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ABSTRACT

We consider importance sampling simulation for es-
timating rare event probabilities in the presence of
heavy-tailed distributions that have polynomial-like
tails. In particular, we prove the following negative
result: there does not exist an asymptotically opti-
mal state-independent change-of-measure for estimat-
ing the probability that a random walk (respectively,
queue length for a single server queue) exceeds a “high”
threshold before going below zero (respectively, becom-
ing empty). Furthermore, we derive explicit bounds
on the best asymptotic variance reduction achieved by
importance sampling relative to näıve simulation. We
illustrate through a simple numerical example that a
“good” state-dependent change-of-measure may be de-
veloped based on an approximation of the zero-variance
measure.

1 Introduction

Importance sampling (IS) simulation has proven to be
an extremely successful method in efficiently estimat-
ing certain rare events associated with light-tailed ran-
dom variables; see, e.g., Sadowsky (1991) and Heidel-
berger (1995) for queueing and reliability applications,
and Glasserman (2003) for applications in financial en-
gineering. (Roughly speaking, a random variable is said
to be light-tailed if the tail of the distribution decays
at least exponentially fast.) The main idea of IS algo-
rithms is to perform a change-of-measure, then estimate
the rare event in question by generating iid copies of the
underlying random variables according to this new dis-
tribution. A good IS distribution not only assigns high
probability to the most likely paths to the rare events
but equally importantly it does not significantly reduce
the probability of other less likely paths.

Recently, heavy-tailed distributions have become in-
creasingly important in explaining rare event related
phenomena in many fields including data networks and
teletraffic models (see, e.g., Resnick (1997)), and in-

surance and risk management (cf. Embrechts, Klppel-
berg & Mikosch (1997)). Unlike the light-tailed case,
designing efficient IS simulation techniques in the pres-
ence of heavy-tailed random variables has proven to be
quite challenging. This is mainly due to the fact that
the manner in which rare events occur is quite different
than that encountered in the light-tailed context (see,
Asmussen (1998) for further discussion).

In this paper we highlight a fundamental difficulty in
applying IS techniques in the presence of heavy-tailed
random variables. For a broad class of such distribu-
tions having polynomial-like tails, we prove that if the
constituent random variables are independent under an
IS change-of-measure then it cannot achieve asymptotic
optimality. (Roughly speaking, a change-of-measure is
said to be asymptotically optimal if it asymptotically
achieves zero variance on a logarithmic scale; a precise
definition is given in Section 2.) In particular, we give
explicit asymptotic bounds on the level of improvement
that state-independent IS can achieve vis-a-vis näıve
simulation. These results are derived for the following
two rare events.

i) A negative drift random walk (RW) Sn =
∑n

i=1 Xi

exceeding a large threshold before taking on a neg-
ative value (see Theorem 1), as well as max{Sn :
n = 1, 2, . . .} exceeding a large threshold.

ii) A stable GI/GI/1 queue exceeding a large thresh-
old within a busy cycle (see Theorem 2). This anal-
ysis relies on asymptotes for the maximum of the
queue length process (see Proposition 1).

The above probabilities are particularly important in
estimating steady-state performance measures related
to waiting times and queue lengths in single-server
queues, when the regenerative ratio representation is
exploited for estimation (see, e.g., Heidelberger (1995)).
Our negative results motivate the development of state-
dependent IS techniques (see, e.g., Kollman, Baggerly,
Cox & Picard (1999), and Blanchet & Glynn (2005)).
In particular, for the probabilities that we consider
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the zero variance measure has a straightforward “state-
dependent” representation. In the random walk set-
ting this involves generating each increment Xi using
a distribution that depends on the position of the RW
prior to that, i.e., the distribution of Xi depends on
Si−1 =

∑i−1
j=1 Xj . For a simple example involving a

slotted time queue, we illustrate numerically how one
can exploit approximations to the zero-variance mea-
sure (see Proposition 2) to develop state-dependent IS
schemes that perform reasonably well.

Related literature. The first algorithm for efficient
simulation in the heavy-tailed context was given in As-
mussen & Binswanger (1997) using conditional Monte
Carlo. Both Asmussen, Binswanger & Hojgaard (2000)
and Juneja & Shahabuddin (2002) develop successful
IS techniques to estimate level crossing probabilities
of the form P (maxn Sn > u), for random walks with
heavy tails, by relying on the ladder height represen-
tation of this probability. However, the ladder height
representation is useful for a restricted class of random
walks (where each Xi is a difference of a heavy tailed
random variable and an exponentially distributed ran-
dom variable). The work in Boots & Shahabuddin
(2001) also considers the level crossing problem and
obtains positive results for IS simulation in the pres-
ence of Weibull-tails. They avoid the inevitable vari-
ance build-up by truncating the generated paths. How-
ever, even with truncation they observe poor results
when the associated random variables have polynomial
tails. Recently, Blanchet & Glynn (2005) described
an asymptotically optimal state-dependent change-of-
measure for the probability that the maximum of a neg-
ative drift random walk exceeding a large threshold.

In terms of negative results, Asmussen, Kroese & Ru-
binstein (2004) show that performing a change in pa-
rameters within the family of Weibull or Pareto distri-
butions does not result in an asymptotically optimal IS
scheme in the random-walk or in the single server queue
example. Our paper provides further evidence that any
state-independent change-of-measure (not restricted to
just parameter changes in the original distribution) will
not lead to efficient IS simulation algorithms. We also
explicitly bound the loss of efficiency that results from
restricting use to iid IS distributions.

The remainder of this paper. In Section 2, we
briefly describe IS and the notion of asymptotic op-
timality. Section 3 describes the main results of the
paper. In Section 4 we illustrate empirically the per-
formance of a state-dependent change-of-measure for a
simple discrete time queue. We conclude in Section 5
with some general observations related to this paper.
All proofs are collected in Appendix A.

2 Importance Sampling and Asymptotic Opti-
mality

2.1 Two rare events

Random walk. Consider a probability space (Ω,F ,P)
and a random walk Sn =

∑n
m=1 Xm, S0 = 0 where

X1, X2, ... are iid copies of X. We assume that EX < 0,
and we denote the cumulative distribution function of
X by F . Define τ to be the time at which the random
walk first goes below zero, i.e.,

τ = inf{n ≥ 1 : Sn < 0}.

Let ζ = Eτ , and Mn = max0≤m≤n Sm. The probability
of interest is either γu = P(Mτ > u) or the probabil-
ity that the “all-time-max” of the random walk exceeds
level u, viz., P(M∞ > u). To fix ideas, let us focus
on the former probability. To estimate this probabil-
ity by näıve simulation, we generate m iid samples of
the function I{Mτ >u} and average over them to get an
unbiased estimate γ̂m

u . The relative error of this esti-
mator (defined as the ratio of standard deviation and

mean) is given by
√

(1−γu)
mγu

. Since γu → 0 as u → ∞,
the number of simulation runs must increase without
bound in order to have fixed small relative error as u
becomes large.

Consider another probability distribution P̃ on the
same sample space such that the sequence {X1, X2, ...}
is iid under P̃ with marginal distribution F̃ , and F is
absolutely continuous w.r.t. F̃ . Let Tu = inf{n : Sn ≥
u}. Define

Zu = LuI{Mτ >u}, (1)

where Lu =
min{τ,Tu}∏

i=1

dF (Xi)

dF̃ (Xi)
,

and let Ẽ[·] be the expectation operator under P̃. Then,
using Wald’s likelihood ratio identity (see Siegmund
(1985, Proposition 2.24)), we have that Zu under mea-
sure P̃ is an unbiased estimator of the probability
P(Mτ > u). Thus, we can generate iid samples of
Zu under the measure P̃, the average of these would
be an unbiased estimate of γu. We refer to P̃ as the
IS change-of-measure and Lu as the likelihood ratio.
By choosing the IS change-of-measure appropriately, we
can substantially reduce the variance of this estimator.

Note that a similar analysis can be carried out to
get an estimator when the sequence {X1, X2, ...} is not
iid under P̃. The likelihood ratio Lu in that case can
be expressed as the Radon-Nikodyn derivative of the
original measure w.r.t. the IS measure restricted to
the appropriate stopping time. (A similar construction
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with slight modification applies in the case of the all-
time-max problem; we omit details.)

Queue length process. The second rare event
studied in this paper is the buffer overflow during a
busy cycle. Consider a GI/GI/1 queue, and let the
inter-arrival and service times have finite means λ−1

and µ−1, respectively. Let Q(t) represent the queue
length at time t under FCFS (first come first serve)
service discipline. Assume that the busy cycle starts at
time t = 0, i.e, Q(0) = 1, and let τ denote the end of
the busy cycle, namely

τ = inf{t ≥ 0 : Q(t−) > 0, Q(t) = 0}.

Let the cumulative distribution of inter-arrival times
and service times be F and G, respectively. Let Si be
the service time of the ith customer and Ai be the inter-
arrival time for the (i + 1)th customer. The probability
of interest is γu = P(max0≤t≤τ Q(t) ≥ u). Again we
note that γu → 0 as u →∞; to estimate this probability
efficiently we can use IS.

Let the number of arrivals until the queue length ex-
ceeds level u be

M = inf

{
n ≥ 1 :

n∑

i=1

Ai <

n−u+2∑

i=1

Si

}
.

Let N(t) represent the number of arrivals up until time
t. Then N(τ) is the number of customers arriving dur-
ing a busy period. Let F̃ and G̃ be the cumulative IS
distributions of inter-arrival and service times, respec-
tively. Then, again using Wald’s likelihood ratio iden-
tity, Zu under the measure P̃ is an unbiased estimator
for the probability P(max0≤t≤τ Q(t) > u), where

Zu = LuI{M≤N(τ)}, (2)

and Lu =
M∏

i=1

dF (Ai)

dF̃ (Ai)

M−u+2∏

j=1

dG(Sj)

dG̃(Sj)
.

2.2 Asymptotic Optimality

Consider a sequence of rare-events indexed by a pa-
rameter u. Let Iu be the indicator of this rare event,
and suppose E[Iu] → 0 as u → ∞ (e.g., for the first
rare event defined above, Iu = I{Mτ >u}). Let P̃ be an
IS distribution and L be the corresponding likelihood
ratio. Put Zu = LIu.

Definition 1 (asymptotic optimality) A sequence
of IS estimators is said to asymptotically optimal if

log Ẽ[Z2
u]

log Ẽ[Zu]
→ 2 as u →∞. (3)

Note that Ẽ[Z2
u] ≥ (Ẽ[Zu])2, therefore for any sequence

of IS estimators we have

lim sup
u→∞

log Ẽ[Z2
u]

log Ẽ[Zu]
≤ 2.

(Note that log Ẽ[Zu] < 0.) Thus, loosely speaking,
asymptotic optimality implies minimal variance on log-
arithmic scale.

3 Main Results

3.1 Random walk

Consider the random walk defined in Section 2.1. We
assume that the distribution of X satisfies

logP(X > x)
log x

→ −α,

and
logP(X < −x)

log x
→ −β,

(4)

as x → ∞, where α ∈ (1,∞) and β ∈ (1,∞]. Further,
we assume that P(X > x) ∼ 1 − B(x) as x → ∞, for
some distribution B on (0,∞) which is subexponential,
that is, it satisfies

lim sup
x→∞

1− (B ∗B)(x)
1−B(x)

≤ 2,

where ‘∗’ denotes the convolution operator (cf. Em-
brechts et al. (1997)). We write f(u) ∼ g(u) as u →∞
if f(u)

g(u) → 1 as u → ∞. Thus, distributions with reg-
ularly varying tails are a subset of the class of distri-
butions satisfying our assumptions. (Regularly varying
distributions have 1 − F (x) = L(x)/xα, where α > 1
and L(x) is slowly varying; for further discussion see
Embrechts et al. (1997, Appendix A.3).) Note that (4)
allows the tail behavior on the negative side to be lighter
than polynomial as β = ∞ is permitted. We denote the
cumulative distribution function of X by F . From As-
mussen (1998) it follows that

P(Mτ > u) ∼ ζP(X > u) as u →∞, (5)

where ζ is the expected time at which the random walk
goes below zero. In the case of the all-time-max the
counterpart of (5) is given in Theorem 3 in the ap-
pendix.

Consider the IS probability distribution P̃ such that
the sequence {X1, X2, ...} is iid under P̃ with marginal
distribution F̃ , and F is absolutely continuous w.r.t.
F̃ . Let P be the collection of all such probability dis-
tributions on the sample space (Ω,F). Let Zu be the
estimator defined in (1). Thus, Ẽ[Zu] is an unbiased
estimator of P(Mτ > u). We then have the following
result.
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Theorem 1 For any P̃ ∈ P

lim sup
u→∞

log Ẽ[Z2
u]

−α log u
≤ 2− min(α, β)

α(1 + min(α, β))
,

where α and β are defined in (4).

Intuition and proof sketch. The proof follows by
contradiction. We consider two disjoint subsets B and
C of the “rare set” A = {ω : Mτ > u} and use the fact
that Ẽ[L2

uI{A}] ≥ Ẽ[L2
uI{B}] + Ẽ[L2

uI{C}]. The two sets
are as follows.

1) The subset B consists of sample paths where the
first random variable is “large” and causes the ran-
dom walk to immediately exceed level u.

2) The subset C which consists of sample paths where
the Xi’s are of order uγ for i = 2, . . . , bu1−γc fol-
lowed by one “big” jump.

Assuming that the limit in the above theorem is vio-
lated, we consider the sample paths in set B to obtain
a lower bound on the probability that X exceeds u un-
der the IS distribution F̃ . The above, in turn, restricts
the mass that can be allocated below level u. We then
consider the subset C, and by selecting the parameter γ
and the value of X1 judiciously, we show that the sec-
ond moment on the set C is infinite. (See Bassamboo,
Juneja & Zeevi (2005) for details of the rigorous proof.)

Extension to all-time-max problem. The non-
asymptotic optimality of the state independent change-
of-measure can be analogously seen for the all-time-max
problem. Again, we note that if the performance of
the proposed importance sampling algorithm is close to
asymptotically optimal, it must assign significant prob-
ability to the set {X > u} (this can be seen by con-
sidering the contribution of {X1 > u} to the second
moment). This provides an upper bound on the prob-
ability mass assigned to the set X ∈ (− log u, uγ), for
any γ < 1. Now consider a set of paths where the
first jump is negative, taking values of order −uβ for
β > 1, the remaining uβ−γ increments take values be-
tween (− log u, uγ), and the last increment ensures that
the threshold u is crossed. Along these paths an upper
bound on efficiency improvement may be constructed
by appropriately selecting β and γ.

3.2 Queue length process

Consider a GI/GI/1 queue described in Section 2.1 with
service times being iid copies of S and inter-arrival
times being iid copies of A. Put Λ(x) := − logP(S >
x) = − log (1−G(x)). Assume that

Λ(x)
log x

→ α as x →∞, (6)

where α ∈ (1,∞), and (S − A) has a subexponential
distribution. We then have the following logarithmic
asymptotics for the buffer overflow probability in a busy
cycle.

Proposition 1 Let assumption (6) hold. Then,

lim
u→∞

logP(max0≤t≤τ Q(t) > u)
log u

= −α.

Recall that F̃ and G̃ are the cumulative IS dis-
tribution of inter-arrival and service times, respec-
tively, and an unbiased estimator for the probability
P(max0≤t≤τ Q(t) > u) is Ẽ[Zu] where Zu is as defined
in (2). Let P̃ be the product measure generated by
(F̃ , G̃), and let D be the collection of all such measures.

Theorem 2 For any P̃ ∈ D

lim sup
u→∞

log Ẽ[Z2
u]

−α log u
≤ 2− 1

1 + α
.

Intuition and proof sketch. The proof of the above
theorem is similar to proof of Theorem 1. We again
consider two sets and arrive at a contradiction. The
sets in this case are given as follows.

1) The first set of sample paths are those for which
{S1(ω) > 2uλ−1} and {∑u

i=1 Ai < 2uλ−1}.
2) The second set of sample paths are defined as fol-

lows.

(a) The first service time S1 ∈
[2u1−γλ−1, 3u1−γλ−1].

(b) The sum of the first bu1−γc inter-arrival times
is less than 2u1−γλ−1, i.e.,

∑bu1−γc
i=1 Ai ≤

2u1−γλ−1. This ensures that by the end of
service of the first customer at least bu1−γc
customers are in the queue.

(c) The next bu1−γc − 1 services lie in the inter-
val [0, 0.5uγλ−1]. This ensures that at most
0.5uλ−1 time has elapsed before the beginning
of service of customer bu1−γc.

(d) The service time for customer bu1−γc exceeds
2uλ−1.

(e) The next b0.6uc arrivals are such that
0.5uλ−1 ≤ ∑bu1−γc+b0.6uc

i=bu1−γc+1 Ai ≤ 0.75uλ−1.
This ensures that the buffer does not overflow
before the beginning of service of customer
bu1−γc.

(f) The next b0.4uc arrivals are such that
0.3uλ−1 ≤ ∑bu1−γc+buc

i=bu1−γc+b0.6ucAi ≤ 0.75uλ−1.
This ensures that the buffer overflows during
the service of customer bu1−γc.
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(Here γ is a constant chosen appropriately.) First set
of sample paths are used to lower bound the probabil-
ity allocated to tails of service time distribution. This
results in the fact that the services in condition 2(c)
are assigned sufficiently low probability under the new
measure and thus the second moment of the estimator
builds up along such realizations. The remaining con-
ditions for the set defined in 2) ensure that the buffer
overflows for the paths in this set. (See Bassamboo
et al. (2005) for details of the rigorous proof.)

4 State Dependent Change-of-Measure

In this section we outline a general principle that
can guide the construction of “good” state-dependent
changes of measure, and illustrate it via a simple exam-
ple. The main idea is to use a suitable approximation
for the zero variance measure. In particular, for prob-
abilities involving random walks hitting a rare set, as
is the case for the probabilities studied in this paper,
the zero variance measure has a simple Markovian rep-
resentation.

Preliminaries. Consider a discrete time queuing
system where the probability of interest is buffer over-
flow during a busy cycle. Specifically, the time axis is
divided into fixed-length time intervals called slots and
each service requires one slot. During time slot n, Xn

customers arrive where {Xn : n ≥ 1} is a sequence of
iid random variables with E[X1] < 1. Let Qn represent
the number of customers in the system at the beginning
of time slot n. We then have the following recursion

Qn = max{Qn−1 − 1, 0}+ Xn.

Let Q0 = 1, τ0 = inf{m > 0 : Qm = 0} and τu =
inf{m > 0 : Qm ≥ u}. The rare event of interest is
{τu < τ0} when u is large. We assume that X1 is a
regularly varying distribution with parameter α, i.e.,

1− F (x) = P(X1 > x) = L(x)/xα,

for all x, where α ∈ (1,∞), L(x) is slowly varying,
and F (·) is the cumulative density function of X. Us-
ing results from Section 3, we know that any state-
independent change to the distribution of the Xi’s can-
not yield an asymptotically optimal IS estimator. We
also know that there always exists a change-of-measure
(which may be state-dependent) that has zero variance,
(cf. Ahamed, Borkar & Juneja (2005)) and in this set-
ting this change-of-measure has a Markovian structure.
In particular, let Jy(u) = P(τu < τ0|Q(0) = y) for all
y = {0, 1, . . .}. Then, under the zero variance measure
Xn has distribution

P̃(Xn = x|Qn−1 = y) =
P(Xn = x)Jx+y−1(u)

Jy(u)
(7)

for all x ∈ {0, 1, . . .} and n = 1, 2, . . .. We shall now de-
velop asymptotics for Jy(u) and use them to construct
a “good” state-dependent IS change-of-measure.

Proposition 2 For all β ∈ (0, 1)

Jbβuc(u) ∼ E[N ]

[∫ u

x=(1−β)u

(1− F (x))dx

]
as u →∞, (8)

where N is the number of arrivals during a busy period.

As is evident from the proof given in the Appendix, the
above proposition may be extended to continuous state
space under mild regularity conditions.

Description of the numerical example. For the
purpose of our numerical study, we consider an M/GI/1
queue whose arrival stream is Poisson with rate λ and
service times are iid copies of S having Pareto distribu-
tion with parameter α ∈ (1,∞), i.e.,

P(S ≥ x) =
{

x−α if x ≥ 1
1 otherwise.

The embedded Markov chain in this system evolves as
the discrete-time queue described above where X1

d=
Poisson(λS). The (state-dependent) IS distribution we
propose is

P̃(Xn = x|Qn−1 = y) =
g(x, y)∑∞

x=0 g(x, y)
,

where g(x, y) = P(X1 = x)




u+1∑

x′=u−x−y+2

P(X1 ≥ x′)


 .

We obtain the above change-of-measure by substituting
the asymptotes from Proposition 2 in the zero variance
measure given in (7). Note that it is easy to compute
g(x, y) in this simple setting, and it can be expressed
as a product of a function of x and a function of x + y.
We simulate the results for the following cases: buffer
levels u = 100 and 1000; tail parameter values α = 2, 9
and 19; and traffic intensities ρ = 0.3, 0.5 and 0.8. (The
traffic intensity ρ equals λα/(α − 1).) The number of
simulation runs in all cases is taken to be 500, 000. To
test the accuracy of the simulation results, we also cal-
culate the buffer overflow probabilities using first step
analysis.

Simulation results. Results in Table 1 illustrate
the following points. First, the accuracy of the proposed
IS method decreases as the traffic intensity increases,
and/or the tail becomes “lighter.” Second, accuracy for
the problem involving buffer level 1000 is better than
the case of buffer level 100, in accordance with the fact
that we are using a “large buffer” asymptotic approx-
imation to the zero variance measure. Finally, the rel-
ative error on logarithmic scale is quite close to the
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best possible value of 2, hence we anticipate that our
proposed IS scheme might be asymptotically optimal.
The rigorous derivations of such results and their gen-
eralizations to continuous state space is left for future
work.
Discussion. In a recent work, Ahamed et al. (2005)
propose stochastic-approximation based adaptive IS
techniques for discrete time Markov chains. Apply-
ing the adaptive algorithm in Ahamed et al. (2005) to
our slotted-time queuing system our main observation
is the following. Using the state-dependent change of
measure described in Section 4 as an initial condition
for stochastic-approximation algorithm leads to very
quick convergence of the adaptive algorithm to accu-
rate estimates even for cases where the proposed state-
dependent change-of-measure is not effective as stand-
alone method for IS.

The algorithm described in Ahamed et al. (2005)
adaptively learns the function Jy(u). Using results from
Proposition 2, we initialize the proposed algorithm with

J (0)
y (u) =

1
1− ρ

[
u+1∑

x=u−x−y+2

P(X1 ≥ x)

]
.

Then, we execute the adaptive algorithm to get an “im-
proved” approximation for the function Jy(u). To con-
struct confidence intervals, we use the approximations
of Jy(u) to construct the approximate zero-variance
measure for IS as in Section 4. To study, the effective-
ness of this approach, we apply this to the parameters
values on our numerical example where the proposed
state-dependent IS change-of-measure does not perform
well; see table 1 where these values are marked with ‘†’.
The number of iterations for the adaptive algorithm is
taken to be 200, 000 and the simulation runs for the
resulting IS estimator is taken to be 300, 000. (Thus,
the computational effort is at par with the earlier ex-
periments.) The results are displayed in table 2. We
observe that the aforementioned approach improves the
accuracy of the estimator by an order of magnitude.

5 Concluding Remarks

1. Theorems 1 and 2 imply that for our class of
heavy-tailed distributions no state-independent change-
of-measure can be asymptotically optimal, since by Def-
inition 1 such a distribution must satisfy

lim inf
u→∞

log Ẽ[Z2
u]

−α log u
≥ 2.

Theorems 1 and 2 can be seen to hold even when the IS
distribution is allowed to depend on u, and Theorem 2

(α, ρ) Probability estimate
(10, 0.8) 7.5156× 10−19 ± 7.6%[1.83]
(20, 0.5) 1.5951× 10−41 ± 3.2%[1.93]
(20, 0.8) 1.0252× 10−19 ± 4.9%[1.85]

Table 2: IS estimator of buffer overflow probability
during a busy cycle: Simulation results obtained us-
ing a combination of adaptive algorithm and the state-
dependent IS distribution proposed in Section 4. The
buffer level is 100 and the number of iteration for the
adaptive algorithm is 200, 000 followed by 300, 000 sim-
ulation runs. The number in square parenthesis repre-
sents the [Y ] represents the ratio defined in (3).

continues to hold when the inter-arrival time distribu-
tion is changed in a state-dependent manner.
2. The bounds given in Theorems 1 and 2 indicate that
the efficiency loss corresponding to the “best” state-
independent IS distribution is more severe the heavier
the tails of the underlying distributions are. As these
tails become lighter, a state-independent IS distribu-
tion may potentially achieve near-optimal asymptotic
variance reduction.
3. As noted earlier, in both cases covered in Theo-
rems 1 and 2 there exists a zero-variance IS distribution
that has a “Markovian structure.” This suggests that
an implementable good approximation to this measure
may be feasible and may serve as an effective state-
dependent IS distribution. We provided an illustration
of this idea in Section 4 through a simple numerical
example. Recently, Blanchet & Glynn (2005) proved
asymptotic optimality of such a change-of-measure for
estimating the probability that all-time-max of a nega-
tive drift random walk exceeds a large threshold. They
use a refinement of the asymptote given in Theorem 3 of
the appendix to develop an approximate zero variance
importance sampling measure.

4. The results given in Section 4 suggest that when
the original asymptotes are not accurate (and when the
refinements are not available), one can “learn” them
adaptively to devise a good state-dependent IS measure.
The extension of the work in Ahamed et al. (2005) to
cover general state-space is pursued in separate work.

A Proofs

Proof of Proposition 1. Let Wi be the waiting time
of the ith arrival, and let Mn = max1≤m≤n Wm. Thus,
MN(τ) is the maximum waiting time during the busy
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cycle. Consider the following inequalities

P
(

max
0≤t≤τ

Q(t) > u

)

≥ P
(

max
0≤t≤τ

Q(t) > u, MN(τ) > 2λ−1u

)

= P
(
MN(τ) > 2λ−1u

)×

P
(

max
0≤t≤τ

Q(t) > u|MN(τ) > 2λ−1u

)
.

Now consider the second term on right-hand-side and
the set of paths where the arrivals during the “large”
waiting time causes the buffer to overflow. That is,
conditioned on the event that there exists a customer
that experience a large waiting time, we consider the
arrivals which take place while this customers waits. A
sufficient condition for overflow is that the sum of the
next u inter-arrival times is less than the waiting time
MN(τ). Since inter-arrival times are iid we have,

P
(

max
0≤t≤τ

Q(t) > u|MN(τ) > 2λ−1u

)

≥ P


buc∑

i=1

Ai ≤ 2λ−1u


 ,

where {Ai, i = 1, 2, . . .} is the sequence of inter-arrival
time r.v.’s. In Asmussen (1998), exact asymptotes for
the probability that a random walk hits a large level be-
fore it goes below zero are developed. From the asymp-
tote, it can be seen that

logP
(
MN(τ) > 2λu

)
∼ −α log u.

Using the strong law of large numbers, we also have

P



buc∑

i=1

Ai ≤ 2λ−1u


 → 1 as u →∞.

Thus, we have

lim inf
u→∞

logP(max0≤t≤τ Q(t) > u)
log u

≥ −α.

Now, consider the following bounds

P
(
MN(τ) > 0.5µ−1u

)
(9)

≥ P
(

max
0≤t≤τ

Q(t) > u, MN(τ) > 0.5µ−1u

)
(10)

= P
(

max
0≤t≤τ

Q(t) > u

)
× (11)

P
(

MN(τ) > 0.5µ−1u| max
0≤t≤τ

Q(t) > u

)

≥ P
(

max
0≤t≤τ

Q(t) > u

)
P



buc∑

i=1

Si > 0.5µ−1u


 ,

where {Si, i = 1, 2, . . .} represent the service times
r.v.’s. The last inequality follows from the fact that
a sufficient condition for the maximum waiting time to
exceed 0.5µ−1u is that the sum of service times for cus-
tomers in the queue exceeds 0.5µ−1u. By the strong
law of large numbers, we have

P



buc∑

i=1

Si > 0.5µ−1u


 → 1 as u →∞.

Thus, using (5) and the random walk representation of
the waiting time, we have

lim sup
u→∞

logP (max0≤t≤τ Q(t) > u)
log u

≤ −α.

This completes the proof.
Proof of Proposition 2. Consider the random walk

Sn = Sn−1 − 1 + Xn,

so Sn has a negative drift given by EX1 − 1, and let
τ̃0 = inf{m : Sm ≤ 0} and τ̃u = inf{m : Sm ≥ u}.
Note that Jy(u) = P(τ̃0 > τ̃u|S0 = y) for y ∈ [0, u]. Let
J̄y(u) = P(τ̃u < ∞|S0 = y) for y ∈ [0, u]. Fix β ∈ (0, 1).
Since the random walk decreases by at most one unit
at any time, we have Seτ0 = 0. Thus

J̄βu(u) = Jβu(u) + [1− Jβu(u)]J̄0(u),

and rearranging terms we get

Jβu(u) =
J̄βu(u)− J̄0(u)

1− J̄0(u)
.

Also, we have J̄βu(u) = J̄0(u(1 − β)). Next we appeal
to the following theorem from Asmussen (1987) which
gives an asymptotic for J̄0(u).

Theorem 3 (Theorem 9.1, Asmussen (1987))
Consider a random walk Sn =

∑n
i=1 Yi such that

ν = EY1 < 0 and Y1 has a cumulative distribution F
which is sub-exponential. Let M = maxi Si, then

P(M > x) ∼ 1
|ν|

∫ ∞

x

(1− F (y))dy.

Using the asymptote above and Karamata’s Theorem
(cf. Embrechts et al. (1997)) we get

J̄0(u)
J̄0(u(1− β))

→ (1−β)α−1 and J̄0(u) → 0 as u →∞.

Also, we have E[N ] = 1/|E[X1]− 1|. The result follows
using the fact that if au ∼ bu, cu ∼ du and au/cu →
K ∈ (0, 1) as u →∞ then (au − cu) ∼ (bu − du). This
completes the proof.
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u α ρ = 0.3 ρ = 0.5 ρ = 0.8
2 3.31× 10−6 ± 0.019% [1.97] 2.43× 10−5 ± 0.050% [1.86] 1.00× 10−4 ± 0.837% [1.26]

100 9 1.57× 10−23 ± 0.051% [1.97] 1.52× 10−20 ± 0.119% [1.93] 5.12× 10−19 ± 2.409% [1.79]†

19 4.70× 10−48 ± 0.080% [1.98] 5.30× 10−42 ± 0.543% [1.94]† 4.58× 10−39 ± 4.182% [1.89]†

2 3.19× 10−8 ± 0.006% [1.99] 2.25× 10−7 ± 0.015% [1.98] 8.16× 10−7 ± 0.079% [1.84]
1000 9 1.02× 10−32 ± 0.007% [2.00] 9.21× 10−30 ± 0.032% [1.99] 2.49× 10−28 ± 0.103% [1.96]

19 7.22× 10−68 ± 0.022% [2.00] 6.72× 10−62 ± 0.041% [2.00] 3.30× 10−59 ± 0.403% [1.96]

Table 1: Performance of the state-dependent IS estimator for buffer overflow probability in a busy cycle: Simulation
results for buffer levels 100 and 1000, using 500, 000 simulation runs. 95% confidence intervals are provided. The
number in the square parenthesis represents the ratio defined in (3). Recall that 2 corresponds to the asymptotically
optimal value.
† The actual probability, which is calculated using first step analysis, lies outside the 95% confidence interval.


