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Abstract

We study a family of stylized assortment planning problems, where arriving customers make
purchase decisions among offered products based on maximizing their utility. Given limited
display capacity and no a priori information on consumers’ utility, the retailer must select which
subset of products to offer. By offering different assortments and observing the resulting pur-
chase behavior, the retailer learns about consumer preferences, but this experimentation should
be balanced with the goal of maximizing revenues. We develop a family of dynamic policies that
judiciously balance the aforementioned tradeoff between exploration and exploitation, and prove
that their performance cannot be improved upon in a precise mathematical sense. One salient
feature of these policies is that they “quickly” recognize, and hence limit experimentation on,
strictly suboptimal products.

Short Title: Optimal Dynamic Assortment Planning

Keywords: assortment planning, bandit problem, on-line algorithm, demand learning .

1 Introduction

Motivation and main objectives. Product assortment selection is among the most critical de-

cisions facing retailers. Inferring customer preferences and responding accordingly with updated

product offerings plays a central role in a growing number of industries, in particular when com-

panies are capable of revisiting product assortment decisions during the selling season as demand

information becomes available. From an operations perspective, a retailer is often not capable

of simultaneously displaying every possible product to prospective customers due to limited shelf

space, stocking restrictions and other capacity related considerations. One of the central decisions

is therefore which products to include in the retailer’s product assortment. This will be referred to
∗Graduate School of Business, e-mail: dsaure05@gsb.columbia.edu
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as assortment planning problem; see (Kok, Fisher, and Vaidyanathan 2006) for an overview. Our

interest lies in dynamic instances of the problem where assortment planning decisions can be revis-

ited frequently throughout the selling season (these could correspond to periodic review schedules,

for example). This will be referred to as dynamic assortment planning. Here are two motivating

examples that arise in very different application domains.

Example 1: Fast fashion. In recent years “fast” fashion companies such as Zara, Mango or World

co have implemented highly flexible and responsive supply chains that allow them to make and

revisit most product design and assortment decisions during the selling season. Customers visiting

one of their stores will only see a fraction of the potential products that the retailer has to offer,

and their purchase decisions will effectively depend on the specific assortment presented at the

store. The essence of fashion retail entails offering new products for which no demand information

is available, and hence the ability to revisit these decisions at a high frequency is key to the “fast

fashion” business model; each season there is a need to learn the current fashion trend by exploring

with different styles and colors, and to exploit such knowledge before the season is over.

Example 2: On-line advertising. This emerging area of business is the single most important source

of revenues for thousands of web sites. Giants such as Yahoo and Google, depend almost completely

on on-line advertisement to subsist. One of the most prevalent business models here builds on the

cost-per-click statistic: advertisers pay the web site (a “publisher”) only when a user clicks on their

ads. Upon each visit, users are presented with a finite set of ads, on which they may or may not

click depending on what is being presented. Roughly speaking, the publisher’s objective is to learn

ad click-through-rates (and their dependence on the set of ads being displayed) and present the set

of ads that maximizes revenues within the life span of the contract with the advertiser.

The above motivating applications share common features. For products/ads for which lit-

tle or no demand information is available a priori, retailers/publishers must learn their desir-

ability/effectiveness by dynamically adjusting their product/ad offering and observing customer

behavior. It is natural to think that any good assortment strategy should gather some informa-

tion on consumer preferences before committing to assortments that are thought to be profitable.

This is the classical “exploration versus exploitation” trade-off: on the one hand, the longer a re-

tailer/publisher spends learning consumer preferences, the less time remains to exploit that knowl-

edge and optimize profits. On the other hand, less time spent on studying consumer behavior

translates into more residual uncertainty, which could hamper revenue maximization objective.

Moreover, demand information must be gathered carefully as product/ad profitability depends on

the assortments offered: the retailer/publisher may learn consumer preferences more effectively by

experimenting with a particular set of assortments.

The purpose of this paper is to study a family of stylized dynamic assortment problems that
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consider homogeneous utility maximizing customers: each customer assigns a (random) utility to

each offered product, and purchases the product that maximizes his/her utility. The retailer needs

to devise an assortment policy to maximize revenues over the relevant time horizon by properly

adapting the offered assortment based on observed customer purchase decisions and subject to

capacity constraints that limit the size of the assortment.

Our main focus in this work is on the impact of learning consumer behavior via suitable assort-

ment experimentation, and doing this in a manner that guarantees minimal revenue loss over the

selling horizon. To shed light on this facet of the problem, we ignore other effects such as inventory

considerations, additional costs (such as assortment switching costs), operational constraints (e.g.

restrictions on the sequence of offered assortments), and finally, we assume that product prices are

fixed throughout the selling season. Returning to the motivating examples we discussed earlier, it is

worth noting that such considerations are absent almost altogether from the on line advertisement

problem, and are often ignored in the fast fashion setting; see, for example, the work of Caro and

Gallien (2007).

Key insights and qualitative results. As indicated above, we consider assortment policies

that can only use observed purchase decisions to adjust assortment choices at each point in time

(this will be defined more formally later as a class of non-anticipating policies). Performance of

such a policy will be measured in terms of the expected revenue loss relative to an oracle that

knows in advance the product utility distributions. This is the loss due to the absence of a priori

knowledge of consumer behavior. Our objective is to characterize the minimum loss attainable by

any non-anticipating assortment policy.

The main findings of this paper are summarized below.

i.) We establish fundamental bounds on the performance of any policy. Specifically, we identify

the magnitude of the loss, relative to the oracle performance, that any policy must incur in

terms of its dependence on: the length of the selling horizon; the number of products; and

the capacity constraint (see Theorem 1 for a precise statement).

ii.) We propose a family of adaptive policies that achieve the fundamental bound mentioned

above. These policies “quickly” identify the optimal assortment of products (the one that

maximizes the expected single sale profit) with “high” probability while successfully limit-

ing the extent of exploration. Our performance analysis, in section 5.2, makes these terms

rigorous; see Theorem 3.

iii.) We prove that not all products available to the retailer need to be extensively tested: under

mild assumptions, some of them can be easily and quickly identified as suboptimal. In partic-

ular, a specific subset of said products can be detected after a “small” number of experiments
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(independent of the length of the selling horizon); see Theorems 1 and 3. Moreover, we show

that our proposed policy successfully limits the extent of such an exploration (see Corollary

1 for a precise statement).

iv.) We highlight salient features of the dynamic assortment problem that distinguish it from

similar problems of sequential decision making under model uncertainty, and we show how

exploiting these features helps to dramatically decrease the complexity of the assortment

problem, relative to using existing non-customized strategies, e.g., from the multi-armed

bandit literature.

On a more practical side, our results establish that an oracle with advance knowledge of cus-

tomer behavior only gains additional revenue on the order of the logarithm of the total number

of customers visiting the retailer during the selling season. Moreover, we establish that this is a

fundamental price that any feasible assortment policy must pay. Regarding the “exploration versus

exploitation” trade-off, we establish the precise frequency and extent of assortment experimentation

that guarantee this best achievable performance. While in general it is necessary to experiment

with “inferior” products at a precise and critical frequency that is increasing with the time hori-

zon, for a certain subset of these products experimentation can be kept to a minimum (a bounded

number of trials independent of the time horizon). This result differs markedly from most of the

literature on similar sequential decision making problems.

The remainder of the paper. The next section reviews related work. Section 3 formulates the

dynamic assortment problem. Section 4 provides a fundamental limit on the performance of any

assortment policy, and analyzes its implications for policy design. Section 5 proposes a dynamic

assortment algorithm that achieves this performance bound, and Subsection 5.3 customizes our

proposed algorithm for the most widely used customer choice model, namely the Logit. Finally,

Section 6 presents our concluding remarks. Proofs are relegated to two appendices.

2 Literature Review

Static assortment planning. The static planning literature focuses on finding an optimal assort-

ment that is held unchanged throughout the entire selling season. Customer behavior is assumed

to be known a priori, but inventory decisions are considered; see Kok, Fisher, and Vaidyanathan

(2006) for a review of the state-of-the-art in static assortment optimization. Within this area, van

Ryzin and Mahajan (1999) formulate the assortment planning problem using a Multinomial Logit

model (hereafter, MNL) of consumer choice. Assuming that customers do not look for a substitute

if their choice is stocked out (known as static substitution), they prove that the optimal assort-

ment is always in the “popular assortment set” and establish structural properties of the optimal
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assortment and ordering quantities. Gaur and Honhon (2006) use the locational choice model and

characterize properties of the optimal solution under static substitution. In a recent paper Goyal,

Levi, and Segev (2009) prove that the assortment problem is NP-hard, in the static setting when

stock-out based substitution is allowed, and propose a near-optimal heuristic solution for a partic-

ular choice model; see also Mahajan and van Ryzin (2001), Honhon, Gaur, and Seshadri (2009)

and Hopp and Xu (2008).

While we will assume perfect replenishment, and hence eliminate stock-out based substitution

considerations, it is important to note that even in this setting the static one-period profit max-

imization problem remains NP-hard in general; see Goyal, Levi, and Segev (2009). The work of

Rusmevichientong, Shen, and Shmoys (2008) identifies a polynomial-time algorithm for the static

optimization problem when consumer preferences are represented using particular choice models;

hence at least in certain instances the problem can be solve efficiently.

Dynamic assortment planning. This problem setting allows to revisit assortment decisions

at each point in time as more information is collected about initially unknown demand/consumer

preferences. To the best of our knowledge Caro and Gallien (2007) were the first to study this type

of problem, motivated by an application in fast fashion. In their formulation, customer demand

for a product is exogenous, and independent of demand and availability for other products. The

rate of demand is constant throughout the selling season, and their formulation ignores inventory

considerations. Taking a Bayesian approach to demand learning, they study the problem using

dynamic programming. They derive bounds on the value function and propose an index-based

policy that is shown to be near optimal when there is certain prior information on demand. Closer

to our paper is the work by Rusmevichientong, Shen, and Shmoys (2008). There, utility maximizing

customers make purchase decisions according to the MNL choice model (a special case of the

more general setting treated in the present paper), and an adaptive algorithm for joint parameter

estimation and assortment optimization is developed, see further discussion below.

Connection to the multi-armed bandit literature. In the canonical multi-armed bandit

problem the decision maker can select in each period to pull a single arm out of a set of K possible

arms, where each arm delivers a random reward whose distribution is not known a priori, and the

objective is to maximize the revenue over a finite horizon. See Lai and Robbins (1985) and Auer,

Cesa-Bianchi, and Fisher (2002) for a classical formulation and solution approach to the problem,

respectively.

The model of Caro and Gallien (2007) is in fact equivalent to a multi-armed bandit prob-

lem with multiple simultaneous plays. The dynamic programming formulation and the Bayesian

learning approach aims to solve the “exploration versus exploitation” trade-off optimally. See also

Farias and Madan (2009) for a similar bandit-formulation with multiple simultaneous plays under
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more restricted type of policies. In the work of Rusmevichientong, Shen, and Shmoys (2008) the

connection is less straightforward. Their proposed algorithm works in cycles. Each cycle mixes

parameter estimation (exploration) and assortment optimization (exploitation). In the exploration

phase O(N2) assortments are tested, where N is the number of products. Estimators based on the

exploration phase are fed into the static optimization problem, which returns O(N) assortments

among which the optimal one is found with high probability. From there, a standard multi-armed

bandit algorithm is prescribed to find the optimal assortment, and an upper bound on the regret

of order O(N2 log2 T ) is established, where T is the length of the planning horizon.

There is a thematic connection between multi-armed bandits and assortment planning problems,

in the sense that both look to balance exploration and exploitation. However, the fact that product

utility does not map directly to retailer revenues in the dynamic assortment problem is essentially

what distinguishes these problems. In the bandit setting all products are ex-ante identical, and

only individual product exploration allows the decision maker to differentiate them. Nevertheless,

there is always the possibility that a poorly explored arm is in fact optimal. This last fact prevents

limiting exploration on arms that have been observed to be empirically inferior. (In their seminal

work, Lai and Robbins (1985) showed that “good” policies should explore each arm at least O(log T )

times.) In the assortment planning setting, products are not ex-ante identical, and product revenue

is capped by its profit margin. In section 4 we show how this observation can be exploited to limit

exploration on certain “suboptimal” products (a precise definition will be advanced in what follows).

Moreover, the possibility to test several products simultaneously has the potential to further reduce

the complexity of the assortment planning problem. Our work builds on some of the ideas present

in the multi-armed bandit literature, most notably the lower bound technique developed by Lai

and Robbins (1985), but also exploits salient features of the assortment problem in constructing

optimal algorithms and highlighting key differences from traditional bandit results.

3 Problem Formulation

Model primitives and basic assumptions. We consider a price-taking retailer that has N

different products to sell. For each product i ∈ N := {1, . . . , N}, let wi > 0 denote the marginal

profit resulting from selling one unit of the product, and let w := (w1, . . . , wN ) denote the vector

of product margins. Due to display space constraints, the retailer can offer at most C products

simultaneously.

Let T to denote the total number of customers that arrive during the selling season after which

sales are discontinued. (The value of T is in general not known to the retailer a priori.) We use t

to index customers according to their arrival times, so t = 1 corresponds to the first arrival, and
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t = T the last. We assume the retailer has both a perfect replenishment policy, and the flexibility

to offer a different assortment to every customer without incurring any switching cost. (While

these assumptions do not typically hold in practice, they provide sufficient tractability for analysis

purposes, and allow us to extract structural insights.)

With regard to demand, we will adopt a random utility approach to model customer preferences

over products: customer t assigns a utility U t
i to product i, for i ∈ N ∪ {0}, with

U t
i := μi + ζt

i ,

were μi ∈ R+ denotes the mean utility assigned to product i, ζ1
i , . . . , ζ

T
i are independent random

variables drawn from a distribution F common to all customers, and product 0 represents a no-

purchase alternative. Let μ := (μ1, . . . , μN ) denote the vector of mean utilities. We assume all

customers assign μ0 to a no-purchase alternative; when offered an assortment, customers select the

product with the highest utility if that utility is greater than the one provided by the no-purchase

alternative. For convenience, and without loss of generality, we set μ0 := 0.

The static assortment optimization problem. Let S denote the set of possible assortments,

i.e., S := {S ⊆ N : |S| ≤ C}, where |S| denotes the cardinality of the set S ⊂ N . For a given

assortment S ∈ S and a given vector of mean utilities μ, the probability pi(S, μ) that a customer

chooses product i ∈ S is

pi(S, μ) =
∫ ∞

−∞

∏
j∈S∪{0}\{i}

F (x− μj) dF (x− μi), (1)

and pi(S, μ) = 0 for i /∈ S. The expected profit f(S, μ) associated with an assortment S and mean

utility vector μ is given by

f(S, μ) =
∑
i∈S

wipi(S, μ).

If the retailer knows the value of the vector μ, then it is optimal to offer S∗(μ), the solution to the

static optimization problem, to every customer:

S∗(μ) ∈ argmax
S∈S

f(S, μ). (2)

In what follows we will assume that the solution to the static problem is unique (this assumption

simplifies our construction of fundamental performance bounds, and can be relaxed as long as there

is at least one product that is suboptimal). Note that for a given product i ∈ N , pi(S, μ) in (1)

depends in a non-trivial manner on the assortment S. Efficiently solving problem (2) is beyond the

scope of this paper: we will assume that the retailer can compute S∗(μ) for any vector μ.

Remark 1 (Complexity of the static problem). We note that for specific utility distributions

there exist efficient algorithms for solving the static problem. For example, Rusmevichientong,
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Shen, and Shmoys (2008) present a O(N2) algorithm to solve the static problem when an MNL

choice model is assumed, i.e., when F is assumed to be a standard Gumbel distribution (location

parameter 0 and scale parameter 1) for all i ∈ N . This is an important contribution given that

the MNL is by far the most commonly used choice model. The algorithm, based on a more general

solution concept developed by Megiddo (1979), can in fact be used to solve the static problem

efficiently for any Luce-type choice model1 (see, for example, Anderson, De Palma, and Thisse

(1992)).

The dynamic optimization problem. We assume that the retailer knows F , the distribution

that generate the idiosyncracies of customer utilities, but does not know the mean vector μ. That

is, the retailer has some understanding of how customers differ in their valuations for any given

product, but has no prior information on how customers rank different products on average.

The retailer is able to observe purchase/no-purchase decisions made by each customer. S/he

needs to decide what assortment to offer to each customer, taking into account all information

gathered up to that point in time, in order to maximize expected cumulative profits. More formally,

let (St ∈ S : 1 ≤ t ≤ T ) denote an assortment process, which is comprised of a sequence of

admissible assortments over {1, . . . , T}. Let

Xt
i := 1

{
i ∈ St , U

t
i > U t

j , j ∈ St \ {i} ∪ {0}
}
,

denote the purchase decision of customer t regarding product i ∈ St, where Xt
i = 1 indicates that

customer t decided to purchase product i, andXt
i = 0 otherwise. Also, letXt

0 := 1 {U0 > Uj , j ∈ St}
denote the overall purchase decision of customer t, where Xt

0 = 1 if customer t opted not to purchase

any product, and Xt
0 = 0 otherwise. Here, and in what follows, 1 {A} denotes the indicator function

of a set A. We denote by Xt := (Xt
0, X

t
1, . . . , X

t
N ) the vector of purchase decisions of customer t.

Let Ft = σ((Su, X
u), 1 ≤ u ≤ t) t = 1, . . . , T , denote the filtration or history associated with the

assortment process and purchase decisions up to (including) time t, with F0 = ∅. An assortment

process is said to be non-anticipating if St is determined only on the basis of previous assortment

choices and observed purchase decisions, i.e., is Ft−1-measurable, for all t. An admissible assort-

ment policy π is a mapping from past history to ST such that (St(Ft−1) ∈ S : 1 ≤ t ≤ T ) is

non-anticipating. We will restrict attention to the set of such policies and denote it by P. We will

use Eπ and Pπ to denote expectations and probabilities of random variables, when the assortment

policy π ∈ P is used.

The retailer’s objective is to choose a policy π ∈ P to maximize the expected cumulative

revenues over the selling season

Jπ(T, μ) := Eπ

[
T∑

t=1

∑
i∈N

wiX
t
i

]
.

1These are choice models for which pi(S) = vi/(
�

j∈S vj) for a vector v ∈ R
N
+ , and any S ⊆ N .
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If the mean utility vector μ were known to the retailer at the start of the selling season, the

optimal policy would clearly be to choose the assortment that maximizes the one-sale expected

value, namely S∗(μ), and offer it to every customer. The corresponding performance, denoted by

J∗(T, μ), is given by

J∗(T, μ) := Tf(S∗(μ), μ). (3)

This quantity provides an upper bound on expected revenues generated by any admissible policy,

i.e., J∗(T, μ) ≥ Jπ(T, μ) for all π ∈ P. With this in mind we define the regret Rπ(T, μ) associated

with a policy π, to be

Rπ(T, μ) := T − Jπ(T, μ)
f(S∗(μ), μ)

.

The regret measures to the number of customers to whom non-optimal assortments are offered by

π over {1, . . . , T}. One may also view this as a normalized measure of revenue loss due to the lack

of a priori knowledge of consumer behavior.

Maximizing expected cumulative revenues is equivalent to minimizing the regret over the selling

season, and to this end, the retailer must balance suboptimal demand exploration (which adds

directly to the regret) with exploitation of the gathered information. On the one hand the retailer

has incentives to explore demand extensively in order to “guess” the optimal assortment S∗(μ)

with high probability. On the other hand the longer the exploration lasts the less consumers will

be offered the “optimal” assortment, and therefore the retailer has incentives to shorten the length

of the exploration phase in favor to the exploitation phase.

4 Fundamental Limits on Achievable Performance

4.1 A lower bound on the performance of any admissible policy

Let us begin by narrowing down the set of “interesting” policies worthy of consideration. We say

that an admissible policy is consistent if for all μ ∈ R
N
+

Rπ(T, μ)
T a

→ 0, (4)

as T → ∞, for every a > 0. In other words, the per-consumer normalized revenue of consistent

policies converges to 1. The restriction in (4) ensures that this convergence occurs at least at a

polynomial rate in T . Let P ′ ⊆ P denote the set of non-anticipating, consistent assortment policies.

Let N denote the set of products that cannot be made to enter the optimal assortment by

increasing/decreasing, ceteris paribus, their mean utilities. Namely,

N := {i ∈ N : i /∈ S∗(ν) , ν := (μ1, . . . , μi−1, v, μi+1, . . . , μN ) , ∀ v ∈ R+} .
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We will refer to a product in N as strictly-suboptimal. Similarly, define N as the set of non-optimal

products that can be made to enter the optimal assortment by increasing/decreasing their mean

utility,

N := N \ (S∗(μ) ∪N ).

We will assume the common distribution function F is absolutely continuous with respect to

Lebesgue measure on R, and that its density function is positive everywhere. This assumption

is quite standard and satisfied by many commonly used distributions. Roughly speaking, this

implies that one cannot infer products’ mean utilities solely from observing the associated utility

realizations. The result below establishes a fundamental limit on what can be achieved by any

consistent assortment policy.

Theorem 1. For any π ∈ P ′, and any μ ∈ R
N
+ ,

Rπ(T, μ) ≥ K1(μ)

∣∣N ∣∣
C

log T +K2(μ),

for finite positive constants K1(μ) and K2(μ), and all T .

This result asserts that any consistent assortment policy must offer non-optimal assortments

to at least order (
∣∣N ∣∣ /C) log T customers (in expectation), and that this holds for all values of μ.

(Explicit expressions for the constants K1(μ) and K2(μ) are given in the proof.). When all non-

optimal products are strictly-suboptimal, the result suggest that a finite regret may be attainable.

This last observation highlights the importance of strictly-suboptimal product detection, and hence

the inefficiency of a naive multi-armed bandit approach to assortment planning: treating each

possible assortment as a different arm in the bandit setting will result in the regret scaling linearly

with the combinatorial term
(
N
C

)
, instead of the much smaller constant (

∣∣N ∣∣ /C).

Remark 2 (Implications for design of “good” policies.). The proof of Theorem 1, which

can be found in the e-companion to this paper and is outlined below, suggests certain desirable

properties for “optimal” policies: (i.) non-optimal products that can be made to be part of the

optimal assortment are to be tested on order-(log T ) customers; (ii) this type of non-optimal product

experimentation is to be conducted in batches of size C; and (iii.) strictly-suboptimal products (the

ones that cannot be made to be part of the optimal assortment) need only be tested on a finite

number of customers (in expectation), independent of T .

4.2 Proof outline and intuition behind Theorem 1

Intuition and main underlying ideas. For the purpose of proving Theorem 1 we will exploit the

connection between the regret and testing of suboptimal assortments. In particular, we will bound
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the regret by computing lower bounds on the expected number of tests involving non-optimal

products (those in N \ S∗(μ)): each time a non-optimal product is offered, the corresponding

assortment must be sub-optimal, contributing directly to the policy’s regret.

To bound the number of tests involving non-optimal products we will use a change-of-measure

argument introduced by (Lai and Robbins 1985) for proving an analogous result for a multi-armed

bandit problem, hence our proof establishes a direct connection between the two areas. To adapt

this idea we consider the fact that underlying realizations of the random variables (product utilities)

are non-observable in the assortment setting, which differs from the multi-armed bandit setting

where reward realizations are observed directly. The argument can be roughly described as follows.

Any non-optimal product i ∈ N is in the optimal assortment for at least one suitable choice of mean

utility vector μi. When such a configuration is considered, any consistent policy π must offer this

non-optimal product to all but a sub-polynomial (in T ) number of customers. If this configuration

does not differ in a significant manner from the original (made precise in the e-companion to this

paper), then one would expect such a product to be offered to a “large” number of customers under

the μ-configuration. In particular, we prove that for any policy π

Pπ {Ti(T ) ≤ log T/Ki} → 0 (5)

as T →∞, where Ti(t) is the number of customers product i has been offered to up until customer

t − 1, and Ki is a finite positive constant. The relation in (5) says that, asymptotically, any

non-optimal product that can be “made” optimal must be offered to at least order-(logT/Ki)

customers. Note that this asymptotic minimum-testing requirement is inversely proportional to

Ki, which turns out to be a measure of “closeness” of a product to “optimality”(how close the

vector μ is to a configuration that makes product i be part of the optimal assortment). This also

has immediate consequences on the expected number of times a non-optimal product is tested:

using Markov’s inequality we have that for any i ∈ N ,

lim inf
T→∞

Eπ {Ti(T )}
log T

≥ 1
Ki
.

The result in Theorem 1 follows directly from the equation above and the connection between the

regret and testing of suboptimal assortments mentioned at the beginning of this section.

5 Dynamic Assortment Planning Policies

This section introduces an assortment policy whose structure is guided by the key ideas gleaned

from Theorem 1. We introduce the following natural assumption.

Assumption 1 (Identifiability). For any assortment S ∈ S, and any vector ρ ∈ R
N
+ such that∑

i∈S ρi < 1, the system of equations {pi(S, η) = ρi , i ∈ S} has a unique solution T (S, ρ) in η ∈ R
N
+
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such that ηi = 0 for all i /∈ S. In addition p(S, ·) is Lipschitz continuous, and T (S, ·) is locally

Lipschitz continuous in the neighborhood of ρ, for all S ∈ S.

Under this assumption one can compute mean utilities for products in a given assortment based

solely on the associated purchase probabilities. This characteristic enables our approach to para-

meter estimation: we will estimate purchase probabilities by observing consumer decisions during

an exploration phase and we will use those probabilities to reconstruct a mean utility vector that

rationalizes such observed behavior. Note that the Logit model, for which F is a standard Gumbel,

satisfies this assumption.

5.1 Intuition and a simple “separation-based” policy

To build some intuition towards the construction of our ultimate dynamic assortment policy (given

in §5.2) it is helpful to first consider a policy that separates exploration from exploitation. The idea

is to insolate the effect of imposing the “right” order of exploration (suggested by Theorem 2) on

the regret. Assuming prior knowledge of T , such a policy first engages in an exploration phase over

�N/C
 assortments encompassing all products, each offered sequentially to order-(log T ) customers.

Then, in light of Assumption 1, an estimator for μ is computed. Based on this estimator a proxy

for the optimal assortment is computed, and offered to the remaining customers. For this purpose

consider the set of test-assortments A :=
{
A1, . . . , A�N/C	

}
, where

Aj = {(j − 1)C + 1, . . . ,min {j C,N}} ,

Fix j ≤ |A|. Suppose t − 1 customers have arrived to that point. We will use p̂i,t to estimate

pi(Aj , μ) when customer t arrives, where

p̂i,t(Aj) :=
∑t−1

u=1X
u
i 1 {Su = Aj}∑t−1

u=1 1 {Su = Aj}
,

for i ∈ Aj . Define p̂t(Aj) := (p̂1,t(Aj), . . . , p̂(Aj)N,t) to be the vector of product selection probabil-

ities. For any i ∈ Aj we will use μ̂t,i(Aj) to estimate μi when customer t arrives, where

μ̂i,t(Aj) := (T (Aj , p̂t(Aj)))i ,

and (a)i denotes the i-th component of vector a. Let μ̂t := (μ̂1,t, . . . , μ̂N,t) denote the vector of

mean utilities estimates. (In all of the above we are suppressing the dependence on Aj and in

particular the index j, to avoid cluttering the notation.)

The underlying idea is the following: when an assortment Aj ∈ A has been offered to a “large”

number of customers one expects p̂t,i to be “close” to pi(Aj , μ) for all i ∈ Aj . If this is the case

for all assortments in A, by Assumption 1 we also expect μ̂t to be close to μ. With this in mind,
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Algorithm 1 : π1 = π(C, T, w)
STEP 1. Exploration:

for j =1 to |A| do

Offer Aj to C log T customers (if possible). [Exploration]

end for

STEP 2. Exploitation:

for t =(C log T ) |A|+ 1 to T do

for j =1 to |A| do

Set p̂i,t(Aj) :=
∑t−1

u=1X
u
i 1 {Su = Aj}∑t−1

u=1 1 {Su = Aj}
for i ∈ Aj . [Probability estimates]

Set μ̂i,t(Aj) := ηi for i ∈ Aj , where η = T (Aj , p̂t). [Mean utility estimates]

end for

Offer St = S∗(μ̂t) to customer t. [Exploitation]

end for

we propose a separation-based policy defined through a positive constant C that serves as a tuning

parameter. The policy is summarized for convenience in Algorithm 1.

Performance analysis. This policy is constructed to guarantee that the probability of not

choosing the optimal assortment decays polynomially (in T ) when using the estimator μ̂ to compute

product choice probabilities. This, in turn, translates into aO(�N/C
 log T ) regret. The next result,

whose proof can be found in the e-companion to this paper, formalizes this.

Theorem 2. Let π1 := π(C, T, w) be defined by Algorithm 1 and let Assumption 1 hold. Then, for

some finite constants K1,K2 > 0, the regret associated with π1 is bounded for all T as follows

Rπ(T, μ) ≤ C�N/C
 log T +K1,

provided that C > K2.

Constants K1 and K2 depend on instance specific quantities (e.g., the minimum optimality

gap), but not on the number of products, N , or the length of the selling horizon, T . The proof

of Theorem 2 elucidates that K1 is the expected cumulative loss during the exploitation phase for

an infinite horizon setting, while K2 represents the minimum length of the exploration phase that

makes K1 finite. This trade off is balanced by the construction of the policy π1. The quantity on the

right hand side of 2 is essentially the one in Theorem 1, where
∣∣N ∣∣ is replaced by N . This indicates

that: (i.) imposing the right order (in T ) of exploration is enough to get the right dependence

(in T ) of the regret; and (ii.) to reach the fundamental limit one needs to limit exploration on

strictly-suboptimal products.
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Example 1: Performance of the Separation-based policy π1. Consider N = 10 and C = 4,

with

w = (0.98, 0.88, 0.82, 0.77, 0.71, 0.60, 0.57, 0.16, 0.04, 0.02),

μ = (0.36, 0.84, 0.62, 0.64, 0.80, 0.31, 0.84, 0.78, 0.38, 0.34),

and assume
{
ζt
i

}
have a standard Gumbel distribution, for all i ∈ N and all t ≥ 1, i.e., we

consider the MNL choice model. In this case it is easily verified that S∗(μ) = {1, 2, 3, 4} and

f(S∗(μ), μ) = 0.76. Also, N = {5, 6, 7, 8, 9, 10}. One can use the test assortments A1 = {1, 2, 3, 4},
A2 = {5, 6, 7, 8} and A3 = {9, 10} to conduct the exploration phase in the algorithm described

above. Figure 1 depicts the average performance of policy π1 over 500 replications, using C = 20,

and considering selling horizons ranging from T = 500 to T = 10000. Two important points are

worth noting: from panel (a) we observe that the regret is indeed of order-(log T ), as predicted

by Theorem 2; from panel (b) we observe that policy π1 makes suboptimal decisions on a very

small fraction of customers, ranging from around 10% when the horizon is 2000 sales attempts,

and diminishing to around 2.5% for a horizon of 10,000. (Recall that the regret is measuring the

number of suboptimal sales.)

From the setting of this example we observe that A2 and A3 are tested on order-(log T ) cus-

tomers, despite being composed exclusively of strictly-suboptimal products. That is, the separation

algorithm does not attempt to limit testing efforts over suboptimal products. Moreover, it assumes

a priori knowledge of the total number of customers, T . The next section proposes a policy that

addresses these two issues.

5.2 A refined dynamic assortment policy

To account for strictly-suboptimal product detection it is necessary to be able to “identify” them

a priori, even under partial knowledge of the mean utility vector. For that purpose we introduce

the following assumption

Assumption 2 (Revenue preferences). For any two vectors ν, μ ∈ R
N
+ such that ν ≤ μ

(component-wise),

f(S∗(ν), ν) ≤ f(S∗(μ), μ).

This revenue preferences assumption states that the retailer always prefers to sell better products

(i.e., those with a higher mean utility). We should note that this assumption may not hold in general

since, for example, increasing the mean utility of an optimal low-margin product may reduce the

optimal single-sale expected profit. However, this property does hold for Luce-type choice models

(the MNL being a special case). Under Assumption 2, we have that

N = {i ∈ N : wi < f(S∗(μ), μ)} .
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Figure 1: Performance of the separation-based policy π1. The graphs (a) and (b) illustrates

the dependence of the regret on T and log T , respectively. The dotted lines represent 95% confidence

intervals for the simulation results.

That is, any product with margin less than the optimal single sale profit is strictly-suboptimal

and vice versa. The implications for strictly-suboptimal product detection are as follows: the

value of f(S∗(μ), μ) acts as a threshold, differentiating potentially optimal products from strictly-

suboptimal ones. Designing test assortments based on product margins translates this to a threshold

over assortments. Consider the set of valid assortments A :=
{
A1, . . . , A�N/C	

}
, where

Aj =
{
i((j−1) C+1), . . . , i(min{j C,N})

}
,

and i(k) corresponds to the product with the k-th highest margin in w. Suppose one has a proxy for

f(S∗(μ), μ). One can then use this value to identify assortments containing at least one potentially

optimal product and to force the “right” order of exploration on such assortments. If successful,

such a scheme will limit exploration on assortment containing only strictly-suboptimal products.

We propose an assortment policy, that, for each customer executes the following logic: using

the current estimate of μ at time t, the static problem is solved and St, the estimate-based optimal

assortment, and ft, the estimate of the optimal value, are obtained. If all assortments in A con-

taining products with margins greater than or equal to ft have been tested on a minimum number

of customers, then assortment St is offered to the t-th customer. Otherwise, we select, arbitrarily,

an “under-tested” assortment in A containing at least one product with margin greater than or

equal to ft, and offer it to the current customer. The term “under-tested” means tested on less
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than order-(log t) customers prior arrival of customer t. Note that this logic will enforce the correct

order of exploration for any value of T .

Algorithm 2 : π2 = π(K, w)
STEP 1. Initialization:

for t =1 to |A| do

Offer At ∈ A to customer t and set nt = 1. [Initial test]

end for

STEP 2. Joint exploration and assortment optimization:

for t =|A|+ 1 to T do

for j =1 to |A| do

Set p̂i,t(Aj) :=
�t−1

u=1 Xu
i 1{Su=Aj}

�t−1
u=1 1{Su=Aj} for i ∈ Aj . [Probability estimates]

Set μ̂i,t := ηi for i ∈ Aj , where η = T (Aj , p̂t(Aj)). [Mean utility estimates]

end for

Set St = S∗(μ̂t) and ft = f(S∗(μ̂t), μ̂t). [Static optimization]

Set N t = {i ∈ N : wi ≥ ft}. [Candidate optimal products]

if (nj ≥ K log t) for all j=1 to |A| such that Aj ∩N t �= ∅ then

Offer St to customer t. [ Exploitation]

else

Select j such that Aj ∩ N̂ t �= ∅ and nj < K log T .

Offer Aj to customer t. [ Exploration]

nj ← nj + 1

end if

end for

This policy, denoted π2 and summarized for convenience in Algorithm 2, monitors the quality

of the estimates for potentially optimal products by imposing minimum exploration on assortments

containing such products. The specific structure of A ensures that test assortments do not “mix”

high-margin products with low-margin products, thus successfully limiting exploration on strictly-

suboptimal products. The policy uses a tuning parameter K to balance non-optimal assortment

testing (which contributes directly to the regret), and the probability of choosing the optimal

assortment in the exploitation phase.

Performance analysis. The next result, whose proof can be found in the e-companion to this

paper, characterizes the performance of the proposed assortment policy.

Theorem 3. Let π2 = π(K, w) be defined by Algorithm 2 and let Assumptions 1 and 2 hold. Then,

for some finite constants K1,K2 > 0, the regret associated with π2 is bounded for all T as follows

Rπ(T, μ) ≤ K�
∣∣N ∪ S∗(μ)

∣∣ /C
 log T +K1,
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provided that K ≥ K2.

Theorem 3 implicitly states that assortments containing only strictly-suboptimal products will

be tested on a finite number of customers (in expectation); see Corollary 1 below. Note that this

policy attains the correct dependence on both T and
∣∣N ∣∣, as prescribed in Theorem 1 (up to

constant values), so it is essentially optimal. Unlike Theorem 2 we see that the proposed policy

successfully limits exploration on strictly-suboptimal products. The following corollary, whose proof

can be found in the e-companion to this paper, formalizes this statement. Recall Ti(t) denotes the

number of customers product i has been offered to up to arrival of customer t.

Corollary 1. Let Assumptions 1 and 2 hold. Then, for any assortment Aj ∈ A such that Aj ⊆ N ,

and for any selling horizon T

Eπ[Ti(T )] ≤ K3,

for all i ∈ Aj, where K3 is a finite positive constant independent of T .

Example 2: Performance of the policy π2. Consider the setting in Example 1 in section

5.1, for which N = A2 ∪ A3 and S∗(μ) = A1. Given that the set of test assortments separates

products in N from the rest, one would expect Algorithm 2 to effectively limit exploration on

all strictly-suboptimal products. Figure 2 depicts the average performance of policies π1 and π2

over 500 replications, using C = K = 20, and considering selling horizons ranging from T = 500 to

T = 10000. The main point to note is that policy π2 outperforms substantially the separation-based

policy π1. In particular, the operation of π1 results in lost sales in the range of 2.5-10% (200-260

customers are offered non-optimal choices), depending on the length of selling horizon, while for

π2 we observe sub-optimal decisions being made only about 10-20 times (!) independent of the

horizon. This constitutes more than a 10-fold improvement over the performance of π1. In essence,

π2 adaptively identifies both A2 and A3 as suboptimal with increasing probability as t grows large.

Since, in this case, the regret is due exclusively to exploration of strictly-suboptimal assortments

and incorrect choices in the exploitation phase, we expect the regret to be finite, and this indeed

is supported by the numerical results displayed in Figure 2.

Remark 3 (Relationship to bandit problems). The result in Corollary 1 stands in contrast

to typical multi-armed bandit results, where all suboptimal arms/actions need to be tried at least

order-(log t) times (in expectation). In the assortment problem, product rewards are random vari-

ables bounded above by their corresponding margins, therefore, under Assumption 2, the contribu-

tion of a product to the overall profit is bounded, independent of its mean utility. More importantly,

this features makes some products a priori better than others. Such characteristic is not present in

the typical bandit problem.
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Figure 2: Performance of the refined policy π2: The graph compares the separation-based

policy π1, given by Algorithm 1, and the proposed policy π2, in terms of regret dependence on T .

The dotted lines represent 95% confidence intervals for the simulation result.

Remark 4 (Selection of the tuning parameter K). We have established that the lower bound

in Theorem 1 can be achieved up to constant terms, for proper choice of K. However, our pre-

scription for K depends on values that are not known a priori. In particular, setting K below the

specified threshold may compromise the validity of the result. To avoid the risk of miss-specifying

K, one can increase the order of the minimum amount of exploration to, say, K log1+α t, for any

α > 0. With this, the upper bound above would read

Rπ(T, μ) ≤ �
∣∣N ∪ S∗(μ)

∣∣ /C
K log1+α T +K1,

and the policy becomes optimal up to a logα T -term.

Remark 5 (Performance of π2 in absence of Assumption 2). In absence of Assumption

2 it seems impossible to identify strictly-suboptimal products a priori. Instead, one can modify

Algorithm 2 to simply ignore strictly-suboptimal product detection. It can be then seen from the

proof of Theorem 3 that the upper bound remains valid, with N replacing
∣∣N ∪ S∗(μ)

∣∣.
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5.3 A policy customized to the multinomial logit choice model

For general utility distributions, choice probabilities depend on the offered assortment in a non-

trivial way, and hence it is unclear how to combine information originating from different assort-

ments and allow for more efficient use of data gathered on the exploitation phase. We illustrate

how to modify parameter estimation to include exploitation-based product information in the case

of an MNL choice model (we note that all results in this section extend directly to Luce-type

choice models). As indicated earlier, for this model an efficient algorithm for solving the static

optimization problem has been developed by Rusmevichientong, Shen, and Shmoys (2008).

MNL choice model properties. Taking F to have a standard Gumbel distribution, then (see,

for example, Anderson, De Palma, and Thisse (1992))

pi(S, ν) =
νi

1 +
∑

j∈S νj
i ∈ S , for any S ∈ S, (6)

where νi := exp(μi), i ∈ N , and v := (v1, . . . , vN ). In what follows, we will use both ν and μ

interchangeably. Given an assortment S ∈ S and a vector ρ ∈ R
N
+ such that

∑
i∈S ρi ≤ 1, we have

that T (S, ρ), the unique solution to {ρi = pi(S, ν) for i ∈ S , νi = 0 for i ∈ N \ S} is given by

Ti(S, ρ) =
ρi

1−
∑N

j=1 ρj

i ∈ S. (7)

From (6) one can see that solving the static optimization problem is equivalent to finding the largest

value of λ such that ∑
i∈S

vi(wi − λ) ≥ λ, (8)

for some S ∈ S. One can check that (7) and (8) implies that Assumptions 1 and 2 holds, respectively.

A product-exploration-based assortment policy. We propose a customized version of the

policy given by Algorithm 2, which we refer to as π3, defined through a positive constant M
that serves as a tuning parameter. The policy, which is summarized below in algorithmic form,

maintains the general structure of Algorithm 2, however parameter estimation, product testing and

suboptimal product detection are conducted at the product-level. In what follows, the following

estimators are used. Suppose t− 1 customers have shown up so far. We will use ν̂i,t to estimate νi

when customer t arrives, where

ν̂i,t :=
∑t−1

u=1X
u
i 1 {i ∈ Su}∑t−1

u=1X
u
0 1 {i ∈ Su}

i ∈ N .

Performance analysis. The tuning parameter M plays the same role as K plays in Algorithm

2. The next result, whose proof can be found in the e-companion to this paper, characterizes the

performance of the proposed assortment policy.
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Algorithm 3 : π3 = π(M, w)
STEP 1. Initialization:

Set nj = 0 for all j ∈ N .

Offer S1 = argmax {wj : j ∈ N} to customer t = 1. Set ni = 1.

STEP 2. Joint exploration and assortment optimization:

for t =2 to T do

for i =1 to N do

Set ν̂i,t :=
(∑t−1

u=1X
u
i 1 {i ∈ Su}

)
/
(∑t−1

u=1X
u
0 1 {i ∈ Su}

)
. [Mean utility estimates]

end for

Set St = S∗(ν̂t) and ft = f(S∗(ν̂t), ν̂t). [Static optimization]

Set Ot = {i ∈ N : wi ≥ ft , ni <M log t}. [Candidate optimal products]

if Ot = ∅ then

Offer St to customer t. [ Exploitation]

else

Offer St ∈ {S ∈ S : S ⊆ Ot}. [ Exploration]

end if

ni ← ni + 1 for all i ∈ St.

end for

Theorem 4. Let π3 = π(M, w) be defined by Algorithm 3. Then, for some finite constants

K1,K2 > 0, the regret associated for π3 is bounded as follows

Rπ(T, μ) ≤M
∣∣N ∣∣ log T +K1,

provided that M > K2.

Theorem 4 is essentially the equivalent of Theorem 3 for the Logit case, with the exception

of the dependence on the assortment capacity C (as here exploration is conducted on a product

basis), and on the cardinality of the set N . The latter matches exactly the order of the result

in Theorem 1: unlike policy π2, the customized policy π3 prevents optimal products from being

offered in suboptimal assortments. Since estimation is conducting using information arising from

both exploration and exploitation phases, one would expect a better empirical performance from

the Logit customized policy. Note that the result implicitly states that strictly-suboptimal products

will be tested on a finite number of customer, in expectation. The following corollary, whose proof

can be found in the e-companion to this paper, is the MNL-customized version of Corollary 1.

Corollary 2. For any strictly-suboptimal product i ∈ N and for any selling horizon T

Eπ[Ti(T )] ≤ K3,

for a positive finite constant K3, independent of T .

20



Example 3: Performance of the MNL-customized policy π3. Consider the set up of Ex-

ample 1 in section 5.1. Note that S∗(ν) = A2, i.e., the optimal assortment matches one of the test

assortments. As a result, strictly suboptimal detection is conducted in finite time for both policies

π2 and π3, and hence any gain in performance for policy π3 over π2 is tied in to the ability of the

former incorporate information gathered during both exploitation and exploration phases. Figure

3 depicts the average performance of policies π2 and π3 over 500 replications, using K =M = 20,

and considering selling horizons ranging from T = 1000 to T = 10000. Customization to a logit

nets significant, roughly 10-fold, improvement in performance of π3 relative to π2. Overall, the

logit-customized policy π3 only offers suboptimal assortments to less than a handful of customers,

regardless of the horizon of the problem. This provides “picture proof” that the regret (=number

of suboptimal sales) is finite. In particular, since N = ∅ Theorem 4 predicts a finite regret. This
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Figure 3: Performance of the MNL-customized policy π3. The graph compares the more

general policy π2 to its Logit-customized version π3, in terms of regret dependence on T . The

dotted lines represent 95% confidence intervals for the simulation result.

suggests that difference in performance is mainly due to errors made in the exploitation phase.

This elucidates the reason why the Logit customized policy π3 outperforms the more general policy

π2: the probability of error decays much faster in the Logit customized version. If all previous

exploitation efforts were successful, and assuming correct strictly-suboptimal product detection,
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the probability of error decays exponentially for the customized policy (π3) and polynomially for

the more general policy (π2); see proof for further details.

6 Concluding Remarks

Complexity of the dynamic assortment problem. Theorem 1 provides a lower bound for

the regret of an optimal policy for the dynamic assortment problem. We have shown that this

lower bound can be achieved, up to constant terms, when the noise distribution on the utility of

each customer is known. In particular, we proposed an assortment-exploration-based algorithm

whose regret scales optimally in the selling horizon T and, exhibits the “right” dependence on the

number of possible optimal products
∣∣N ∣∣. (In addition our proposed policies do not require a priori

knowledge of the length the selling horizon.)

Comparison of our policy with benchmark results. Our results significantly improve on and

generalize the policy proposed by Rusmevichientong, Shen, and Shmoys (2008), where an order-

(N2(log T )2) upper bound is presented for the case of an MNL choice model. Recall the regret of

our policy exhibits order-
∣∣N ∣∣ log T performance, and we show that this can not be improved upon.

We note that the policy of Rusmevichientong, Shen, and Shmoys (2008) is a more direct adaptation

of multi armed bandit ideas an hence does not detect strict-suboptimal products and does not limit

exploration on them. We illustrate this with a simple numerical example

Consider again Example 1 in section 5.1. Figure 4 compares the average performance of our

proposed policies with that of (Rusmevichientong, Shen, and Shmoys 2008),denoted RSS for short,

over 500 replications, using C = K = M = 20, and considering selling horizons ranging from

T = 1000 to T = 10000. From graph (a) one can see that the performance of the benchmark

behaves quadratically with log T , while the performance of our proposed policies grow linearly.

Several factors explain the difference in performance. First, we consider a set of roughly N

test assortments while in RSS this set contains roughly N2 items. This explains why even the

naive separation-based policy π1 outperforms RSS. Panel (a) in Figure 4 shows that the RSS policy

loses sales on about 20 − 25% of the customers, while policy π1 never loses more than 10%, the

loss diminishes as the horizon increases to around 2.5%. Since policies π2 and π3 limit exploration

on strictly-suboptimal products, a feature absent in both RSS and in the naive separation-based

policy π1, they exhibit far superior performance compared to either one of those benchmarks as

illustrated in panel (b) of Figure 4. Finally, our MNL-customized policy π3 uses all information

gathered for computing parameter estimates, while the policy in RSS only uses the information

collected during the exploration phase. The improvement in performance due to this feature is also
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Figure 4: Benchmark performance. The graph in (a) compares the separation-based policy π1

to the benchmark policy RSS, in terms of regret dependence on T . The graph in (b) compares the

separation-based policy π1, the proposed policy π2 and its Logit-customized version π3 in terms of

regret dependence on T .

illustrated in panel (b) of Figure 4. The overall effect is that policy π3 improves performance by

a factor of 200-1000 compared to RSS, and is able to zero in on the optimal assortment almost

instantaneously with a regret that is bounded independent of the horizon T .
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A Proof of Main Results

Proof of Theorem 1. The lower bound is trivial when N = ∅, so assume
∣∣N ∣∣ > 0. For i ∈ N

define Ti(t) as the number of customers product i has been offered to, before customer t’s arrival,

Ti(t) :=
t−1∑
u=1

1 {i ∈ Su} , t ≥ 1.

Similarly, for n ≥ 1 define ti(n) as the customer to whom product i is offered for the n-th time,

ti(n) := inf {t ≥ 1 : Ti(t+ 1) = n} , n ≥ 1.

For i ∈ N , define Θi as the set of mean utility vectors for which product i is in the optimal

assortment, but that differs from μ only on its i-th coordinate. That is,

Θi :=
{
ν ∈ R

N
+ : νi �= μi , νj = μj ∀ j ∈ N \ {i} , i ∈ S∗(ν)

}
.

We will use E
ν
π and P

ν
π to denote expectations and probabilities of random variables, when the

assortment policy π ∈ P is used, and the mean utilities are given by the vector ν. Let Ii(μ‖ν)
denote the Kullback-Leibler divergence between F (· − μi) and F (· − νi),

Ii(μ‖ν) :=
∫ ∞

−∞
[log (dF (x− μi)/dF (x− νi))] dF (x− μi).
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This quantity measures the “distance” between P
μ
π and P

ν
π. We have that 0 < Ii(μ‖ν) <∞ for all

ν �= μ, i ∈ N . Fix i ∈ N and consider a configuration ν ∈ Θi. For n ≥ 1 define the log-likelihood

function

Li(n) :=
n∑

u=1

[
log(dF (U ti(u)

i − μi)/dF (U ti(u)
i − νi))

]
.

Note that Li(·) is defined in terms of utility realizations that are unobservable to the retailer. Define

δ(η) as the minimum (relative) optimality gap when the mean utility vector is given by η ∈ R
N
+ ,

δ(η) := inf {1− f(S, η)/f(S∗(η), η) > 0 : S ∈ S} . (9)

Fix α ∈ (0, 1). For any consistent policy π one has that for any ε > 0,

Rπ(T, ν) ≥ δ(ν)Eν
π {T − Ti(T )}

≥ δ(ν)
(
T − (1− ε)

Ii(μ‖ν)
log T

)
P

ν
π {Ti(T ) < (1− ε) log T/Ii(μ‖ν)} ,

and by assumption on π Rπ(T, ν) = o(Tα). From the above, we have that

P
ν
π {Ti(T ) < (1− ε) log T/Ii(μ‖ν)} = o(Tα−1). (10)

Define the event

βi :=
{
Ti(T ) ≤ (1− ε)

Ii(μ‖ν)
log T , Li(Ti(T )) ≤ (1− α) log T

}
.

From the independence of utilities across products and the definition of βi, we have that

P
ν
π {βi} =

∫
ω∈βi

dPν
π

=
∫

ω∈βi

T−1∏
u=1

∏
i∈Su

dF (Uu
i − νi)

=
∫

ω∈βi

T−1∏
u=1

∏
i∈Su

dF (Uu
i − νi)

dF (Uu
i − μi)

dPμ
π

=
∫

ω∈βi

Ti(T )∏
n=1

dF (U ti(n)
i − νi)

dF (U ti(n)
i − μi)

dPμ
π

=
∫

ω∈βi

exp(−Li(Ti(T )))dPμ
π

≥ exp(−(1− α) log T )Pμ
π {βi} .

From (10) one has that P
ν
π {βi} = o(Tα−1). It follows by (10) that as T →∞

P
μ
π {βi} ≤ P

ν
π {βi} /Tα−1 → 0. (11)
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Indexed by n, Li(n) is the sum of finite mean identically distributed independent random variables,

therefore, by the strong law of large numbers (SLLN).

lim sup
n→∞

max {Li(l) : l ≤ n}
n

≤ Ii(μ‖ν)
(1− α)

P
μ
π a.s.,

i.e., the log-likelihood function grows no faster than linearly with slope Ii(μ||ν) . This implies that

lim sup
n→∞

P
μ
π {∃ l ≤ n , Li(l) > nIi(μ‖ν)/(1− ε)} = 0.

In particular,

lim
T→∞

P
μ
π

{
Ti(T ) <

(1− ε)
Ii(μ‖ν)

log T , Li(Ti(T )) >
(1− ε)
1− α log T

}
= 0.

Taking α < ε small enough, and combining with (11) one has that

lim
T→∞

P
μ
π

{
Ti(T ) <

(1− ε)
Ii(μ‖ν)

log T )
}

= 0.

Finally, defining the positive finite constant Hμ
i := inf {I(μ‖ν) : ν ∈ Θi}, it follows that

lim
T→∞

P
μ
π {Ti(T ) ≥ (1− ε) log T/Hμ

i )} = 1.

By Markov’s inequality, and letting ε shrink to zero we get

lim inf
T→∞

E
μ
π {Ti(T )}
log T

≥ 1
Hμ

i

. (12)

By the definition of the regret, we have that for any consistent policy π ∈ P ′,

Rπ(T, μ)
(a)

≥ δ(μ) E
μ
π

[
T∑

t=1

P
μ
π1 {St �= S∗(μ)}

]
(b)

≥ δ(μ)
1
C

∑
i∈N

E
μ
π [Ti(T )] .

where (a) follows from the non-optimal assortments contributing at least δ(μ) to the regret, and

(b) follows by assuming non-optimal products are always tested in batches of size C, discarding

non-optimal products in N . Thus

T∑
u=1

1 {Su �= S∗(μ)} ≥
T∑

u=1

1
{
Su ∩N �= ∅

}
≥ 1
C

∑
i∈N

T∑
u=1

1 {i ∈ Su} =
1
C

∑
i∈N

Ti(T ).

Combining the above with (12) we have that, asymptotically,

Rπ(T, μ) ≥ δ(μ)
1
C

⎛⎝∑
i∈N

1
Hμ

i

⎞⎠ log T +K2(μ),
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for a finite positive constant K2. Taking K1(μ) := δ(μ) mini∈N
{
(Hμ

i )−1
}

gives the desired result.

�

Proof of Theorem 2. We prove the result in 3 steps. First, we compute an upper bound on the

probability of the estimates deviating from the true mean utilities. Second, we address the quality

of the solution to the static problem, when using estimated mean utilities. Finally, we combine

the above and analyze the regret. For purposes of this proof, let P denote probability of random

variables when the assortment policy π1 is used, and the mean utilities are given by the vector

μ. With a slight abuse of notation define pi := {pi(Aj , μ) : Aj ∈ A s.t. i ∈ Aj}, for i ∈ N , and

p := (p1, . . . , pN ).

Step1. Define T j(t) to be the number of customers Aj has been offered to, up to customer t− 1,

for Aj ∈ A. That is,

T j(t) =
t−1∑
u=1

1 {Su = Aj} , j = 1, . . . , |A| .

We will need the following side lemma, whose proof is deferred to Appendix B.

Lemma 1. Fix j ≤ |A| and i ∈ Aj. Then, for any n ≥ 1 and ε > 0

P

{∣∣∣∣∣
t−1∑
u=1

(Xu
i − pi(Aj , μ))1 {Su = Aj}

∣∣∣∣∣ ≥ εT j(t) , T j(t) ≥ n
}
≤ 2 exp(−c(ε)n),

for a positive constant c(ε) <∞.

For any vector ν ∈ R
N
+ and set A ⊆ N define ‖ν‖A = max {νi : i ∈ A}. Consider ε > 0 and fix

t ≥ 1. By Assumption 1 we have that for any assortment Aj ⊆ A

‖μ− μ̂t‖Aj ≤ κ(ε)‖p− p̂t‖Aj , (13)
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for some constant 1 < κ(ε) <∞, whenever ‖p− p̂t‖Aj < ε. We have that, for n ≥ 1,

P
{
‖μ− μ̂t‖Aj > ε , T j(t) ≥ n

}
= P

{
‖μ− μ̂t‖Aj > ε , ‖p− p̂t‖Aj ≥ ε , T j(t) ≥ n

}
+

P
{
‖μ− μ̂t‖Aj > ε , ‖p− p̂t‖Aj < ε , T j(t) ≥ n

}
≤ P

{
‖p− p̂t‖Aj ≥ ε , T j(t) ≥ n

}
+

P
{
‖μ− μ̂t‖Aj > ε , ‖p− p̂t‖Aj < ε , T j(t) ≥ n

}
(a)

≤ P
{
‖p− p̂t‖Aj ≥ ε , T j(t) ≥ n

}
+ P
{
‖p− p̂t‖Aj > ε/κ(ε) , T j(t) ≥ n

}
≤ 2P

{
‖p− p̂t‖Aj ≥ ε/κ(ε) , T j(t) ≥ n

}
≤ 2

∑
i∈Aj

P
{
|pi(Aj , μ)− p̂i,t| ≥ ε/κ(ε) , T j(t) ≥ n

}
(b)
= 2

∑
i∈Aj

P

{∣∣∣∣∣
t∑

s=1

(Xs
i − pi(Aj , μ))1 {St = Aj}

∣∣∣∣∣ ≥ T j(t)ε/κ(ε) , T j(t) ≥ n
}

(c)

≤ 2 |Aj | exp(−c(ε/κ(ε))n), (14)

where (a) follows from (13), (b) follows from the definition of p̂i,t, and (c) follows from Lemma 1.

Step 2. Fix an assortment S ∈ S. By the Lipschitz-continuity of p(S, ·) we have that, for t ≥ 1,

max {|pi(S, μ)− pi(S, μ̂t)| : i ∈ S} ≤ K‖μ− μ̂t‖S ,

for a positive constant K <∞, and therefore

|f(S, μ)− f(S, μ̂t)| ≤ ‖w‖∞K C‖μ− μ̂t‖S . (15)

From here, we conclude that

f(S∗(μ̂t), μ) ≥ f(S∗(μ̂t), μ̂t)− ‖w‖∞K C‖μ− μ̂t‖S∗(μ̂t)

≥ f(S∗(μ), μ̂t)− ‖w‖∞K C‖μ− μ̂t‖S∗(μ̂t)

≥ f(S∗(μ), μ)− 2‖w‖∞K C‖μ− μ̂t‖(S∗(μ)∪S∗(μ̂t)).

As a consequence, if

‖μ− μ̂t‖(S∗(μ)∪S∗(μ̂t)) < (2‖w‖∞K C)−1δ(μ)f(S∗(μ), μ)

then S∗(μ) = S∗(μ̂t), where δ(μ) is the minimum (relative) optimality gap (see (9) in proof of

Theorem 1). This means that if the mean utility estimates are uniformly close to the underlying

mean utility values, then solving the static problem using estimates returns the same optimal

assortment as when solving the static problem with the true parameters. In particular we will use

the following relation:

{S∗(μ) �= S∗(μ̂t)} ⊆
{
‖μ− μ̂t‖(S∗(μ)∪S∗(μ̂t)) ≥ (2‖w‖∞K C)−1δ(μ)f(S∗(μ), μ)

}
. (16)
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Step 3. Let NO(t) denote the event that a non-optimal assortment is offered to customer t. That

is

NO(t) := {St �= S∗(μ)} ,

Define ξ := (2‖w‖∞K C)−1δ(μ)f(S∗(μ), μ). For t ≥ |A| �C log T 
 one has that

P {NO(t)}
(a)

≤ P
{
‖μ− μ̂t‖(S∗(μ)∪S∗(μ̂t)) ≥ ξ

}
≤

∑
Aj∈A

P
{
‖μ− μ̂t‖Aj ≥ ξ

}
=

∑
Aj∈A

P
{
‖μ− μ̂t‖Aj ≥ ξ , T j(t) ≥ C log T

}
(b)

≤
∑

Aj∈A
2 |Aj |T−Cc(ξ/κ(ξ)), (17)

were (a) follows from (16) and (b) follows from (14). Considering C > c(ξ/κ(ξ))−1 results in the

following bound for the regret:

Rπ(T, μ) ≤
T∑

t=1

P {NO(t)}

≤ |A| �C log T 
+
∞∑

t>|A|�C log T 	

∑
Aj∈A

2 |Aj |T−Cc(ξ/κ(ξ))

≤ |A| C log T + C1

= �N/C
C log T + C1,

for a finite constant C1. Setting C2 = c(ξ/κ(ξ))−1 gives the desired result. �

Proof of Theorem 3. The proof follows the arguments of the proof of Theorem 2. Steps 1 and

2 are identical.

Step 3. Let NO(t) denote the event that a non-optimal assortment is offered to customer t, and

G(t) the event that there is no forced testing for customer t. That is,

NO(t) := {St �= S∗(μ)} ,

G(t) :=
{
T j(t) ≥ K log t , j ≤ |A| such that ‖w‖Aj ≥ f(S∗(μ̂t), μ̂t)

}
. (18)

29



Define ξ := (2‖w‖∞K C)−1δ(μ)f(S∗(μ), μ). We have that

P {NO(t) , G(t)}
(a)

≤ P
{
‖μ− μ̂t‖(S∗(μ)∪S∗(μ̂t)) > ξ , G(t)

}
≤ P

{
‖μ− μ̂t‖S∗(μ) > ξ , G(t)

}
+ P
{
‖μ− μ̂t‖S∗(μ̂t) > ξ , G(t)

}
(b)

≤
∑

j:Aj∩S∗(μ̂t) �=∅
P
{
‖μ− μ̂t‖Aj > ξ , T j(t) > K log t

}
+

∑
j : Aj∩∈S∗(μ) �=∅

P
{
‖μ− μ̂t‖Aj > ξ , G(t)

}
(c)

≤
∑

j:Aj∩S∗(μ̂t) �=∅
2 |Aj | t−c(ξ/κ(ξ))K +

∑
j : Aj∩∈S∗(μ) �=∅

P
{
‖μ− μ̂t‖Aj > ξ , G(t)

}
,

where: (a) follows from (16); (b) follows from the fact that Assumption 2 guarantees wi ≥
f(S∗(ν), ν) for all i ∈ S∗(ν) for any vector ν ∈ R

N ; and (c) follows from (14).

Fix j such that Aj ∩ S∗(μ) �= ∅. For such an assortment we have that

P
{
‖μ− μ̂t‖Aj > ξ , G(t)

}
≤ P

{
‖μ− μ̂t‖Aj > ξ , T j(t) ≥ K log t , G(t)

}
+ P
{
T j(t) < K log t , G(t)

}
.

The first term on the right-hand-side above can be bounded using (14). For the second one, note

that
{
T j(t) < K log t , G(t)

}
⊆
{
‖w‖Aj < f(S∗(μ̂t), μ̂t)

}
, and that

‖w‖Aj − f(S∗(μ), μ)δ(μ)/2
(a)

≥ f(S∗(μ), μ)(1− δ(μ)/2)
(b)

≥ f(S∗(μ̂t), μ)
(c)

≥ f(S∗(μ̂t), μ̂t)− ‖w‖∞KC‖μ− μ̂t‖S∗(μ̂t),

where: (a) follows from Assumption 2; (b) follows from the definition of δ(μ); and (c) follows from

(15). The above implies that
{
‖w‖Aj < f(S∗(μ̂t), μ̂t)

}
⊆
{
‖μ− μ̂t‖S∗(μ̂t) > ξ

}
, i.e.,

P
{
T j(t) < K log t , G(t)

}
≤ P

{
‖w‖Aj < f(S∗(μ̂t), μ̂t)

}
≤ P

{
‖μ− μ̂t‖S∗(μ̂t) > ξ , G(t)

}
≤

∑
k : Ak∩S∗(μ̂t) �=∅

P {‖μ− μ̂t‖Ak
> ξ , G(t)}

≤
∑

k : Ak∩S∗(μ̂t) �=∅
2 |Ak| t−c(ξ/κ(ξ))K,

where the last step follows from (14). Using the above we have that

P {NO(t) , G(t)} ≤
∑

j:Aj∩S∗(μ̂t) �=∅
2 |Aj | t−c(ξ/κ(ξ))K +

∑
j : Aj∩∈S∗(μ) �=∅

⎛⎝2 |Aj | t−c(ξ/κ(ξ))K +
∑

k : Ak∩S∗(μ̂t) �=∅
2 |Ak| t−c(ξ/κ(ξ))K

⎞⎠
≤ 2C2(2 + C)t−c(ξ/κ(ξ))K. (19)
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Consequently, we have that

P {NO(t) , G(t)c} ≤
∑

Aj∈A
P {St = Aj , G(t)c}

=
∑

j : ‖w‖Aj
≥f(S∗(μ),μ)

P {St = Aj , G(t)c}+
∑

j : ‖w‖Aj
<f(S∗(μ),μ)

P {St = Aj , G(t)c} .

For the first term above, we have from the policy specification that

T∑
u=1

∑
j : ‖w‖Aj

≥f(S∗(μ),μ)

P {Su = Aj , G(u)c} ≤ �N/C
 (K log T + 1) . (20)

To analyze the second term, fix j such that ‖w‖Aj < f(S∗(μ), μ), and define L(t) as the last cus-

tomer (previous to customer t) to whom the empirical optimal assortment (according to estimated

mean utilities) was offered. That is

L(t) := sup {u ≤ t− 1 : G(u)} ,

with G(u) given in (18). Note that L(t) ∈ {t− �|A|K log t�, . . . , t− 1} for t ≥ τ , where τ is given

by

τ := inf
{
u ≥ 1 : log(u− �|A| K log u�) +K−1 > log u

}
.

Consider t ≥ τ and u ∈ {t− �|A|K log t�, . . . , t− 1}. Then

P {St = Aj , G(t)c , L(t) = u} ≤ P
{
‖w‖Aj ≥ f(S∗(μ̂t), μ̂t) , G(t)c , L(t) = u

}
≤ P

{
‖w‖Aj ≥ f(S∗(μ̂t), μ̂t) , G(t)c , G(u)

}
= P

{
‖w‖Aj ≥ f(S∗(μ̂t), μ̂t) , G(t)c , G(u), NO(u)

}
+

P
{
‖w‖Aj ≥ f(S∗(μ̂t), μ̂t) , G(t)c , G(u), NO(u)c

}
≤ P {NO(u) , G(u)}+

P

{
‖w‖Aj ≥ f(S∗(μ̂t), μ̂t) , T k(t) ≥ K log t , ∀ k s.t. Ak ∩ S∗(μ) �= ∅

}
,

where the last step follows from the fact that offering S∗(μ) to customer u implies (from G(u)) that

T j(u) ≥ K log u, and therefore (for t ≥ τ) that T j(t) ≥ K log t, for all j such that Aj ∩ S∗(μ) �= ∅.
The first term in the last inequality can be bounded using (19). For the second, observe that

f(S∗(μ), μ̂t)− ‖w‖Aj ≥ f(S∗(μ), μ)− ‖w‖∞KC‖μ− μ̂t‖S∗(μ) − ‖w‖Aj ,

which follows from (15). Define δ := inf
{
(‖w‖∞KC)−1

(
1− ‖w‖Aj/f(S∗(μ), μ)

)
> 0 : Aj ∈ A

}
.

From the above,{
‖w‖Aj ≥ f(S∗(μ̂t), μ̂t)

}
⊆
{
‖w‖Aj ≥ f(S∗(μ), μ̂t)

}
⊆
{
‖μ− μ̂t‖S∗(μ) > δf(S∗(μ), μ)

}
.
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Define the event Ξ =
{
‖w‖Aj ≥ f(S∗(μ̂t), μ̂t) , T k(t) ≥ K log t , ∀ k s.t. Ak ∩ S∗(μ) �= ∅

}
and δ̄ :=

δf(S∗(μ), μ). One has that

P {Ξ} ≤ P

{
‖μ− μ̂t‖S∗(μ) > δ̄ , T k(t) ≥ K log t , ∀ k s.t. Ak ∩ S∗(μ) �= ∅

}
≤

∑
k : Ak∩S∗(μ) �=∅

P

{
‖μ− μ̂t‖Ak

> δ̄ , T k(t) ≥ K log t
}

≤
∑

k : Ak∩S∗(μ) �=∅
2 |Ak| t−c(δ̄/κ(δ̄))K.

Using Lemma 2 , we have that, when K > c(δ̄/κ(δ̄)),

P {St = Aj , G(t)c , L(t) = u} ≤ C2(2 + C)u−c(ξ/κ(ξ))K +
∑

k : Ak∩S∗(μ) �=∅
2 |Ak| t−c(δ̄/κ(δ̄))K

≤ C2(2 + C) (t− �|A|K log t�)−c(ξ/κ(ξ))K + C2t−c(δ̄/κ(δ̄))K.

Since the right hand side above is independent of u, one has that

P {St = Aj , G(t)c} ≤ C2(2 + C) (t− �|A|K log t�)−c(ξ/κ(ξ))K + C2t−c(δ̄/κ(δ̄))K, (21)

for j such that ‖w‖Aj < f(S∗(μ), μ), and t ≥ τ . Considering K > max
{
c(ξ/κ(ξ))−1, c(δ̄/κ(δ̄))−1

}
results in the following bound for the regret:

Rπ(T, μ) ≤
T∑

t=1

P {NO(t), G(t)}+
T∑

t=1

P {NO(t) , G(t)c}

≤
T∑

t=1

P {NO(t), G(t)}+

T∑
t=1

∑
j : ‖w‖Aj

≥f(S∗(μ),μ)

P {St = Aj , G(t)c}+
T∑

t=1

∑
j : ‖w‖Aj

<f(S∗(μ),μ)

P {St = Aj , G(t)c}

(a)

≤
∞∑

t=1

C2(2 + C)u−c(ξ/κ(ξ))K + �N/C
(K log(T ) + 1) +

∞∑
t=1

∑
j : ‖w‖Aj

<f(S∗(μ),μ)

C2(2 + C) (t− �|A|K log t�)−c(ξ/κ(ξ))K + C2t−c(δ̄/κ(δ̄))K

(b)

≤ �
∣∣N ∪ S∗(μ)

∣∣ /C
K log T +K1,

for a finite constantK1 <∞, where: (a) follows from (19), (20) and (21); and (b) uses the summabil-

ity of the series, implied by the terms in (19) and (21). TakingK2 > (max
{
c(ξ/κ(ξ))−1, c(δ̄/κ(δ̄))−1

}
provides the desired result. �

Proof of Corollary 1. Fix i ∈ N , and fix j = {k ≤ |A| : i ∈ Ak}. We have that

Eπ[Ti(T )] ≤ τ +
T∑

t=τ+1

P[NO(t) , G(t)] + P[St = Aj , G(t)c]

≤ K3,
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for a finite constant K3, where we have used the summability of the terms in (19) and (21). This

complete the proof. �

Proof of Theorem 4. The proof is an adaptation of the one for Theorem 3, customized for the

MNL choice model. However, we provide a explanation version of each step with the objective of

highlighting how the structure of the MNL model is exploited.

Step 1. We will need the following side lemma, whose proof is deferred to Appendix B.

Lemma 2. Fix i ∈ N . For any n ≥ 1 and ε > 0 one has

P

{∣∣∣∣∣
t−1∑
u=1

(
Xu

j − E
{
Xu

j

})
1 {i ∈ Su}

∣∣∣∣∣ ≥ ε Ti(t) , Ti(t) ≥ n
}
≤ 2 exp(−c(ε)n),

for j ∈ {i, 0} and a positive constant c(ε) <∞.

Consider ε > 0 and fix t ≥ 1 and i ∈ N . Define � = 1/2 (1+C‖w‖∞)−1. From Assumption 2 we

have that p0(S, μ) ≥ 2�, for all S ∈ S. For n ≥ 1 define the event Ξ := {|νi − ν̂i,t| > ε , Ti(t) ≥ n}.
We have that

P {Ξ} = P

{∣∣∣∣∣
∑t−1

u=1X
u
i 1 {i ∈ Su}∑t−1

u=1X
u
0 1 {i ∈ Su}

− νi

∣∣∣∣∣ > ε , Ti(t) ≥ n
}

≤ P

{∣∣∣∣∣
∑t−1

u=1X
u
i 1 {i ∈ Su}∑t−1

u=1X
u
0 1 {i ∈ Su}

− νi

∣∣∣∣∣ > ε ,

∣∣∣∣∣
t−1∑
u=1

(Xu
0 − E {Xu

0 })1 {i ∈ Su}
∣∣∣∣∣ < �Ti(t) , Ti(t) ≥ n

}
+

P

{∣∣∣∣∣
t−1∑
u=1

(Xu
0 − E {Xu

0 })1 {i ∈ Su}
∣∣∣∣∣ ≥ � Ti(t) , Ti(t) ≥ n

}
(a)

≤ P

{∣∣∣∣∣
t−1∑
u=1

(Xu
i −Xu

0 νi)1 {i ∈ Su}
∣∣∣∣∣ > ε�Ti(t) , Ti(t) ≥ n

}
+ 2 exp(−c(�)n)

(b)

≤ P

{∣∣∣∣∣
t−1∑
u=1

(Xu
i − E[Xu

i ])1 {i ∈ Su}
∣∣∣∣∣ > ε�/2Ti(t) , Ti(t) ≥ n

}
+

P

{∣∣∣∣∣
t−1∑
u=1

(Xu
0 − E[Xu

0 ])1 {i ∈ Su}
∣∣∣∣∣ > ε�/(2νi)Ti(t) , Ti(t) ≥ n

}
+ 2 exp(−c(�)n)

≤ 2 exp(−c(ε�/2)n) + 2 exp(−c(ε�/(2νi))n) + 2 exp(−c(�)n).

where: (a) follows from Lemma 2 and from the fact that∣∣∣∣∣
t−1∑
u=1

Xu
0 1 {i ∈ Su}

∣∣∣∣∣ ≥
∣∣∣∣∣
t−1∑
u=1

E[Xu
0 ]1 {i ∈ Su}

∣∣∣∣∣−
∣∣∣∣∣
t−1∑
u=1

(Xu
0 − E[Xu

0 ])1 {i ∈ Su}
∣∣∣∣∣ ≥ �Ti(t),

when
∣∣∣∑t−1

u=1 (Xu
0 − E {Xu

0 })1 {i ∈ Su}
∣∣∣ < �Ti(t); and (b) follows from the fact that EXu

i = νiEX
u
0 ,

for all u ≥ 1 such that i ∈ Su, i ∈ N . For ε > 0 define c̃(ε) := min {c(ε�/2) , c(ε�/(2‖ν‖N )) , c(�)}.
From above we have that for ε > 0

P {|νi − ν̂i,t| > ε , Ti(t) ≥ n} ≤ 6 exp(c̃(ε)n), (22)
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for all i ∈ N .

Step 2. Consider two vectors υ, η ∈ R
N
+ . From (8), for any S ∈ S one has∑

i∈S

υi(wi − f(S, υ)) = f(S, υ)∑
i∈S

ηi(wi − f(S, υ)) ≥ f(S, υ)− C‖w‖∞‖υ − η‖S∑
i∈S

ηi(wi − (f(S, υ)− C‖w‖∞‖υ − η‖S) ≥ f(S, υ)− C‖w‖∞‖υ − η‖S

This implies that

f(S, η) ≥ f(S, υ)− C‖w‖∞‖η − υ‖S . (23)

From the above we conclude that

{S∗(ν̂t) �= S∗(ν̂t)} ⊆
{
‖ν − ν̂t‖S∗(ν)∪S∗(ν̂t) ≥ (2‖w‖∞C)−1δ(ν)f(S∗(μ), μ)

}
, (24)

were δ(ν) refers to the minimum optimality gap, in terms of the adjusted terms exp(μ).

Step 3. Let NO(t) denote the event that a non-optimal assortment is offered to customer t, and

G(t) the event that there is no “forced testing” on customer t. That is

NO(t) := {St �= S∗(ν)} ,

G(t) := {Ti(t) ≥M log t , ∀ i ∈ N such thatwi ≥ f(S∗(ν̂t), ν̂t)} .

Define ξ := (2‖w‖∞C)−1δ(ν)f(S∗(μ), μ). We have that

P {NO(t) , G(t)}
(a)

≤ P
{
‖ν − ν̂t‖(S∗(ν)∪S∗(ν̂t)) > ξ , G(t)

}
≤ P

{
‖ν − ν̂t‖S∗(ν̂t) > ξ , G(t)

}
+ P
{
‖ν − ν̂t‖S∗(ν) > ξ , G(t)

}
(b)

≤
∑

i∈S∗(ν̂t)

P {|νi − ν̂i,t| > ξ , Ti(t) ≥M log t}+
∑

i∈S∗(ν)

P {|νi − ν̂i,t| > ξ , G(t)}

(c)

≤ 6Ct−Mc̃(ξ) +
∑

i∈S∗(ν)

P {|νi − ν̂i,t| > ξ , G(t)}

where: (a) follows from (24); (b) follows from the fact that Assumption 2 guarantees wi ≥
f(S∗(η), η) for all i ∈ S∗(η) and for any vector η ∈ R

N ; and (c) follows from (22). Fix i ∈ S∗(ν).

We have that

P {|νi − ν̂i,t| > ξ,G(t)} ≤ P {|νi − ν̂i,t| > ξ , Ti(t) ≥M log t}+ P {G(t), Ti(t) <M log t} .
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The first term above can be bounded using (22). For the second one, note that {G(t) , Ti(t) <M log t} ⊆
{wi < f(S∗(ν̂t), ν̂t)}, and that

wi − f(S∗(ν), ν)δ(ν)/2
(a)

≥ f(S∗(ν), ν)(1− δ(ν)/2)
(b)

≥ f(S∗(ν̂t), ν)
(c)

≥ f(S∗(ν̂t), ν̂t)− ‖w‖∞C‖ν − ν̂t‖S∗(ν̂t),

where (a) follows from Assumption 2, (b) follows from the definition of δ(ν), and (c) follows from

(23). The above implies that {wi < f(S∗(ν̂t), ν̂t)} ⊆
{
‖ν − ν̂t‖S∗(ν̂t) > ξ

}
, i.e.,

P {Ti(t) <M log t , G(t)} ≤ P {wi < f(S∗(ν̂t), ν̂t), G(t)}

≤ P
{
‖ν − ν̂t‖S∗(ν̂t) > ξ , G(t)

}
≤

∑
j∈S∗(ν̂t)

P {|νj − ν̂j,t| > ξ , G(t)}

≤ 6Ct−Mc̃(ξ),

where the last step follows from (22). Using the above we have that

P {NO(t) , G(t)} ≤ 6C(1 + C)t−Mc̃(ξ). (25)

From here, we have that

P {NO(t) , G(t)c} ≤
∑

i : wi<f∗(S∗(ν),ν)

P {i ∈ St , G(t)c}+
∑

i : wi≥f∗(S∗(ν),ν)

P {i ∈ St , G(t)c}

(a)

≤
∑

i : wi<f∗(S∗(ν),ν)

P {i ∈ St , G(t)c}+
∣∣N ∣∣ (M log T + 1) .+

∑
i∈S∗(μ)

P {i ∈ St , G(t)c}

where (a) follows from the specification of the policy. Fix i such that wi < f(S∗(ν), ν), and define

L(t) as the last customer (previous to customer t) to whom the empirical optimal assortment,

according to estimated mean utilities, was offered. That is

L(t) := sup {u ≤ t− 1 : G(u)} .

Note that L(t) ∈ {t− �NM log t�, . . . , t− 1} for t ≥ τ , where τ is given by

τ := inf
{
u ≥ 1 : log(u− �NM log u�) +M−1 > log u

}
.
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Consider t ≥ τ and u ∈ {t− �NM log t�, . . . , t− 1}. Then

P {i ∈ St , G(t)c , L(t) = u} ≤ P {wi ≥ f(S∗(ν̂t), ν̂t) , G(t)c , L(t) = u}
(a)

≤ P {wi ≥ f(S∗(ν̂t), ν̂t) , G(t)c , G(u)}

≤ P {G(u), NO(u)}+ P {wi ≥ f(S∗(ν̂t), ν̂t) , G(t)c , G(u), NO(u)c}
(b)

≤ 6C(1 + C)u−Mc̃(ξ) +

P {wi ≥ f(S∗(ν̂t), ν̂t) , Tj(t) ≥M log t ∀ j ∈ S∗(ν)} ,

where (a) follows from {L(t) = u} ⊆ {G(u)}, and (b) from (25) and the fact that offering S∗(ν)

to customer u implies (from G(u)) that Tj(u) ≥ M log u and therefore (from t ≥ τ) that Tj(t) ≥
M log t, for all j ∈ S∗(ν). From (23) we have that

f(S∗(ν), ν̂t)− wi ≥ f(S∗(ν), ν)− ‖w‖∞C‖ν − ν̂t‖S∗(ν) − wi.

Define δ := inf
{
(‖w‖∞C)−1 (1− wi/f(S∗(ν), ν)) > 0 : i ∈ N

}
. From the above, we have that

{wi ≥ f(S∗(ν̂t), ν̂t)} ⊆ {wi ≥ f(S∗(ν), ν̂t)} ⊆
{
‖ν − ν̂t‖S∗(ν) > δf(S∗(ν), ν)

}
.

Define δ̄ := δf(S∗(ν), ν). It follows that

P {wi ≥ f(S∗(ν̂t), ν̂t) , Tj(t) ≥M log t ∀ j ∈ S∗(ν)} ≤ P
{
‖ν − ν̂t‖S∗(ν) > δ̄ , Tj(t) ≥M log t ∀ j ∈ S∗(ν)

}
≤

∑
i∈S∗(ν)

P
{
|νi − ν̂t,i| > δ̄ , Ti(t) ≥M log t

}
≤ 6Ct−Mc̃(δ̄).

Using the above one gets that, when M > c̃(ξ)−1

P {i ∈ St , G(t)c , L(t) = u} ≤ 6C(1 + C)u−Mc̃(ξ) + 6Ct−Mc̃(δ̄)

≤ 6C(1 + C)(t− �NM log t�)−Mc̃(ξ) + 6Ct−Mc̃(δ̄).

Since the right hand side above is independent of u, one has that

P {i ∈ St , G(t)c} ≤ 6C(1 + C)(t− �NM log t�)−Mc̃(ξ) + 6Ct−Mc̃(δ̄), (26)

for all i ∈ N such that wi < f(S∗(ν), ν), and t ≥ τ .

Now fix i ∈ S∗(μ), and consider t ≥ τ , u ∈ {t− �NM log t�, . . . , t− 1} andM > c̃(ξ)−1. Then

P {i ∈ St , G(t)c , L(t) = u} ≤ P {Ti(t) <M log t , G(t)c , L(t) = u}
(a)

≤ P {Ti(t) <M log t , G(u)}

≤ P {G(u), NO(u)}+ P {Ti(t) <M log t , G(u) , NOc(u)}
(b)

≤ 6C(1 + C)u−Mc̃(ξ)

≤ 6C(1 + C)(t− �NM log t�)−Mc̃(ξ),
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where (a) follows from {L(t) = u} ⊆ {G(u)}, and (b) from (25) and the fact that offering S∗(ν)

to customer u implies (from G(u)) that Ti(u) ≥ M log u and therefore (from t ≥ τ) that Ti(t) ≥
M log t. Since the right hand side above is independent of u, one has that

P {i ∈ St , G(t)c} ≤ 6C(1 + C)(t− �NM log t�)−Mc̃(ξ), (27)

for all i ∈ S∗(μ) and t ≥ τ .

ConsideringM > max
{
c̃(ξ)−1 , c̃(δ̄)−1

}
results in the following bound for the regret

Rπ(T, ν) ≤
T∑

t=1

P {NO(t), G(t)}+
T∑

t=1

P {NO(t) , G(t)c}

(a)

≤ 6C(1 + C)
∞∑

t=1

t−Mc̃(ξ) +
∣∣N ∣∣M(log T + 1) + τ +

6C |N ∪ S∗(μ)|
∞∑

t=τ

(1 + C)(t−Mc̃(ξ) + (t− �NM log t�)−Mc̃(ξ)) + t−Mc̃(δ̄)

(b)

≤
∣∣N ∣∣M log T +K1,

for a finite constant K1 <∞, where (a) follows from (25), (26) and (27), and (b) uses the summa-

bility of the series, implied by the terms in (25), (26) and (27). Taking K2 > max
{
c̃(ξ)−1 , c̃(δ̄)−1

}
provides the desired result. �

Proof of Corollary 2. Fix i ∈ N . We have that

Eπ[Ti(T )] ≤ τ +
T∑

t=τ+1

P[NO(t) , G(t)] + P[i ∈ St , G(t)c]

≤ K3 <∞,

for a finite constant K3, where we have used the summability of the terms in (25) and (26). This

concludes the proof. �

B Proof of Auxiliary Results

Proof of Lemma 1.

Fix i ∈ N . For θ > 0 consider the process {Mt(θ) : t ≥ 1}, defined as

Mt(θ) := exp

(
t∑

u=1

1 {Su = Aj} [θ(Xu
i − pi(Aj , μ))− φ(θ)]

)
,

where

φ(θ) := log E {exp(θ (Xu
i − pi(Aj , μ)))} = −θpi(Aj , μ) + log(pi(Aj , μ) exp(θ) + 1− pi(Aj , μ)),
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and Aj ∈ A such that i ∈ Aj . One can check that Mt(θ) is an Ft-martingale, for any θ > 0 (see

§3 for the definition of Ft). Note that

exp

(
θ

t∑
u=1

1 {Su = Aj} ((Xu
i − pi(Aj , μ))− ε)

)
=
√
Mt(2θ) exp

(
t∑

u=1

1 {Su = Aj} (φ(2θ)/2− θε)
)
.

(28)

Let χi denote the event we are interested in. That is

χi :=

{
t−1∑
u=1

(Xu
i − pi(Aj , μ))1 {Su = Aj} ≥ T j(t)ε , T j(t) ≥ n

}
.

Let ψ(t) denote the choice made by the t-th user. Using the above one has that

P {χi} (a)
≤ E

{
exp

(
θ

t−1∑
u=1

1 {Su = Aj} (Xu
i − pi(Aj , μ)− ε)

)
; Ti(t) ≥ n

}

(b)
≤

(
E {Mt−1(2θ)}E

{
exp

(
t−1∑
u=1

1 {ψ(u) = i} (φ(2θ)− 2θε)

)
; Ti(t) ≥ n

})1/2

(c)
≤

(
E

{
exp

(
t−1∑
u=1

1 {ψ(u) = i} (φ(2θ)− 2θε)

)
; Ti(t) ≥ n

})1/2

,

where: (a) follows from Chernoff’s inequality; (b) follows from the Cauchy-Schwartz inequality and

(28); and (c) follows from the properties of Mt(θ). Note that when ε < (1− pi(Aj , μ)) minimizing

φ(θ)− θε over θ > 0 results on

θ∗ := log
(

1 +
ε

pi(Aj , μ)(1− pi(Aj , μ)− ε)

)
> 0,

with

c(ε) := φ(2θ∗)/2− θ∗ε < 0.

Using this we have

P

{
t−1∑
u=1

(Xu
i − pi)1 {Su = Aj} ≥ T j(t)ε , T j(t) ≥ n

}
≤
√

E {exp(−2c(ε)Ti(t)); Ti(t) ≥ n}

≤ exp(−c(ε)n).

Using the same arguments one has that

P

{
t−1∑
u=1

(Xu
i − pi)1 {Su = Aj} ≤ −T j(t)ε , T j(t) ≥ n

}
≤ exp(−c(ε)n).

The result follows from the union bound. �
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Proof of Lemma 2

The proof follows almost verbatim the steps in the proof of Lemma 1. Fix i ∈ N . For θ > 0

consider the process
{
M j

t (θ) : t ≥ 1
}

, defined as

M j
t (θ) := exp

(
t∑

u=1

1 {i ∈ Su} [θ(Xu
j − pj(Su, μ))− φj

u(θ)]

)
j ∈ {i, 0} ,

where

φj
u(θ) := log E

{
exp(θ(Xu

j − pj(Su, μ)))
}

= log E {exp(−θpj(Su, μ)) (exp(θ)pj(Su, μ) + 1− pj(Su, μ))} .

One can verify that M j
t (θ) is an Ft-martingale, for any θ > 0 and j ∈ {i, 0} (see §3 for the definition

of Ft). Fix j ∈ {i, 0} and note that

exp

(
θ

t∑
u=1

1 {i ∈ Su} ((Xu
j − pj(Su, μ))− ε)

)
=
√
M j

t (2θ) exp

(
t∑

u=1

1 {i ∈ Su} (φj
u(2θ)/2− θε)

)
.

(29)

Put

χj :=

{
t−1∑
u=1

(
Xu

j − pj(Su, μ)
)
1 {i ∈ Su} ≥ Ti(t)ε , Ti(t) ≥ n

}
.

Let ψ(t) denote the choice made by the t-th customer. Using the above one has that

P {χj} (a)
≤ E

{
exp

(
θ

t−1∑
u=1

1 {i ∈ Su} (Xu
j − pj(Su, μ)− ε)

)
; Ti(t) ≥ n

}

(b)
≤

(
E

{
M j

t−1(2θ)
}

E

{
exp

(
t−1∑
u=1

1 {ψ(u) = j , i ∈ Su} (φj
u(2θ)− 2θε)

)
; Ti(t) ≥ n

})1/2

(c)
≤

(
E

{
exp

(
t−1∑
u=1

1 {ψ(u) = j , i ∈ Su} (φj
u(2θ)− 2θε)

)
; Ti(t) ≥ n

})1/2

,

where; (a) follows from Chernoff’s inequality; (b) follows from the Cauchy-Schwartz inequality and

(28); and (c) follows from the properties of M j
t (θ). Note that φj

s(·) is continuous, φj
s(0) = 0,

(φj
s)′(0) = 0, and φj

s(θ)→∞ when θ →∞, for all s ≥ 1 . This implies that there exists a positive

constant c(ε) < ∞ (independent of n), and a θ∗ > 0, such that φj
s(2θ∗) − 2θ∗ε < −2c(ε) for all

s ≥ 1. Using this we have that

P

{
t−1∑
u=1

(
Xu

j − pj(Su, μ)
)
1 {i ∈ Su} ≥ Ti(t)ε , Ti(t) ≥ n

}
≤
√

E {exp(−2c(ε)Ti(t)); Ti(t) ≥ n}

≤ exp(−c(ε)n).

Using the same arguments one has that

P

{
t−1∑
u=1

(
Xu

j − pj(Su, μ)
)
1 {i ∈ Su} ≤ −Ti(t)ε , Ti(t) ≥ n

}
≤ exp(−c(ε)n).

The result follows from the union bound. �

39


