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Abstract

Suppose we are given n real valued samples 2, Zs, ..., Z, from a stationary
source P. We consider the following question. For a compression scheme that
uses blocks of length &, what is the minimal distortion (for encoding the true
source P) induced by a vector quantizer of fixed rate R, designed from the
training sequence. For a certain class of dependent sources, we derive condi-
tions ensuring that the empirically designed quantizer performs as well (on the
average) as the optimal quantizer, for almost every training sequence emitted
by the source. In particular, we observe that for a code rate R, the optimal
way to choose the dimension of the quantizer is k, = [(1 — d)R 'logn|. The
problem of empirical design of vector quantizer of fixed dimension k£ based on a
vector valued training sequence X1, Xo,...,X,, is also considered. For a class
of dependent sources, it is shown that the mean squared error (MSE) of the em-
pirically designed quantizer w.r.t the true source distribution converges to the
minimum possible MSE at a rate of O(y/logn/n), for almost every training se-
quence emitted by the source. In addition, the expected value of the distortion
redundancy — the difference between the MSE’s of the quantizers — converges
to zero for a sequence of increasing block lengths £, if we have at our disposal
corresponding training sequences whose length grows as n = 289k Some of
the derivations extend recent results in empirical quantizer design using an i.i.d.
training sequence, obtained by Linder et al. [7] and Merhav and Ziv [8]. Proof
techniques rely on recent results in the theory of empirical processes, indexed
by VC function classes.
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1 Introduction

One of the central problems in lossy data compression concerns designing vector
quantizers from training data. The following question is of interest. Suppose we
are given a real valued training sequence, drawn according to the source probability
measure, from which we are to design a quantization scheme. The empirical design of a
k-dimensional vector quantizer may be viewed as a process of learning from examples,
and the effectiveness of this learning phase may be measured by the performance of
the vector quantizer on future data. The discrepancy between the mean squared error
when using the empirical quantizer to compress the source P, and that of the optimal
quantizer of dimension k and rate R (aka the operational distortion-rate function
of order k) is of interest. In what follows we will refer to this as the distortion
redundancy.

The main question here is the following. Can one choose the dimension of the
quantizer, based on the the training set, so as to ensure an arbitrarily small distortion
redundancy (in a manner that will be made precise). We note in passing that the
empirical design via minimizing the empirical distortion is typically implemented
using the so-called Lloyd algorithm, or LBG [6].

Pollard [11] proved that for all stationary memoryless sources, with vector valued
r.v.’s in R having a finite second order moment, the empirical mean squared error
(MSE) will asymptotically converge to the optimal one. These asymptotics were
investigated in [3], by experimental verification. A slightly different question was
addressed both in [7] and [8]. For a fixed dimension k and rate R, what is the
minimal amount of side information needed to design a vector quantizer so that the
distortion redundancy is made arbitrarily small. It turns out that the number of
training vectors should be n = 2*% in an exponential sense. The ‘direct’ part was
given by [7, Corollary 1], and subsequently strengthened by Merhav and Ziv who
established the ‘converse’ result in [8, Theorem 3], and also state the ‘direct’ part in a
more general setting. Another related result was obtained by Bartlett et al. [1], using
a minimax framework to derive a lower bound on the distortion redundancy, for fixed
dimension vector quantizers. Linder et al. [7] also proved that k, = (1 — §)R ' logn
is the optimal choice of dimension for empirically designing a quantizer, based on n
scalar samples drawn from a memoryless source. Here and throughout log = log,.
For this choice, they establish that the distortion redundancy is almost surely of order
n~" with 7 € (0,/4). The random variables are assumed to take values in a bounded
set.

All of the above papers make the fairly stringent assumption of i.i.d. training
samples, which in fact only holds for a class of memoryless sources. As pointed out in
[8] “It is an open problem to prove the ‘direct part’ for dependent training vectors”.
We note that the independence assumption is usually not true in practice, and in
fact it is much more common to encounter data exhibiting strong dependence or
correlation.

In this paper we focus on the problem of empirical quantizer design for a class of



stationary dependent sources, satisfying certain mixing conditions. The term source
relates to the underlying stochastic process, or the associated probability measure, de-
pending on the context. Given a real valued training sequence Z} = (Z1, Zs, . . ., Zy),
we derive an upper bound on the distortion redundancy for a fixed block size k. Sub-
sequently, we argue that the block size must increase at a rate which is logarithmic
with the length of the training sequence, to ensure that the distortion redundancy
tends to zero for almost every training sequence. Alternatively, for an increasing se-
quence of block lengths k, the length of the training sequence should be n = 2(f+9k g
that the distortion redundancy converge to zero in expectation. Consequently, we are
able to obtain finite sample bounds on the minimal length of the training sequence,
for which the distortion redundancy is arbitrarily small with high probability. The
rate of the quantizer for which the distortion redundancy tends to zero is restricted
by the dependence structure in the process. The intuitive explanation is: If we take
a large block size, this will make the dependence effects smaller, and incidently also
improve the mean squared error, at the expense of decreasing the number of training
vectors available for the design algorithm. Thus, the dimension of the quantizer, the
size of the training sequence, and the dependence structure of the process all play a
role in determining the optimal tradeoff. Our results quantify the effects of the de-
pendent structure of the process, on the distortion redundancy, and consequently on
the length of the required training sequence. Another result we obtain may be viewed
as an extension of [7, Corollary 1], and can be used to extend the ‘direct’ theorem
in [8, Theorem 2]. We show that for a class of vector valued dependent sources, the

distortion redundancy converges to zero almost surely at a rate of O(y/logn/n). In
addition, for a sequence of increasing dimensions the expected distortion redundancy
can be made arbitrarily small for a training sequence that grows as n = 259 The
essential ingredients in the derivations are the results obtained in [7] for the i.i.d.
case, and some recent results from the theory of empirical processes indexed by VC
classes [13].

This paper is organized as follows. In section 2 we give some preliminary definitions.
Section 3 presents the main results and Section 4 gives some concluding remarks. The
proofs are omitted, and can be found in the full paper.

2 Definitions and Notation

Let R denote the real line, and let IRF denote the k-dimensional Euclidean space.
A k-dimensional N-level vector quantizer is a measurable mapping Q : R* — Cy,
where Cy = {y1,¥a2,...,yn} is a finite collection of vectors in R”, referred to as the
codebook of Q. Thus, @ induces a partition of RF with cells S; = {x : Q(x) = y;},
and the classification of input vectors into codewords is done according to the nearest
neighbor partition rule, i.e.,

Q) =y, if [x —yill <llx =yl Vi

The norm || - || denotes the Euclidean norm, and ties are broken arbitrarily. The rate
of this quantizer is R = (log N)/k bits per symbol. Here and throughout we use bold
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face notation to distinguish vectors from scalars.

Let {Z;};>1 be a discrete time real valued stationary stochastic process, with prob-
ability measure P. Here and throughout we will denote r.v.’s using uppercase type
and corresponding realizations using lowercase. In what follows we will be interested
in the design of a fixed rate R lossy encoder, by means of quantizing source blocks of
length k using a k-dimensional, N = 2*%-level, vector quantizer (). There are many
reasons to focus on vector quantization as opposed to scalar (see [5] for a discus-
sion and list of related references). It is sufficient to note that even for simple i.i.d.
processes a substantial improvement in performance may be achieved using a vector
quantizer.

We will focus on a class of stationary mixing processes, for which we are assured
that events sufficiently ‘far apart’ are ‘almost’ independent. More precisely, let

f{:U(Zl,ZZ,...,Zj)

and
Five=0Zjre, Zjrerr, - )

be the sigma-algebras generated by the respective r.v.’s. In the sequel, the following
definition of mixing will be utilized

Definition 1 For any sequence {Z;}i>1, the B-mizing (or completely reqular) coeffi-
cient (3,(0) is defined as follows:

B.(f) =supE | sup |P(B|F)— P(B)

i>1 BEF?,

A process for which 3,(¢) — 0 for £ — oo is called G-mizing. Further properties and
relation to other mixing conditions can be found in [2], and [4]. We note in passing
that there exist other definitions of mixing, most of which are more restrictive than
[-mixing (see the above references for more details).

Remark 1 We focus on this measure of dependence since the machinery underlying
our main results is the uniform convergence of sample means to their expectations,
over certain so called VC-classes. For this framework, the -mixing condition is a
natural choice (see the discussion in [13] following Lemma 4.1, and [10] for more
details). In particular, in this work we follow closely the results in [13], which have
been derived for the #-mixing class.

In order to obtain finite sample results in the uniform convergence framework, we
must further restrict the class of sources. In what follows we focus on the following
subclass of sources

P(B,3,b) ={P: P(1Z| < B)=1, B({) < Bexp{—bl} ¥ > 1}



where B < oo. Thus we are assuming that the scalar random variables emitted by
the source are uniformly bounded, and that the ‘memory’ of the process vanishes
exponentially fast (in the sense of the S-mixing definition), for events which are suf-
ficiently far apart. For examples of such processes the reader is referred to [13] and
the list of references therein. In particular, classes of Harris recurrent stationary
Markov processes are exponentially f-mixing under appropriate drift conditions. Ex-
amples include stationary ARMA processes with innovations that have distribution
absolutely continuous w.r.t. Lebesgue measure (see [9] for further details).

Remark 2 The boundedness assumption is standard in deriving exponential inequal-
ities (c.f. [7] and [8] in this context). It is mainly put forth to avoid technical
conditions. In particular, growth rate of moments, existence of the moment generat-
ing function in a certain region, and similar assumptions may be substituted in for
boundedness of the random variables. However, to obtain distribution free uniform
convergence rates, the boundedness assumption cannot be dispensed with so easily.
In particular, the proof technique used herein will not hold in the absence of this
assumption. The assumption that the memory of the process decays exponentially
fast is also essential. A polynomial rate will not suffice in order to obtain bounds and
rates of convergence. Thus, P is in fact the most general class of processes given the
present proof techniques.

Recall Z] denotes a training sequence emitted by a source P. We divide the n-
sequence into blocks of length k, one after the other. Let m, = |n/2k], so that
there are 2m,, blocks of length £, and a remainder block of length n — 2m,k. Let us
assume, with no loss of generality, that n/2k is an integer, and thus the remainder
block is empty. The proof of Theorem 1 shows that the remainder block is uniformly
bounded and therefore does not affect the analysis. Denote the vector valued block
sequence by (X;)i1<i<om,. The choice of m is made to adhere with the proofs of the
main theorem, where the above definition is convenient.

We now return to the problem of vector quantizer design. Given a quantizer @) :
R* — R”, define its mean square average distortion

A(Q) = E[X - Q(X)|]

where the expectation is taken w.r.t. the probability measure that P induces on
B([-B, BJ¥), and the empirical distortion as

1 2mnp
An(@) = 5= > X = QX -
n =1

Let Q* denote the quantizer with minimal average distortion, and let Q) be the
quantizer with minimal empirical distortion. That is,

Q arg, min (Q)

and

Qs arg , min (Q)
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where Q(R; k) stands for the class of k-dimensional, N = 2*%.level quantizers, for
some rate R fixed and given. Denote

Di(R) = TAQY)

the k’th order operational distortion-rate function. Since the encoding is done ac-
cording to the nearest neighbor rule, finding the optimal quantizer amounts to finding
the set of codewords Cy.

In the sequel we will be interested in the distortion redundancy, which we define as
follows

£(0,@") = TA@) - Du(R) (1)
— (ii)

(i)
where

A@) =E[IX - Qu(X)I” | X1, Xa, .., Xom, |

The difference between the two mean squared errors may be interpreted as follows.

e The first term, (i) in eq. (1), may be understood as the error induced by the
empirically designed vector quantizer, when applied to a ‘very large’ future data
set. That is, once we have designed the quantizer using the training sequence,
it is held fixed and put to use on future data. Since the quantizer is being
applied to a ‘very large’ data set, we may take the performance measure to be
the average distortion rather than the empirical distortion.

e The second term, (ii) in eq. (1), is the average distortion, induced by the optimal
vector quantizer, i.e., one that is ‘custom’ designed using the source’s statistics.
This distortion is achievable only if we have perfect knowledge of the source k
marginal.

In essence, the difference between the two MSE’s represents the loss incurred by using
the empirically optimal quantizer, instead of the optimal one.

3 Main Results

Our objective is to determine the optimal choice of quantizer dimension given the
training sequence, and derive a nonasymptotic lower bound on the length of the
training sequence which will assure a distortion redundancy which is arbitrarily small.
Let the rate of the quantizer R be fixed and given. The first theorem gives a large
deviation bound on the generalization error.

Theorem 1 Suppose that a rate R, k dimensional quantizer ()}, is designed to mini-
mize A, (Q), the empirical distortion, over a scalar valued training sequence Zi' emit-
ted by a source P € P(B,[3,b) (and blocked into k blocks). Then for any ¢ > 0, and
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n > max{ci /€% k/e} the distortion redundancy is bounded as follows
P} £(Q;, Q") > €} < 8(n/k)NFHDemne/ek 1 3 /k)eth

for ¢, and ¢y absolute constants, whose values can be explicitly determined.

Note that the bound is comprised of two terms. The first is the classical exponential
bound obtained using the Vapnik-Chervonenkis inequality [12]. This result was de-
rived in [7, Theorem 1] for memoryless sources. The second is a bound on the error
induced by the memory structure of the process. Note also that the dependence on
the block size k is explicit in the upper bound. In fact, the block size plays a crucial
role in balancing the two error terms. This relation is pursued in Corollary 2. Clearly,
a quantizer of large dimension can give rise to smaller distortion, at the expense of
having less training data available. Thus, if k£ is increased, the quantizer tends to
underfit the source. However, this increase allows us to control the error term that
results from the dependent structure of the blocks.

By controlling the growth of block size (i.e., the quantizer dimension k), we may
obtain consistency results. Moreover, using the bound derived in Theorem 1, we can
determine the rate at which the distortion redundancy converges to zero. This result
is stated in the following corollary.

Corollary 1 Fiz § € (0,1) and take the block size k, = |*=2logn]. Then, for any
source P € P code rate R € (0, Rimax), and 7 € (0,3) we have

kinA(Q;;) D (R)=0(n ") as —P

where Ripax 2 (1 —0)bloge/2.

An immediate consequence is that the convergence holds also in mean by the
bounded convergence theorem (since P € P). From the bounds obtain in Theo-
rem 1 it is clear that if the S-mixing assumption is weakened to a polynomial mixing
rate, there is no choice of k£ such that the overall error converges in probability. Note
also that the rate is restricted by the class of sources P in such a way, that b 1 oo
implies Ry T 00. In the limit of b sufficiently large the process is ‘essentially’ i.i.d.,
and the rate constraint vanishes, as we would expect. The choice of the block size as
well as the restriction on rate region are both a result of the proof technique. The
block size choice is in fact optimal in this setting, since for &, = [(1 + §)/R]logn the
distortion redundancy does not converge to zero.

Another result which follows from the exponential bound in Theorem 1 is a lower
bound on the size of the training sequence, needed to ensure that the event {&, < €}
occur with probability 1 — «, for any arbitrarily small € and a.

Corollary 2 Let P € P. Fiz § € (0,1), R € (0,2Rnax), and block size k, =
L% logn|. Then, for any e,a > 0

P {z? : %A(Q;) < Di(R) —|—6} >1 -«
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hold for all n such that

1
@SK(’P,R,(S,G,CV)

nd/3
with K and explicit function of the given parameters.

Thus, for a given confidence level «, and confidence interval of width e around
Dy(R), one can use Corollary 2 to read off the sufficient size of the training sequence
needed to ensure that the empirical quantizer will have performance in the required
confidence region.

The following result is derived for vector valued processes. Following [8], let us
define a class of probability measures

P'(B,B,b) = {P: P(|X|| < VEB) =1, B(() < Bexp{-bl} ¥ > 1}

where B < 0o, and X : @ — R” is random variable emitted by the source P. Here
|| - || denotes the usual Euclidean norm.

Then, we have

Theorem 2 Suppose that a rate R = lﬂgkﬂ, k dimensional quantizer Q) is designed
to minimize A, (Q), the empirical distortion, over a vector valued training sequence
X1 emitted by a source P € P'(B, 3,b). Then, we have

LA@) = D(R) = O ( log”> a5 — P
k n

The theorem follows from [7, Theorem 1|, and Lemma 4.2 in [13]. Note that in
this setting we have no rate constraints on the quantizer. An immediate corollary
is the convergence in mean, following again from the bounded convergence theorem.
Consider now a setup in which the dimension of the vectors k increases. Merhav and
Ziv [8] asked the following question: what is the minimal amount of side information
bits needed to design a quantizer, such that the expected distortion redundancy is
arbitrarily small. Now, by application of [13, Lemma 4.1] to Theorem 1 of [8] we
obtain the following. Fix 6 > 0 and n = 2F(#+9)_ Then, the expected distortion
redundancy vanishes for & — oo. By proper quantization of the training sequence
vectors, as in [8], the amount of side information bits can be shown to be 2F(f+d)+o(k)
where o(k)/k — 0. This immediately extends Theorem 2 of [8] to non i.i.d. training
sequence, and implicitly their Theorem 4 which deals with the same questions in
the case of stationary processes. We may now assume that the empirical quantizers
are trained using a dependent training sequence, rather then make the stringent
assumption of an i.i.d. sequence.

4 Conclusions

The results in this paper extend some existing ones which were derived for an i.i.d.
training sequence. Additional results may be obtained by the same techniques. In



particular, a counterpart to Theorem 2 can be derived for convergence in expectation,
and this in turn can be used to generalize results in [7] and [8, Theorem 2].

Several interesting questions arise from the analysis and results. For the scalar case
we have assumed that the source has marginals which are supported on a bounded set.
This is a rather stringent assumption, though it is quite common in the framework we
pursue in this paper (see also [7] and [1]). It is still an open problem to see whether
one can obtain these results under moment assumptions or tail conditions instead,
even in the case of memoryless sources.

It is somewhat disturbing that some of the results for block encoding the scalar val-
ued source are derived under a rate constraint. This constraint, in turn, is determined
by the exponential rate of decay of the mixing coefficient associated with the source.
Note that for processes with ‘short’” memory we have R, large, and as the process
is closer to independent, the rate constraint becomes negligible. We note in passing
that this restriction follows from the proof technique alone, and therefor should be
investigated further.

Results Corollary 1 and 2, are obtained under the condition of growing block size.
In the limit, it is known that under weak conditions (e.g., stationarity and ergodicity)
the optimal MSE converges (in the block size) to the distortion rate function. That
is, Dx(R) — D(R). An interesting question therefor is to determine at what rate does
k~'A(Q?), the per symbol distortion for the empirically designed quantizer, converge
to the distortion rate function for the class of weakly dependent sources studied
in this paper. For memoryless sources, Linder et al. [7, Theorem 2] established that

Dy(R)—D(R) = O(y/log k/k), and for correlated Gaussian sources Wyner [14] proved
that the same convergence rate holds, if the spectral density is Lipschitz continuous.
Whether one can establish this rate of convergence for the class of sources P is subject
to further investigation.
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