 -0.49 (0.01) 6
cog11x2/100)) TKWB 1603 992 428 -0.49 (0.009) 10
0.00b — % SSKW 461 143 48 -0.45 (0.01) 5
' 172 SSKW-1 2615 2573 1170 -1.53 (0.01) 4236
Multidimensional SSKW 535 101 36 -0.46 (0.07) 6
newsvendor TKWB 320 216 145 -0.17 (0.004) 0

4 CONCLUDING REMARKS

We have tested our algorithm on five different test cases,dowhich illustrate potentially problematic objectiverfttions,
while the fifth is a well-studied operations management |gmob In all our tests, the proposed Scaled-and-Shifted KW
(SSKW) algorithm outperforms the benchmark truncateddti®folfowitz algorithm. The summary of the results are pded
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in Table1. The improvement in MSE values at iteration 5,000 range feofactor of 4 to over 25,000. The convergence
rate estimates show improvement in most cases. The penficarimprovement is achieved by adaptive adjustments of the
constantsa,y € R and 8 € Z that are used in the tuning sequen¢a¥’)} and {c("}. The median estimates for the tuning
sequence constants are given in Tahlélhe estimations use 25,000 replications of the algorithms

Table 2: Summary of adaptive changes to tuning sequences.talite on the left provides the median estimates for the
constantsa, 3 andy in the tuning sequences along the first dimension in the firgtet test cases and in both dimensions
in the last test case. The table on the right provides the aneelstimates for the constants in the tuning sequences in the
multidimensional newsvendor problem.

Function a B y Dimension| a B vy

X3 1 4925 1 1 41 186 2

—0.001(x2 + x3) 4002 0 1 2 118 9 6
1000(cog71%1,/100) + cog11x2/100)) | 10.0 0 8 3 163 14 8
—0.001x2 — x3 (dimension 1) 1493 0 32 4 239 30 8
—0.001x2 — x3 (dimension 2) 1 4925 1 5 286 14 8

A MULTIDIMENSIONAL SSKW ALGORITHM

Here we present the multidimensional SSKW algorithm. TheTMAB implementation can be downloaded from
www.columbia.ede/mnb2/broadie/research.html
Step 1. Set algorithm parameters

e hp: the number of forced hits to boundary poiht@ndu — cﬁ”) forallk=1,...,d by scaling up thda™} sequence

(sample default: 4).

yo: the scaling up factor for théc™} sequence (sample default: 2).

ka: an upper bound on the number of shifts in #&"} sequence (sample default: 50).

Ua: an initial upper bound on the shift in th@™} sequence (sample default: 10).

ke: an upper bound on the number of scale-ups in{tti®} sequence (sample default: 50).

c9: the parameter defining the maximum possible value {ofV} sequence after the scale-ups; i.e.,

c‘((”) < M= cO(u,—Iy) for all k=1,...,d, n> 1 (sample default: 0.2).

e (: the number of consecutive iterations of fid"} scale-ups that we need to achieve in order to start shiftieg t
{aW} sequence (sample default: 25).

e mM an upper bound on the iteration number of the last adaptatidghe sequences, i.e., after iteratiof®* no
scaling nor shifting on the sequences is done; we requit& > hg (sample default: total number of iterations).

o XW: initial starting point; can be random or deterministic butst satisfyxél) € [Ik,uk—cﬁl)] forallk=1,...,d.

Step 2: Forn < hy,

(@) CalculateX(™1) using the recursion given irB).
(b) Scale up the{a‘((m} sequence for eack=1,...,d, if necessary, ensuring a different truncation intervalrmary
point is hit in every dimension:

0 X" <u—c” andx™ > X", find the scale-up factor fda\" } sequence that maka§™ ™ = u—ci";
ie., seta = (U — e = x™) /(XM —x[V) and then use the new sequer@d” } — {aa"} for the rest
of the iterations.

Gy 1f XM > 1 and XM < X", find the scale-up factor fofal”} sequence that makeg™™ = I; i.e., set
a = (lk—x")/(x™ = x") and then use the new sequered” } — {aa"”} for the rest of the iterations.

(c) Scale up thécf(”)} sequenceforak=1,...,d wheneverthe gradient estimate is too noisy(éml) > Xé”) =Uxk— cl((")

or X\ < X[V = I, then calculatey = min{yp,c™@/c\"”} and use the new sequenge” } — {yc"} for the rest
of the iterations.
@  setx!™™ = min{u,— " max{x"" I, }} for all k=1,...,d. Incrementn.
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Step 3: For n > hy,

(@) CalculateX(™1) using the recursion given ir8).

(b) Shift the{af(”)} sequence for alk=1,...,d, if necessary, to prevent iterates exiting the truncatierial, but use
the upper bound parametey to prevent a too large shift.

0 XY s ue—d™Y, X" < u—cl” then find the minimum shift ifal”} sequence that makeg™™" <
uk—ci((”H); ie.
FX 1M gy Fx
e Solve maux— " —x" v,)/ (f(x +°kc<kf)‘) fx >) —a""P) for B

° If B = ua, then setuy = 20,.

o Use{a} — {a"PD} for the rest of the iterations
@iy 1f X" <1, X" > I then find the minimum shift ifa(" } sequence that makeg™™ <1, i.e.,

FX 4 Vg Fx(M
e Solve maly— X", —uva)/ (f(x A (n)) fx )) —a""P for B
%

° If B = ua, then setuy = 20,.
o Use{a} — {a"P1} for the rest of the iterations
(c) Repeat Step 2(c).
@  setx!™™ = min{u,— ™ max{x"" I} } for all k=1,...,d. Incrementn.
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