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Abstract

Suppose we are given n real valued samples Z�� Z�� � � � � Zn from a stationary
source P � We consider the following question� For a compression scheme that
uses blocks of length k� what is the minimal distortion �for encoding the true
source P � induced by a vector quantizer of �xed rate R� designed from the
training sequence� For a certain class of dependent sources� we derive condi�
tions ensuring that the empirically designed quantizer performs as well �on the
average� as the optimal quantizer� for almost every training sequence emitted
by the source� In particular� we observe that for a code rate R� the optimal
way to choose the dimension of the quantizer is kn � b�� � ��R�� log nc� The
problem of empirical design of vector quantizer of �xed dimension k based on a
vector valued training sequence X��X�� � � � �Xn is also considered� For a class
of dependent sources� it is shown that the mean squared error �MSE� of the em�
pirically designed quantizer w�r�t the true source distribution converges to the
minimum possible MSE at a rate of O�

p
logn�n�� for almost every training se�

quence emitted by the source� In addition� the expected value of the distortion
redundancy � the di	erence between the MSE
s of the quantizers � converges
to zero for a sequence of increasing block lengths k� if we have at our disposal
corresponding training sequences whose length grows as n � ��R���k � Some of
the derivations extend recent results in empirical quantizer design using an i�i�d�
training sequence� obtained by Linder et al� �
� and Merhav and Ziv ���� Proof
techniques rely on recent results in the theory of empirical processes� indexed
by VC function classes�
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� Introduction

One of the central problems in lossy data compression concerns designing vector
quantizers from training data� The following question is of interest� Suppose we
are given a real valued training sequence� drawn according to the source probability
measure� from which we are to design a quantization scheme� The empirical design of a
k�dimensional vector quantizer may be viewed as a process of learning from examples�
and the e�ectiveness of this learning phase may be measured by the performance of
the vector quantizer on future data� The discrepancy between the mean squared error
when using the empirical quantizer to compress the source P � and that of the optimal
quantizer of dimension k and rate R �aka the operational distortion�rate function
of order k� is of interest� In what follows we will refer to this as the distortion
redundancy�

The main question here is the following� Can one choose the dimension of the
quantizer� based on the the training set� so as to ensure an arbitrarily small distortion
redundancy �in a manner that will be made precise�� We note in passing that the
empirical design via minimizing the empirical distortion is typically implemented
using the so�called Lloyd algorithm� or LBG ��	�

Pollard ���	 proved that for all stationary memoryless sources� with vector valued
r�v�
s in IRk having a �nite second order moment� the empirical mean squared error
�MSE� will asymptotically converge to the optimal one� These asymptotics were
investigated in ��	� by experimental veri�cation� A slightly di�erent question was
addressed both in �
	 and ��	� For a �xed dimension k and rate R� what is the
minimal amount of side information needed to design a vector quantizer so that the
distortion redundancy is made arbitrarily small� It turns out that the number of
training vectors should be n � �kR in an exponential sense� The �direct
 part was
given by �
� Corollary �	� and subsequently strengthened by Merhav and Ziv who
established the �converse
 result in ��� Theorem �	� and also state the �direct
 part in a
more general setting� Another related result was obtained by Bartlett et al� ��	� using
a minimax framework to derive a lower bound on the distortion redundancy� for �xed
dimension vector quantizers� Linder et al� �
	 also proved that kn � ��� ��R�� logn
is the optimal choice of dimension for empirically designing a quantizer� based on n
scalar samples drawn from a memoryless source� Here and throughout log � log��
For this choice� they establish that the distortion redundancy is almost surely of order
n�� with � � ��� ����� The random variables are assumed to take values in a bounded
set�

All of the above papers make the fairly stringent assumption of i�i�d� training
samples� which in fact only holds for a class of memoryless sources� As pointed out in
��	 �It is an open problem to prove the �direct part
 for dependent training vectors��
We note that the independence assumption is usually not true in practice� and in
fact it is much more common to encounter data exhibiting strong dependence or
correlation�

In this paper we focus on the problem of empirical quantizer design for a class of
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stationary dependent sources� satisfying certain mixing conditions� The term source
relates to the underlying stochastic process� or the associated probability measure� de�
pending on the context� Given a real valued training sequence Zn

� � �Z�� Z�� � � � � Zn��
we derive an upper bound on the distortion redundancy for a �xed block size k� Sub�
sequently� we argue that the block size must increase at a rate which is logarithmic
with the length of the training sequence� to ensure that the distortion redundancy
tends to zero for almost every training sequence� Alternatively� for an increasing se�
quence of block lengths k� the length of the training sequence should be n � ��R���k so
that the distortion redundancy converge to zero in expectation� Consequently� we are
able to obtain �nite sample bounds on the minimal length of the training sequence�
for which the distortion redundancy is arbitrarily small with high probability� The
rate of the quantizer for which the distortion redundancy tends to zero is restricted
by the dependence structure in the process� The intuitive explanation is� If we take
a large block size� this will make the dependence e�ects smaller� and incidently also
improve the mean squared error� at the expense of decreasing the number of training
vectors available for the design algorithm� Thus� the dimension of the quantizer� the
size of the training sequence� and the dependence structure of the process all play a
role in determining the optimal tradeo�� Our results quantify the e�ects of the de�
pendent structure of the process� on the distortion redundancy� and consequently on
the length of the required training sequence� Another result we obtain may be viewed
as an extension of �
� Corollary �	� and can be used to extend the �direct
 theorem
in ��� Theorem �	� We show that for a class of vector valued dependent sources� the

distortion redundancy converges to zero almost surely at a rate of O�
q
logn�n�� In

addition� for a sequence of increasing dimensions the expected distortion redundancy
can be made arbitrarily small for a training sequence that grows as n � �k�R���� The
essential ingredients in the derivations are the results obtained in �
	 for the i�i�d�
case� and some recent results from the theory of empirical processes indexed by VC
classes ���	�

This paper is organized as follows� In section � we give some preliminary de�nitions�
Section � presents the main results and Section � gives some concluding remarks� The
proofs are omitted� and can be found in the full paper�

� De�nitions and Notation

Let IR denote the real line� and let IRk denote the k�dimensional Euclidean space�
A k�dimensional N �level vector quantizer is a measurable mapping Q � IRk � CN �
where CN � fy��y�� � � � �yNg is a �nite collection of vectors in IRk� referred to as the
codebook of Q� Thus� Q induces a partition of IRk with cells Si � fx � Q�x� � yig�
and the classi�cation of input vectors into codewords is done according to the nearest
neighbor partition rule� i�e��

Q�x� � yi� if kx� yik � kx� yjk �j �

The norm k � k denotes the Euclidean norm� and ties are broken arbitrarily� The rate
of this quantizer is R � �logN��k bits per symbol� Here and throughout we use bold
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face notation to distinguish vectors from scalars�

Let fZigi�� be a discrete time real valued stationary stochastic process� with prob�
ability measure P � Here and throughout we will denote r�v�
s using uppercase type
and corresponding realizations using lowercase� In what follows we will be interested
in the design of a �xed rate R lossy encoder� by means of quantizing source blocks of
length k using a k�dimensional� N � �kR�level� vector quantizer Q� There are many
reasons to focus on vector quantization as opposed to scalar �see ��	 for a discus�
sion and list of related references�� It is su�cient to note that even for simple i�i�d�
processes a substantial improvement in performance may be achieved using a vector
quantizer�

We will focus on a class of stationary mixing processes� for which we are assured
that events su�ciently �far apart
 are �almost
 independent� More precisely� let

F j
� � ��Z�� Z�� � � � � Zj�

and
F�
j�� � ��Zj��� Zj����� � � ��

be the sigma�algebras generated by the respective r�v�
s� In the sequel� the following
de�nition of mixing will be utilized

De�nition � For any sequence fZigi��� the ��mixing �or completely regular� coe��
cient �z��� is de�ned as follows�

�z��� � sup
j��

IE

�
� sup
B�F�

j��

jP �BjF j
��� P �B�j

�
� �

A process for which �z���� � for ��� is called ��mixing� Further properties and
relation to other mixing conditions can be found in ��	� and ��	� We note in passing
that there exist other de�nitions of mixing� most of which are more restrictive than
��mixing �see the above references for more details��

Remark � We focus on this measure of dependence since the machinery underlying
our main results is the uniform convergence of sample means to their expectations�
over certain so called VC�classes� For this framework� the ��mixing condition is a
natural choice �see the discussion in ���	 following Lemma ���� and ���	 for more
details�� In particular� in this work we follow closely the results in ���	� which have
been derived for the ��mixing class�

In order to obtain �nite sample results in the uniform convergence framework� we
must further restrict the class of sources� In what follows we focus on the following
subclass of sources

P�B� ��� b� �
n
P � P �jZj � B� � �� ���� � �� expf�b�g �� � �

o
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where B � �� Thus we are assuming that the scalar random variables emitted by
the source are uniformly bounded� and that the �memory
 of the process vanishes
exponentially fast �in the sense of the ��mixing de�nition�� for events which are suf�
�ciently far apart� For examples of such processes the reader is referred to ���	 and
the list of references therein� In particular� classes of Harris recurrent stationary
Markov processes are exponentially ��mixing under appropriate drift conditions� Ex�
amples include stationary ARMA processes with innovations that have distribution
absolutely continuous w�r�t� Lebesgue measure �see ��	 for further details��

Remark � The boundedness assumption is standard in deriving exponential inequal�
ities �c�f� �
	 and ��	 in this context�� It is mainly put forth to avoid technical
conditions� In particular� growth rate of moments� existence of the moment generat�
ing function in a certain region� and similar assumptions may be substituted in for
boundedness of the random variables� However� to obtain distribution free uniform
convergence rates� the boundedness assumption cannot be dispensed with so easily�
In particular� the proof technique used herein will not hold in the absence of this
assumption� The assumption that the memory of the process decays exponentially
fast is also essential� A polynomial rate will not su�ce in order to obtain bounds and
rates of convergence� Thus� P is in fact the most general class of processes given the
present proof techniques�

Recall Zn
� denotes a training sequence emitted by a source P � We divide the n�

sequence into blocks of length k� one after the other� Let mn � bn��kc� so that
there are �mn blocks of length k� and a remainder block of length n� �mnk� Let us
assume� with no loss of generality� that n��k is an integer� and thus the remainder
block is empty� The proof of Theorem � shows that the remainder block is uniformly
bounded and therefore does not a�ect the analysis� Denote the vector valued block
sequence by �Xi���i��mn � The choice of m is made to adhere with the proofs of the
main theorem� where the above de�nition is convenient�

We now return to the problem of vector quantizer design� Given a quantizer Q �
IRk � IRk� de�ne its mean square average distortion

��Q� � IEkX�Q�X�k�

where the expectation is taken w�r�t� the probability measure that P induces on
B���B�B	k�� and the empirical distortion as

�n�Q� �
�

�mn

�mnX
i��

kXi �Q�Xi�k� �

Let Q� denote the quantizer with minimal average distortion� and let Q�n be the
quantizer with minimal empirical distortion� That is�

Q� � arg min
Q�Q�R�k�

��Q�

and
Q�n � arg min

Qn�Q�R�k�
�n�Q�
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where Q�R� k� stands for the class of k�dimensional� N � �kR�level quantizers� for
some rate R �xed and given� Denote

Dk�R� �
�

k
��Qn

� �

the k
th order operational distortion�rate function� Since the encoding is done ac�
cording to the nearest neighbor rule� �nding the optimal quantizer amounts to �nding
the set of codewords CN �
In the sequel we will be interested in the distortion redundancy� which we de�ne as

follows

E�Q�n� Q�� �
�

k
��Q�n�� �z �
�i�

�Dk�R�� �z �
�ii�

���

where
��Q�n� � IE

h
kX�Q�n�X�k� j X��X�� � � � �X�mn

i
�

The di�erence between the two mean squared errors may be interpreted as follows�

	 The �rst term� �i� in eq� ���� may be understood as the error induced by the
empirically designed vector quantizer� when applied to a �very large
 future data
set� That is� once we have designed the quantizer using the training sequence�
it is held �xed and put to use on future data� Since the quantizer is being
applied to a �very large
 data set� we may take the performance measure to be
the average distortion rather than the empirical distortion�

	 The second term� �ii� in eq� ���� is the average distortion� induced by the optimal
vector quantizer� i�e�� one that is �custom
 designed using the source
s statistics�
This distortion is achievable only if we have perfect knowledge of the source k
marginal�

In essence� the di�erence between the two MSE
s represents the loss incurred by using
the empirically optimal quantizer� instead of the optimal one�

� Main Results

Our objective is to determine the optimal choice of quantizer dimension given the
training sequence� and derive a nonasymptotic lower bound on the length of the
training sequence which will assure a distortion redundancy which is arbitrarily small�
Let the rate of the quantizer R be �xed and given� The �rst theorem gives a large
deviation bound on the generalization error�

Theorem � Suppose that a rate R� k dimensional quantizer Q�n is designed to mini�
mize �n�Q�� the empirical distortion� over a scalar valued training sequence Zn

� emit�
ted by a source P � P�B� ��� b� �and blocked into k blocks�� Then for any 	 
 �� and
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n � maxfc��	�� k�	g the distortion redundancy is bounded as follows

P fzn� � E�Q�n� Q�� 
 	g � ��n�k�N�k���e�n�
��ck � ���n�k�e�bk

for c� and c� absolute constants� whose values can be explicitly determined�

Note that the bound is comprised of two terms� The �rst is the classical exponential
bound obtained using the Vapnik�Chervonenkis inequality ���	� This result was de�
rived in �
� Theorem �	 for memoryless sources� The second is a bound on the error
induced by the memory structure of the process� Note also that the dependence on
the block size k is explicit in the upper bound� In fact� the block size plays a crucial
role in balancing the two error terms� This relation is pursued in Corollary �� Clearly�
a quantizer of large dimension can give rise to smaller distortion� at the expense of
having less training data available� Thus� if k is increased� the quantizer tends to
under�t the source� However� this increase allows us to control the error term that
results from the dependent structure of the blocks�

By controlling the growth of block size �i�e�� the quantizer dimension k�� we may
obtain consistency results� Moreover� using the bound derived in Theorem �� we can
determine the rate at which the distortion redundancy converges to zero� This result
is stated in the following corollary�

Corollary � Fix � � ��� �� and take the block size kn � b���
R

lognc� Then� for any

source P � P code rate R � ��� Rmax�� and � � ��� �
�
� we have

�

kn
��Q�n��Dkn�R� � O�n��� a�s�� P

where Rmax
�
� ��� ��b log e���

An immediate consequence is that the convergence holds also in mean by the
bounded convergence theorem �since P � P�� From the bounds obtain in Theo�
rem � it is clear that if the ��mixing assumption is weakened to a polynomial mixing
rate� there is no choice of k such that the overall error converges in probability� Note
also that the rate is restricted by the class of sources P in such a way� that b 
 �
implies Rmax 
 �� In the limit of b su�ciently large the process is �essentially
 i�i�d��
and the rate constraint vanishes� as we would expect� The choice of the block size as
well as the restriction on rate region are both a result of the proof technique� The
block size choice is in fact optimal in this setting� since for kn � ��� � ���R	 logn the
distortion redundancy does not converge to zero�

Another result which follows from the exponential bound in Theorem � is a lower
bound on the size of the training sequence� needed to ensure that the event fEn � 	g
occur with probability �� �� for any arbitrarily small 	 and ��

Corollary � Let P � P� Fix � � ��� ��� R � ��� �Rmax�� and block size kn �

b �����
R

lognc� Then� for any 	� � 
 �

IP
�
zn� �

�

k
��Q�n� � Dk�R� � 	

�
� �� �






hold for all n such that
logn

n���
� K�P� R� �� 	� ��

with K and explicit function of the given parameters�

Thus� for a given con�dence level �� and con�dence interval of width 	 around
Dk�R�� one can use Corollary � to read o� the su�cient size of the training sequence
needed to ensure that the empirical quantizer will have performance in the required
con�dence region�

The following result is derived for vector valued processes� Following ��	� let us
de�ne a class of probability measures

P ��B� ��� b� �
n
P � P �kXk �

p
kB� � �� ���� � �� expf�b�g �� � �

o
where B � �� and X � � � IRk is random variable emitted by the source P � Here
k � k denotes the usual Euclidean norm�

Then� we have

Theorem � Suppose that a rate R � logN
k

� k dimensional quantizer Q�n is designed
to minimize �n�Q�� the empirical distortion� over a vector valued training sequence

Xn
� emitted by a source P � P ��B� ��� b�� Then� we have

�

k
��Q�n��Dk�R� � O

	


s
logn

n

�
A a�s�� P

The theorem follows from �
� Theorem �	� and Lemma ��� in ���	� Note that in
this setting we have no rate constraints on the quantizer� An immediate corollary
is the convergence in mean� following again from the bounded convergence theorem�
Consider now a setup in which the dimension of the vectors k increases� Merhav and
Ziv ��	 asked the following question� what is the minimal amount of side information
bits needed to design a quantizer� such that the expected distortion redundancy is
arbitrarily small� Now� by application of ���� Lemma ���	 to Theorem � of ��	 we
obtain the following� Fix � 
 � and n � �k�R���� Then� the expected distortion
redundancy vanishes for k � �� By proper quantization of the training sequence
vectors� as in ��	� the amount of side information bits can be shown to be �k�R����o�k��
where o�k��k � �� This immediately extends Theorem � of ��	 to non i�i�d� training
sequence� and implicitly their Theorem � which deals with the same questions in
the case of stationary processes� We may now assume that the empirical quantizers
are trained using a dependent training sequence� rather then make the stringent
assumption of an i�i�d� sequence�

� Conclusions

The results in this paper extend some existing ones which were derived for an i�i�d�
training sequence� Additional results may be obtained by the same techniques� In
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particular� a counterpart to Theorem � can be derived for convergence in expectation�
and this in turn can be used to generalize results in �
	 and ��� Theorem �	�

Several interesting questions arise from the analysis and results� For the scalar case
we have assumed that the source has marginals which are supported on a bounded set�
This is a rather stringent assumption� though it is quite common in the framework we
pursue in this paper �see also �
	 and ��	�� It is still an open problem to see whether
one can obtain these results under moment assumptions or tail conditions instead�
even in the case of memoryless sources�

It is somewhat disturbing that some of the results for block encoding the scalar val�
ued source are derived under a rate constraint� This constraint� in turn� is determined
by the exponential rate of decay of the mixing coe�cient associated with the source�
Note that for processes with �short
 memory we have Rmax large� and as the process
is closer to independent� the rate constraint becomes negligible� We note in passing
that this restriction follows from the proof technique alone� and therefor should be
investigated further�

Results Corollary � and �� are obtained under the condition of growing block size�
In the limit� it is known that under weak conditions �e�g�� stationarity and ergodicity�
the optimal MSE converges �in the block size� to the distortion rate function� That
is� Dk�R�� D�R�� An interesting question therefor is to determine at what rate does
k����Q�n�� the per symbol distortion for the empirically designed quantizer� converge
to the distortion rate function for the class of weakly dependent sources studied
in this paper� For memoryless sources� Linder et al� �
� Theorem �	 established that

Dk�R��D�R� � O�
q
log k�k�� and for correlated Gaussian sources Wyner ���	 proved

that the same convergence rate holds� if the spectral density is Lipschitz continuous�
Whether one can establish this rate of convergence for the class of sources P is subject
to further investigation�
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this paper�
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