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Abstract

We consider a model of a service system with finite and shared processing
capacity and two service classes. Users arrive at the system and select either a
high-priority service level where the service requests are processed at a fixed rate,
or a low-priority service level where service rate is subject to degradation when
the system is congested. A fixed price-per-connection is charged for each service
level, and the mean delay in each class class is announced to the users upon arrival.
The users, in turn, select the appropriate class of service based on their perceived
“cost,” comprised of price and delay-related cost. We demonstrate that the optimal
operational mode of this system is in “heavy-traffic” if the demand is elastic, and
determine the asymptotically optimal price per service grade. In particular, the
magnitude of price-premium for high-priority service is seen to be “small.” Finally,
a somewhat surprising feature of the system is that the fraction of users that
select each service-level is determined by a “second-order” analysis that hinges on
underlying diffusion limits.

1 Introduction

The recent proliferation of web-based services has triggered service providers to explore
ways by which to address processing requirements of diverse applications and concomi-
tantly segment the market of potential users. That is, service providers are attempting to
offer multiple grades of service so that users are differentiated according to their quality-

of-service (QoS) requirements, and willingness-to-pay for desired QoS.

This paper proposes a simple and tractable model for service systems that offer dif-
ferentiated and substitutable services, i.e., where the user can select between service levels
each time s/he accesses the system. In particular, we consider a service provider (SP) that
operates a system with fixed capacity and offers two classes of service. A high-priority
service (HP) grants users a fixed processing rate, but users may have to wait to access the
service if the system is congested. A low-priority service (LP) where users access service

immediately, however the processing rate is subject to degradation. In particular, if there
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Figure 1: Schematic model representation: one user population accesses a system with
either one (left model) or two -differentiated- service grades (right model); the paper

focuses on the latter.

is enough processing capacity to allocate to the low-priority class, these users will each
receive a nominal rate allocation; otherwise, processing capacity allocated to this class
of service is split among these users in an egalitarian manner, and consequently users
experience congestion in the form of a degraded service rate. This somewhat stylized
configuration in which users select the service grade based on congestion, which in turn
serves as a feedback signal in regulating system usage and user choice, is reminiscent of

the the Paris Metro pricing scheme; cf. [7].

As explained in more detail in the subsequent section, users who connect to the system
select a service grade based on their price and congestion sensitivity. In this sense, the
basic services delivered to users are substitutable, and the users merely select the quality
grade according to which the service will be delivered. A schematic representation of the
system under investigation is given in Figure 1. The service provider is then faced with
the objective of maximizing profit by selecting the optimal fixed prices for each service
level. The main thrust of this paper is to perform an economic analysis that includes the
determination of the optimal prices, and to assess their implications on the performance
of the system (e.g., congestion levels, utilization, fraction of users joining each service
level etc.). The key economic assumption that we impose is that the demand function,
determined by the user choice model, is elastic. This supposition is in line with empirical

findings for information/communication services; see [8].

Exact analysis of the system described above is difficult to carry out even under sim-
plifying Markovian assumptions, due to the intrinsic congestion “feedback” mechanism
that governs the choice behavior of users. (The system steady-state behavior is then
governed by the equilibrium induced by this feedback.) What we pursue in this paper is
an analysis that hinges on asymptotic approximations which are applicable in systems
with large processing capacities that handle high volumes of connection requests. The
main underlying machinery that facilitates analysis in this regime is given by diffusion
approximations that capture the system dynamics and support closed form derivations,

including a computation of the system equilibrium.

The main contributions of this paper are summarized in the following insights.

1. The optimal pricing schedule results in high system utilization. In particular, as



the system capacity (C) and potential demand both grow large, the utilization of
processing resources (p) increases at a rate p = 1 —v/v/C 4 o(1/v/C) as C' — oo.
(See Proposition 2.)

2. The optimal prices for each grade of service are asymptotically equal to a common
value, that being the price that induces full utilization of system resources. (See
Proposition 3.)

3. The system equilibrates in the so-called Halfin-Whitt heavy-traffic regime, where
congestion in the low-priority class is of order O(1/ VC ), and congestion in the high-
priority class is negligible (exponentially small). Finally, the equilibrium operating
point is given by the solution to a fixed point equation, and can be computed
efficiently. (See Theorem 1.)

4. The price-premium for priority service (i.e., HP-grade) is “second order,” that is,
p1 — p2 = O(1/3/C). Moreover, the fraction of incoming users joining each service
grade is determined by a “second order” analysis, in particular, it depends on the

price premium for priority. (See Theorem 1.)

5. If the optimal operating point “shuts-off” the low-priority class, the resulting sys-
tem operates as single class service with delays that are of order O(1/+/C). (See
Corollary 1.)

We note that while there may be instances (given by specific choice model parameters)
that lead to optimal economic performance by essentially “shutting-off” the LP-class,
roughly speaking, the operation of the two-class system will typically lead to revenues

that are strictly higher than those extracted using a single class system.

The model that we posit with capacity constraints and shared resources is closely
related to the one studied by Das and Srikant [2] and Maglaras and Zeevi [4] in a single-
class setting. An analysis of a system with two grades of service without choice and where
the services are not substitutable was carried out recently by Maglaras and Zeevi [5]. The
“equilibrium” formulation, where steady-state congestion signals serve to regulate the
system and user behavior follows the work of Mendelson and Whang [6]. The main ideas
in the analysis are inspired by the work of Halfin and Whitt [3] that concerns queueing

systems with “many” servers.

The remainder of the paper is structured as follows. Section 2 describes the underlying
model and Section 3 pursues the economic optimization objective using the asymptotic
approximations alluded to earlier in this section. We conclude in Section 4 where we
discuss the main insights that arise from this analysis, in particular, the effect of customer

choice on the performance of the system.



2 The System Model and Problem Formulation

System model and service grades. Our system model has a finite processing capacity,
denoted by C, which can be considered as processing rate that is allocated to the users.
Two service grades are offered to incoming connection requests: a high-priority (HP) and
low-priority (LP) grade. Let Ni(¢) and Ny(t) denote the number of users in the system
at time ¢ > 0 in the HP-class and LP-class, respectively. (This subscript convention will
be used to tag various other quantities to associate them with the two service grades.)
The HP-grade processes users’ requests at a fixed unit rate when N;(t) < C, and users
that arrive when N;(f) > C' wait in a queue until a unit of processing capacity becomes
available. We use D (t) to denote the queueing time experienced by a user arriving at time
t. The LP-grade processes users’ requests at a fixed unit rate when Ny(t) < C' — Ny(t),
i.e., when residual capacity not allocated to the HP-class affords an allocation of unit
rate to each user in the LP-class. When Ny(t) > C' — Ny(¢), users in the LP-class receive
a degraded processing rate which is equal to [C' — N;(t)]/Na(t), i.e., when resources are
congested, users in the LP-class share processing resources allocated to that grade of
service in an egalitarian manner. To facilitate analysis, we take as a proxy for the actual
excess delay (due to rate degradation) faced by a user that selects LP-grade service at
time ¢ > 0

DQ(t) =

{ 0 Ni(t) + Nyo(t) < C

A1) N+ M) > C

where m = 1/p is the mean processing time for user requests (explained below). In
large capacity systems, Do(t) turns out to be an asymptotically correct approximation
to the actual excess delay due to a pathwise version of Little’s law. Finally, the service
provider levies a fixed per-user price-per-connection charge py, po for each service grade

respectively.

User choice behavior. Connection requests arrive according to a Poisson process
with rate A. This rate can be thought of as the market potential for the offered service; this
interpretation will be useful in the analysis that follows in section 3. Users have random
processing requirements that are i.i.d. exponentially distributed random variables with
mean m = 1/p, and independent of the Poisson arrival process. Each user has a valuation
v for the service and a delay sensitivity parameter ¢, he observes the mean congestion
levels in the system, namely, ED;(t) for ¢ = 1,2 (this information is announced by the

system), and then evaluates his utility according to
wi(t) =v—pi —qm+ED;(t)) i=1,2.

The type of each user is determined by the pair of parameters v,q that are assumed
to be random, and follow a joint distribution F' with continuous density f, and i.i.d.
across users, independent of the arrival and service time processes. If u; > max{0,u,},

1,7 = 1,2 and ¢ # 7, then the incoming user will select service grade 4, and thus the rate



at which users join each service is given by
Ai(pi,t) = AP(u;(t) 2 0, wi(t) > u;(t), i,j=12, i#]

for each service grade respectively. Our analysis restricts attention to the class of demand
functions A, as determined by the user choice model, that are elastic. For our model this
is best described by assuming, hypothetically, that both service classes are priced at
a common value $p, i.e., py = py = p, and that both result in the same total delay
d =m+d; for i = 1,2. In this case, the total arrival into the system would be A(p;d) =
AP(v —gd > p). Keeping d fixed, the demand function A(p; d) is said to be elastic at the
price p if
c(p) = _0Mpd) p

Op  Ap;d)

and is said to be elastic over an interval [a,b] if e(p) > 1 for all p € [a,b]. The key

economic assumption that we impose is the following.
Assumption 1 The demand function A(p; d) is elastic in {p : A(p;d) € [0,Cpul, d > m}.

Intuitively, a demand function is elastic if a decrease in price (and increase in demand)
result in an increase in the revenue rate pA(p; d). (The elasticity of the demand function
is determined by the characteristics of the users, namely, the distribution of valuations

for service and delay sensitivity (v, q).)

Equilibrium formulation. As indicated previously, we will focus our attention on
the equilibrium steady-state behavior of the system. An equilibrium roughly corresponds
to a demand rate A = (A1, \2) and corresponding congestion cost d = (ED;, EDy) such
that both are time-independent and jointly satisfy the demand relationship

Ai(p) == AP(u; >0, w; >u;), 4,j=12, i#j. (1)

where u; = v — p; — q¢(m — qd;), and d; := ED;(c0) denotes the steady-state mean
excess delay. To be precise, we say that for some price p the system admits a unique
equilibrium if there exists a unique steady-state probability distribution for the process
N = (Ny(t), No(t) : t > 0), such the expected excess delay w.r.t. to this distribution,
ED;(o0), i = 1,2, induces a time homogenous external arrival rate A = (Ay, A2) through
(1), and A, in turn, is consistent with the aforementioned steady-state distribution. The
next result establishes the existence and uniqueness of this equilibrium regime (Proofs

are omitted from the paper due to space limitations.)

Proposition 1 For each capacity C > 0, and price vector p > 0, there exists a unique

steady-state equilibrium.

Finally, the fraction of entering traffic that selects the low priority service option is
given by

A2(p)
Ai(p) + Aa(p)

R =



Economic optimization objective. We assume that the service provider operates
in a market with imperfect competition, where she can influence the demand rate by
changing the price menu, and that she has perfect knowledge of the user type (v,q)
distribution F' and the mean service requirement per user m. Given a system with
capacity C, the service provider’s objective is to select the price vector p to maximize

the equilibrium revenue rate given by

R(p) =p-Ap), (2)

where a-b denotes the inner product between two vectors. Implicit in (2) is the dependence
of revenues on the congestion in the system, which in turn is affected by the price schedule
P.

We note that the system model imposes implicitly a non-idling assumption on the
service disciplines, i.e., that service provider cannot intentionally idle resources when
there are users (mainly LP users) in the system that require service. Also, the service
provider cannot introduce any extraneous delay to the LP class, e.g., by introducing a
delay node for the LP users after their processing task is completed but before they are
made aware of that fact. (This would apply in services that are performed remotely and

where the user cannot observe the work in progress but only the end result.)

3 Economic Analysis and System Performance

This section has two main objectives. The first is to study the revenue maximization
problem formulated in section 2. The second objective is that of performance analysis,
where we seek to develop a set of tools to analyze the behavior of a system with a given
capacity C, where the price vector p need not necessarily be optimal. In the interest of
space, our approach will to focus here on the former objective, and in passing we will

develop an approach to analyze the latter as well.

The main idea that underlies our analysis is an asymptotic framework that focuses on
a regime where capacity, C', and market potential, A, both grow large, while remaining
proportional to each other. In addition, the user characteristics, summarized in terms of
their type distribution F' and their mean processing requirement, m, are held fixed. That
is, our analysis looks at large systems that serve a large user market with characteristic
described in the previous section. To explicitly denote the connection between C' and A
we will write the latter as A = C'A, where A is a normalized market size per unit of offered
capacity. To illustrate this asymptotic regime, consider a given model with, say, 100 units
of capacity and market potential equal to 400. Our analysis then proceeds to examine
the asymptotic behavior of a sequence of systems with capacity C' and potential demand
A =4C, as C grew large. The behavior of the original system would then be extracted
by interpreting the limiting results for C' = 100, thus effectively “evaluating” the limiting

system at the capacity level that corresponds to the original system of interest.



The first step is to note that the rates at which users join each service class can be
expressed as

M) = AP (g2 PR o g 2 ).

alp) = AP (o< BZR 0 gt i) 2 ),

where the events whose probability is evaluated above correspond to the conditions:
uy > ug and ug > uq, respectively, and uw; > 0 for ¢ = 1,2. It is also natural to posit

that p; > po and dy > dy, given the nature of each service grade (and this can indeed be
verified).

In the sequel, let p;, p and d; := ED;, for i = 1,2, denote the revenue maximizing price
vector, the equilibrium resource utilization rate, and the corresponding excess delays. By
attaching a superscript ‘¢’ to various quantities, e.g., the abovementioned variable, we
denote their dependence on the system capacity C', which will grow large. The main
results of this section study these economically optimal quantities under the demand

elasticity assumption (Assumption 1).

Our first result indicates that when capacity and demand both grow large propor-
tionally to each other, it is optimal to operate the system in a regime where resources
are almost fully utilized and where the HP class suffers negligible queueing-related con-

gestion.
Proposition 2 p¢ — 1 and ED{ — 0 as C' — oo.

Assuming optimistically that ED§ — 0 as C — oo, we can define the price p that

would induce full resource utilization as follows
AP(v —gm >p) =Cp . (3)

Note that the left hand side of (3) is equal to A;(p) + Aa(p), contingent on ED; = EDy =
0. The next result establishes that the optimal prices in each service grade converge

asymptotically to p, as C' grows large.
Proposition 3 p{ — p, fori=1,2, as C' — oc.

The proposition implicitly implies that ED§ — 0 as C' — oo.

The main result of this section describes in precise detail the manner in which an
economically optimized system approaches a regime where resources are almost fully
utilized, i.e., a heavy-traffic operating point. Moreover, the analysis provides a closed
form characterization of the asymptotic system behavior, viz., equilibrium, congestion
etc. In the sequel the notation a® ~ b¢ is used to denote equality to within o(1/v/C)
terms, i.e., a¢ = b + o(1/V/C).



Theorem 1 As C' — oo,

i.) Resource utilization: p® ~ 1 — e

VC
d(v)

fii.) Congestion: limsup e? WCEDS < oo and EDS ~ ——=, for B(k) > 0, and k =
C'—o00 R\/@

Hmeoo AS/(AS 4 XS).

il
e

(71, m2) € argmin {py — kmy — Ky T < Ty}

iii.) Optimal pricing strateqy: p; ~ p + where

i.) The system equilibrium: is the unique solution to

v = aym + agmy + azd(7y)/k,

where d(y) = ¢(V)[Y(v®(y) + ¢(7)] !, and ay, as, a3 are explicit function related to

deriwatives of the user choice distribution F', and identified explicitly below.

From Theorem 1 we immediately obtain

Corollary 1 Under the conditions of Theorem 1, if 1| = 7y, then Kk =1 and K = 0, and
the system reduces to a single-class one where all users receive HP service. The delay in
that class, namely, EDS, is such that EDS ~ d(v)/v/C.

We note that the proofs of Theorem 1 and Corollary 1 hinge on diffusion limits that
are derive for the state processes which track the number of users in the system in each
service class. Some structural insights that are gleaned from this theorem are discussed

in the next section.

We conclude our discussion by specifying the constants aq, as, asz that appear in the
equilibrium equation above, and justifying formally the optimization problem that de-
termines the price corrections my, . Assuming that p{ = p+m;/ VC,E ¢ ~ 0 and that
EDS = 6,/+/C for §, = d(v)/k, we have that

T — T

Al = AIP’(qZ 2, v—quﬁ%—m/\/@) ~ RC’,u—\/aucmrl,

2
where Kk = 1 — k and

L _Ple==gm v—gmzp) o OP(g < B5E, v—gm 2 p)] 1
- ) 1 — = :

P(v — gm > p) op P(v —gm > p)’

Similarly, for the LP class we have that

T —

02

A5 = AP (q< 7T2, v—q(m+5g/\/52p+7r1/\/5) ~ RCpu—vVCulasma+asds),



where

IP(q < ™52, v—qm > p)] 1
“eT op "B(v—qm > p)
and L B
agz_ﬁ[P(Q<%,v—qm2p)]_ 1 _
om P(v — gm > p)

Summing A{ + A§ and dividing by Cu we get the expression for y that characterizes the
equilibrium. To establish that the equilibrium is unique we need to relate the equilibrium
to an implicit equation in terms of k, which is then shown to have a unique solution.

Finally, it is easy to verify that the total revenue rate has the form
A pf = pCu — VCu (py — Ry — kmy) + o(VO)  as C — oo.

This asymptotic form of the revenue rate which provides a scale decomposition into first
order and second order terms, provides formal (non-rigorous) justification of the opti-
mization problem used to determine the optimal price corrections m; and 7y in Theorem
1(iii.).

4 Discussion

The economic optimality of the heavy-traffic operating regime, in particular, the Halfin-
Whitt regime, is in some sense not surprising given the analysis of a single class system
performed in [4]. In that paper, demand elasticity is the key assumption in deriving
this optimality result. Specifically, the service provider can extract higher revenues by
lowering prices, which in turn leads to higher demand and increased resource utilization.
The results of Halfin and Whitt [3] indicate that in a single class M/M/N queue, where
N increases and the traffic intensity approaches 1, utilization can be close to 100% while
delays are still “small.” This is precisely the regime where the system equilibrates in our

formulation.

Theorem 1 can be used for purposes of performance analysis: specifically, given any
price vector p, once can re-write this in the form p = p + m;/ VC for appropriate ;,
1 = 1,2, where p is the price that induces full resource utilization and C' is the system
capacity. The theorem can then be used to to characterize the equilibrium behavior under
this pricing scheme, which can be computed using a simple numerical procedure. This,
in turn, can be used to analyze the generated revenues. This approach is in line with the
view that the system with finite capacity C' can be “embedded” within the asymptotic
derived in Theorem 1.

We note that the “first order” behavior of the system, in particular, the demand
rate for each class of service, is determined by a second order analysis (which dictates the
choice of 7’s and results in second order congestion effects). That is, k which captures the

fraction of incoming requests that select each service grade, is determined by the system



equilibrium, which in turn hinges on second order parameters (e.g., v, which measures
the second order arrival rates into the system). This stands in stark contrast to most of
the heavy-traffic literature where the first order behavior of the system can be derived
based on a “deterministic,” fluid limit, analysis. In [5] this is shown to be the case in a
model where two user populations access two service classes without choice. Thus, one
fundamental feature of the model with choice is this somewhat unusual dependence of

“first order” system performance on “second order” parameters.

Finally, we note that by “injecting” idleness in a judicious manner in the LP-class,
users, perceiving the extra delay as part of the nominal service rate degradation due to
the congestion effects, might be elicited to pay more for the HP service option. (This
point has been raised recently by Afeche [1] in the context of a single-server queueing
node.) The use of this mechanism as a means by which to increase revenues is explored
in detail in the full version of this paper, where it is shown that one can optimize the level
of “injected” idleness through a simple deterministic optimization problem that hinges

on the asymptotic analysis pursued in this paper.
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