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Abstract

Motivated by applications in financial services, we consider a seller who offers prices sequen-

tially to a stream of potential customers, observing either success or failure in each sales attempt.

The parameters of the underlying demand model are initially unknown, so each price decision

involves a trade-off between learning and earning. Attention is restricted to the simplest kind of

model uncertainty, where one of two demand models is known to apply, and we focus initially

on performance of the myopic Bayesian policy (MBP), variants of which are commonly used in

practice. Because learning is passive under the MBP (that is, learning only takes place as a

by-product of actions that have a different purpose), it can lead to what we call an indetermi-

nate equilibrium, where learning ceases prematurely and profit performance is poor. However,

two variants of the myopic policy are shown to have the following strong theoretical virtue: The

expected performance gap relative to a clairvoyant who knows the underlying demand model

is bounded by a constant as the number of sales attempts becomes large. These modifications

of the MBP perform so well in simulation experiments that the pursuit of an exactly optimal

policy appears pointless for all practical purposes.

Keywords: Revenue management, pricing, estimation, Bayesian learning, exploration-exploitation.

1 Introduction

We consider in this paper a problem that was first targeted for study at least 35 years ago, is

relatively simple in structure, and is widely considered fundamental, but is also unsolved. Briefly

stated, the problem is that of sequential pricing when the underlying demand model is unknown

and the market response to any given price is confounded by statistical noise. In this situation the
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seller confronts a trade-off between exploration of the demand environment (learning) and expected

immediate profit (earning).

Overview of the problem and approach. The particular variant of the learning-and-earning

problem that we consider here has three salient features: (a) the parameters of the underlying

demand model are fixed but initially uncertain, as opposed to problems where the demand model

itself is changing over time; (b) the seller offers prices sequentially to individual customers, observing

either success or failure in each sales attempt; and (c) the time horizon is finite but possibly large,

as opposed to the infinite-horizon discounted formulations that are common in the literature of

both economics and management science. Model feature (b) corresponds to what Phillips (2005)

calls customized pricing ; Chapter 11 of that book lists a number of important application areas

for customized pricing, including both business-to-business and business-to-consumer applications.

One of those is the pricing of consumer credit, such as auto loans and credit card lending. It was

an interest in such financial service applications that originally motivated our study.

Probably the most influential and frequently cited historical studies of learning-and-earning are

those by Rothschild (1974), Easley and Kiefer (1988) and Aghion, Bolton, Harris and Jullien

(1991). In each case an infinite-horizon discounted formulation was employed, and the authors

focused on the following question: is it certain that a seller who follows an optimal policy will

eventually obtain complete information about the underlying demand environment? Rothschild

(1974) examined the case where the seller can choose prices from a finite set and showed that the

answer is in general negative. Easley and Kiefer (1988) and Aghion et al. (1991) expanded on

that finding by considering fairly general action spaces for the seller. As usual in economic theory,

the authors were not primarily interested in computing optimal policies, or even in developing a

modeling framework that could plausibly be used in practice, but rather in characterizing what

might be called the social outcome of a particular market situation.

In contrast, we approach learning-and-earning as a management science problem, the eventual

goal being to identify model structures and computational methods that are suitable for literal

application. Following common practice in the revenue management industry, we think in terms of

a parametric model class (such as the logit family of price-response functions, or the probit family,

or the linear family), using a prior distribution over model parameters to express uncertainty about

the demand environment. Also, recognizing that it will probably be impossible to determine exactly

optimal pricing policies, we are interested in sub-optimal polices that have provably good properties

and perform well in simulation studies.

Despite the practical aspirations declared immediately above, we restrict attention in this paper

to the artificial case where one of two demand models is known to apply. To put that another

way, we restrict attention to the case where the seller’s prior distribution is concentrated on just

two possible parameter sets, referred to hereafter as the case of a binary prior. The motivation
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for doing this is the usual one: by analyzing carefully the simplest possible version of our target

problem, we hope to shed light on the basic issues involved, and gain insights applicable to more

realistic settings. Readers will see that the binary-prior version of the learn-and-earn problem

is still surprisingly subtle, defying exact solution; its analysis cannot be accomplished as a quick

preliminary to something more “serious.” Future work will consider the case of a general (dispersed)

prior distribution for initially unknown demand parameters.

Related literature. In the operations research and management science (OR/MS) realm, the

term “revenue management” is commonly used to include tactical pricing problems of the kind

considered here. To be more specific, we consider a problem of dynamic pricing, but without the

inventory constraints that are usually included in OR/MS formulations, cf. Chapter 5 of Talluri

and van Ryzin (2004). However, unlike the vast majority of OR/MS researchers, we do not treat

demand model parameters as known data.

Aviv and Pazgal (2005) were among the first OR/MS researchers to consider tactical pricing with

such “model uncertainty.” Their model involves a single unknown parameter that characterizes

consumer demand, and in the interest of tractability, they assume a conjugate prior distribution

for that parameter. Farias and van Roy (2009) is a very recent paper of similar character, featuring

a Bayesian formulation, a single unknown demand parameter, a conjugate prior distribution for that

parameter, and reliance on dynamic programming methods. Farias and van Roy (2009) contains an

up-to-date survey of OR/MS research on learning-and-earning, including an early paper by Lobo

and Boyd (2003) that explores the idea of price experimentation for purposes of demand estimation.

A different approach, using a classical statistics framework without reliance on dynamic program-

ming, is pursued by Besbes and Zeevi (2009). Their work treats both parametric model uncertainty

and the case in which the demand model need not belong to any parametric family, so their work

stands at the opposite extreme from studies assuming a single unknown demand parameter. Fur-

ther connections to antecedent literature are also discussed in some detail by Besbes and Zeevi

(2009). A common theme in the work of Farias and van Roy (2009) and of Besbes and Zeevi (2009)

is their emphasis on deriving suboptimal policies that have provably good performance. Our paper

shares that theme, but is otherwise quite distinct from both papers, and from most other work in

revenue management to date. The distinguishing feature of our study is its focus on the simple

setting with a binary prior distribution, which allows a deeper analysis of the interplay between

Bayesian learning and pricing, with particular emphasis on what we call myopic Bayesian policies.

As indicated earlier, our work also intersects with the economics literature on price experimenta-

tion that was initiated by Rothschild (1974). That pioneering study used the multi-armed bandit

paradigm first formalized by Robbins (1951), which is one of the classical formulations of dynamic

optimization under model uncertainty; it has been used extensively in a variety of fields, cf. Git-

tins (1989). The Bayesian formulation and dynamic programming methods employed by Rothschild
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(1974) are similar to what one sees in the revenue management literature discussed above, although

few OR/MS papers seem to recognize that connection. There has been a modest, sporadic stream

of research in economics that builds on the foundation laid by Rothschild (1974), including the

influential work by Easley and Kiefer (1988) and by Aghion et al. (1991) cited earlier. In partic-

ular, there have been extensions in the direction of strategic experimentation, involving multiple

firms rather than a single monopolist, cf. Bolton and Harris (1999), and experimentation when the

demand model may change over time, cf. Keller and Rady (1999).

The antecedent paper most closely related to ours is that by McLennan (1984). He too considers

the problem of sequential pricing with probabilistic response and unknown demand parameters.

Like us, McLennan adopts a Bayesian formulation where one of two possible demand models is

assumed to pertain, but he restricts attention to the case of linear demand models. Following in

the footsteps of Rothschild (1974), McLennan seeks to show that the phenomenon of “incomplete

learning” can occur in a dynamic pricing environment where the seller can choose among a contin-

uum of prices, as opposed to the finite set of potential prices assumed in Rothschild’s analysis. Like

Rothschild, he adopts an infinite-horizon formulation with discounting (the discounting is crucial),

and focuses on long-run behavior under the optimal Bayesian policy (that is, the policy which max-

imizes the expected present value of infinite-horizon profits). At the end of this section, after the

content of our paper has been outlined, more will be said about relationship between our analysis

and McLennan’s.

Focus on myopic Bayesian policies. Following recent advances in computational methods,

Bayesian inference has become the dominant approach to statistical estimation in companies that

do analytical pricing. A common practice is to first estimate unknown model parameters using

Bayesian methods, and then choose the optimal price given those parameter values, cf. Chapter

11 of Phillips (2005). This conventional approach is not truly optimal, because it ignores the fact

that the estimate-and-optimize cycle will be repeated in the future; the conventional approach does

not explicitly formulate a program of price experimentation, nor explicitly address the trade-off be-

tween immediate earnings on the one hand, and learning about demand parameters on the other.

One representative of the conventional approach is what we call the myopic Bayesian policy, which

chooses at each decision point the price that maximizes expected profit from the next sales oppor-

tunity, given the current (posterior) distribution over demand parameters, updating the posterior

distribution as new price-response data accumulates. In this paper we aim to shed new light on

what can go wrong under such a policy, and how its deficiencies can be remedied.

Remainder of the paper. Section 2 describes in mathematical terms the problem to be

addressed, including a definition of the Bayesian pricing policies to which we restrict attention.

In Section 3 we show that, under any Bayesian policy, the seller’s posterior beliefs (that is, the

sequence of posterior probabilities assigned to the two possible demand models after successive
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sales outcomes) converge to some limit almost surely, and they converge exponentially fast to a

degenerate limit (that is, a limit that assigns probability 1 to a particular demand model) under

what we call a discriminative policy. Section 4 defines and analyzes the myopic Bayesian policy

(MBP), showing that it can and often does produce what we call an indeterminate equilibrium,

where learning ceases prematurely and profit performance is poor. Finally, in Section 5 we define

and analyze two intuitively appealing variants of the MBP that perform well both in theory and in

simulation experiments. The proofs of all formal results are postponed to a sequence of appendices

that conclude the paper.

Comparison with the work of McLennan (1984). A key feature of the binary-prior model

on which we focus is the existence of a single “uninformative price” p̂ (see Figure 1 in Section

3). We show that, if the finite planning horizon is extended indefinitely in our model, prices may

converge to p̂ under the MBP; this is the “indeterminate equilibrium” referred to immediately

above. In a similar vein, McLennan (1984) shows that prices may converge to p̂ under the optimal

Bayesian policy in his discounted, infinite-horizon formulation; he uses the phrase “incomplete

learning” to characterize this outcome. McLennan does not determine the optimal Bayesian policy

for general parameter values (that remains an unsolved problem), but still he is able to show

that the parameters of his two linear demand functions can be chosen so that incomplete learning

occurs with positive probability. His goal is simply to show that such negative examples exist, thus

supplementing the analysis of Rothschild (1974), and he does not suggest that the sequential pricing

model with probabilistic response is of any practical significance. We provide a more comprehensive

theoretical framework for the Bayesian sequential pricing problem, and our focus is on the MBP

and its variants, rather than on discount-optimal policies. Given the latter distinction, our analysis

of “incomplete learning” is more extensive than McLennan’s, and most importantly, our ultimate

emphasis is on variants of the MBP that have provably good performance and are practically

implementable.

2 Problem Formulation

Basic model elements. Consider a firm, hereafter called the seller, that offers a single product

for sale to customers who arrive in sequential fashion. As a matter of convention, we associate

with each successive customer a distinct sales “period,” so that, for example, the phrase “period-t

revenue” simply means revenue realized from the tth arriving customer. In each period t = 1, 2, . . .

the seller must choose a price pt from a given interval [ℓ, u], where 0 ≤ l < u < ∞, after which the

seller experiences either success (a sale at the offered price pt) or failure (no sale). The probability

of success when the seller offers price p in any given period is �(p); we call �(⋅) the ambient

demand model. The marginal cost of the product being sold is set to zero without loss of generality

(because prices can always be expressed as increments above cost); given this normalization, the
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terms “profit” and “revenue” can and will be used interchangeably.

Before the first customer arrives, nature chooses either �0(⋅) or �1(⋅) as the ambient demand

model; this choice is not observed by the seller, and it remains fixed over the entire selling horizon.

We encode this choice via the random variable

� =

{
1 if �(⋅) = �1(⋅)

0 if �(⋅) = �0(⋅),
(1)

and denote by q0 the prior probability assigned by the seller to the event {� = 1}; this number is

part of our problem data. (The subscript in the notation q0 differentiates this initial probability

assessment from the ones formed later after sales outcomes are observed.) To exclude trivial cases,

in which the seller knows the ambient demand model with certainty, we assume that 0 < q0 < 1.

We shall occasionally refer to the event or condition {� = i} as hypothesis i. If price p is chosen in

a given period, then the seller’s expected revenue in that period under hypothesis i is

ri(p) := p�i(p) for i = 0, 1. (2)

The only random variables other than � that will figure in the development to follow are indicator

variables X1,X2, . . . defined as follows: Xt = 1 if there is a sale (success) in period t, and Xt = 0

otherwise. Defining X := (X1,X2, . . .), we call X the sales sequence.

The demand models �0(⋅) and �1(⋅) are assumed to be continuously differentiable and strictly

decreasing over [ℓ, u], and we define the associated price elasticity functions "i(⋅) as usual (here and

later, a prime denotes a derivative):

"i(p) := −
p�′i(p)

�i(p)
for i = 0, 1. (3)

Both "0(⋅) and "1(⋅) are assumed to be strictly increasing, from which it follows that each of the

single-period expected revenue functions ri(⋅) has a unique maximizer p∗i in [ℓ, u]. We further

assume that p∗0 and p∗1 are interior points of the feasible price range [ℓ, u], and without loss of

generality that p∗0 < p∗1. The first-order conditions for optimality then give the following:

"0(p
∗
0) = "1(p

∗
1) = 1, where ℓ < p∗0 < p∗1 < u. (4)

Pricing policies and posterior beliefs. In our Bayesian formulation of the dynamic pricing

problem, a policy is formally defined as a sequence � = (�1, �2, . . .), where each component �t is a

function that maps [0, 1] → [l, u]; the meaning or interpretation of the component functions �t will

become clear shortly. For each policy � and each realization of the sales sequence X, we define the

associated prices (p1, p2, . . .) and posterior probabilities (q1, q2, . . .) through the following recursive

procedure. In each successive period t = 1, 2, . . ., set pt = �t(qt−1) and then compute qt using Bayes
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rule:

qt =

⎧
⎨
⎩

qt−1�1(pt)

qt−1�1(pt) + (1− qt−1)�0(pt)
if Xt = 1

qt−1

[
1− �1(pt)

]

qt−1

[
1− �1(pt)

]
+ (1− qt−1)

[
1− �0(pt)

] otherwise

=
qt−1�1(pt)

Xt
[
1− �1(pt)

]1−Xt

qt−1�1(pt)Xt
[
1− �1(pt)

]1−Xt + (1− qt−1)�0(pt)Xt
[
1− �0(pt)

]1−Xt
. (5)

One interprets qt as the probability assigned by the seller to the event {� = 1} after the first t

sales outcomes have been observed; for brevity, we call qt the seller’s belief in hypothesis 1 after t

periods.

Induced probabilities and performance metrics. A pricing policy � induces two probability

measures ℙ�
0 and ℙ

�
1 on the outcome space of X (that is, the space whose elements are sequences

of zeros and ones) via the following formula:

ℙ
�
i (X1 = x1, . . . ,XT = xT ) =

T∏

t=1

[�i(pt)]
xt [1− �i(pt)]

1−xt , (6)

where p1, p2, . . . is the price sequence associated with � and the sales realization x1, x2, . . . One

interprets ℙ
�
i (A) as the probability of event A under policy � and demand hypothesis i. In the

usual way, we denote by E
�
i (⋅) the expectation operator associated with the probability measure

ℙ
�
i (⋅).

Again denoting by p1, p2, . . . the price sequence associated with a given policy �, we define the

conditional expected revenue totals

R�
i (T ) = E

�
i

{ T∑

t=1

ri(pt)
}

for i = 0, 1 and T = 1, 2, . . . , (7)

where the expectation is taken over the sales indicators X1, . . . ,XT that determine the prices

p1, . . . , pT . In the development to follow we focus primarily on the following performance metric:

��
i (T ) =

1

ri(p∗i )

[
T ri(p

∗
i )−R�

i (T )
]

for i = 0, 1 and T = 1, 2, . . . (8)

To understand the meaning of this quantity, note the following: a clairvoyant who knows which

demand model actually applies will choose price p∗i in every period when � = i, so the first term

inside the square brackets on the right side of (8) is the clairvoyant’s expected T -period revenue

under hypothesis i. Thus the quantity in the square brackets is positive and expresses the expected

T -period profit performance of policy � relative to what the clairvoyant would achieve, given that

� = i. The definition (8) re-expresses that performance differential as a multiple of the clairvoyant’s

average profit per period; that is, ��
i (T ) is the number of periods of ideal expected profit that the
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seller loses over the first T periods because of demand model uncertainty, given that hypothesis i

pertains and that the seller has chosen policy �. Because ��
i (T ) is non-decreasing as a function of

T , the limit ��
i (∞) necessarily exists, although it may be infinite.

3 Belief Convergence

Let � be a fixed but arbitrary pricing policy. From the definition (5) it is easy to verify that the

corresponding posterior probabilities {qt} form a bounded non-negative supermartingale under ℙ�
0 ,

and form a bounded, non-negative submartingale under ℙ�
1 . (Here and later, when we make refer-

ence to martingales, the associated filtration is that generated by the sales indicators X1,X2, . . .)

Thus a standard result in martingale theory gives the following conclusion, cf. Williams (1991, p.

109).

Proposition 1 (convergence of beliefs) For each pricing policy �, the posterior probabilities

{qt} converge almost surely as t → ∞ to a limit belief q∞ under both ℙ
�
0 and ℙ

�
1 .

Our main focus in this paper is on pricing policies � that “reveal the truth” almost surely,

meaning that ℙ
�
0{qt → 0} = ℙ

�
1{qt → 1} = 1. However, the following analysis shows that an

arbitrary policy need not have that property. In this development a price p̂ ∈ [ℓ, u] is said to be

uninformative if �0(p̂) = �1(p̂). Figure 1 pictures �0(⋅) and �1(⋅) for two illuminating examples: in

the first one both demand models have the linear form �(p) = a− bp, and in the second one they

both have the logit form �(p) = [1 + exp(a+ bp)]−1.

p

�(p)
(a)

�1(p)
�1(p)

�0(p)�0(p)

p̂ = 1 p

�(p)
(b)

p̂ = 0.950.5 1.5
0.05

0.35

0.65

0.95

2 3 40

0.27

0.50.5

0.63

0.73

1

Figure 1: Two examples of demand models from standard parametric families. Panel

(a) depicts two linear demand models, each of which represents the take-up probability of a typical

customer at different price levels. Panel (b) shows two logit demand models to illustrate the

customer behavior in a different setting.
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To be specific, the data for the linear example are

ℓ = 0.5, u = 1.5, �0(p) = 1.4− 0.9p, and �1(p) = 0.8 − 0.3p, (9)

and for the logit example they are

ℓ = 0, u = 4, �0(p) =
1

1 + e−10+10p
, and �1(p) =

1

1 + e−1+0.5p
. (10)

In each of these examples there is a unique uninformative price p̂ (that is, a unique price p̂ at which

the two curves cross). Suppose that 0 < q0 < 1 and that the seller chooses price pt = p̂ in every

period. Then �0(pt) = �1(pt) in every period t, so formula (5) gives qt = qt−1 in every period t,

and obviously q∞ = q0. This is an elementary example of a belief limit in which the seller remains

forever uncertain about which demand hypothesis is true. In the next section more interesting

examples will be discussed.

We now show that, by avoiding uninformative prices, certain policies do more than “reveal the

truth” almost surely: they find it exponentially fast. In this development a policy � is said to be

�-discriminative if

∣�0(�t(q))− �1(�t(q))∣ > � for all t = 1, 2, . . . and q ∈ [0, 1], (11)

and to be discriminative if it is �-discriminative for some � > 0. The following proposition provides

the key ingredient to establishing both of our main results (see Section 5).

Proposition 2 (rate of learning) If � is a discriminative policy, then there exist constants �,

� > 0 such that

E
�
0 (qt) ≤ �e−�t and E

�
1 (1− qt) ≤ �e−�t for all t = 1, 2, . . . (12)

To conclude this section, we show that if a pricing policy � does not reveal almost surely which

demand hypothesis is true, then its expected profit loss relative to a clairvoyant grows linearly in

the time horizon. In stark contrast, it will be shown later that for certain discriminative policies,

the expected profit loss can be bounded by a constant not depending on the horizon length T .

Proposition 3 (profit loss due to incomplete learning) Suppose that, for a given policy �

and a given hypothesis i ∈ {0, 1}, the limit belief q∞ is neither almost surely 0 nor almost surely 1,

and that p∗i ∕= p̂. Then there exists a constant � > 0 such that ��
i (T ) ≥ �T for all T .

4 The Myopic Bayesian Policy (MBP)

If the seller enters a period with posterior belief q and chooses price p, then from the seller’s

perspective that period’s expected profit is

rq(p) := qr1(p) + (1− q)r0(p). (13)

9



For some values of q the function rq(⋅) may achieve its maximum at multiple prices; readers will

see shortly that this occurs in the logit example (10), specifically for q = 0.54. To resolve that

ambiguity we define the myopic price

'(q) := sup argmax{rq(p), ℓ ≤ p ≤ u} for 0 ≤ q ≤ 1. (14)

Recall that in Section 1 we defined p∗0 := '(0) and p∗1 := '(1), observing that the maximizing price

in (14) is unique if q = 0 or q = 1.

Proposition 4 '(⋅) is non-decreasing on [0, 1].

The myopic Bayesian policy (MBP) is the pricing policy � having �t(q) = '(q) for all t = 1, 2, . . .

and q ∈ [0, 1]. That is, the MBP puts all of its emphasis on earning, ignoring the trade-off that

was highlighted in Section 1. One might plausibly hope that learning will somehow “take care of

itself” under the MBP, but the analysis below shows that hope to be unfounded.

Proposition 5 (existence of indeterminate equilibrium) There exists at most one uninfor-

mative price p̂ ∈ (p∗0, p
∗
1), and if such a p̂ exists, there is at most one confounding belief q̂ ∈ [0, 1]

such that '(q̂) = p̂.

Hereafter a pair (p̂, q̂) meeting the specifications in Proposition 5 will be called an indeterminate

equilibrium for the MBP, with the following justification: if the seller enters period t with belief

qt = q̂, then the MBP dictates price pt = '(q̂) = p̂, and because �0(p̂) = �1(p̂), formula (5) simply

gives qt+1 = qt = q̂, and the same process repeats in every subsequent period; belief convergence

is to q∞ = q̂. Thus the seller never learns which demand hypothesis is true, and expected profit

under the MBP is strictly sub-optimal in every period.

For our linear example (9) the function '(⋅) is continuous, as shown in Figure 2, and the con-

founding belief that corresponds to the uninformative price p̂ = 1 (see Figure 1, left panel) is

q̂ = 0.67.

Now the obvious question to ask is the following: if a seller’s prior belief is different from q̂, is

it possible that qt → q̂ with positive probability under the MBP? Our next result shows that the

answer is emphatically yes in the case of linear demand models, and subsequent discussion will

show that the linear case is not exceptional.

Proposition 6 (nature of incomplete learning) Suppose that �0(⋅) and �1(⋅) are both linear,

and that there exists an indeterminate equilibrium (p̂, q̂) for the MBP. If q0 ≤ q̂ (respectively,

q0 ≥ q̂), then qt ≤ q̂ (respectively, qt ≥ q̂) for all t = 1, 2, . . ., where {qt} is the seller’s belief process

under the MBP.
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q

'(q)

p∗0 = 0.78

p̂ = 1.00

p∗1 = 1.33

0 q̂ = 0.67 1

Figure 2: Myopic price function for the linear example. The myopic price function '(⋅) :

[0, 1] → [ℓ, u] in the linear example increases continuously over its domain.

A simple verbal paraphrase of Proposition 6 is the following: Under the MBP, a seller’s belief

process {qt} cannot jump over the confounding belief q̂.

Proposition 6 actually allows one to calculate explicitly the distribution of the MBP limit belief

q∞ when both demand models are linear, as follows. For concreteness, assume that q0 ≤ q̂. Our

starting point is the following assertion: in light of Propositions 5 and 6, the only possible value

for q∞ under hypothesis 1 is q̂, and the only possible values under hypothesis 0 are q̂ and 0. The

proof of that assertion is left as an exercise.

Next, observe that the posterior probabilities {qt} form a martingale under the probability

measure ℙ(⋅) := q0ℙ1(⋅) + (1 − q0)ℙ0(⋅). (Here we suppress the dependence of ℙ, ℙ0 and ℙ1 on

the seller’s pricing policy, which is taken to be the MBP throughout this discussion.) Denoting by

E(⋅) the expectation operator associated with ℙ(⋅), we then have from Doob’s Optional Stopping

Theorem (Williams 1991, p. 100) that

q0 = E(q∞) = q0E1(q∞) + (1− q0)E0(q∞)

= q0q̂ + (1− q0)q̂ ℙ0(q∞ = q̂). (15)

Solving this equation gives

ℙ0(q∞ = q̂) =
q0(1− q̂)

q̂(1− q0)
. (16)

A virtually identical calculation gives the distribution of q∞ when q0 ≥ q̂, and readers will see that

these calculations are equally valid for any other example where: (a) an indeterminate equilibrium

(p̂, q̂) exists for the MBP; and (b) the seller’s belief process cannot jump over q̂. In the numerical

experiments that we have undertaken with demand models from various parametric families, such

examples have proved to be the rule rather than the exception, but for the logit example specified

11



in (10) and pictured in the right panel of Figure 1, there does not exist a confounding belief q̂. In

fact, for reasons explained in the next paragraph, the MBP is a discriminative policy in our logit

example, so Proposition 2 ensures that it “reveals the truth” exponentially fast.

p

rq(p) q = 1

q = 0

q = 0.54

p̂ = 0.95 2 3 40

0.6

1

Figure 3: Single-period expected profit function for the logit example. The expected profit

function rq(⋅) is unimodal when q takes the extreme values of 0 and 1. It has however two global

maxima when q = 0.54.

Figure 3 shows the single-period expected profit function rq(⋅) for three different values of q in

our logit example (10). For values of q near 0.5, that function is bimodal, with one peak near

p∗0 = 0.80 and another one near p∗1 = 3.13. The first peak is higher for q < 0.54, the second one

is higher for q > 0.54, and they are equally high when q = 0.54. As a consequence, the myopic

price '(q) has the behavior pictured in Figure 4, jumping from 0.87 to 3.12 as q passes through the

critical value of 0.54. The unique uninformative price for this logit model is p̂ = 0.95, and it lies in

the interval of values over which '(⋅) jumps, so the MBP is discriminative, as stated previously.

Taking the seller’s pricing policy � to be the MBP, let us define the performance measure �(⋅) :=
1
2�0(⋅) +

1
2�1(⋅), where �i(⋅) for i ∈ {0, 1} is given as in (8), recalling that the subscript i means

that demand hypothesis i is assumed. Figure 5 plots estimates of �(T ) for various horizon lengths

T , both for the linear example (9) and for the logit example (10). These estimates are based on

10,000 independently generated sales sequences, taking the seller’s prior belief to be q0 = 0.5. Note

that hypothesis 1 is true in half of these simulations, and q̂ > 0.5 for our linear example. Thus it

follows from Proposition 6 that qt → q̂ almost surely as t → ∞, when hypothesis 1 is assumed in the

linear example. On the other hand, as explained earlier, even under hypothesis 0 one observes that

qt → q̂ as t → ∞ with positive probability. Hence in the linear example the MBP stops learning

with positive probability and the cumulative loss �(⋅) grows linearly with the horizon (as asserted

in Proposition 3). In contrast, because the MBP is a discriminative policy in the logit example,

it follows from Proposition 2 that beliefs converge to the true underlying hypothesis exponentially

12



q

'(q)

0 0.54 1

0.87

3.12

Figure 4: Myopic price function for the logit example. The myopic price '(⋅) has a jump

discontinuity in the logit example. Since the discontinuity gap contains the uninformative price

p̂ = 0.95, there exists no confounding belief q̂ that satisfies '(q̂) = p̂.

fast. In that case, a simple consequence of Theorem 2 below is that �(⋅) is bounded by a constant

(independent of the time horizon), which is consistent with what one sees in the right panel of

Figure 5.

T

�(T )
(a)

T

�(T )
(b)

14.5

27.4

250250 500500
00

3.8

Figure 5: Performance of the MBP in two examples. Panel (a) exhibits the revenue loss

�(T ) of MBP, which is seen to increase linearly in the time horizon T . However, as depicted in

Panel (b), the same performance metric for MBP is uniformly bounded in the logit example.

To summarize, we have shown in this section that the MBP can “get stuck” at an indeterminate

equilibrium, regardless of the prior belief with which the seller begins. Such behavior is by no

means exceptional, and therefore one should consider potential modifications of MBP to preclude

such behavior. This is the subject of the subsequent section.
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5 Two Modifications of MBP

In this section we define and analyze two modifications of the MBP that eliminate the potential for

convergence to an indeterminate equilibrium. The first approach is simply to preclude prices that

are in the neighborhood of the uninformative one: assuming that an indeterminate equilibrium

(p̂, q̂) exists, and given a policy parameter � > 0, let

'̂(q) := sup argmax{rq(p) : ℓ ≤ p ≤ u and ∣p − p̂∣ ≥ �} (17)

for 0 ≤ q ≤ 1. The pricing policy � that has �t(⋅) = '̂(⋅) for all t = 1, 2, . . . is called the constrained

variant of the MBP, with associated threshold parameter �, hereafter abbreviated CMBP(�). The

following theorem says that the profit loss under CMBP(�), relative to the profit earned by a

clairvoyant, is bounded by a constant. The result is fairly obvious as the modification above

ensures that MBP is discriminative, for which Proposition 2 guarantees exponential convergence of

beliefs to the true underlying hypothesis.

Theorem 1 (performance of constrained MBP) Assume that an indeterminate equilibrium

(p̂, q̂) exists, and that � > 0 is small enough to ensure that the argument set in (17) is non-empty.

Then there exists a finite, positive constant C such that ��
i (∞) ≤ C for i = 0, 1, where ��

i (⋅) is

given in (8), for the pricing policy � = CMBP(�).

The second modification of the MBP that we consider involves both a threshold parameter � > 0

and an experimental price p̃ ∈ [ℓ, u]; we call it the adaptive variant of the MBP, abbreviated

AMBP(�, p̃). Given said tuning parameters, put

'̃(q) =

{
'(q) if ∣q − q̂∣ ≥ �

p̃ otherwise,
(18)

for 0 ≤ q ≤ 1. Then AMBP(�, p̃) is the pricing policy � that has �t(⋅) = '̃(⋅) for all t = 1, 2, . . .

That is, AMBP(�, p̃) agrees with the MBP when the current belief q differs by at least � from the

confounding belief q̂, but if ∣q− q̂∣ is small, then a price experiment is undertaken to ensure learning.

The following analog of Theorem 1 also hinges on Proposition 2.

Theorem 2 (performance of adaptive MBP) Assume that an indeterminate equilibrium (p̂, q̂)

exists, that p̃ ∕= p̂, and that � > 0 is small enough to ensure that q̂ ∈ (�, 1 − �). Then there exists a

finite, positive constant C such that ��
i (∞) ≤ C for i = 0, 1, where ��

i (⋅) is given in (8), for the

pricing policy � = AMBP(�, p̃).

Remark 1 The constants in both theorems are explicitly identified in the proofs, and are given in

terms of the problem primitives and the tuning parameters of the policy.
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Table 1: �(T ) under CMBP(�) for various values of � and T

� T = 10 T = 100 T = 1, 000 T = 2, 000 T = 3, 000 T = 5, 000 T = 10, 000

0.05 0.6 6.0 32.3 37.9 39.5 39.5 39.6

0.10 0.6 5.7 17.3 17.8 17.7 18.3 18.3

0.15 0.7 5.2 10.5 10.5 10.4 10.4 10.5

0.20 0.8 4.6 7.2 7.0 6.9 7.0 6.9

Tables 1 and 2 illustrate the performance of CMBP(�) and AMBP(�, p̃) in the linear example

(9). To be more specific, Tables 1 and 2 give simulation estimates for the metric �(⋅) = 1
2�

�
0 (⋅) +

1
2�

�
1 (⋅) under CMBP(�) and AMBP(�, p̃), respectively; all of these simulation estimates are based

on 100,000 independent replications of the relevant sales sequence. For CMBP(�) we tabulate �(T )

for different values of the threshold parameter �, and different horizon lengths T . The performance

�(⋅) is essentially flat beyond T = 2,000 periods, and the minimum value of �(T ) for large T is

approximately 7, achieved by taking � = 0.2. In the case of AMBP(�, p̃), we simply fix the horizon

length at T = 2,000, tabulating �(2,000) for different values of � and p̃; the optimal parameter

values are seen to be � = 0.3 and p̃ = 0.5, and the corresponding performance metric �(2,000)

= 4.1. Thus, under AMBP(�, p̃) with the tuning parameters optimized, the total expected loss

due to initial model uncertainty equals the expected profit from just 4-5 sales opportunities. In

the context of retail financial services, where even a small provider has many hundreds of sales

opportunities per day, this can reasonably be called a negligible loss.

Table 2: �(2,000) under AMBP(�, p̃) for various values of � and p̃

� p̃ = 0.50 p̃ = 0.67 p̃ = 0.83 p̃ = 1.00 p̃ = 1.17 p̃ = 1.33 p̃ = 1.50

0.05 15.1 21.0 26.8 113.0 26.8 21.0 15.7

0.10 9.9 12.3 15.8 123.7 16.1 12.1 10.0

0.15 7.3 8.8 12.6 135.2 12.8 8.8 7.3

0.20 5.4 7.0 11.5 144.4 11.3 7.3 5.7

0.25 4.6 6.5 11.9 144.3 11.4 6.6 5.0

0.30 4.1 7.1 14.6 144.2 12.2 6.4 4.6

0.32 4.3 7.9 17.5 144.0 12.9 6.9 4.5

Theorems 1 and 2 establish that the constrained and adaptive variants of the myopic Bayesian

policy eliminate its most glaring deficiency, namely, potential convergence to an indeterminate

equilibrium. It is natural to ask whether these policy classes can be extended or generalized

beyond the simple setting of a binary prior distribution. The CMBP family does not extend in
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any obvious way, but in future work we plan to develop a generalized version of AMBP, taking as

our point of departure the following observation: a policy in the AMBP family undertakes a price

experiment whenever “learning slows down,” and that phrase can be given precise mathematical

meaning in a general setting.

A Proof of Propositions

Assume without loss of generality that � = 0. (The analysis that follows can be repeated verbatim

for the case � = 1.) The proof of all auxiliary results stated below is deferred to Section C. The

following abbreviated notation will be used repeatedly: put �i,t := �i[�t(qt−1)] for all i = 0, 1, and

t ∈ ℕ, and y := 1 − y for all y ∈ [0, 1]. To simplify notation further, we also put �k := �1,k/�0,k

and �k := (1− �0,k)/(1 − �1,k) for all k ∈ ℕ.

Proof of Proposition 2. We will make use of the following expression for the belief qt (whose

proof is straightforward and hence omitted). For all t = 1, 2, . . .

qt =
∑

x∈{0,1}t

q0At(x)

q0At(x) + (1− q0)Bt(x)
I{(X1,...,Xt)=x} (19)

where At(x) :=
∏t−1

k=0 �
xk+1

k and Bt(x) :=
∏t−1

k=0 �
1−xk+1

k .

Fix q0 ∈ [0, 1) and fix a �-discriminative policy �. Taking an expectation of the above expression

yields:

E
�
0 [qt] =

∑

x∈{0,1}t

q0At(x)

q0At(x) + (1− q0)Bt(x)
ℙ
�
0

[
(X1, . . . ,Xt) = x

]

= E
�
0

[
q0

∏t−1
k=0 �

Xk+1

k

q0
∏t−1

k=0 �
Xk+1

k + q0
∏t−1

k=0 �
1−Xk+1

k

]

= E
�
0

[
1

1 + q0
q0

∏t−1
k=0 �

1−Xk+1

k �
−Xk+1

k

]

= E
�
0

[
1

1 +
q0
q0

exp
(∑t−1

k=0[(1−Xk+1) log �k −Xk+1 log �k]
)
]
. (20)

Let Lt denote the argument of the exp(⋅) in the denominator in (20). Simple algebra, and using
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the definition of �k, �k above, then yields

Lt =

t−1∑

k=0

[
(1−Xk+1) log �k −Xk+1 log�k

]

=

t−1∑

k=0

[
(1−Xk+1 − �0,k) log �k − (Xk+1 − �0,k) log �k

]
+

t−1∑

k=0

[
�0,k log �k − �0,k log�k

]

=

t−1∑

k=0

[
(�0,k −Xk+1) log

�0,k
�1,k

+ (Xk+1 − �0,k) log
�0,k
�1,k

]
+

t−1∑

k=0

[
�0,k log

�0,k
�1,k

+ �0,k log
�0,k
�1,k

]

=

t−1∑

k=0

[
(Xk+1 − �0,k) log

�0,k �1,k
�0,k �1,k

]
+

t−1∑

k=0

[
�0,k log

�0,k
�1,k

+ �0,k log
�0,k
�1,k

]
.

The following lemma allows to bound Lt from below.

Lemma A.1 For any �-discriminative policy �

�0,k log
�0,k
�1,k

+ �0,k log
�0,k
�1,k

≥ 2�2 for all k = 1, 2, . . .

Combining the expression derived above for Lt with this inequality, we have:

Lt ≥

t−1∑

k=0

[
(Xk+1 − �0,k) log

�0,k �1,k
�0,k �1,k

]
+ 2t�2.

We now turn to analyzing the sum on the right-hand-side above. To that end, put M1 = 0 and

Mt :=
t−1∑

k=1

[
(Xk+1 − �0,k) log

�0,k �1,k
�0,k �1,k

]
, for all t = 2, 3, . . .

Fix � > 0, and consider the event

Jt,� := {∣Mt∣ < t�}.

Using the above and recalling (20), we deduce that

E
�
0 [qt] = E

�
0

[
1

1 +
q0
q0

exp(Lt)

]

≤ E
�
0

[
1

1 + q0
q0

exp(Mt + 2t�2)

]

= E
�
0

[
1

1 + q0
q0

exp(Mt + 2t�2)
;Jt,�

]
+ E

�
0

[
1

1 + q0
q0

exp(Mt + 2t�2)
;J c

t,�

]

≤
1

1 + q0
q0

exp(−t�+ 2t�2)
+ ℙ

�
0

(
J c
t,�

)
,

where the second inequality follows from the definition of the event Jt,�. To finish the proof, we

need a bound on the probability of the complement of this event.
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Lemma A.2 For any policy �, there exists a positive real number 
 such that

ℙ
�
0

(
J c
t,�

)
≤ 2 exp

(
−

1

2

�2t

)
for all t = 1, 2, . . .

Combining this with the above, we have that

E
�
0 [qt] ≤

1

1 + q0
q0

exp(−t�+ 2t�2)
+ 2 exp

[
−

1

2

�2t

]

≤
q0
q0

exp
[
− t(2�2 − �)

]
+ 2exp

[
−

1

2

�2t

]

≤ �e−�(�)t,

where � = 2max{2, q0
q0
} and �(�) = min

{
2�2 − �, 1

2
 �
2
}
. Setting � = �2 > 0, we have � ≡ �(�2) =

�2 min
{
1, �2/2


}
> 0. This completes the proof.

Proof of Proposition 3. We begin by showing that the given policy � cannot charge a �-

discriminative price infinitely often. Define the event D�
t,� := {∣�1(pt) − �0(pt)∣ > �} for all t =

1, 2, . . . and � > 0. Assume towards a contradiction that D�
t,� occurs infinitely often. This implies

that there exists a subsequence qt(k) of qt such that ∣�1(pt(k))− �0(pt(k))∣ > � for all k ∈ ℕ. Thus a

straightforward generalization of Lemma A.1 and direct application of Lemma A.2 leads to

E
�
0 [qt(k)] ≤

1

1 + q0
q0

exp(−t(k)�+ 2k�2)
+ 2 exp

[
−

1

2

�2t(k)

]
.

As argued in the proof of Proposition 2 we conclude that there exist constants �, � > 0 such that

E
�
0 [qt(k)] ≤ �e−�k. Hence, q∞ = 0 almost surely, which contradicts the fact that q∞ is neither 0 nor

1, almost surely. Therefore D�
t,� occurs only finitely often. Denoting the number of occurrences in

T periods by DT :=
∑T

t=1 I{D
�
t,�}, we have that D∞ < ∞ almost surely.

Given � > 0, we know by continuity of �0(⋅) and �1(⋅) that there exist �̃ > 0 and an uninformative

price p̂ such that ∣pt − p̂∣ < �̃ in any period t where D�
t,� does not occur. Here we let r̂i :=

max{ri(p), p̂− �̃ ≤ p ≤ p̂+ �̃}. Since p∗0 ∕= p̂, we can choose � sufficiently small so that r̂0 < r0(p
∗
0).

Then, by Fatou’s Lemma, we have

lim inf
T→∞

��
0 (T )

T
≥ E

�
0

[
lim inf
T→∞

(
1−

∑T
t=1 r0(pt)

Tr0(p
∗
0)

)]

≥ E
�
0

[
lim inf
T→∞

(
1−

DT r0(p
∗
0) + (T −DT )r̂0
Tr0(p

∗
0)

)]

= 1−
r̂0

r0(p∗0)
, (21)

since D∞ < ∞ almost surely. The proof is complete by setting � := 1− r̂0
r0(p∗0)

.
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Proof of Proposition 4. Since "0(⋅) and "1(⋅) are strictly increasing, r0(⋅) and r1(⋅) are strictly

quasi-concave. Therefore, rq(⋅) for any q ∈ [0, 1] is increasing on [ℓ, p∗0) ∩ [ℓ, p∗1) = [ℓ, p∗0) and

decreasing on (p∗0, u] ∩ (p∗1, u] = (p∗1, u]. Hence, for any q ∈ [0, 1] we have '(q) ∈ [p∗0, p
∗
1]. In other

words, '
(
[0, 1]

)
⊆ [p∗0, p

∗
1]. Now, by the definition of price elasticity we have for all p ∈ [p∗0, p

∗
1] and

i ∈ {0, 1} that 1 − "i(p) has the same sign as r′i(p). Since "i(p
∗
i ) = 1 for i ∈ {0, 1} and "0(⋅) and

"1(⋅) are strictly increasing, we conclude that r′1(p) is positive for all p ∈ [p∗0, p
∗
1] whereas r′0(p) is

negative over the same price range. Recall that '(q) ∈ argmax{rq(p) : ℓ ≤ p ≤ u} for all q ∈ [0, 1],

and note that
∂2rq(p)

∂p∂q
= r′1(p)− r′0(p).

Since r′1(p) > 0 and r′0(p) < 0 for all p ∈ [p∗0, p
∗
1], one has

∂2rq(p)
∂p∂q

> 0 for all p ∈ [p∗0, p
∗
1]; that is rq(p)

is supermodular in (p, q) on [p∗0, p
∗
1] × [0, 1]. Hence, by Topkis’s (1978) Theorem, we deduce that

'(q) is non-decreasing in q.

Proof of Proposition 5. Let p̂ be an uninformative price. First, since "1(p) < 1 < "0(p)

for all p ∈ [p∗0, p
∗
1] and �1(p̂) = �0(p̂), we deduce that �′1(p̂) − �′0(p̂) > 0. Thus, the function

p 7→ �1(p)−�0(p) is locally increasing in the neighborhood of any uninformative price, and vanishes

at that point. This implies that there can be at most one uninformative price p̂. Now, note that

p̂ = '(q̂) = sup argmax{rq̂(p) : ℓ ≤ p ≤ u}. Thus, by the first-order conditions of optimality,

q̂ = −
�0(p̂) + p̂�′0(p̂)

p̂
[
�′1(p̂)− �′0(p̂)

] . (22)

This completes the proof.

Proof of Proposition 6. We have the existence and uniqueness of the pair (p̂, q̂) by Proposition

5. Moreover, as argued in the proof of Proposition 5, the function p 7→ �1(p) − �0(p) is locally

increasing around p̂, and vanishes at p̂. Thus,

�0(p) > �1(p) ∀p < p̂, and �0(p) < �1(p) ∀p > p̂. (23)

Without loss of generality, assume that the seller’s belief is qt = q ∈ [0, q̂) at the end of a given

period t, and that pt+1 = '(q) = p. We will show that qt+1 cannot exceed q̂.

Case 1. Xt+1 = 1. We know by Proposition 4 that the myopic price '(q) is monotone

increasing in q. Therefore, p = '(q) ≤ p̂ since q ≤ q̂. Now, by plugging Xt+1 = 1 into (5),

we have qt+1 expressed in terms of qt = q and pt+1 = p,

qt+1(q, p) =
q�1(p)

q�1(p) + (1− q)�0(p)
.

Since p ≤ p̂, by (23) we have that (1− q)�1(p) < (1− q)�0(p). Thus, qt+1(q, p) < q ≤ q̂.
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Case 2. Xt+1 = 0. We will show that qt+1(q, p) ≤ q̂, i.e.

qt+1(q, p) =
q�1(p)

q�1(p) + (1− q)�0(p)
≤ q̂,

or equivalently,

q̂(1− q)�0(p)− q(1− q̂)�1(p) ≥ 0. (24)

In the case of of a linear demand model, the uninformative price and the myopic price can

be explicitly expressed as p̂ = (a0 − a1)/(b0 − b1) and p = '(q) = aq/2bq , where for brevity

we set aq := qa1 + (1− q)a0 and bq := qb1 + (1− q)b0. Furthermore, we get by (22) that

q̂ =
a0b0 − 2a1b0 + a0b1
(b0 − b1)(a0 − a1)

.

Now, we plug the above expressions of p = '(q) and q̂ into the left-hand-side of (24), and

deduce by simple algebra that (24) is equivalent to

[q̂(1− q)− q(1− q̂)] ⋅ [qb1(2− a1) + (1− q)b0(2− a0)] ≥ 0.

To show that the above statement is correct, we recall that p∗0 and p∗1 are interior points of

the interval [ℓ, u]. We also know that �0(p
∗
0) ≤ 1 and �1(p

∗
1) ≤ 1, which imply that a0 ≤ 2

and a1 ≤ 2. As a result, the left-hand-side of the above expression is indeed non-negative for

q < q̂, and hence the MBP belief process qt cannot “jump over” the confounding belief q̂.

The above argument can be applied verbatim to the case where q ∈ (q̂, 1]. This completes the

proof.

B Proof of Theorems 1 and 2

As before, we will assume hypothesis 0 and show that �0(∞) < ∞. (The same analysis can be

carried out for the case where hypothesis 1 holds.)

Proof of Theorem 1. First, we observe that for sufficiently small �, CMBP(�) is a discriminative

policy by construction. Now, denoting by pt the price generated under CMBP(�) at period t, we

have

�0(T ) =
1

r0(p
∗
0)

[
T r0(p

∗
0)−

T∑

t=1

E
�
0 [r0(pt)]

]

=
1

r0(p
∗
0)

T∑

t=1

E
�
0

[
r0(p

∗
0)− r0(pt)

]
. (25)

Note that, when the value of qt−1 is near 0, we can express pt in terms of p∗0. To carry out this task,

we first apply the Implicit Function Theorem (IFT) to verify '̂(⋅) is differentiable around 0. Since

20



r0(⋅) and r1(⋅) are differentiable, any unconstrained local maximizer �(q) of rq(⋅) has to satisfy the

first-order necessary conditions for the unconstrained single-period expected profit maximization

problem:

�(q, p) := qr′1(p) + (1− q)r′0(p) = 0,

where p = �(q). Now, since "0(⋅) is strictly increasing, r0(⋅) is strictly quasi-concave. Moreover,

since p∗0 and p∗1 are interior points of the interval [ℓ, u], then when q is sufficiently close to 0, we

have ∂�(q, p)/∂p = r′′q (p) < 0 by the strict quasi-concavity of r0(⋅) and the second-order conditions.

Consequently, we deduce by IFT that each unconstrained local maximizer �(⋅) is differentiable

around 0. Since r0(⋅) is strictly quasi-concave, it has a unique global maximum. Thus, each such

local maximizer �(⋅) satisfies �(0) = p∗0, implying that in a neighborhood of 0 we have '̂(⋅) = �0(⋅)

for some local maximizer �0(⋅). Therefore there exists �0 > 0 such that '̂(⋅) is differentiable in the

�0-neighborhood of 0, and by a Taylor series expansion of '̂(⋅) around 0 we have:

pt = '̂(qt−1)

= p∗0 + '′(0) qt−1 + C
(1)
t q2t−1, (26)

where C
(1)
t := '′′(q̃)/2 for some q̃ ∈ [0, qt−1], and using the fact that '̂(0) = '(0) = p∗0 and

'̂′(0) = '′(0). Note also that by properties of '(⋅), it follows that C
(1)
t is uniformly bounded for

all t. Recalling (25), we divide the expectation into two:

�0(T ) =
1

r0(p
∗
0)

T∑

t=1

(E�
0 [r0(p

∗
0)− r0(pt) ; ∣qt−1∣ ≥ �0

]
+ E

�
0 [r0(p

∗
0)− r0(pt) ; ∣qt−1∣ < �0]).

The first expectation can be bounded using Markov’s inequality as follows

E
�
0

[
r0(p

∗
0)− r0(pt); ∣qt−1∣ ≥ �0

]
≤ (r0(p

∗
0)− r̃0)ℙ

�
0

(
∣qt−1∣ ≥ �0

)

≤ (r0(p
∗
0)− r̃0)

E
�
0 [qt−1]

�0
,

where r̃0 := minp∈[ℓ,u]{r0(p)}. For the second term we have by a Taylor expansion that

E
�
0

[
r0(p

∗
0)− r0(pt); ∣qt−1∣ < �0

]

= E
�
0

[
−

1

2
r′′0(p

∗
0)(pt − p∗0)

2 + C
(2)
t (pt − p∗0)

3 ; ∣qt−1∣ < �0

]
,

for suitable C
(2)
t which is uniformly bounded, where we have used the fact that p∗0 is an interior

point of {p ∈ ℝ : ℓ ≤ p ≤ u and ∣p − p̂∣ ≥ �} and satisfies r′0(p
∗
0) = 0 by the first-order condition.

Using this together with (26), we arrive at:

E
�
0

[
r0(p

∗
0)− r0(pt) ; ∣qt−1∣ < �0

]

≤ E
�
0

[
−

1

2
r′′0(p

∗
0)
(
'′(0)

)2
q2t−1 + Cq3t−1

]
,
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for some finite positive constant C. Consequently, we have

�0(T ) ≤

(
1−

r̃0
r0(p∗0)

) T∑

t=1

E
�
0 [qt−1]

�0
−

r′′0(p
∗
0)
(
'′(0)

)2

2r0(p∗0)

T∑

t=1

E
�
0

[
q2t−1

]
+ C

T∑

t=1

E
�
0

[
q3t−1

]

≤

(
1−

r̃0
r0(p∗0)

)
⋅
�

�0
⋅
1− e−�T

1− e−�
−

�r′′0(p
∗
0)
(
'′(0)

)2

2r0(p∗0)
⋅
1− e−�T

1− e−�
+ C

1− e−�T

1− e−�

for positive constants � and � given in Proposition 2, since CMBP(�) is a discriminative policy for

any � > 0, and qkt−1 ≤ qt−1 for all k. Taking T → ∞ the result follows.

Proof of Theorem 2. The proof follows that of Theorem 1. We first observe that AMBP(�, p̃)

is a discriminative policy for sufficiently small � > 0 and p̃ ∕= p̂. This follows since within an �-

neighborhood of q̂ AMBP(�, p̃) charges p̃, which is an informative price. On the other hand, outside

that neighborhood, it charges the MBP price. Then, exactly as in the proof of Theorem 1, we find

an �0-neighborhood of 0 in which AMBP(�, p̃) charges the MBP price, and �0(∞) < ∞ follows in

the same manner. This concludes the proof.

C Proof of Side Lemmas

Proof of Lemma A.1. Define ℎ : [0, 1]2 → ℝ as

ℎ(x, y) := x log
x

y
− (1− x) log

1− x

1− y
− 2(x− y)2.

Let x, y ∈ [0, 1], and assume without loss of generality that y ≤ x. Then,

∂ℎ(x, y)

∂y
=

y − x

y(1− y)
− 4(y − x) ≤ 0,

since y(1− y) ≤ 1
4 , and y ≤ x. Noting that ℎ(x, y) = 0 when y = x, we deduce that ℎ(x, y) ≥ 0 for

all 0 ≤ y ≤ x ≤ 1. By symmetry, we conclude that ℎ(x, y) ≥ 0 for all x, y ∈ [0, 1]. Finally, we note

that

�0,k log
�0,k
�1,k

+ �0,k log
�0,k
�1,k

= ℎ(�1,k, �0,k) + 2(�1,k − �0,k)
2

≥ 2(�1,k − �0,k)
2 ≥ 2�2,

where the first inequality follows since ℎ ≥ 0, and the second one follows since � is �-discriminative.

This concludes the proof.

Proof of Lemma A.2. Let ℱt = �(X1, . . . ,Xt) and recall that qt is ℱt-measurable. Note that

�i,t = �i[�t(qt−1)] is also ℱt-measurable for all i = 0, 1 and all t. Therefore, Mt is ℱt-measurable.
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Observe that

E
�
0 [Mt+1 ∣ ℱt] = E

�
0

[ t∑

k=1

(Xk+1 − �0,k) log
�0,k �1,k
�0,k �1,k

∣∣∣∣ℱt

]

= Mt + E
�
0

[
(Xt+1 − �0,t) log

�0,t �1,t
�0,t �1,t

∣∣∣∣ℱt

]

= Mt,

since E
�
0 [Xt+1∣ℱt] = �0,t and �i,t is ℱt-measurable. Hence {Mt} is an ℱt-martingale, and it is a

matter of simple algebra to see that the martingale differences are bounded, in particular

∣Mt+1 −Mt∣ =

∣∣∣∣(Xt+1 − �0,t) log
�0,t �1,t
�0,t �1,t

∣∣∣∣
≤ max

p∈[ℓ,u]
log �0(p) + max

p∈[ℓ,u]
log �1(p)− min

p∈[ℓ,u]
log �0(p)− min

p∈[ℓ,u]
log �1(p)

≤ log

[
�max(1− �min)

�min(1− �max)

]
,

with �max := max{�0(ℓ), �1(ℓ)}, and �min := min{�0(u), �1(u)}. Denoting 
 := {log[�max(1 −

�min)]− log[�min(1− �max)]}
2, we have by Azuma’s inequality (Williams 1991, p. 237) that

ℙ
(
∣Mt∣ ≥ t�

)
≤ 2 exp

(
−

1

2

�2t

)
.

This concludes the proof.
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