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ABSTRACT

We consider the problem of selecting the best system using
simulation-based ordinal optimization. This problem has
been studied mostly in the context of light-tailed distribu-
tions, where both Gaussian-based heuristics and asymptot-
ically optimal procedures have been proposed. The latter
rely on detailed knowledge of the underlying distributions
and give rise to an exponential decay of the probability of
selecting the incorrect system. However, their implemen-
tation tends to be computationally intensive. In contrast,
in the presence of heavy tails the probability of selecting
the incorrect system only decays polynomially, but this is
achieved using simple allocation schemes that rely on little
information of the underlying distributions. These observa-
tions are illustrated via several numerical experiments and
are seen to be consistent with asymptotic theory.

1 INTRODUCTION

Suppose there arek systems, and the performance of systemi
is characterized by an unknown distribution functionF(i)

with meanµi, i = 1,2, . . . ,k. For simplicity assumeµ1 <
µ2≤ µ3≤ ·· · ≤ µk. The user is given a simulation budgetn,
meaning thatn independent samples can be drawn from the
distributionsF(i), i = 1,2, . . . ,k, with the goal of identifying
system 1 as the best. Since the outcome of any sampling
procedure is random, we wish to minimize the probability
of selecting a system which does not correspond to the
smallest meanµ1. In the simplest case, we restrict our
attention to static allocation policies denoted by the vector
α = (α1,α2, . . . ,αk)

T with nonnegative entries that sum to

one. In this policy,αin samples (X (i)
1 ,X (i)

2 , . . . ,X (i)
αin) are

drawn, i.e., simulated, from systemi, i = 1,2, . . . ,k. We
ignore integrality constraints for simplicity. Given thatone
is interested in discovering the smallest mean, an obvious
statistic for doing that is the sample average. For a fixed

vectorα, let X̄ (i)
n = ∑αin

j=1 X (i)
j /αin. Let

FSn(α)≡
k
⋃

i=2

{X̄ (1)
n > X̄ (i)

n }

denote the event of selecting the wrong system, i.e., false
selection, for a simulation budgetn and allocation policy
α. We are interested in finding an allocation policy that
minimizes the probability of this event, i.e., that solves

min P{FSn(α)}

s.t.
k

∑
i=1

αi = 1

αi ≥ 0, i = 1,2, . . . ,k

This formulation is a relaxation of the combinatorial op-
timization problem that includes integrality constraintson
the number of samples to be simulated from each system.
While we would ideally like to characterize the optimal
allocation policy for each budget, this problem is hardly
tractable, and the bulk of the literature pursues more re-
laxed notions, such as asymptotically optimal solutions, or
various heuristics.

So far, there have been two main approaches to the
problem described above. The first uses ranking and se-
lection, and considers an indifference zone formulation to
control the probability of false selection up to pre-specified
levels. This approach relies critically on the assumption
that eachX (i) has a Gaussian distribution; see, e.g., Golds-
man and Nelson (2001), Kim and Nelson (2003) for an
overview. The second approach, which this paper builds
on, uses ordinal optimization to determine the number of
samples taken from each system to minimize the probability
of false selection. Under suitable conditions, the probabil-
ity of false selection converges to zero at an exponential
rate; see Dai (1996). Based on Dai (1996), Chen et al.
(2000) suggest Gaussian-based heuristics to minimize the
probability of false selection. Glynn and Juneja (2004) use
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large deviations theory to develop a mathematically rigorous
framework for more general non-Gaussian settings.

Glynn and Juneja (2004) propose allocation policies
that are asymptotically optimal, a relaxed version of opti-
mality that pertains to large simulation budgets. While these
policies do not rely on Gaussian assumptions (as in Chen et
al. (2000)), they suffer from two important shortcomings:
they rely on finer structure of the underlying distribution
functions, as opposed to just first and second moment infor-
mation that characterizes Gaussian heuristics; and, they are
computationally intensive and hence difficult to implement.

It is important to note that the approaches outlined above
are only rigorously justified (and in the case of Glynn and
Juneja (2004), feasible), if the underlying distributionsare
light-tailed. (We say that a distribution is light-tailed if its
moment generating function exists in a neighborhood of
zero.) This opens up the question, which is the main topic
of this paper, of characterizing achievable performance in
the best system selection problem with heavy-tailed distri-
butions, and the derivation of policies that perform well in
that environment.

2 REVIEW OF RESULTS IN
LIGHT-TAILED ENVIRONMENTS

2.1 A LARGE DEVIATION-BASED APPROACH

Under technical regularity conditions, Glynn and Juneja
(2004) proved that for almost all static allocation policies
P{FSn(α)} converges to zero at an exponential rate asn
grows large. In particular, they showed that

logP{FSn(α)} ∼ −G(α)n as n→ ∞

where G(α) can be characterized using tools from large
deviations theory. Here sequences of real numbers{an},
{bn} are said to be asymptotically equivalent, denotedan ∼
bn, if an/bn→ 1 asn→ ∞. Glynn and Juneja (2004) then
formulated the problem of selecting the best system as:

min −G(α)

s.t.
k

∑
i=1

αi = 1

αi ≥ 0, i = 1,2, . . . ,k

Hence, the goal is to find a vectorα∗ which maximizes
G(α), the asymptotic decay rate of the probability of false
selection. Glynn and Juneja (2004) establish that, in the
light-tailed environment, there exist static allocation poli-
cies that are asymptotically optimal, in the sense that they
asymptotically minimize the probability of false selection.
The caveat is that computing this policy is quite complicated.
In practice,G(α) relies on knowledge of the moment gen-

erating function of each underlying distribution. If theseare
to be estimated, the computation ofG(α) can be prohibitive.
In particular, settingIi(x) = supθ{θX− logE[exp(θX (i))]},
the rate functionG(α) is constructed as follows:

G(α) = min
2≤i≤k

Gi(α1,αi)

= min
2≤i≤k

inf
x

(α1I1(x)+αiIi(x)) .

For purposes of implementation in our paper, we take as
primitive knowledge of the rate functionIi(x), i = 1,2, . . . ,k.
Of course, knowledge of the rate function is an unrealistic
assumption in practice, but it allows us to explore
the best possible results obtainable with this approach.
We will refer to this as the modified Glynn-Juneja algorithm.

The Modified GJ Algorithm

Step 0. Distribute the initial computing budgetn0 to each
system equally, i.e., setni = n0/k for i = 1,2, . . . ,k.

Step 1. If ∑k
i=1 ni ≥ n, then stop.

Step 2. ComputeX̄ (1)
n1 , . . . , X̄ (k)

nk and findb =

argmini=1,2,...,k{X̄ (i)
ni }.

Step 3. Calculateα1, . . . ,αk by solving the equations:

min −min
i 6=b

Gi(αb,αi)

s.t.
k

∑
i=1

αi = 1

αi ≥ 0, i = 1,2, . . . ,k

where

Gi(αb,αi) = inf
x

(αbIb(x)+αiIi(x)) . (1)

Step 4. Increase the simulation budget by∆ and set
ni← ni +∆αi for i = 1,2, . . . ,k. Go to Step 1.

In our numerical examples that follow in section 4, we
test this algorithm for two cases: normal and exponential
distributions. In the normal distribution case, (µi,σ2

i ) are,
respectively, the mean and variance of theith system. In
the exponential distribution case, we start with a standard,

unit rate, exponential random variable Z, and thenX (i) d
=

σi(Z−1)+ µi. In this manner, the mean of theith system
is µi, and its variance isσ2

i . The respective rate functions
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that we take as primitives are easily seen to be

Ii(x)=







(x−µi)
2

2σ2
i

Normal distribution

x−µi
σi

+ log σi
x−µi+σi

Exponential distribution

2.2 A GAUSSIAN-BASED APPROACH

Chen et al. (2000) assumed each̄X (i) follows a normal
distribution with the meanµi and varianceσ2

i /(αin). They
minimize an upper bound onP{FSn(α)} and formulate the
problem of selecting the best system as:

min
k

∑
i=2

Φ̄









µi−µ1
√

σ2
1

α1n +
σ2

i
αin









s.t.
k

∑
i=1

αi = 1

αi ≥ 0, i = 1,2, . . . ,k

whereΦ(·) is the cumulative standard normal distribution
function andΦ̄(x) = 1−Φ(x).

Using the first order conditions, they suggest ap-
proximate solutions and the following sequential method
for finding an approximately optimal computing budget
allocation (OCBA).

A Sequential Algorithm for Optimal Computing Budget
Allocation (OCBA)

Step 0. Distribute the initial computing budgetn0 to each
system equally, i.e., setni = n0/k for i = 1,2, . . . ,k.

Step 1. If ∑k
i=1 ni ≥ n, then stop.

Step 2. ComputeX̄ (1)
n1 , . . . , X̄ (k)

nk and findb =

argmini=1,2,...,k{X̄ (i)
ni }.

Step 3. Calculateα1, . . . ,αk by solving the equations:

αi

α j
=

(

σi/(X̄ (b)− X̄ (i))

σ j/(X̄ (b)− X̄ ( j))

)2

(2)

for i, j ∈ 1,2, . . . ,k and i 6= j 6= b, and

αb = σb

√

√

√

√∑
i 6=b

α2
i

σ2
i

(3)

Step 4. Increase the simulation budget by∆ and set
ni← ni +∆αi for i = 1,2, . . . ,k. Go to Step 1.

The above algorithm is, essentially, based on the as-
sumption that the distributionsF(i) are Gaussian. Hence, the
variances are the only information necessary to implement
the algorithm.

3 SELECTING THE BEST SYSTEM IN THE
PRESENCE OF HEAVY-TAILED
DISTRIBUTIONS

One can find in the literature many classes and definitions of
heavy-tailed distributions, see, e.g., Embrechts et al. (1997).
For our purposes, it will be convenient to focus on a class
of distributions which is characterized by a polynomial-like
tail. Although this is not the most general notion possible,
the salient features of our problem can be easily illustrated
within the confines of this family. To formalize the notion
of a polynomial-like tail, we use the following definition.

Definition 1. A positive Lebesque measurable function h on
(0,∞) is regularly varying at ∞ with index ν ∈R, written
h ∈Rν , if

lim
x→∞

h(tx)
h(x)

= tν , t > 0.

3.1 MAIN THEORETICAL RESULT

The main result of this paper is stated next.

Theorem 1. Assume F̄(i)(x) = P{X (i) > x} ∈ R−νi and
F(i)(−x) = P{−X (i) > x}∈R−νi for all i = 1,2, . . . ,k. Then,
for any allocation vector α = (α1, . . . ,αk)

T with strictly
positive elements

logP{FSn(α)} ∼ − min
1≤i≤k

{νi−1} logn as n→ ∞ .

Proof. See Appendix.

Theorem 1 states that the probability of false selection,
P{FSn(α)}, converges to zero at a polynomial rate, namely,
P{FSn(α)} ≈ n−r. Moreover, the rater does not depend on
α so long as all elements ofα are strictly positive. In that
case, it is determined by the minimal tail index min1≤i≤k{νi},
i.e., the heaviest tail. This result is quite different fromthe
type of results that one sees in light-tailed environments,
where it is possible to control the decay rate using static
allocation policies, and these policies are in fact asymp-
totically optimal (see Glynn and Juneja (2004)). On the
other hand, to optimize the rate at which the probability of
false selection decays to zero in the light-tailed setting,one
requires detailed information characterizing the underlying
distributions (in the form of the moment generating func-
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tions). In contrast, in the heavy-tailed setting one can obtain
the “best” asymptotic performance with static policies that
are oblivious to the structure of the underlying distributions.
While Theorem 1 asserts that it is impossible to control
the polynomial convergence rate on logarithmic scale, im-
proved convergence may be obtained when more refined tail
information is available. In particular, if one can approxi-
mate logP{FSn(α)} by log(c(α))−min1≤i≤k{νi−1} logn,
wherec(α) is a function of the policyα, then it may be
possible to minimizec(α) over feasible policiesα. An
illustration of this observation using thet-distribution is
given next.

Example: The t-distribution. Suppose thatX (i) follows
a t-distribution with meanµi and degree of freedom (df)
parameterνi, for i = 1,2, . . . ,k. The density function ofX (i)

is:

f (x) = ci

(

1+
(x−µi)

2

νi

)− νi+1
2

where

ci =
Γ( νi+1

2 )
√

πνi Γ( νi
2 )

.

Clearly F(i)(n) ∈R−νi for all i = 1,2, . . . ,k. Tedious but
straightforward algebra gives the following bound:

P{X̄ (1) > X̄ (i)} ≤ c1ν
ν1+1

2
1 ((µi−µ1)αi/2)−ν1n−ν1+1

+ciν
νi+1

2
i ((µi−µ1)α1/2)−νin−νi+1.

Hence,

P{FSn(α)} ≤ (k−1) max
2≤i≤k

(

c1ν
ν1+1

2
1 ((µi−µ1)αi/2)−ν1

n−ν1+1, ciν
νi+1

2
i ((µi−µ1)α1/2)−νin−νi+1

)

.

Lower bounds can be derived in a similar manner. Here
there is a potential to improve the probability of false
selection P{FSn(α)} by controlling the pre-multiplier

ciν
(νi+1)/2
i ((µi− µ1)α1/2)−νi for each i = 1,2, . . . ,k. Of

course this requires significant knowledge of the underly-
ing distribution functions.

4 NUMERICAL RESULTS

The numerical experiments include tests of several algo-
rithms, both light-tailed and heavy-tailed. For each budget
n, we estimateP{FSn(α)} by counting the number of times
a method identifies the true smallest mean system (by se-
lecting the smallest sample average) out of the total number
of replications. The number of replications,m, is chosen

so that:
√

Pn(1−Pn)

m
≤ Pn

10

where Pn is the order of magnitude of the probability of
false selection for the given budgetn. This implies that the
standard error for each estimate ofP{FSn(α)} is at least ten
times smaller than the value ofP{FSn(α)}. For example, in
Figure 1 the minimum value ofPn is 10−4, so we choosem
to be at least 106 by this argument. Consequently, we have
high confidence that the results are not driven by simulation
error for all examples withP{FSn(α)} larger than 10−4.

4.1 PERFORMANCE OF LIGHT-TAILED
ALGORITHMS

Suppose there are five systems and the random variableX (i)

representing the performance of theith system follows a
normal distribution with variance and mean values given
in Table 1. Three different algorithms are compared. The
first equally distributes samples across systems, i.e.,α =
(1/5, . . . ,1/5)T . We refer to this as the equal allocation
(EA) algorithm. The second is the Gaussian-based method
suggested by Chen et al. (2000). The third is the modified
GJ algorithm based on Glynn and Juneja (2004) which was
discussed in section 2.1.

Table 1: Mean and variance of each system.

System (i) 1 2 3 4 5
µi 0 0.5 0.6 0.8 1.0
σi 1.0 1.0 1.0 1.0 1.0

The graph (a) in Figure 1 illustrates thatP{FSn(α)}
converges to zero exponentially in a strictly idealized case
where the true mean values (instead ofX̄i) are used to
allocate samples in (2) in OCBA, and (1) in modified GJ
algorithm. The exponents for OCBA and the modified
GJ algorithm are almost identical, while the EA algorithm
exhibits a slower decay (the exponents are the slopes of the
graphs in Figure 1). This illustrates that one can indeed
control the exponential convergence rate by the choice of
the static allocation policy.

Graphs (b), (c) and (d) in Figure 1 deal with cases where
preliminary estimates ofµ are first obtained using different
initial resource allocations (n0 = 50,100,150). These values
are then used to initialize the algorithms. When the initial
resource allocationn0 is 50, both the OCBA and modified
GJ algorithms perform poorly compared to the naive EA
algorithm asn grows. Forn0 equal to 150 in graph (d),
both algorithms exhibit good performance. The slope of the
modified GJ algorithm in Figure 1(d) is almost identical to
that in Figure 1(a), that is, with sufficient samples allocated to
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Figure 1: Probability of false selection as a function of the
simulation budgetn plotted in log-linear scale. The three
allocation algorithms are: equal allocation (EA); Gaussian-
based approach (OCBA); large deviations-based approach
(modified GJ). The four graphs are: (a)µ assumed to be
known; (b)µ unknown and the initial resource allocation is
n0 = 50; (c) µ unknown andn0 = 100; and (d)µ unknown
andn0 = 150.

the initial phase, the OCBA and the modified GJ algorithms
perform almost as if they had knowledge of the system
means a priori. (Chen et al. (2000) recommend allocating
about 10% of the simulation budget to the initial phase.)

Since the OCBA algorithm of Chen et al. (2000) is
based on the premise of underlying normal distributions,
its application in environments where the distribution is
light-tailed but non-Gaussian can be viewed as a heuristic
that is based on the central limit theorem. In contrast,
the large deviations-based approach of Glynn and Juneja
(2004) has rigorous justification in the non-Gaussian case.
Figure 2 compares the performance of the three algorithms
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Figure 2: Probability of false selection as a function of the
simulation budgetn plotted in log-linear scale for five sys-
tems with an underlying exponential distribution. The three
allocation algorithms are: equal allocation (EA); Gaussian-
based approach (OCBA); large deviations-based approach
(modified GJ). The four graphs are: (a)µ assumed to be
known; (b)µ unknown and the initial resource allocation is
n0 = 50; (c) µ unknown andn0 = 100; and (d)µ unknown
andn0 = 150.

studied previously, when the underlying distributions are
exponential with means given in Table 1. Again, we observe
that when the allocation budget is constructed based on
known mean values (Figure 2(a)), both OCBA and modified
GJ algorithms outperform the naive equal allocation (EA)
scheme. However, when the algorithms do not assume
knowledge of the true means, and the initial allocation is
“small” (e.g.,n0 = 50 in Figure 2(b)), then both the OCBA
and modified GJ algorithms perform poorly compared to EA.
Only when the initial allocation is increased significantly
(Figure 2(c) and, in particular, Figure 2(d)) do the two
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light-tailed algorithms start to outperform EA. In graphs
(a) and (d) in Figure 2 we observe that the modified GJ
algorithm performs slightly better than the Gaussian-based
OCBA method, consistent with the fact that the underlying
distributions are non-Gaussian.

From Figures 1 and 2 we conclude that the light-tailed
algorithms perform well either (i) when they are constructed
based on the knownµ values, or (ii) when the initial
allocation (n0) is fairly large. The former is of course not a
situation that arises in practice, and the latter is a significant
restriction on the application of these algorithms. Moreover,
it is worth emphasizing again that the algorithm of Glynn and
Juneja (2004) that is based on a large deviations principle
is quite complicated to implement. The version tested here
is a simplified and idealized modification that assumes the
structural form of the rate function is known, and thus the
only issue is to estimate its parameters. In reality, since
such information is not available, the algorithm would need
to estimate the entire rate function non-parametrically, and
this raises significant implementation issues. As seen in
Table 2, the modified GJ algorithm takes 80 times more
CPU time than the EA algorithm and 25 times more CPU
time compared to the OCBA algorithm. Even though the
implementation of each algorithm was not optimized for
performance, the relative CPU times illustrate the dramatic
differences in complexity between the methods.

Table 2: CPU time for each algorithm. (Operating system:
Windows XP; processor: Intel core duo 1.8GHz; memory:
1GB RAM; language: C using the GNU scientific library.)

Algorithm EA OCBA modified GJ
CPU time (minutes) 4 13 313

4.2 PERFORMANCE OF HEAVY-TAILED
ALGORITHMS

4.2.1 TWO SYSTEMS

We consider examples with two systems where the perfor-
mance of each system follows at-distribution. In graphs (a)
and (b) in Figure 3, the first system follows at-distribution
with µ1 = 0,ν1 = 3. In Figure 3(a), the second system
follows a t-distribution with µ2 = 3,ν2 = 3 and in Fig-
ure 3(b), the second system follows at-distribution with
µ2 = 3,ν2 = 5. First, note thatP{FSn(α)} in Figure 3
asymptotically converges to zero at a polynomial rate for
all static allocation policies considered. This observation is
consistent with the result given in Theorem 1. The poly-
nomial convergence rates are given by the limiting slopes
in Figure 3. The slopes are all−2, which is equal to
−min(ν1,ν2)+ 1, and indeed the slopes depend only on

the system with the heaviest tail and not on the allocation
policy.
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Figure 3: Probability of false selection as a function of the
simulation budgetn plotted in log-log scale for two systems
following t-distributions. The five asymptotic allocation
vectors that are used for each graph are:α = (0.1, 0.9),
(0.3, 0.7), (0.5, 0.5), (0.7, 0.3) and (0.9, 0.1). The parameters
for the two graphs are: (a)µ1 = 0,µ2 = 3 andν1 = 3,ν2 = 3;
and (b)µ1 = 0,µ2 = 3 andν1 = 3,ν2 = 5.

4.3 MULTIPLE SYSTEMS

We now consider five systems witht-distributions and with
the means and degrees of freedom (df) parameters given in
Table 3. We denote the mean and the degree of freedom
of each system using vectorsµ = (µ1, . . . ,µk) and ν =
(ν1, . . . ,νk).

For this experiment, the total number of replications,
m, is set to 107, so the estimates ofP{FSn(α)} with values
up to 10−5 are accurate with high confidence. The variances
σ2

i = νi/(νi−2), i = 1,2, . . . ,5, are assumed known and are
used in the OCBA algorithm. In Figure 4,P{FSn(α)}
with the equal allocation method converges to zero at a
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Table 3: Mean and df for each system.

System (i) 1 2 3 4 5
µi 0.0 0.7 1.0 1.3 1.5
νi 3 3 3 3 3
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Figure 4: Probability of false selection as a function of
the simulation budgetn plotted in log-log scale for five
t-distributions withµ = (0.0, 0.7, 1.0, 1.3, 1.5) andν =
(3,3,3,3,3). In (a), three allocation rules (EA, OCBA when
µ is known, and OCBA whenµ is unknown) are shown. In
(b), three initial resource allocations (n0 = 50,100,150) for
the OCBA algorithm are tested and compared to equality
algorithm (EA).

polynomial rate as anticipated. When the trueµ values
and dfs are assumed to be known,P{FSn(α)} for the
OCBA algorithm also converges to zero at a polynomial
rate as anticipated in Theorem 1, since the allocation vector
α becomes constant. When theµ values are unknown
but dfs are known,P{FSn(α)} for the OCBA algorithm
converges to zero but the convergence rate is not same as
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Figure 5: Probability of false selection as a function of the
simulation budgetn plotted in log-log scale for the five
t-distributions withµ = (0.0, 0.7, 1.0, 1.3, 1.5) and (a)ν
= (3,4,5,6,7); and (b)ν = (7,6,5,4,3).

the rate whenµ is known. Even though the initial resource
allocation increases, the slope does not change much as
seen in Figure 4(b). This suggests that OCBA is not very
well suited for heavy-tailed systems.

Figure 5 shows the convergence ofP{FSn(α)} for the
same mean parameter values but with different dfs. In
Figure 5(a), the dfs areν = (3,4,5,6,7), and in Figure 5(b),
they areν = (7,6,5,4,3). The results are quite similar to the
case where the dfs wereν = (3,3,3,3,3).

Even though the polynomial convergence rate is deter-
mined by the system with the heaviest-tailed distribution,
it might be possible to improve performance by allowing
for non-static allocation policies. We propose the following
non-static heuristic algorithm. Seti∗ = argmin1≤i≤k{νi}.
Then calculate the allocation vectorα as follows:

αi =







n
− νi−νi∗

νi−1 i 6= i∗

1−∑ j 6=i∗ α j i = i∗
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Figure 6: Probability of false selection as a function of
the simulation budgetn plotted in log-log scale for five
t-distributions withµ = (0.0, 1.0, 1.2, 1.3, 1.5) andν =
(4,6,3,5,7). The two algorithms are: equal allocation (EA);
and a non-static heuristic with initial resource allocation
n0 = 200.

These values are then updated at every point in time when the
budget is incremented (as in Step 4 of OCBA and modified
GJ algorithms). Since the system with the heaviest-tailed
distribution dominatesP{FSn(α)} for large n, allocating
more samples to this system is natural. Note that the policy
does not require any sample average information. Figure 6
compares the EA algorithm with the non-static heuristic
for five systems which followt-distributions withµ = (0.0,
1.0, 1.2, 1.3, 1.5) andν = (4,6,3,5,7). As seen in Figure 6,
the non-static heuristic works well for the initial resource
allocationn0 = 200. Similar to the OCBA algorithm, this
non-static heuristic is also sensitive to the initial resource
allocation. We have observed similar results to these shown
in Figure 6 in other test cases which are not repeated here
because of space considerations.

5 CONCLUSIONS

In the case of light-tailed distributions and static alloca-
tion policies, the probability of false selection,P{FSn(α)},
converges to zero at an exponential rate which is controlled
by the static allocating policy. In this setting, OCBA (a
Gaussian-based heuristic) is easily implementable, but its
convergence rate depends heavily on the initial resource
allocation. In contrast, the GJ algorithm is more general
and can be rigorously justified, yet is computationally inten-
sive and difficult to implement in practice, since it requires
considerable information about the underlying distributions.

In the case of heavy-tailed distributions,P{FSn(α)}
converges to zero at a polynomial rate for every static

policy with strictly positive components. In other words,
essentially all static allocation policies eventually achieve
the same polynomial convergence rate, which is determined
by the system with the heaviest tail. In sharp contrast to
the light-tailed case, no information on the distributionsis
needed for the design of such policies.

A APPENDIX

Let {X j}n
j=1 be i.i.d. samples and defineSn = ∑n

j=1 X j. We
use the following large deviations result for heavy-tailed
distributions given in the next theorem in our proof of
Theorem 1.

Theorem 2. [Nagaev (1979)] Suppose that F̄ ∈R−ν for
some ν > 2, E|X |2+δ < ∞ for some δ > 0 and that var(X)
= 1. Then

P{Sn−nµ > x}= Φ̄(
x√
n
)(1+o(1))+nF̄(x)(1+o(1))

uniformly for x≥√n. In particular,

P{Sn−nµ > x}= Φ̄(
x√
n
)(1+o(1))

for
√

n≤ x≤ a
√

n lnn and a <
√

ν−2, and

P{Sn−nµ > x}= nF̄(x)(1+o(1))

for x > a
√

n lnn and a >
√

ν−2.

Proof of Theorem 1

Proof. Fix an allocation vectorα = (α1,α2, . . . ,αk)
T

with strictly positive elements andn ∈ N.
Step 1. SinceP{FSn(α)}= P{∪k

i=2(X̄
(1) > X̄ (i))},

P{FSn(α)} ≤ (k−1) max
2≤i≤k

P{X̄ (1) > X̄ (i)}

also

P{FSn(α)} ≥ max
2≤i≤k

P{X̄ (1) > X̄ (i)}.

Thus, if P{FSn(α)}→ 0 asn→ ∞, then

logP{FSn(α)} ∼ log[ max
2≤i≤k

P{X̄ (1) > X̄ (i)}] (4)
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Step 2. Fixi such that 2≤ i≤ k.

P{X̄ (1) > X̄ (i)}
= P{αiS

(1)
α1n−α1S(i)

αin > 0}
= P{αi(S

(1)
α1n−µ1α1n)−α1(S

(i)
αin−µiαin) > µα1αin}

= P{αiS̃
(1)
α1n−α1S̃(i)

αin > µα1αin} (5)

where

S̃(i)
αin =

⌊αin⌋
∑
j=1

X (i)
j −⌊αin⌋µi

and µ ≡ µi− µ1 > 0. SinceP{x + y > n} ≤ P{x > n
2}+

P{y > n
2},

P{α1S̃(i)
αin−αiS̃

(1)
α1n > nµα1αi}

≤ P{α1S̃(i)
αin >

nµα1αi

2
}+P{−αiS̃

(1)
α1n >

nµα1αi

2
}.(6)

Also, since the two random variables are independent we
have

P{α1S̃(i)
αin−αiS̃

(1)
α1n > nµα1αi}

≥ max{P{α1S̃(i)
αin > nµα1αi}P{−αiS̃

(1)
α1n > 0},

P{α1S̃(i)
αin > 0}P{−αiS̃

(1)
α1n > nµα1αi}}. (7)

Since allαi > 0, by Theorem 2, we have that

P{α1S̃(i)
αin > nµα1αi} = nF̄(i)(nµαi)(1+o(1))

and

P{−αiS̃
(1)
α1n > nµα1αi} = nF̄(1)(nµα1)(1+o(1))(8)

sincen >
√

n lnn for largen. Also,

P{−αiS̃
(1)
α1n > 0} = P{ 1√

α1n
S̃(1)

α1n < 0}

= P{σN(0,1)≤ 0}(1+o(1))

and

P{α1S̃(i)
αin > 0} = P{ 1√

αin
S̃(i)

αin > 0}

= P{σN(0,1)≥ 0}(1+o(1)) (9)

by the CLT.
Using (5), (6), (8) and (9) we obtain

P{X̄ (1) > X̄ (i)} ≤ c1nF̄(1)(
nµαi

2
)+ c2nF̄(i)(

nµα1

2
) (10)

for some positive finitec1 andc2.
Using (2), (4), (5) & (6) we also obtain

P{X̄ (1) > X̄ (i)} ≥ c3nF̄(1)(nµαi)+ c4nF̄(i)(nµα1) (11)

for some positive finitec3 andc4.
From (4), (10) and (11) and the assumption ofF̄(i) ∈

R−νi , we have

logP{FSn(α)} ∼ − min
1≤i≤k

{νi−1} logn

asn→ ∞.
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