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Abstract

We consider a bandit problem which involves sequential sampling from two populations (arms).
Each arm produces a noisy reward realization which depends on an observable random covariate.
The goal is to maximize cumulative expected reward. We derive general lower bounds on the
performance of any admissible policy, and develop an algorithm whose performance achieves the
order of said lower bound up to logarithmic terms. This is done by decomposing the global problem
into suitably “localized” bandit problems. Proofs blend ideas from nonparametric statistics and
traditional methods used in the bandit literature.

1 Introduction
The seminal paper of Robbins (1952) introduced an important class of sequential optimization problems,
otherwise known as multi–armed bandits. These models have since been used extensively in such £elds as
statistics, operations research, engineering, computer science and economics. The traditional two–armed
bandit problem can be described as follows. Consider two statistical populations (arms), where at each point
in time it is possible to sample from only one of the two and receive a random reward dictated by the properties
of the sampled population. The objective is to devise a sampling policy that maximizes expected cumulative
(or discounted) rewards over a £nite (or in£nite) time horizon. The difference between the performance of
said sampling policy and that of an oracle, that repeatedly samples from the population with the higher mean
reward, is called the regret. Thus, one can re-phrase the objective as minimizing the regret.

The original motivation for bandit-type problems originates from treatment allocation in clinical trials;
see, e.g., Lai and Robbins (1985) for further discussion and references therein. Here patients enter sequen-
tially and receive one of several treatments. The ef£cacy of each treatment is unknown, and for each patient a
noisy measurement of it is recorded. The goal is to assign as many patients as possible to the best treatment.
An example of more recent work can be found in the area of web-based advertising, and more generally cus-
tomized marketing. An on-line publisher needs to choose one of several ads to present to consumers, where
the ef£cacy of these ads is unknown. The publisher observes click-through-rates (CTRs) for each ad, which
provide a noisy measurement of the ef£cacy, and based on that needs to assign ads that maximize CTR.

When the populations being sampled are homogenous, i.e., when the sequential rewards are independent
and identically distributed (iid) in each arm, Lai and Robbins (1985) proposed a family of policies that at
each step compute the empirical mean reward in each arm, and adds to that a con£dence bound that accounts
for uncertainty in these estimates. These so-called upper-con£dence-bound (UCB) policies were shown to be
asymptotically optimal. In particular, it is proven in Lai and Robbins (1985) that such a policy incurs a regret
of order log n, where n is the length of the time horizon, and no other “good” policy can (asymptotically)
achieve a smaller regret; see also Auer et al. (2002). The elegance of the theory and sharp results developed
in Lai and Robbins (1985) hinge to a large extent on the assumption of homogenous populations and hence
identically distributed rewards. This, however, is clearly too restrictive for many applications of interest.
Often, the decision maker observes further information and based on that a more customized allocation can
be made. In such settings rewards may still be assumed to be independent, but no longer identically distributed
in each arm. A particular way to encode this is to allow for an exogenous variable (a covariate) that affects
the rewards generated by each arm at each point in time when this arm is pulled.

Such a formulation was £rst introduced in Woodroofe (1979) under parametric assumptions and in a
somewhat restricted setting; see Goldenshluger and Zeevi (2009) and Wang et al. (2005) for two very different
recent approaches to the study of such bandit problems, as well as references therein for further links to



antecedent literature. The £rst work to venture outside the realm of parametric modeling assumptions was
that of Yang and Zhu (2002). In particular, they assumed the mean response in each arm, conditional on
the covariate value, follows a general functional form, hence one can view their setting as as nonparametric
bandit problem. They proposed a policy that is based on estimating each response function, and then, rather
than greedily choosing the arm with the highest estimated mean response given the covariate, allows with
some small probability of selecting a potentially inferior arm. (This is a variant of ε-greedy policies; see
Auer et al. (2002).) If the nonparametric estimators of the arms’ functional response are consistent, and the
randomization is chosen in a suitable manner, then the above policies ensure that the average regret tends
to zero as the time horizon n grows to in£nity. In the typical bandit terminology, such policies are said to
be consistent. However, it is unclear whether they satisfy a more re£ned notion of optimality, insofar as the
magnitude of the regret is concerned, as is the case for UCB-type policies in traditional bandit problems.
Moreover, the study by Yang and Zhu (2002) does not spell out the connection between the characteristics of
the class of response functions, and the resulting complexity of the nonparametric bandit problem.

The purpose of the present paper is to further understanding of nonparametric bandit problems, deriving
regret-optimal policies and shedding light on some of the elements that dictate the complexity of such prob-
lems. We make only two assumptions on the underlying functional form that governs the arms’ responses.
The £rst is a mild smoothness condition. Smoothness assumptions can be exploited using “plug-in” policies
as opposed “minimum contrast” policies; a detailed account of the differences and similarities between these
two setups in the full information case can be found in Audibert and Tsybakov (2007). Minimum contrast
type policies have already received some attention in the bandit literature with side information, aka contex-
tual bandits, in the papers of Langford and Zhang (2008) and also Kakade et al. (2008). In these studies,
admissible policies are restricted to a more limited set than the general class of non-anticipating policies. A
related problem online convex optimization with side information was studied by Hazan and Megiddo (2007),
where the authors use discretization technique similar to the one employed in this paper. It is worth noting
that the cumulative regret in these papers is de£ned in a weaker form compared to the traditional bandit lit-
erature, since the cumulative reward of a proposed policy is compared to that of the best policy in a certain
restricted class of policies. Therefore, bounds on the regret depend, among other things, on the complexity
of said class of policies. Plug-in type policies have received attention in the context of the continuum armed
bandit problem, where as the name suggests there are uncountably many arms. Notable entries in that stream
of work are Slivkins (2009) and Lu et al. (2009), who impose a smoothness condition both on the space of
arms and the space of covariates, obtaining optimal regret bounds up to logarithmic terms.

The second key assumption in our paper is a so-called margin condition, as it has been come be known
in the full information setup; cf. Tsybakov (2004). In that setting, it has been shown to critically affect
the complexity of classi£cation problems (Tsybakov, 2004; Boucheron et al., 2005; Audibert & Tsybakov,
2007). In the bandit setup, this condition encodes the “separation” between the functions that describe the
arms’ responses and was originally studied by Goldenshluger and Zeevi (2009) in the one armed bandit
problem; see further discussion in section 2. We will see later that the margin condition is a natural measure
of complexity in the nonparametric bandit problem.

In this paper, we introduce a family of policies called UCBograms. The term is indicative of two salient
ingredients of said policies: they build on regressogram estimators; and augment the resulting mean response
estimates with upper-con£dence-bound terms. The idea of the regressogram is quite natural and easy to
implement. It groups the covariate vectors into bins and then estimates, by means of simple averaging, a
constant which is a proxy for the mean response of each arm over each such bin. One then views these
bins as indexing “local” bandit problems, which are solved by applying a suitable UCB-type modi£cation,
following the logic of Lai and Robbins (1985) and Auer et al. (2002). In other words, this family of policies
decomposes the non-parametric bandit problem into a sequence of localized standard bandit problems; see
section 3 for a complete description. The idea of binning covariates lends itself to natural implementation
in the two motivating examples described earlier: patients and consumers are segmented into groups with
“similar” characteristics; and then the treatment or ad is allocated based on the characteristic response over
that group.

In terms of performance, we prove that the UCBogram policies achieve a regret that is fairly large com-
pared to typical orders of regret observed in the literature. In particular, as opposed to a bounded or logarith-
mic growth, in our setting the order of the regret is polynomial in the time horizon n; see Theorem 3.1. One
may question, especially given the simple structure and logic underlying the UCBogram policy, whether this
is the best that can be achieved in such problems. To that end, we prove a lower bound which demonstrates
that for any admissible policy there exist arm response functions satisfying our assumptions for which one
cannot improve on the polynomial order of the upper bound established in Theorem 3.1; see Theorem 4.1. Fi-
nally, beyond these analytical results, in our view one of the contributions of the present paper is in pointing
to some possible synergies and potentially interesting connections between the traditional bandit literature
and nonparametric statistics.



2 Description of the problem
2.1 Machine and game
A bandit machine with covariates is characterized by a sequence

(Xt, Y
(1)
t , Y

(2)
t ), t = 1, 2, . . .

of independent random vectors, where
(

Xt

)

, t = 1, 2, . . . is a sequence of iid covariates in X ⊂ IRd with
probability distribution PX , and Y

(i)
t denotes the random reward yielded by arm i at time t. We assume

that, for each i = 1, 2, the rewards Y (i)t , t = 1, . . . , n are i.i.d random variables in [0, 1] with conditional
expectation given by

IE
[

Y
(i)
t |Xt] = f (i)(Xt) , t = 1, 2, . . . , i = 1, 2 ,

where f (i), i = 1, 2, are unknown functions such that 0 ≤ f (i)(x) ≤ 1, for any i = 1, 2, x ∈ X . A
natural example is a where Y (i)t takes values in {0, 1} so that the conditional distribution of Y (i)t given Xt is
Bernoulli with parameter f (i)(Xt).

The game takes place sequentially on this machine, pulling one of the two arms at each time t = 1, . . . , n.
A non-anticipating policy π = {πt} is a sequence of random functions πt : X → {1, 2} indicating to the
operator which arm to pull at each time t, and such that πt depends only on observations strictly anterior
to t. The oracle rule π?, refers to the strategy that would be played by an omniscient operator with complete
knowledge of the functions f (i), i = 1, 2. Given side information Xt, the oracle policy π? prescribes the arm
with the largest expected reward, i.e.,

π?(Xt) ∈ arg max
i=1,2

f (i)(Xt) .

The oracle rule will be used to benchmark any proposed policy π and to measure the performance of the latter
via its (expected cumulative) regret at time n de£ned by

Rn(π) := IE

n
∑

t=1

(

Y
(π?(Xt))
t − Y

(πt(Xt))
t

)

= IE

n
∑

t=1

(

f (π
?(Xt))(Xt)− f (πt(Xt))(Xt)

)

.

Also, let Sn(π) denote the inferior sampling rate at time n de£ned by

Sn(π) := IE

n
∑

t=1

1I(πt(Xt) 6= π?t (Xt), f
(1)(Xt) 6= f (2)(Xt)) , (1)

where 1I(A) is the indicator function that takes value 1 if event A is realized and 0 otherwise. The quantity
Sn(π) measures the expected number of times at which a strictly suboptimal arm has been pulled, and note
that in our setting the suboptimal arm varies as a function of the covariate value x.

Without further assumptions on the machine, the game can be arbitrarily dif£cult and, as a result, the
regret and inferior sampling rate can be arbitrarily close to n. In the following subsection, we describe
natural regularity conditions under which it is possible to achieve sublinear growth rate of the regret and
inferior sampling rate, and characterize policies that perform in a near-optimal manner.

2.2 Smoothness and margin conditions
As usual in nonparametric estimation we £rst impose some regularity on the functions f (i), i = 1, 2. Here
and in what follows we use ‖ · ‖ to denote the Euclidean norm.

SMOOTHNESS CONDITION. We say that the machine satis£es the smoothness condition with parameters
(β, L) if

|f (i)(x)− f (i)(x′)| ≤ L‖x− x′‖β , ∀x, x′ ∈ X , i = 1, 2 (2)

for some β ∈ (0, 1] and L > 0.

Notice that a direct consequence of the smoothness condition with parameters (β, L) is that the function
∆ := |f (1)− f (2)| also satis£es the smoothness condition with parameters (β, 2L). The behavior of function
∆ critically controls the complexity of the problem and the smoothness condition gives a local upper bound on
this quantity. The second condition imposed gives a lower bound on this function though in a weaker global
sense. It is closely related to the margin condition employed in classi£cation (Tsybakov, 2004; Mammen &
Tsybakov, 1999), which drives the terminology employed here.



MARGIN CONDITION. We say that the machine satis£es the margin condition with parameter α if there exists
δ0 ∈ (0, 1), Cδ > 0 such that

PX
[

0 < |f (1)(X)− f (2)(X)| ≤ δ
]

≤ Cδδ
α , ∀ δ ∈ [0, δ0]

for some α > 0.

In what follows, we will focus our attention on marginals PX that are equivalent to the Lebesgue measure
on a compact subset of IRd. In that way, the margin condition will only contain information about the behavior
of the function ∆ and not the marginal PX itself. A large value of the parameter α means that the function
∆ either takes value 0 or is bounded away from 0, except over a set of small PX -probability. Conversely, for
values of α close to 0, the margin condition is essentially void and the two functions can be arbitrary close,
making it dif£cult to distinguish them. This will be re¤ected in the bounds on the regret which are derived in
the subsequent section.

Intuitively, the smoothness condition and the margin condition work in opposite directions. Indeed, the
former ensures that the function ∆ does not “depart from zero” too fast whereas the latter warrants the
opposite. The following proposition quanti£es the extent to which the conditions are con¤icting.

Proposition 2.1 Under the smoothness condition with parameters (β, L), any machine that satis£es the mar-
gin condition with parameter α such that αβ > 1 exhibits an oracle policy π? which dictates pulling only one
of the two arms all the time, PX -almost surely. Conversely, if αβ ≤ 1 there exist machines with nontrivial
oracle policies.

Proof. The £rst part of the proof is a straightforward consequence of Proposition 3.4 in Audibert and Tsy-
bakov (2007). To prove the second part, consider the following example. Assume that d = 1, X = [0, 2],
f (2) ≡ 0 and f (1)(x) = Lsign(x − 1)|x − 1|1/α. Notice that f (1) satis£es the smoothness condition with
parameters (β, L) if and only if αβ ≤ 1. The oracle policy is not trivial and de£ned by π ?(x) = 2 if x ≤ 1
and π?(x) = 1 if x > 1. Moreover, it can be easily shown that the machine satis£es the margin condition
with parameter α and with δ0 = Cδ = 1.

3 Policy and main result
We £rst outline a policy to operate the bandit machine described in the previous section. Then we state the
main result which is an upper bound on the regret for this policy. Finally, we state a proposition which allows
us to translate the bound on the regret into a bound on the inferior sampling rate.

3.1 Binning and regressograms
To design a policy that solves the bandit problem described in the previous section, one has to inevitably
£nd an estimate of the functions f (i), i = 1, 2 at the current point Xt. There exists a wide variety of non-
parametric regression estimators ranging from local polynomials to wavelet estimators. However, a very
simple piecewise constant estimator, commonly referred to as regressogram will be particularly suitable for
our purposes.

Assume now that X = [0, 1]d and let {Bj , j = 1, . . . ,Md} be a regular covering of X , i.e., the reindexed
collection of hypercubes de£ned for k = (k1, . . . , kd) ∈ {1, . . . ,M}

d by

Bk =
{

x ∈ X :
k` − 1

M
≤ x` ≤

k`
M

, ` = 1, . . . , d
}

.

As stated earlier, we assume that PX is absolutely continuous with respect the the Lebesgue measure, so
that for any I ⊂ {1, . . . ,Md} we have PX(

⋂

j∈I Bj) = 0. As a result, we will omit from our analysis
considerations about events where X ∈

⋂

j∈I Bj for some I ⊂ {1, . . . ,Md}.
For each arm i = 1, 2, consider the average reward for each bin Bj , j = 1, . . . ,Md de£ned by

f̄
(i)
j = IE[f (i)(Xt)|Xt ∈ Bj ] =

1

pj

∫

Bj

f (i)(x)dPX(x) ,

where pj = PX(Bj) . By analogy with histograms, the empirical counterpart of the piecewise constant

function x 7→
∑Md

j=1 f̄
(i)
j 1I(x ∈ Bj), is often called a regressogram. To de£ne it, we need the following

quantities. Let N (i)
t (j, π) denote the number of times π prescribes to pull arm i at times anterior to t when

the covariate was in bin Bj ,

N
(i)
t (j, π) =

t
∑

s=1

1I(Xs ∈ Bj , πs(Xs) = i) ,



and let Y
(i)

t (j, π) denote the average reward collected at those times,

Y
(i)

t (j, π) =
1

N
(i)
t (j, π)

t
∑

s=1

Y (i)s 1I(Xs ∈ Bj , πs(Xs) = i) ,

where here and throughout this paper, we use the convention 1/0 = ∞. For any arm i = 1, 2 and any time
t ≥ 1 the regressograms obtained from a policy π at time t are de£ned by the following piecewise constant
estimators

f̂
(i)
t,π(x) =

Md

∑

j=1

Y
(i)

t (j, π)1I(x ∈ Bj) .

While regressograms are rather rudimentary nonparametric estimators of the functions f (i), they allow us to
decompose the original problem into a collection of M d traditional bandit machines without covariates, each
one corresponding to a different bin.

3.2 The UCBogram
The “UCBogram” is an index type policy based on upper con£dence bounds for the regressogram de£ned
above. Upper con£dence bounds (UCB) policies are known to perform optimally in the traditional two armed
bandit problem, i.e., without covariates (Lai & Robbins, 1985; Auer et al., 2002). The index of each arm is
computed as the sum of the average past reward and a stochastic term accounting for the deviations of the
observed average reward from the true average reward. In the UCBogram, the average reward is simply
replaced by the value of the regressogram at the current covariate Xt.

For any s ≥ 1 the upper con£dence bound at time t bound is of the form

Ut(s) =

√

2 log t

s
,

and Ut(0) = 0. The UCBogram π̂ is de£ned as follows. For any x ∈ [0, 1]d, de£ne

N
(i)
t (x) =

Md

∑

j=1

N
(i)
t (j, π̂)1I(x ∈ Bj) ,

the number of times the UCBogram prescribes to pull arm i at times anterior to t when the covariate was in
the same bin as x. Then π̂ = (π̂1, π̂2, . . .) is de£ned recursively by

π̂t(x) ∈ arg max
i=1,2

{

f̂
(i)
t,π̂(x) + Ut(N

(i)
t (x))

}

.

Notice that the UCBogram is indeed a UCB-type policy. Indeed, for each arm i = 1, 2 and each point x,
it computes an estimator f̂ (i)t,π(x) of the expected reward and adds an upper con£dence bound Ut(N

(i)
t (x))

to account for stochastic variability in this estimator. The most attractive feature of the regressogram is that
it allows to decompose the nonparametric bandit problem into independently operated local machines as
detailed in the proof of the following theorem.

Theorem 3.1 Fix β ∈ (0, 1], L > 0 and α ∈ (0, 1]. Let X = [0, 1]d and assume that the covariates Xt have
a distribution which is equivalent1 to the Lebesgue measure on the unit hypercube X . Let the machine satisfy
both the smoothness condition with parameter (β, L) and the margin condition with parameter 0 < α ≤ 1.
Then the UCBogram policy π̂ with M = b(n/ log n)1/(2β+d)c has an expected cumulative regret at time n
bounded as follows,

Rn(π̂) ≤ Cnmax
{( n

log n

)−
β(α+1)
2β+d

,
( n

(log n)2

)− 2β
2β+d

}

,

where C > 0 is a positive constant.

Proof. To keep track of positive constants, we number them c1, c2, . . .. De£ne c1 = 2Ldβ/2 + 1, and let
n0 ≥ 2 be the largest integer such that

(

n0
log n0

)β/(2β+d)

≤
2c1
δ0

,

1Two measures µ and ν are said to be equivalent if there exist two positive constants c and c̄ such that cµ(A) ≤
ν(A) ≤ c̄µ(A) for any measurable set A.



where δ0 is the constant appearing in the margin condition. If n ≤ n0, we have Rn ≤ n0 so that the result of
the theorem holds when C is chosen large enough, depending on the constant n0. In the rest of the proof, we
assume that n > n0 so that c1M−β < δ0.

Recall that the UCBogram policy π̂ is a collection of functions π̂t that are constant on each Bj . De£ne
the regret Rj(π̂) on bin Bj by

Rj(π̂) =
n
∑

t=1

(

f (π
?(Xt))(Xt)− f (π̂t(xj))(Xt)

)

1I(Xt ∈ Bj) ,

where xj is an arbitrary element of Bj . Observe that the overall regret of π̂ can be written as

Rn(π̂) =

Md

∑

j=1

IERj(π̂) .

Consider the set of “well behaved” bins on which the expected reward functions of the two arms are well
separated:

J = {j : ∃ x ∈ Bj , |f
(1)(x)− f (2)(x)| > c1M

−β} .

For any j /∈ J and any x ∈ Bj , we have |f (1)(x)− f (2)(x)| ≤ c1M
−β < δ0 so that

IERj(π̂) ≤ c1M
−β

n
∑

t=1

IP
[

0 < |f (1)(Xt)− f (2)(Xt)| ≤ c1M
−β , Xt ∈ Bj

]

,

Summing over j /∈ J , we obtain from the margin condition that
∑

j /∈J

IERj(π̂) ≤ Cδc
1+α
1 nM−β(1+α) . (3)

We now treat the well behaved bins, i.e., bins Bj such that j ∈ J . Notice that since each bin is a hyper-
cube with side length 1/M and since the reward functions satisfy the smoothness condition with parameters
(β, L), we have

|f (1)(x)− f (2)(x)| > c1M
−β − 2Ldβ/2M−β = M−β ,

for any x ∈ Bj , j ∈ J . In particular, for such j, since the two functions are continuous, the difference
f (1)(x)− f (2)(x) has constant sign over Bj and |f̄ (1)j − f̄

(2)
j | > M−β . As a consequence, the oracle policy

π? is constant on Bj , equal to π?(j) for any j ∈ J and, conditionally on {Xt ∈ Bj}, the game can be
viewed as a standard bandit problem, i.e., without covariates, where arm i has bounded reward with mean
f̄
(i)
j . Moreover, conditionally on {Xt ∈ Bj}, the UCBogram can be seen as a standard UCB policy. Applying

for example Theorem 1 in Auer et al. (2002), we £nd that for j ∈ J ,

IERj(π̂) ≤
[

(

1 +
π2

3

)

∆j

]

+
8 log n

∆j
≤ c2

log n

∆j
, (4)

where ∆j = |f̄
(1)
j − f̄

(2)
j | is the average gap over the bin Bj . Note that the UCB policy employed here uses

the term log t instead of log(N (1)
t (j, π) +N

(2)
t (j, π)) which is prescribed in Auer et al. (2002); it is easy to

verify that either choice leads to an identical bound on the regret.
We now use the margin condition to provide lower bounds on ∆j . Assume without loss of generality

that the gaps are ordered 0 < ∆1 ≤ ∆2 ≤ . . . ≤ ∆Md and de£ne the integers j1 = min(J ) and j2 ∈
{j1, . . . ,M

d} to be the largest integer such that ∆j2 ≤ δ0/c1. Therefore, for any j ∈ {j1, . . . , j2} ∩ J , we
have on the one hand,

PX
[

0 < |f (1) − f (2)| ≤ ∆j + (c1 − 1)M−β
]

≥

Md

∑

k=1

pk1I(0 < ∆k ≤ ∆j) ≥
cj

Md
, (5)

where we use the fact that pk = PX(Bk) ≥ c/Md since PX is equivalent to the Lebesgue measure on [0, 1]d

(see footnote 1). On the other hand, the margin condition yields for any j ∈ {j1, . . . , j2} ∩ J that,

PX
[

0 < |f (1) − f (2)| ≤ ∆j + (c1 − 1)M−β
]

≤ Cδ
(

c1∆j)
α , (6)

where we have used the fact that ∆j + (c1 − 1)M−β ≤ c1∆j ≤ δ0, for any j ∈ {j1, . . . , j2} ∩ J . The
previous two inequalities yield

∆j ≥ c3

( j

Md

)1/α

, ∀ j ∈ {j1, . . . , j2} ∩ J . (7)



Combining (3), (4) and (7), we obtain the following bound,

Rn(π̂) ≤ c4

[

nM−β(1+α) + j1M
−β + (log n)

j2
∑

j=j1

(

Md

j

)1/α

+Md log n
]

. (8)

Note that applying the same arguments as in (5) and (6), we £nd that j1 satis£es
cj1
Md
≤ PX

[

0 < |f (1) − f (2)| ≤ c1M
−β
]

≤ Cδ
(

c1M
−β)α ,

so that j1 ≤ c5M
d−αβ . We now bound from above the sum in (8) using the following integral approximation:

j2
∑

j=j1

(

Md

j

)1/α

≤
Md

∑

j=j1

(

Md

j

)1/α

≤ c7M
d

∫ 1

M−αβ

x−1/αdx . (9)

If α < 1, this integral is bounded by c6Mβ(1−α) and if α = 1, it is bounded by c7 logM . As a result, the
integral in (9) is of order Md(Mβ(1−α) ∨ logM) and we obtain from (8) that

Rn(π̂) ≤ c8

[

nM−β(1+α) +Md(Mβ(1−α) ∨ logM) log n
]

, (10)

and the result follows by choosing M as prescribed.

We should point out that the version of the UCBogram described above speci£es the number of bins M as
a function of the horizon n, while in practice one does not have foreknowledge of this value. This limitation
can be easily circumvented by using the so-called doubling argument (Cesa-Bianchi & Lugosi, 2006) which
consists of “reseting” the game at times 2k, k = 1, 2, . . .

The reader will note that when α = 1 there is a potentially super¤uous log n factor appearing in the
upper bound in the theorem. More generally, for any α > 1, it is possible to minimize the expression on the
right hand side of (10) with respect to M , but the optimal value of M would then depend on the value of α.
This sheds some light on a signi£cant limitation of the UCBogram which surfaces in this parameter regime:
it requires the operator to pull each arm at least once in each bin and therefore to incur a regret of at least
order Md. In other words, the UCBogram splits the space X in “too many” bins when α ≥ 1. Intuitively
this can be understood as follows. When α = 1, the gap function ∆(x) is bounded away from zero for most
x ∈ X , and hence there is no need to carefully estimate the gap function since it has constant sign over
“large” contiguous regions. As a result one could use larger bins in such regions reducing the overall number
of bins and therefore removing the extra logarithmic term alluded to above. These limitations are obviously
intrinsic to UCBogram-type policies.

3.3 The inferior sampling rate
Unlike traditional bandit problems, the connection between the inferior sampling rate de£ned in (1) and the
regret is more intricate here. The following lemma establishes a connection between the two.

Lemma 3.1 For any α > 0, under the margin condition we have

Sn(π) ≤ Cn
1

1+αRn(π)
α

1+α ,

for any policy π and for some positive constant C > 0.

Proof. The idea of the proof is quite standard and originally appeared in Tsybakov (2004). It has been used
in Rigollet and Vert (2009) and Goldenshluger and Zeevi (2009). De£ne the two random quantities:

rn(π) =

n
∑

t=1

|f (1)(Xt)− f (2)(Xt)|1I(πt(Xt) 6= π?(Xt)) ,

and

sn(π) =
n
∑

t=1

1I(f (1)(Xt) 6= f (2)(Xt), πt(Xt) 6= π?(Xt)) .

We have

rn(π) ≥ δ

n
∑

t=1

1I(πt(Xt) 6= π?(Xt))1I(|f
(1)(Xt)− f (2)(Xt)| > δ)

≥ δ
[

sn(π)−

n
∑

t=1

1I(πt(Xt) 6= π?(Xt), 0 < |f
(1)(Xt)− f (2)(Xt)| ≤ δ)

]

≥ δ
[

sn(π)−

n
∑

t=1

1I(0 < |f (1)(Xt)− f (2)(Xt)| ≤ δ)
]

. (11)



Taking expectations on both sides of (11), we obtain that Rn(π) ≥ δ
[

Sn(π) − nδα
]

, where we used the
margin condition. The proof follows by choosing δ = (Sn(π)/cn)

1/α for c ≥ 2 large enough to ensure that
δ < δ0

Using Lemma 3.1, we obtain the following corollary of Theorem 3.1

Corollary 3.1 Fix β ∈ (0, 1], L > 0 and α ∈ (0, 1]. Under the conditions of Theorem 3.1, the UCBogram
policy π̂ with M = b(n/ log n)1/(2β+d)c has an inferior sampling rate at time n bounded as follows,

Sn(π̂) ≤ Cnmax
{( n

log n

)− βα
2β+d

,
( n

(log n)2

)− β
2β+d

}

.

where C > 0 is a positive constant.

4 Lower bound
While the UCBogram is a very simple policy, it still provides good insights as to how to construct a lower
bound on the regret incurred by any admissible policy. Indeed, the main result of this section demonstrates
that the polynomial rate of the upper bounds in Theorem 3.1 and Corollary 3.1 is optimal in a minimax sense,
for a large class of conditional reward distributions. De£ne the Kullback-Leibler (KL) divergence between P
and Q, where P and Q are two probability distributions by

K(P,Q) =

{

∫

log
(

dP
dQ

)

dP if P ¿ Q ,

∞ otherwise.

Denote by P (i)f(X) the conditional distribution of Y (i) given X for any i = 1, 2 and assume that there exists

κ2 > 0 such that for any θ, θ′ ∈ Θ ⊂ [0, 1] the KL divergence between P (i)θ and P (i)θ′ satis£es

K(P
(i)
θ , P

(i)
θ′ ) ≤

1

κ2
(θ − θ′)2 . (12)

Assumption (12) is similar to Assumption (B) employed in Tsybakov, (2009, Section 2.5) but does not
require absolute continuity with respect to the Lebesgue measure. A direct consequence of the following
lemma is that Assumption (12) is satis£ed when Pθ is a Bernoulli distribution with parameter θ ∈ (0, 1).

Lemma 4.1 For any a ∈ [0, 1] and b ∈ (0, 1) let Pa and Pb denote two Bernoulli distributions with parame-
ters a and b respectively. Then

K(Pa, Pb) ≤
(a− b)2

b(1− b)
.

In particular, if b0 ∈ [0, 1/2), Assumption (12) is satis£ed with κ2 = 1/4 − b20, for any a ∈ [0, 1], b ∈
[1/2− b0, 1/2 + b0].

Proof. From the de£nition of the KL divergence, we have

K(Pa, Pb) = a log
(a

b

)

+ (1− a) log
(1− a

1− b

)

≤ a
(a− b

b

)

− (1− a)
(a− b

1− b

)

=
(a− b)2

b(1− b)
.

Theorem 4.1 Fix α, β, L > 0 such that αβ < 1 and let X = [0, 1]d. Assume that the covariates Xt are
uniformly distributed on the unit hypercube X and that there exists τ ∈ (0, 1/2) such that {P (i)θ , θ ∈ [1/2−

τ, 1/2 + τ ]} satis£es equation (12) for i = 1, 2. Then, there exists a pair of reward functions f (i), i = 1, 2
that satisfy both the smoothness condition with parameters (β, L) and the margin condition with parameter
α, such that for any non-anticipating policy π the regret is bounded as follows

Rn(π) ≥ Cn1−
β(α+1)
2β+d , (13)

and the inferior sampling rate is bounded as follows

Sn(π) ≥ Cn1−
βα

2β+d , (14)

for some positive constant C.



Proof. To simplify the arguments below, it will be useful to denote arm 2 by −1. Finally, with slight abuse
of notation, we use Sn(π, f (1), f (−1)) to denote the inferior sampling rate at time n that is de£ned in (1),
making the dependence on the mean reward functions explicit.

In view of Lemma 3.1, it is suf£cient to prove (14). To do so we reduce our problem to a hypothesis
testing problems; an approach this is quite standard in the nonparametric literature, cf. (Tsybakov, 2009,
Chapter 2). For any policy π, and any t = 1, . . . , n, denote by IPtπ,f the joint distribution of the collection of
pairs

(X1, Y
(π1(X1))
1 ), . . . , (Xt, Y

(πt(Xt))
t )

where IE[Y (1)|X] = f(X) and IE[Y (−1)|X] = 1/2. Let IEtπ,f denote the corresponding expectation. It
follows that the oracle policy π?f is given by π?f (x) = sign[f(x)− 1/2] with the convention that sign(0) = 1.
Fix δ0 ∈ (0, 1) as in the de£nition of the margin condition. We now construct a class C of functions f : X →
[0, 1] such that f satis£es (2) and

PX
[

0 < |f(X)− 1/2| ≤ δ
]

≤ Cδδ
α , ∀ δ ∈ [0, δ0] ,

As a result, the machine characterized by the expected rewards f (1) = f and f (−1) = 1/2 satis£es both the
smoothness and the margin conditions. Moreover, we construct C in such a way that for any policy π

sup
f∈C

Sn(π, f, 1/2) ≥ Cn
( n

log n

)− βα
2β+d

. (15)

for some positive constant C. Consider the regular grid Q = {q1, . . . , qMd}, where qk denotes the center
of bin Bk, k = 1, . . . ,Md, for some M ≥ 1 to be de£ned. De£ne Cφ = min(2β−1L, τ, 1/4) and let
φ : IRd → IR+ be a smooth function de£ned as follows:

φ(x) =

{

(1− ‖x‖∞)β if 0 ≤ ‖x‖∞ ≤ 1,
0 if ‖x‖∞ > 1 .

Clearly, we have |Cφφ(x)− Cφφ(x
′)| ≤ L‖x− x′‖β∞ ≤ L‖x− x′‖β for any x, x′ ∈ IRd.

De£ne the integer m = dµM d−αβe, i.e., the smallest integer that is larger than or equal to µM d−αβ ,
where µ ∈ (0, 1) is chosen small enough to ensure that m ≤ M d. De£ne Ωm = {−1, 1}m and for any
ω ∈ Ωm, de£ne the function fω on [0, 1]d by

fω(x) = 1/2 +
m
∑

j=1

ωjϕj(x) ,

where ϕj(x) = M−βCφφ(M [x − qj ])1I(x ∈ Bj). Notice in particular that fω(x) = 1/2 if and only if
x ∈ X \

⋃m
j=1Bj up to a set of zero Lebesgue measure. We are now in position to de£ne the family C as

C = {fω : ω ∈ Ωm} .

Note £rst that any function fω ∈ C satis£es the smoothness condition (2). Indeed, if u and v belong to the
same bin Bj , then

|fω(u)− fω(v)| ≤ |ϕj(u)− ϕj(v)| ≤ 2β−1L‖u− v‖β ≤ L‖u− v‖β . (16)

If u ∈ Bj and v ∈ Bk , j 6= k, consider the segment Su,v = {θu+ (1 − θ)v : θ ∈ [0, 1]} between u and v
and de£ne the points

u′ = argmin
z∈Su,v∩Bj

‖z − v‖ , v′ = argmin
z∈Su,v∩Bk

‖z − u‖ .

We have u′ ∈ Bj , v′ ∈ Bk so that

|fω(u)− fω(v)| ≤ |fω(u)− fω(u
′)|+ |fω(v)− fω(v

′)|

≤ 2β−1L‖u− u′‖β + 2β−1L‖v − v′‖β

≤ L‖u− v‖β ,

where in the second inequality we used (16) and in the third, we used the concavity of the function x 7→ xβ

for β ≤ 1 together with the fact that ‖u− u′‖+ ‖v − v′‖ ≤ ‖u− v‖.



We now check that the margin condition is satis£ed with parameter α. For any ω ∈ Ωm, we have

PX(0 < |fω(X)− 1/2| ≤ Cφδ) =

m
∑

j=1

PX(0 < |fω(X)− 1/2| ≤ Cφδ,X ∈ Bj)

= mPX(0 < φ(M [X − q1]) ≤ δMβ , X ∈ B1)

= m

∫

B1

1I(φ(Mx) ≤ δMβ)dx

= mM−d

∫

[0,1]d
1I(φ(x) ≤ δMβ)dx ,

where in the third equality, we used the fact that PX denotes the uniform distribution on [0, 1]d. Now, since
φ is non negative and uniformly bounded by 1, we have on the one hand that for δM β > 1,

∫

[0,1]d
1I(φ(x) ≤ δMβ)dx = 1 .

On the other hand, when δMβ ≤ 1, we £nd
∫

[0,1]d
1I(φ(x) ≤ δMβ)dx = 1−

∫

[0,1]d
1I(‖x‖∞ ≤ 1−Mδ1/β)dx = 1−

(

1−Mδ1/β
)d

≤ dMδ1/β .

It yields

PX(0 < |fω(X)− 1/2| ≤ Cφδ) ≤ mM−d1I(δMβ > 1) +mdM1−dδ1/β1I(δMβ ≤ 1)
)

≤M−αβ1I(M−αβ < δα) + dM1−αβδ1/β1I(M ≤ δ−1/β)

≤ (1 + d)δα ,

where we used the fact that 1 − αβ ≥ 0 to bound the second term in the last inequality. Thus, the margin
condition is satis£ed for any δ0 and with Cδ = (1 + d)/Cα

φ .
We now prove (15) by observing that if we denote ω = (ω1, . . . , ωm) ∈ Ωm, we have

sup
f∈C

Sn(π, f
(1), 1/2) = sup

ω∈Ωm

n
∑

t=1

IEt−1π,fω
PX [πt(Xt) 6= sign(fω(Xt))]

= sup
ω∈Ωm

m
∑

j=1

n
∑

t=1

IEt−1π,fω
PX [πt(Xt) 6= ωj , Xt ∈ Bj ]

≥
1

2m

m
∑

j=1

n
∑

t=1

∑

ω∈Ωm

IEt−1π,fω
PX [πt(Xt) 6= ωj , Xt ∈ Bj ] (17)

Observe now that for any j = 1, . . . ,m, the sum
∑

ω∈Ω[· · · ] in the previous display can be decomposed as

Qt
j =

∑

ω[−j]∈Ωm−1

∑

i∈{−1,1}

IEt−1π,f
ωi
[−j]

PX [πt(Xt) 6= i,Xt ∈ Bj ] ,

where ω[−j] = (ω1, . . . , ωj−1, ωj+1, . . . , ωm) and ωi[−j] = (ω1, . . . , ωj−1, i, ωj+1, . . . , ωm) for i = −1, 1.

Using Theorem 2.2(iii) of Tsybakov (2009), and denoting by P j
X(·) the conditional distribution PX(·|X ∈

Bj), we get
∑

i∈{−1,1}

IEt−1π,f
ωi
[−j]

PX [πt(Xt) 6= i,Xt ∈ Bj ] =
1

Md

∑

i∈{−1,1}

IEt−1π,f
ωi
[−j]

P j
X [πt(Xt) 6= i]

≥
1

4Md
exp

[

−K
(

IPt−1π,f
ω
−1
[−j]

× P j
X , IP

t−1
π,f

ω1
[−j]

× P j
X

)

]

=
1

4Md
exp

[

−K
(

IPt−1π,f
ω
−1
[−j]

, IPt−1π,f
ω1
[−j]

)

]

(18)

For any t = 2, . . . , n, letFt denote the σ-algebra generated by the information available at time t immediately
after observing Xt, i.e., Ft = σ

(

Xt, (Xs, Y
(πs(Xs))
s ), s = 1, . . . , t− 1)

)

. De£ne the conditional distribution



IP
·|Ft
π,f of the random couple (Xt, Y

(πt(Xt))
t ), conditioned on Ft. Denote also by EXt

the expectation with
respect to the marginal distribution of Xt. Applying the chain rule for KL divergence, we £nd that for any
t = 1, . . . , n and any f, g : X → [0, 1], we have

K
(

IPtπ,f , IP
t
π,g

)

= K
(

IPt−1π,f , IP
t−1
π,g

)

+ IEt−1π,f EXt

[

K
(

IP
·|Ft
π,f , IP

·|Ft
π,g

)

]

= K
(

IPt−1π,f , IP
t−1
π,g

)

+ IEt−1π,f EXt

[

K
(

IP
Y

(πt(Xt))
t |Ft
π,f , IP

Y
(πt(Xt))
t |Ft
π,g

)

]

,

where IP
Y

(πt(Xt))
t |Ft
π,f denotes the conditional distribution of Y (πt(Xt))

t given Ft. Since, for any f ∈ C, we

have that IE[Y (πt(Xt))
t |Ft] = f (πt(Xt))(Xt) ∈ [1/2− τ, 1/2 + τ ], we can apply (12) to derive the following

upper bound:

K
(

IP
Y

(πt(Xt))
t |Ft
π,f

ω
−1
[−j]

, IP
Y

(πt(Xt))
t |Ft
π,f

ω1
[−j]

)

≤
1

κ2

(

fω1
[−j]

(Xt)− fω−1
[−j]

(Xt)
)2

1I (πt(Xt) = 1)

≤
4

κ2
C2φM

−2β1I (πt(Xt) = 1, Xt ∈ Bj)

≤
M−2β

4κ2
1I (πt(Xt) = 1, Xt ∈ Bj) .

By induction, the last two displays yield that for any t = 1, . . . , n,

K(IPt−1π,f
ω1
[−j]

, IPt−1π,f
ω
−1
[−j]

) ≤
M−2β

4κ2
Nj,π , (19)

where

Nj,π = IEn−1π,f
ω
−1
[−j]

EX

[

n
∑

t=1

1I (πt(X) = 1, X ∈ Bj)

]

,

denotes the expected number of times t between time 1 and time n that Xt ∈ Bj and πt(Xt) = 1. Combin-
ing (18) and (19), we get

Qt
j ≥

2m−1

4Md
exp

(

−
M−2β

4κ2
Nj,π

)

. (20)

On the other hand, from the de£nition of Qt
j , we clearly have

n
∑

t=1

Qt
j ≥ 2m−1Nj,π . (21)

Plugging the lower bounds (20) and (21) into (17) yields

sup
f∈C

Sn(π, f
(1), 1/2) ≥

2m−1

2m

m
∑

j=1

max

{

n

4Md
exp

(

−
M−2β

4κ2
Nj,π

)

,Nj,π

}

≥
1

4

m
∑

j=1

{

n

4Md
exp

(

−
M−2β

4κ2
Nj,π

)

+ Nj,π

}

≥
m

4
inf
z≥0

{

n

4Md
exp

(

−
M−2β

4κ2
z

)

+ z

}

Notice now that

z∗ = argmin
z≥0

{

n

4Md
exp

(

−
M−2β

4κ2
z

)

+ z

}

is strictly positive if and only if n > 16κ2M2β+d, in which case

z∗ = 4κ2M2β log
( n

16κ2M2β+d

)

.

Taking

M =

⌈

( n

16eκ2

)
1

2β+d

⌉



gives z∗ = c∗n
2β

2β+d for some positive constant c∗, so that

sup
f∈C

Sn(π, f
(1), 1/2) ≥ Cmz∗ ≥ Cn1−

αβ
2β+d .

This completes the proof.

Notice that the rates obtained in Theorem 4.1, can be obtained in the full information case, where the
operator observes the whole i.i.d sequence (Xi, Y

(1)
i , Y

(2)
i ), i = 1, . . . , n, even before the £rst round. Indeed,

such bounds have been obtained by Audibert and Tsybakov (2007) in the classi£cation setup, i.e., when
the rewards are Bernoulli random variables. However, we state a different technique, tailored for bandit
policies in a partial information setup. While the £nal result is the same, we believe that it sheds light on the
technicalities encountered in proving such a lower bound.
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