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Bounding Stationary Expectations

of Markov Processes

Peter W. Glynn1 and Assaf Zeevi2,∗

Stanford University and Columbia University

Abstract: This paper develops a simple and systematic approach for obtaining
bounds on stationary expectations of Markov processes. Given a function f
which one is interested in evaluating, the main idea is to find a function g that
satisfies a certain “mean drift” inequality with respect to f , which in turn leads
to bounds on the stationary expectation of the latter. The approach developed
in the paper is broadly applicable and can be used to bound steady-state
expectations in general state space Markov chains, continuous time chains,
and diffusion processes (with, or without, reflecting boundaries).

1. Introduction

Consider an irreducible non-explosive Markov jump process X = (X(t) : t ≥ 0) on
a discrete state space S (otherwise known as a continuous-time Markov chain on S).
Let f : S → R+ be a cost function on S, in which f(x) represents the instantaneous
rate at which cost accrues when X is in state x ∈ S. (Here and in what follows, all
functions are assumed to be finite valued.) Then,

C(t) =
∫ t

0

f(X(s))ds

is the total cost of running X over the time horizon [0, t]. Computing the exact
distribution of C(t) (or even its expectation) is difficult. However, when X is positive
recurrent, it is well known that there exists a distribution π = (π(x) : x ∈ S) for
which

1
t
C(t) →

∑
x∈S

π(x)f(x) a.s.

as t →∞; see, for example, Asmussen (2003). This justifies the approximation

C(t) ≈ tα := t ·
∑
x∈S

π(x)f(x)

for t large. Of course, for this approximation to be practically useful, we need to be
able to compute α or (at least) bound it.

The distribution π is the unique stationary distribution of X, so that π satisfies∑
x∈S

π(x)Q(x, y) = 0, y ∈ S

s.t
∑
x∈S

π(x) = 1; π(y) ≥ 0, y ∈ S,(1)
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where Q = (Q(x, y) : x, y ∈ S) is the rate matrix of X. If |S| is finite and small, π can
be computed numerically. If S is large, π can typically not be computed numerically,
and in this setting one may need to be satisfied with computing bounds on α.

Assuming that π is encoded as a row vector, the linear system (1) can be re-
written in matrix/vector notation as

(2) πQ = 0

subject to π being a probability distribution on S. To obtain a bound on α, note
that when |S| < ∞, it follow from (2) that

(3) πQg = 0

for any column vector g. Hence, if we can find a vector g and a constant c for which

(4) Qg ≤ −f + ce

(where the function f = (f(x) : x ∈ S) is now encoded as a column vector and
e = (1, . . . , 1)> is the column vector in which all the entries are 1s), it is evident
that we arrive at the upper bound:

(5) πf ≤ c.

Similarly, if we can find a g̃ and c̃ for which

(6) Qg̃ ≥ −f + c̃e,

we arrive at the lower bound:

(7) πf ≥ c̃.

While the bounds (5) and (7) are trivial to derive, we are unaware of any specific
literature that presents these bounds (although it seems like such bounds have
appeared previously); see further comments in the literature review at the end of
this section.

Our objective, in this paper, is to extend the above bounds to infinite state
spaces, as well as in the direction of more general Markov processes. To offer a hint
of the difficulties that can arise, suppose that X is an irreducible non-explosive
birth-death process on Z+ = {0, 1, . . .}. For this class of jump processes, the so-
called Poisson’s equation

(8) Qg = −k

has a solution for all right-hand sides k. (This solution can be computed by setting
g(0) = 0, and then using the tri-diagonal structure of Q to recursively solve for
the g(k)s.). Since πk is typically non-zero, it is evident that (3) fails badly for
arbitrary g, even in the setting of simple birth-death processes. (For some discussion
of sufficient conditions on the functions g and k that ensure that (3) holds see, e.g.,
Kumar and Meyn (1996).) Note that when |S| < ∞, the Poisson’s equation (8) is
solvable for g only when πk = 0 (as can be seen by pre-multiplying both sides of (8)
by the row vector π), so that the above difficulty disappears. Thus, to some degree,
the complications associated with the validity of the bounds (5) and (7) have to
do with issues of non-uniqueness and solvability of Poisson’s equation when S is
infinite, and with related potential-theoretic issues.
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Since our interest is in obtaining computable bounds for α = πf , our focus here
is on deriving sufficient conditions under which the bounds (5) and (7) are valid.
In Section 2, we explore such conditions that support the upper bound (5), and
in Section 3 we develop conditions that support the derivation of the lower bound
(7). Section 4 deals with linear programming formulations and its connections with
the basic inequalities described above. Section 5 provides several applications of the
method to queueing-related processes.

Related literature: The references mentioned below are not meant to be an ex-
haustive survey, but rather touch upon strands of work that are connected directly
with the main theme of our paper; for further reading and connections to bounds
related to the ones mentioned above, the reader is referred to Meyn and Tweedie
(1993) and Borovkov (2000). In the former, the function g appearing above is re-
ferred to as a Lyapunov function, and similar inequalities to (4), otherwise known
as drift conditions, are used as sufficient conditions to establish f -regularity of the
chain; see also the “comparison theorem” in Meyn and Tweedie (Theorem 14.2.2,
1993). The primary thrust of Meyn and Tweedie (1993) is the use of such drift con-
ditions for purposes of establishing stochastic stability and recurrence properties
of Markov chains [a similar treatment can be found in Borovkov (2000), and for
stochastic differential equations in Hazminskii (1979)]. We note that passing from
inequality (4) to (5) bears some similarities to the analysis of Poisson’s equation
in Glynn and Meyn (1996), and some connections will be made to in this paper as
well.

By contrast to much of the above work, this paper is concerned with the use
of the aforementioned drift conditions to develop computable bounds on various
expectations of Markov processes. A particular focus is is on clarifying the role
that non-negativity plays in the application of such bounds. We further provide
easily applied concrete hypotheses under which our bounds apply to discrete time
Markov chains, Markov jump processes, and diffusion processes. In addition, we
also illustrate these ideas on some queueing-related examples, and indicate how
one may tighten such bounds via linear programming formulations.

A related analysis that focuses on bounding the tails of the stationary distri-
bution can be found in Hajek (1982), Lasserre (2002), Bertsimas, Gamarnik and
Tsitsikilis (2001), and Gamarnik and Zeevi (2006); see also further references in
the latter two papers. One important application area that has historically driven
the need for such bounds is the queueing network context. A significant number
of papers have focused on deriving performance bounds for such networks. In that
setting, the goal is typically to bound the steady-state queue lengths or workload
[see, e.g., Bertsimas, Paschalidis and Tsitsikilis (1994), Kumar and Kumar (1994),
Sigman and Yao (1997), Bertsimas, Gamarnik and Tsitsikilis (2001) and Gamarnik
and Zeevi (2006), as well as references therein]. We provide some examples in this
paper that are related to the derivation of such bounds.

2. The Upper Bound

Our goal is to exploit the inequality (4) so as to arrive at the bound (5). An
equivalent perspective is to seek conditions on g under which

πQg ≥ 0.

In this case, if f is a function for which there exists c such that

Qg ≤ −f + ce,
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then we arrive at the bound πf ≤ c. Here is our main result for Markov jump
processes.

Proposition 1. Let X = (X(t) : t ≥ 0) be a non-explosive Markov jump process
with rate matrix Q. If g : S → R is non-negative and

(9) sup
x∈S

(Qg)(x) < ∞,

then the inequality

(10) πQg ≥ 0

holds for any stationary distribution π of X.

Remark 1. Note that in the presence of (9), we can write

Qg = −h + ce,

where c = sup{(Qg)(x) : x ∈ S} and h is a non-negative function. The inequality
(10) then asserts that πh ≤ c.

Proposition 1 is actually a special case of a result that holds for much more
general Markov processes. To state this result, assume that X = (X(t) : t ≥ 0) is
a strong Markov process taking values in a Polish space S and having càdlàg (i.e.,
right-continuous with left-limits) paths. We say that g belongs to the domain of
the (extended) generator A of the process X and write g ∈ D(A) if there exists a
function k for which the process

(11) M(t) = g(X(t)) +
∫ t

0

k(X(s))ds

is a local martingale (adapted to the filtration of X) with respect to Px(·) := P(· |
X(0) = x) for each x ∈ S. Furthermore, we then write Ag = −k, where k is any
given member selected from the class of functions satisfying (11).

For the Markov processes that arise in typical applications, it is straightforward
to offer conditions guaranteeing that g ∈ D(A) and to compute explicitly Ag.

Markov jump processes: Suppose that X = (X(t) : t ≥ 0) is a non-explosive
Markov jump process living on a discrete state S, with associated rate matrix Q =
(Q(x, y) : x, y ∈ S). Then, any function g : S → R for which

∑
y∈S |Q(x, y)g(y)| <

∞ for each x ∈ S lies in D(A). Furthermore, for such a function g, (Ag)(x) =
(Qg)(x) for x ∈ S. To see this, let {Kn : n ≥ 1} be a sequence of subsets of S
with Kn ↗ S as n → ∞ and |Kn| < ∞ for all n ≥ 1. We then define Tn =
inf{t ≥ 0 : X(t) ∈ Kc

n}. Using the Kolmogorov forward equations, it follows that
Mn(t) = g(X(min{t, Tn}))−

∫ min{t,Tn}
0

(Qg)(X(s)ds is a Px-martingale for all x ∈ S;
see also further discussion in Karlin and Taylor (1981).

Stochastic differential equations (SDEs): Let B = (B(t) : t ≥ 0) denote
standard Brownian motion in Rd. Let µ : Rd → Rd and σ : Rd → Rd×r be functions
that are assumed to satisfy the “usual” Lipschitz and linear growth conditions. In
particular, we require the existence of constants c1 and c2 such that

‖µ(x)− µ(y)‖+ ‖σ(x)− σ(y)‖ ≤ c1‖x− y‖,
‖µ(x)‖2 + ‖σ(x)‖2 ≤ c2(1 + ‖x‖2)(12)

for all x, y ∈ Rd; the (vector) coefficient function µ constitutes the drift of the
process, and σ(x) is known as the volatility matrix. Let X = (X(t) : t ≥ 0) denote
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the unique Rd-valued strong solution of the following stochastic differential equation
(SDE)

(13) dX(t) = µ(X(t))dt + σ(X(t))dB(t) ,

where X(0) = x ∈ Rd. If g is a twice continuously differentiable, then g ∈ D(A)
and Ag = Lg, where L is a the second order differential operator

(14) L :=
d∑

i=1

µi(x)
∂

∂xi
+

1
2

d∑
i,j=1

bij(x)
∂2

∂xi∂xj
,

where b(x) = σ(x)σ(x)> is the diffusion matrix. The localizing sequence of stopping
times {Tn : n ≥ 1} can be taken to be

Tn = inf
{

t ≥ 0 : ‖X(t)‖ ≥ n, or
∫ t

0

σ2
i,j(X(s))ds ≥ n for some

i = 1, . . . , d, j = 1, . . . , r

}
.

see pp. 312–313 of Karatzas and Shreve (1991).
Jump diffusion processes: For simplicity, consider the one-dimensional case,

i.e., S = R. Let µ and σ be such that they satisfy (12), and consider the following
process:

(15) X(t) =
∫ t

0

µ(X(s))ds +
∫ t

0

σ(X(s))dB(s) +

N(t)∑
i=1

Yi


where B = (B(t) : t ≥ 0) is a standard Brownian motion, N = (N(t) : t ≥ 0) is a
Poisson process with constant rate λ > 0, and {Yi} are iid random variables with
common distribution function F and finite second moment. The above represents
one of the more standard formulations of a jump-diffusion process, where the jump
component is given by a compound Poisson process. It is assumed that N and
the sequence {Yi} are mutually independent, as well as independent of X(0) and
the Brownian motion B. A sufficient condition that g ∈ D(A) is that it be twice
continuously differentiable and that

∫
|g(x+y)|dF (y) be bounded on compact sets.

For such functions g

(Ag)(x) := (Lg)(x) + λ

(∫
R

g(x + y)dF (y)− g(x)
)

,

where L is given in (14). In this jump diffusion setting, the localizing sequence of
stopping times {Tn : n ≥ 1} can be taken to be

Tn = inf
{

t ≥ 0 :
∫ t

0

(g′(X(s)))2σ2(X(s))ds ≥ n, or
∫

R
|g(X(t−) + y)|F (dy) ≥ n

}
.

Discrete-time Markov chains (DTMCs): Suppose that X = (X(t) : t ≥
0) is an S-valued Markov chain with one-step transition kernel P = (P (x, y) :
x, y ∈ S), so that P (x, dy) = P(X1 ∈ dy | X0 = x). If g : S → R is such that∫

S
P (x, dy)|g(y)| < ∞ for each x ∈ S, then

Mn = g(Xn) +
n−1∑
j=0

k(Xj)
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is a Px-local martingale for each x ∈ S, where k(x) = g(x) −
∫

S
P (x, dy)g(y) for

x ∈ S, thus, if we set A = P − I, then k = −Ag; for a localizing sequence, set
Tn = inf{m ≥ 1 : (P |g|)(Xm) > n, or k(Xm) > n}.

Recall that π is a stationary distribution for X if, given that X(0) has distribution
π, then X(t) has distribution π for each t ≥ 0. Let Ex[·] := E[· | X(0) = x]. Here is
our main upper bound result.

Theorem 1. Suppose that g ∈ D(A) is a non-negative function for which

(16) sup
x∈S

(Ag)(x) < ∞.

Then:

i.) For each x ∈ S and t ≥ 0,

−Ex

∫ t

0

(Ag)(X(s))ds ≤ g(x).

ii.) For each stationary distribution π of X,∫
S

π(dx)(Ag)(x) ≥ 0.

Proof. First note that by definition of g,

g(X(t))−
∫ t

0

(Ag)(X(s))ds

is a Px-local martingale for each x ∈ S. Let {Tn : n = 1, 2, . . .} be the localizing
sequence of stopping times under Px. Then,

−Ex

∫ min{t,Tn}

0

(Ag)(X(s))ds = g(x)− Exg(X(min{t, Tn}).

Since g is by assumption non-negative, we obtain the inequality:

−Ex

∫ min{t,Tn}

0

(Ag)(X(s))ds ≤ g(x),

which holds for each x ∈ S. Put C := supx∈S(Ag)(x) < ∞, then C − Ag(x) ≥ 0.
Rewriting the above inequality we have

Ex

∫ min{t,Tn}

0

(C − (Ag)(X(s))) ds ≤ g(x) + CEx min{t, Tn}.

Since, by definition, Tn ↑ ∞, letting n → ∞ and applying monotone convergence
to each side of the inequality above we get that

−Ex

∫ t

0

(Ag)(X(s))ds ≤ g(x)

which proves i.).
To prove ii.) we proceed as follows. Let π be any stationary distribution of X.

Adding and subtracting Ct to each side of the inequality in i.) we have

Ex

∫ t

0

(C − (Ag)(X(s))) ds ≤ g(x) + Ct.
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Now, dividing both sides of the inequality by t, sending t → ∞ and using Fatou’s
lemma we have that

Ex lim inf
t→∞

1
t

∫ t

0

(C −Ag)(X(s))ds ≤ C.

Because C − (Ag)(x) is non-negative for all x ∈ S, we may integrate the left-hand
side against π. It now follows from Birkhoff’s ergodic theorem that the left-hand
side above is given by C − EπE[(Ag)(X(0)) | I], where I denotes the invariant
sigma-field of X. Hence, we have that πAg ≥ 0. This concludes the proof.

Remark 2. The finite-time bound i.) is well known, see for example Meyn and
Tweedie (p. 337,1993) for the discrete time result, and a version of the continuous
time bound is implicit in Meyn and Tweedie (1993a). Note that Proposition 1 is a
direct consequence of the above theorem.

Remark 3. A simpler way to obtain ii.) from i.) would be to require that g be π-
integrable and to directly integrate both sides of the finite time bound i.) against π.
Dividing by t and sending t →∞ then yields the inequality ii.). This approach has
two disadvantages. Firstly, it requires an additional step from an applied standpoint,
as one must now check π-integrability of g. Secondly, such a hypothesis would
weaken the result, as Example 1 below shows that the functions g satisfying the
hypothesis of Theorem 1 need not be π-integrable.

Example 1. Let X be the number-in-system process corresponding to the M/M/1
queue, so that X is a birth-death process in Z+ with birth rates λ(x) = λ for x ≥ 0
and death rates µ(x) = µ for x ≥ 1. If λ < µ then X has a unique stationary
distribution π(x) = (1 − λ/µ)(λ/µ)x for x ≥ 0 with ρ := λ/µ. Given θ > 0, the
function

(17) g(x) =
θ(µ/λ)x+1

λ(µ/λ− 1)2
− θx

λ(µ/λ− 1)

satisfies Qg = θe, and is non-negative. The function g therefore satisfies the hy-
pothesis of Theorem 1. On the other hand, g is not π-integrable.

Remark 4. Note that Example 1 implies that the conclusions of Theorem 1 cannot
be strengthened to ∫

S

π(dx)(Ag)(x) = 0

under the hypothesis stated in Theorem 1. In other words, the inequality statement
in ii.) is the best possible under the assumptions of the theorem.

Theorem 1 leads immediately to the following corollaries.

Corollary 1. Let X = (X(t) : t ≥ 0) be a non-explosive Markov jump process and
suppose that f : S → R is non-negative. If there exists a non-negative function g
and a constant c for which

Qg ≤ −f + ce,

then πf ≤ c for any stationary distribution π of X.

Corollary 2. Let X = (X(t) : t ≥ 0) be a solution of the SDE (12), and suppose
that f : S → R is non-negative. If there exists a non-negative twice continuously
differentiable function g and a constant c for which

(Lg)(x) ≤ −f(x) + c,
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for x ∈ S, then ∫
S

π(dx)f(x) ≤ c

for any stationary distribution π of X.

Corollary 3. Let X = (X(t) : t ≥ 0) be a jump-diffusion process as in (15),
and suppose that f : S → R is non-negative. If there exists a non-negative twice
continuously differentiable function g with

∫
|g(x + y)|dF (y) < ∞ for all x ∈ S,

and a constant c for which

(Ag)(x) ≤ −f(x) + c,

for x ∈ S, then ∫
S

π(dx)f(x) ≤ c

for any stationary distribution π of X.

Corollary 4. Let X = (Xn : n ≥ 0) be a discrete-time S-valued Markov chain
with transition kernel P , and suppose f : S → R is non-negative. If there exists a
non-negative function g : S → R and a constant c for which∫

S

P (x, dy)g(y) ≤ g(x)− f(x) + c,

for x ∈ S, then ∫
S

π(dx)f(x) ≤ c

for any stationary distribution π of X.

Another important applications domain is that of diffusions with boundaries.
Very similar results to Theorem 1 hold in such settings. To illustrate this point,
assume that the real-valued process X = (X(t) : t ≥ 0) satisfies the stochastic
differential equation

dX(t) = a(X(t))dt + b(X(t))dB(t) + dΓ(t),

where B = (B(t) : t ≥ 0) is a one-dimensional standard Brownian motion, and
Γ(·) is the minimal non-decreasing process that increases only when X is at the
origin and is such that the solution X is non-negative. If g is twice continuously
differentiable, then

M(t) = g(X(t))−
∫ t

0

(Lg)(X(s))ds− g′(0)Γ(t)

is a local martingale with respect to Px for each x ≥ 0, where L is the differential
operator defined in (14). Note that if g′(0) ≤ 0, then

M̃(t) = g(X(t))−
∫ t

0

(Lg)(X(s))ds

is a local supermartingale. The proof of Theorem 1 goes through without change
in the local supermartingale setting. It follows that if f and g are non-negative
functions with

(Lg)(x) ≤ −f(x) + c
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for x ≥ 0 and with g′(0) ≤ 0, then we may conclude that∫
S

π(dx)f(x) ≤ c

for any stationary distribution π of X. This argument easily extends to other types
of boundary behavior, as well as to higher-dimensional diffusions.

3. The Lower Bound

In this section, we turn to the question of when the lower bound (7) and its exten-
sions to general Markov processes is valid. Such lower bounds would follow naturally
from an inequality of the form

(18)
∫

S

π(dx)(Ag)(x) ≤ 0,

just as the upper bounds of Section 2 follow directly from Theorem 1.
Given our interest in obtaining bounds on the π-expectation of a non-negative

function f and Section 2’s discussion of the solution to Poisson’s equation for such
functions f , it is natural to restrict our attention to non-negative functions g for
which

sup
s∈S

(Ag)(x) < ∞.

In view of Theorem 1, it is evident that (18) can hold only if we establish equality,
namely, determining additional conditions on g ensuring that

(19)
∫

S

π(dx)(Ag)(x) = 0.

In the setting of a discrete-time Markov chain, it is easily seen that the require-
ment that g be π-integrable suffices to guarantee (19).

Proposition 2. Let π be a stationary distribution of the Markov chain X = (Xn :
n ≥ 0) and suppose that π|g| < ∞. If (Ag)(x) = Exg(X1)− g(x), then πAg = 0.

Proof. Note that if g = g+ − g− where g+ = max{g(x), 0} and g− = (−g)+, then

πPg+ = πg+ < ∞,

so πAg+ = 0. Similarly, πAg− = 0, yielding the result.

Corollary 5. Suppose that f is non-negative. If there exist non-negative functions
g1 and g2 and constants c1 and c2 for which

(Pg1)(x) ≥ g1(x)− f(x) + c1,

(Pg2)(x) ≤ g2(x)− g1(x) + c2,

for all x ∈ S, then πf ≥ c1.

As our next example illustrates, π-integrability of g does not suffice to guarantee
that πAg = 0 in the setting of a continuous time Markov chain.
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Example 2. Our counterexample is framed in the setting of a continuous time
birth-death process X on Z+ = {0, 1, . . .}. Suppose that λ(x) = λrx for x ≥ 0
and µ(x) = µrx for x ≥ 1. Assume that µ > λ > 0, and r > 1. Note that the
embedded discrete-time Markov chain is a positive recurrent process (since λ > µ).
It follows that the jump process X is non-explosive. Let Q be the rate matrix of X
and consider, as for Example 1, the solution g to the equation

Qg = θe

for some θ > 0. Similar to Example 1, it is not difficult to verify that the solution
g to the above is non-negative and satisfies

g(x) =
θ

λ

(
1− (µr2/λ− r(1 + µ/λ) + 1)−1

)
(λ/(µ− λ)(µ/λ)x

+
θr

λ
(µr2/λ− r(1 + µ/λ) + 1)−1xr−x.

For this example, the stationary distribution π of X is given by

π(x) = (1− λ/(rµ))(λ/(rµ))x.

Note that if r > 1+λ/µ, then g is non-negative and π-integrable. However, πQg =
θ > 0, thereby providing the required example.

Remark 5. Note that in the above example, both g and Qg are π-integrable, so
evidently πQg can be positive, even if integrability of both g and Qg is imposed.

For Markov jump processes, X our next proposition provides a sufficient condi-
tion under which πQg = 0.

Proposition 3. Let X be a Markov jump process on discrete state space S with
rate matrix Q and possessing a stationary distribution π. Suppose that g satisfies∑

x∈S

π(x)|Q(x, x)||g(x)| < ∞.

Then, πQg = 0.

Proof. Note that∑
x,y

π(x)|Q(x, y)||g(y)| =
∑

x

π(x)
∑
y 6=x

Q(x, y)|g(y)|+
∑

x

π(x)|Q(x, x)||g(x)|

=
∑

y

|g(y)|
∑
x6=y

π(x)Q(x, y) +
∑

x

π(x)|Q(x, x)||g(x)|

= 2
∑

y

|g(y)||Q(y, y)|π(y) < ∞.

It follows that ∑
x

π(x)(Qg)(x) =
∑
x,y

π(x)Q(x, y)g(y)

=
∑

y

g(y)
∑

x

π(x)Q(x, y) = 0.

This concludes the proof.
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Corollary 6. Suppose that f is non-negative. If there exist non-negative functions
g1 and g2, and constants c1 and c2 for which

(Qg1)(x) ≥ −f(x) + c1,

(Qg2)(x) ≤ −g1(x)|Q(x, x)|+ c2,

for all x ∈ S, then, πf ≥ c1.

To obtain lower bounds on SDEs and jump-diffusions, we offer the following
result.

Theorem 2. Suppose that g ∈ D(A). Assume that the local martingale

g(X(t))−
∫ t

0

(Ag)(X(s))ds

is a martingale (adapted to the filtration of X) with respect to Px for each x ∈ S. If
X has a stationary distribution π for which g is π-integrable and supx∈S(Ag)(x) <
∞, then ∫

S

π(dx)(Ag)(x) = 0.

Proof. By virtue of the martingale property,

Ex

[
g(X(t))−

∫ t

0

(Ag)(X(s))ds

]
= g(x)

for each x ∈ S. Note that g(X(0)) and g(X(t)) are both Pπ-integrable (since X is
stationary under Pπ by definition). It follows that

(20) Eπ

∫ t

0

(Ag)(X(s))ds = 0.

Because supx∈S(Ag)(x) < ∞, either Eπ(Ag)(X(s)) = ∞, or Eπ|(Ag)(X(s))| < ∞
for each s ≥ 0. In view of (20) we may conclude that Eπ|(Ag)(X(s))| < ∞ and
hence (20) implies that

t Eπ(Ag)(X(0)) = 0,

which proves the result.

The above result provides a mechanism for establishing lower bounds on station-
ary expectations for general Markov processes.

4. A Connection with Linear Programming

In this section, we explore connections between the bound (1) and linear program-
ming characterizations of the stationary expectation α = πf . We start by observing
that when X is an irreducible finite-state discrete-time Markov chain, there always
exists a solution g∗ to Poisson’s equation g−Pg = f −α. Furthermore, because all
functions are automatically π-integrable in this context, α can be characterized as
the minimum of the following linear program (LP):

min c

s.t. Pg ≤ g − f + ce,(21)

where e = (1, . . . , 1)t is the column vector consisting entirely of 1s. A couple of
observations are in order:
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1. Note that if g is a solution of the inequality (21), we may always take the
solution to be non-negative (without loss of generality). To see this, observe
that g + βe is then also a solution of (21) for any constant β. So, if g has a
negative component, just choose β = −min{g(x) : x ∈ S}. Hence, in finite
state space, requiring g to be non-negative (as in Theorem 1) is no restriction
on the class of “test functions” g.

2. It can be easily verified that the dual LP is

max νf

s.t. νP = ν(22)
νe = 1.

Hence, the dual LP corresponds precisely to the standard equations that
uniquely characterize the stationary distribution.

Of course, in infinite state space, a solution g to the linear inequalities system
(21) may not be bounded from below, so that the non-negativity constraint on g
in Theorem 1 could, in principle, limit the applicability of Theorem 1’s bound. In
view of this, we offer the following result.

Theorem 3. Suppose that f is a bounded non-negative function and that X =
(Xn : n ≥ 0) is a uniformly ergodic Markov chain. Then, there exists a finite-
valued non-negative function g and non-negative constant c that solve the linear
inequality system

(Pg)(x) ≤ g(x)− f(x) + c, x ∈ S.

Proof. We show that there exists a solution to Poisson’s equation Pg = g − f + α
(where α = πf) that is bounded below.

It is shown in Glynn and Meyn (1996) that one solution g to Poisson’s equation
is

g∗(x) = Ex

τ−1∑
j=0

(f(Xj)− α),

where τ is the regeneration time for the chain. In the uniformly ergodic case, the
regeneration time τ has the property that

Px(τ > n) = O(γn)

for some γ ∈ (0, 1) that is uniform in x; see Meyn and Tweedie (1993). Because f
is non-negative,

g∗(x) ≥ −αExτ,

and it follows that g∗ is bounded below.

The following result suggests that for the types of functions f that arise in most
applications, the non-negativity constraint on g is not a serious restriction.

Proposition 4. Let X = (X(t) : t ≥ 0) be a positive recurrent irreducible Markov
jump process on discrete state space S, with stationary distribution π. Suppose that
f : S → R+ is π-integrable and has the property that for each c > 0, {x : f(x) ≤ c}
has finite cardinality. Then, there exists a finite-valued non-negative function g and
a non-negative constant c that solve the linear inequality system:

(Qg)(x) ≤ −f(x) + x, x ∈ S.
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Proof. As in Theorem 3, we show that there exists an equality solution of the linear
inequality system. In this setting, we choose z so that f(z) is the minimum of f .
A simple continuous-time adaptation of the reasoning of Glynn and Meyn (1996)
establishes that one solution g to Poisson’s equation is

g∗(x) = Ex

∫ τ(x)

0

(f(X(s))− α)ds,

where α = πf . Let K = {x : f(x) ≤ α}, and note that if TK = inf{t ≥ 0 : X(t) ∈
K}, it is evident that

g∗(x) = Ex

∫ TK

0

(f(X(s))− α)ds + Exg∗(X(TK)).

Since f(x) ≥ α for x ∈ Kc, it follows that

(23) Ex

∫ TK

0

(f(X(s))− α)ds ≥ 0

for all x ∈ S (because (23) holds trivially for x ∈ K). The set K has finite cardinality
so

β := inf{g∗(x) : x ∈ K} > −∞.

So, g∗ is bounded below over S by β, and hence there exists a non-negative solution
to Poisson’s equation.

We conclude this section by showing how LP methods can be used to tighten
the bound on α = πf relative to the constant c as determined by (6), where f is
non-negative. In particular, suppose that one has found a non-negative Lyapunov
function g̃ satisfying (5) on the complement of some subset K. In order to obtain
a finite-dimensional LP, suppose that K is a finite set for which∑

y∈Kc

P (x, y)g̃(y)

can be computed for each x ∈ K. To tighten the bound on α relative to (6), consider
the LP:

min c

s.t.
∑
y∈K

P (x, y)g(y) ≤ −
∑

y∈Kc

P (x, y)g̃(y)− f(x) + c, for all x ∈ K(24)

0 ≤ g(x) ≤ g̃(x) for all x ∈ K.

By setting ĝ = g in K and ĝ = g̃ in Kc, we see that (ĝ, c∗) satisfies the hypotheses
of Theorem 1, where c∗ is the minimum of the LP (24). Hence, α ≤ c∗. Thus, the
bounding method developed in this paper can be used in conjunction with LP ideas
to create a numerical scheme for computing tight bounds on α = πf .

5. Applications

This section presents various applications of the above results; the applications are
grouped into two categories. The first set deals with application in discrete time, the
focus being on reflected random walks. The second set of examples deals with ap-
plications in continuous-time: examples include analysis of a Markov jump process
and a diffusion process with reflecting boundaries, both motivated by applications
in queueing theory.
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5.1. The single-server queue and random-walk processes

The single-server queue. Consider a queue that is fed by an arrival stream of
jobs with i.i.d. processing requirements V = (Vn : n ≥ 0), and i.i.d. inter-arrival
times U = (Un : n ≥ 1) that are also independent of the processing requirements.
We assume that EV0 ≤ EU1, guaranteeing the stability of the system (i.e., ρ :=
EV0/EU1 < 1). We also assume that at time t = 0 the first job arrives at the queue
and finds the system empty. Let X = (Xn : n ≥ 0) denote the waiting time process,
where Xn is the time that the nth job spends in the system before receiving service.
Taking Zn := Vn − Un+1, we can express the dynamics of the waiting time via the
recursion

Xn+1 = [Xn + Zn+1]+

where [x]+ := max{x, 0}. By construction, X is a discrete-time Markov chain taking
values in S = R+. Given the negative drift condition EZ < 0, basic stability
theory for the G/G/1 queue ensures the existence (and uniqueness) of a stationary
distribution π. Suppose we are interested in bounds on the first moment of this
distribution, that is, suppose that f(x) = x. Put g(x) = x2. Then, for any x ∈ S
we have

Exg(X1) = E ([x + Z1]+)2

= E(x + Z1)2 − E
(
(x + Z1)2;x + Z1 < 0

)
.

So,

Exg(X1) ≤ E(x + Z1)2

= x2 + 2xEZ1 + EZ2
1 .

Since (Ag)(x) ≤ EZ2
1 , then if Z has a finite second moment we can apply Theorem

1 (and Corollary 4), yielding the upper bound

EπX1 ≤
EZ2

1

2|EZ1|
,

which is nothing but Kingman’s bound; see Kingman (1962). If one considers the
performance of this bound in heavy-traffic, i.e., along a sequence of systems n =
1, 2, . . . in which ρn → 1 in such a way that

√
n(1− ρn) → µ for some µ > 0, then,

denoting the corresponding sequence of waiting times {Xn : n ≥ 1} we have that
n−1/2EπXn → σ2/(2µ), where σ2 =: EZ2

1 . Hence the above inequality holds with
equality in the aforementioned limiting sense.

To derive a lower bound on the mean, note that

−E
[
(x + Z1)2;x + Z1 < 0

]
= E

[∫ 0

x+Z1

2udu; x + Z1 < 0
]

= 2E
[∫ 0

−∞
uI{x + Z1 ≤ u, x + Z1 ≤ 0}du

]
= 2

∫ 0

−∞
uP(Z1 ≤ u− x)du

≥ 2
∫ 0

−∞
uP(Z1 ≤ u)du

= −E
[
Z2

1 ;Z1 < 0
]

.
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If E|Z1|3 < ∞ then πg < ∞ and hence Theorem 2 yields

EπX1 ≥
E

[
Z2

1 ;Z1 ≥ 0
]

2|EZ1|
.

Note that the upper bound only requires EZ2
1 < ∞.

5.2. Applications in continuous time

We consider two applications. The first derives bounds on mean queue lengths in
a multi-class single server queue operating under the longest queue first (LQF)
scheduling policy. We then derive bounds on moments of semi-martingale reflecting
Brownian motion in the orthant.

Performance bounds for scheduling control in a single-server multi-
class queue. Customer arrival are modeled as m mutually independent Poisson
processes with rates λ1, . . . , λm. The processing requirements of customers in each
class follow an exponential distribution with mean 1/µi, i = 1, . . . , d and are inde-
pendent of each other and of the arrival processes. There is a single server which can
serve customers at unit rate. Upon arrival, customers either get served immediately
or are put into infinite capacity buffers, according to their class. Upon completion of
service, a customer leaves the system. In any given class, at most one customer can
be serviced and the sequencing within a class is according to a First-In-First-Out
(FIFO) discipline. Customers that are not in service are said to be in the queue.

We will assume in what follows that

ρ :=
m∑

i=1

ρi < 1 ,

where ρi := λi/µi for i = 1, . . . ,m. (The quantity ρ is referred to as the traffic
intensity in the system.) It is well known that under the above condition every
Markovian work-conserving policy is stable, in the sense that the associated CTMC
is positive recurrent. (By work-conserving we mean that the server does not idle
whenever there is work to be done.) Conversely, if ρ > 1 then any scheduling policy
is unstable (i.e., there is no steady-state).

Denote the queue-length vector at time t ≥ 0 by X(t) = (X1(t), . . . , Xm(t)), and
let X = (X(t) : t ≥ 0) denote the queue-length process. To illustrate the application
of our Lyapunov inequality, we consider a simple state-dependent scheduling policy
known as “serve the longest queue first,” denoted LQF for brevity. As the name
suggests, this policy assigns the server to serve the class in which the queue length
is the longest, and if no customers are in the system the server idles. We allow for
service to be preempted if at any time instant the queue in one of the classes that
is not being served increases beyond the length of the queue in the currently served
class.

To formalize the verbal description of the scheduling policy, define a mapping
δ : Zd

+ → {0, . . . ,m}, such that for any fixed vector of queue lengths x ∈ Zd
+, we

have a(x) ∈ {e0, e1, . . . , ed} where ei is the ith unit vector in Rm, and e0 is an
m-dimensional zero vector. The action a(x) specifies what customer class receives
service when the system is in the given state x. Let ai(x) be the ith component of
a(x) for any state x. For the LQF discipline we have that

a(x) =
{

ei if xi > max{xj : j 6= i}
e0 otherwise ,
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and ties are broken arbitrarily by giving priority to the class with larger index.
Let us denote by i∗(x) the class that is granted priority under this scheduling rule.
With this notation, the infinitesimal generator of the controlled CTMC is

A(x, y) =
{

λi if y = x + ei

µiai(x) if y = x− ei

for any two states x, y ∈ Zm
+ , such that x 6= y (where this vector inequality is inter-

preted to hold if the two vectors differ at least in one coordinate), for i = 1, . . . ,m.
The diagonal entries in this matrix are defined by A(x, x) = −

∑
y 6=x A(x, y).

Our objective is to obtain upper bounds on the steady-state queue lengths under
the aforementioned LQF policy. Given our chosen scheduling rule, we are particu-
larly interested in the behavior of the longest queue. Using previously established
notation, put f(x) = ‖x‖∞ := max{x1, . . . , xm}, and take the test function g to be

g(x) =
m∑

i=1

x2
i

µi
+

m∑
i=1

xi

µi
.

Using the definition of the infinitesimal generator, straightforward algebra yields
that

(Ag)(x) = 2
m∑

i=1

ρixi − 2xi∗ + 2ρ,

where ρi = λi/µi, ρ =
∑

i ρi and i∗ is the index of the largest coordinate of x.
Hence, we have that

(Ag)(x) ≤ −2f(x)(1− ρ) + 2ρ,

which serves as the basic inequality for the purposes of bounding the maximal queue
length. In particular, by Theorem 1 and Corollary 1 we have

Eπ‖X(t)‖∞ ≤ ρ

(1− ρ)
.

A simple manipulation of the above bound gives us the following bound on the
total workload in the system in steady-state

Eπ

[
m∑

i=1

Xi(t)
µi

]
≤ ρ2

λmin(1− ρ)
,

where λmin = min{λ1 . . . , λm}. The work reported on in Bertsimas et al. (2002)
can be used to contrast this with a lower bound that holds for all stable Markovian
policies, and is derived by other methods. In particular, Theorem 2 in Bertsimas et
al. (2002) asserts that

Eπ

[
m∑

i=1

1
µi

Xi(t)

]
≥ ρ2

4λmax(1− ρ)
,

where λmax = max{λi : i = 1 . . . , d}. Hence our argument recovers the correct
order of this lower bound. In particular, this implies that the performance of LQF
scheduling is within a constant factor of the best possible scheduling rule, for all
problem instances in which the ratio λmin/λmax is held constant.

Reflected Brownian motion. A class of diffusion processes that play a central
role in queueing theory are of the type most often referred to as reflected Brownian
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motions (or RBMs); see, e.g., Harrison and Reiman (1981), Harrison and Williams
(1987), Dupuis and Williams (1995) and references therein. (There are many more
recent references on the topic but the latter are the most relevant to the examples
presented below.) Specific instances of these processes have been shown to arise
as diffusion limits of certain queueing networks that operate under so-called heavy
traffic conditions. We next proceed with three concrete examples of such RBMs
and illustrate how our basic inequalities can be used to obtain bounds on the tail
of their stationary distribution.

Example 1: One dimensional RBM. The simplest instance of RBMs arises as a
diffusion limit of the single server queue in heavy-traffic. The process can be defined
as the unique strong solution of the following stochastic differential equation, which
is a particular instance of the class of stochastic differential equations discussed in
Section 3.2:

dX(t) = −µdt + σdB(t) + dΓ(t)
X(0) = x0,

where µ, σ > are positive constants, x0 ≥ 0, and Γ = (Γ(t) : t ≥ 0) is the “pushing
process” that keeps X = (X(t) : t ≥ 0) from going negative. It is well known
that the stationary distribution of this process is exponential with mean σ2/(2µ),
that is, when X(0) is drawn from this distribution the process X is stationary.
Establishing this result is not difficult, but does require some modest amount of
work and familiarity with properties of Brownian motion [see, e.g., Karatzas and
Shreve (1991)]. We next illustrate how our basic inequality can be used to obtain
rough bounds on the tail of the stationary distribution. Let g(x) = exp{ax} − ax
for some positive constant a to be specified shortly. (It is possible to allow for two
different constants to parameterize g, but this does not improve upon the bounds
derived below.) With this definition we have g′(0) = 0, and

(Lg)(x) = −µag(x) + µa +
σ2

2
a2g(x).

Fix ε > 0 and set a := 2µ(1 − ε)/σ2. From this we get that (Lg)(x) ≤ −ε(1 −
ε)µag(x) + µa. Hence, setting f(x) = exp{ax} and c = (ε(1 − ε))−1, with the
above choice of constant a we have by Corollary 2 (in particular, the discussion
following Corollary 4) that πf ≤ c. Now, using Markov’s inequality we have that
Pπ(X(0) ≥ x) ≤ (ε(1− ε))−1 exp{−2µ(1− ε)/σ2}, for any ε > 0.

Example 2: RBM in the orthant. Let S = Rd
+ (the positive d-dimensional or-

thant). Let µ be a constant vector in Rd, σ a d×d non-degenerate covariance matrix
(symmetric and strictly positive definite), and R a d× d matrix. For each x ∈ S, a
semimartingale reflecting Brownian motion (abbreviated as SRBM) associated with
the data (S, µ, σ, R, x) is an Ft-adapted, d-dimensional process X = (X(t) : t ≥ 0)
defined on some filtered probability space (Ω,F ,Ft, P) such that:

(i) X = W + RΓ, Px-a.s.,
(ii) Px-a.s., X has continuous paths and X(t) ∈ S for all t ≥ 0,
(iii) W is a d-dimensional Brownian motion with drift vector µ, covariance matrix

σ and W (0) = x. In addition, M(t) = W (t)− µt is an Ft-martingale.
(iv) Γ is an Ft-adapted d-dimensional process such that under P it satisfies for

each j = 1, . . . , d:

a.) Γj(0) = 0

b.) (Γj(t) : t ≥ 0) is continuous and non-decreasing
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c.) Γj(t) can increase only when X hits the face Fj = {x ∈ Rd
+ : xj = 0}.

Loosely speaking, SRBM behaves like Brownian motion in the interior of the or-
thant, and is confined to the orthant by instantaneous “reflection” at the boundary
faces, where the direction of reflection is dictated by the matrix R.

The most general condition currently known to ensure existence and uniqueness
(in law) of SRBM in the orthant is that the matrix R is completely S. (That is, in
the construction of the SRBM satisfying the properties detailed above is not done
via a mapping from the initial condition and the Brownian motion, but rather as
a weak solution.) The completely S condition is in fact necessary and sufficient;
see Taylor and Williams (1993). [This property requires that for every principal
sub-matrix of R̃ of R there exists a vector v with strictly positive entries such
that R̃v is strictly positive.] For this class of SRBMs it is more challenging to
characterize the existence of a stationary distribution. Dupuis and Williams (1995)
prove that a sufficient condition for the existence and uniqueness of a stationary
distribution is that all solutions of an associated deterministic Skorohod problem
are attracted to the origin in finite time. (Their proof relies on a construction of a
somewhat complicated piecewise linear Lyapunov function and uses the martingale
structure of SRBM.) We next illustrate how a variation on that idea, using the
basic inequalities developed in this paper, can be used to establish integrability of
moments of an SRBM.

For the SRBM X, we require the following conditions to hold: (i) R is symmetric
and positive definite; and (ii) −γ := R−1µ < 0 componentwise. Condition (ii)
is necessary for the existence of a stationary distribution (see Dai and Harrison
(2008)). As for the symmetry assumption, this is imposed primarily to facilitate
the explicit construction of a simple test function g. Fix a > 0 and let g(x) =
exp{a

√
1 + x>R−1x}. Straightforward algebra yields that

∇g · µ = −a
x · γ√

1 + x>R−1x
g(x)

∑
i,j=1,...,d

σij
∂g2(x)
∂xi∂xj

≤ a2c1g(x) + ac2(1 + x>R−1x)−1/2g(x)

(∇g ·R)i =
axi√

1 + x>R−1x
g(x),(25)

where c1, c2 are finite constants that depend only on the matrices R and σ, and can
be computed explicitly in a straightforward manner (we omit such calculations for
space considerations). Examining the third equality in (25), we may conclude that∫
∇g(X(t))>RdΓ(t) = 0 for all t since

∫
X(t) ·dΓ(t) = 0 by definition of the SRBM.

Examining the first and second inequalities in (25), it follows that for a suitable
choice of r > 0, depending on γ and c2, we can ensure that ∇g · µ ≤ −2ac2g(x) for
x /∈ {x : 0 ≤ xi ≤ r}. It then follows that by taking a < c2/(2c1) we have that

(Lg)(x) ≤ −(c2
2/(2c1)g(x) + c

where c := max{|(Lg)(x)| : 0 ≤ xj ≤ r, j = 1, . . . , d}. Put Kn := {x ∈ S : xi ≤
n, for all j = 1, . . . , n}. Let Tn = inf{t ≥ 0 : Xi(t) /∈ Kn}. By continuity of the
paths of SRBM, we have that Tn → ∞ a.s., as n → ∞. We can now apply Itô’s
differential rule to X, “localize” the martingale term using Tn and hence apply the
same logic used in the proof of Theorem 1 and Corollary 2 (and the sketch provided
for diffusion with reflecting boundaries) and arrive at the conclusion that πf ≤ c.
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This yields

Eπ

[
exp

{
a
√

1 + X(0)>R−1X(0)
}]

≤ 2cc1/c2
2 .

Thus, for suitably small a we have exponential moments for the particular class of
SRBMs satisfying assumptions (i) and (ii) above. Corresponding bounds on the tail
of the stationary distribution follow immediately by using Markov’s inequality. We
should note that more precise characterization of the tail of SRBMs (without the
need for condition (ii)) was recently derived by Budhiraja and Lee (2007).
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